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A B S T R A C T

Computational ecoacoustics has seen significant growth in recent decades, facilitated by the reduced costs
of digital sound recording devices and data storage. This progress has enabled the continuous monitoring of
vocal fauna through Passive Acoustic Monitoring (PAM), a technique used to record and analyse environmental
sounds to study animal behaviours and their habitats. While the collection of ecoacoustic data has become
more accessible, the effective analysis of this information to understand animal behaviours and monitor
populations remains a major challenge. This survey paper presents the state-of-the-art ecoacoustics data
analysis approaches, with a focus on their applicability to large-scale PAM. We emphasise the importance
of large-scale PAM, as it enables extensive geographical coverage and continuous monitoring, crucial for
comprehensive biodiversity assessment and understanding ecological dynamics over wide areas and diverse
habitats. This large-scale approach is particularly vital in the face of rapid environmental changes, as it provides
crucial insights into the effects of these changes on a broad array of species and ecosystems. As such, we outline
the most challenging large-scale ecoacoustics data analysis tasks, including pre-processing, visualisation, data
labelling, detection, and classification. Each is evaluated according to its strengths, weaknesses and overall
suitability to large-scale PAM, and recommendations are made for future research directions.
1. Introduction

1.1. Background

Ecoacoustics is a rapidly emerging field that focuses on the study of
environmental sounds to monitor and understand biodiversity (Farina
& Gage, 2017). It encompasses the recording, analysis, and interpre-
tation of sounds produced by wildlife, as well as those occurring in
their natural habitats. Ecoacoustics plays a crucial role in understand-
ing and monitoring biodiversity. By analysing environmental sounds,
researchers can gain insights into the presence, behaviour, and in-
teractions of various species. This approach is particularly important
given the increasing challenges of biodiversity decline. Unfortunately,
these challenges are global; species loss due to habitat destruction is a
widespread issue, placing significant strain on ecosystems (Cardinale
et al., 2012; Wilcove, Rothstein, Dubow, Phillips, & Losos, 1998).
To support both humans and animals, ecosystem function must be
maintained by reducing animal extinction rates. The primary aim of
this study is to comprehensively review and assess various methods
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for analysing ecoacoustic data, with a particular focus on large-scale
Passive Acoustic Monitoring (PAM). By evaluating these methodolo-
gies, we aim to identify their strengths, limitations, and areas for
improvement, thus contributing to more effective biodiversity moni-
toring efforts. Given the comprehensive nature of our analysis and the
depth of our evaluation, we believe that the findings and methodologies
discussed herein could serve as a model for future ecoacoustic re-
search efforts. This is particularly pertinent in the context of enhancing
biodiversity monitoring.

Biodiversity monitoring is necessary to track species, understand
declines, and evaluate management interventions and has thus been
the focus of much recent research (Agranat, 2009; Enari, Enari, Okuda,
Maruyama, & Okuda, 2019; Gibb, Browning, Glover-Kapfer, & Jones,
2018; Riede, 1993). Historically, ecological surveys of fauna have
been manual. Typically, experienced zoologists are required to iden-
tify fauna in natural ecosystems to ascertain whether a species is
present at a particular location at any point in time (Gregory, Gibbons,
& Donald, 2004). Such surveys are limited in scale, expensive and
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labour-intensive (Riede, 1993). Monitoring fauna using remote sensor
technologies has become increasingly used to overcome these issues.

PAM is a technique that involves the use of Autonomous Recording
Units (ARUs) equipped with microphones to capture environmental
sounds. The core components of a PAM system include highly sensitive
microphones for sound capture, data storage units for recording, and
often include pre-amplifiers and filters to enhance sound quality and
reduce noise (Sugai, Silva, Ribeiro, & Llusia, 2018). These systems
are deployed in various habitats and can operate continuously over
extended periods, capturing a wide range of biophonic (animal sounds),
geophonic (non-biological natural sounds like wind or water), and
anthrophonic (human-made noises) acoustic signals.

Until recently, technological costs and constraints were the primary
barriers to deploying automated PAM systems for ecological studies.
Due to this, research using PAM has primarily focused on only a handful
of taxonomic groups (e.g., bats, cetaceans, birds), often resulting in
relatively small-scale feasibility assessment studies (Gibb et al., 2018).
In addition, researchers using PAM typically study an individual species
or sub-sample data from the available recordings. Consequently, the
focus is concentrated and limited to a specific time or location. Thus,
while historically, analysis techniques were optimised for simpler tasks
like human speech recognition in recorded conversation, advance-
ments in technology have expanded their applicability to more complex
ecoacoustic monitoring tasks.

In part, this has been facilitated by increasingly affordable digital
sound recording devices and data storage solutions, which has en-
abled ecoacoustic recorders to be deployed at scale in terrestrial fauna
surveys, both spatially and temporally (Roe et al., 2021). As such,
there has been a recent trend towards very large-scale continental-
wide projects such as the Australian Acoustic Observatory (A2O) (Roe
et al., 2021), which has recorders deployed at the sites of the Terrestrial
Ecosystem Research Network (TERN) and a range of other landhold-
ers, including National Parks, Australian Wildlife Conservancy, Bush
Heritage Australia and other private individuals, the U.S. Northeast Pas-
sive Acoustic Sensing Network (NEPAN) (Van Parijs et al., 2015), the
Okinawa Environmental Observation Network (OKEON) (Ross et al.,
2018) as well as the National Oceanic and Atmospheric Administration
(NOAA) / National Park Service (NPS) Ocean Noise Reference Station
(NRS) (Haver et al., 2018; Ross et al., 2023). These systems offer an
unprecedented opportunity for broad-scale monitoring of ecoacoustics
patterns. However, alongside with capturing these broad patterns, it is
equally important to identify the specific species present within a large
soundscape. Biologists and ecologists conducting biodiversity surveys
need detailed insights into the species present, as understanding the
species composition is essential for conservation and ecological studies.

Large-scale recording using PAM can have distinct advantages over
other forms of fauna monitoring, requiring fewer site visits and poten-
tially providing continuous recordings as opposed to episodic samples
associated with visits. PAM systems can also capture information on
vocalising fauna for use with other monitoring techniques, including
remote methods such as camera trapping or manual surveys (Enari
et al., 2019). It is important to note, however, that PAM systems cannot
detect the presence of non-vocal animals or species that produce sounds
outside of the captured frequency range of deployed microphones, such
as the ultrasonic echolocation sounds of bats (Roe et al., 2021), al-
though specialised microphones can be deployed. Thus, while powerful,
PAM must be supplemented with other monitoring methods to provide
a complete picture of species presence if full species inventories are
required. Realistically, no single approach can provide complete species
inventories, and PAM has other advantages, as mentioned earlier.

An aspect of PAM systems that can be both advantageous and
challenging is the generation of large volumes of sound information.
While this is particularly true for continuous recording strategies such
as those used by the A2O (Roe et al., 2021), real-time detection and
2

episodic recording methods can mitigate this issue to some extent.
However, it is important to recognise that the choice between con-
tinuous and episodic recording is often dictated by specific research
needs and practical considerations. Episodic recording, where sounds
are recorded at predetermined intervals, is frequently selected due to
practical constraints such as limited battery life, data storage consider-
ations, and the specific objectives of the research. For instance, studies
focusing on particular temporal patterns or events may not require
continuous data streams, making episodic recording a more suitable
and resource-efficient approach. Despite this, the extensive temporal
sampling available using PAM allows for the detection of interesting
patterns that are not detectable from occasional visits typical of manual
surveying. For example, PAM can capture diurnal and seasonal varia-
tions in animal vocalisations or detect rare vocal events that may be
missed during manual surveys. In cases of large-scale projects which
employ continuous recording strategies, the immense volumes of data
generated are far in excess of what human experts can ever listen to and
manually label. Consequently, this has raised a significant problem in
analysing this data. Presently, most works conducted use a sub-sample
of the full dataset containing the sounds of specific target species,
and not all of the available information is utilised because it is too
time-consuming to analyse.

However, rapid advancements in informatics, such as big data,
Machine Learning (ML) and signal processing, have enabled large
amounts of raw audio data to be effectively processed and transformed
into useful data. Leveraging advancements in computational power,
several emerging technology paradigms have been integrated into PAM
systems. These include Deep Learning (DL), a specialised form of ML
that mimics neural networks to analyse various forms of data; object
recognition, which identifies distinct objects within digital images;
and image segmentation, the technique of dividing a digital image
into distinct segments to facilitate more precise image analysis. These
techniques can provide species identification and, by their nature, will
overcome some issues with previous approaches to species identifica-
tion by sound. Though there have been some applications of ML and DL
techniques in ecoacoustics (Fazekas, Schindler, Lidy, & Rauber, 2018;
Kampichler, Wieland, Calmé, Weissenberger, & Arriaga-Weiss, 2010),
their use has been more widespread in other domains for a variety
of signal identification and recognition tasks, such as human speech
recognition in large environments (Abdel-Hamid et al., 2014; Swamy
& K.V, 2013) and orchestral music content analysis (Muller, Ellis,
Klapuri, & Richard, 2011). While these approaches have seen increased
adoption in ecoacoustics, even dating back to early applications in the
2000s, their impact has been somewhat fragmented. Specifically, the
field still faces challenges when it comes to large-scale ecoacoustics
applications due to a lack of standardisation in methodologies and
datasets, which limits the broader applicability and comparability of
these techniques (Stowell, 2022). Therefore, while acknowledging the
growing role of ML and DL in ecoacoustics, several gaps and challenges
still exist, particularly in the context of large-scale PAM applications.

1.2. Motivation

The primary motivation behind this study is that finding successful
approaches to ecoacoustics, specifically for the analysis of large-scale
PAM, constitutes a relatively new, cutting-edge, and promising branch
of research. Developments and applications of DL in other fields, such
as image recognition of weeds in agriculture and detection of fish
species in marine biology, indicate that it has significant potential, yet it
is underexplored in ecoacoustics. There are several key challenges halt-
ing progress. First, current approaches, typically manual identification,
are too time-intensive and require expert knowledge of target ani-
mal vocalisations. Moreover, inadequate levels of labelled datasets are
available for training supervised learning models and further labelled
data is too expensive and challenging to acquire easily.

In the past few years, DL-based approaches to this problem have

been State of The Art (SoTA). The most significant increase in accuracy
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for detection tasks has come from the advancement of image classifi-
cation techniques, especially the use of Convolutional Neural Networks
(CNN) in vision-based problems. However, two significant issues must
be addressed for full applicability to ecoacoustics. First, many existing
ML and DL approaches are evaluated on datasets with low variation
amongst different taxonomic groups such as birds (Lasseck, 2019;
Stowell, Wood, Pamuła, Stylianou, & Glotin, 2018), and frogs (Colonna
et al., 2016; LeBien et al., 2020) which is not representative of the
real world. Existing DL models are trained and tested on these limited,
smaller, and often non-ecological datasets without consideration of the
overarching problem. Thus, these models can generalise some aspects
particularly well, e.g., a particular taxonomic group (Bardeli et al.,
2010; Colonna et al., 2016; Lasseck, 2019; LeBien et al., 2020; Salamon
et al., 2016; Stowell et al., 2018) or individual species (Frommolt &
Tauchert, 2014; Willacy, Mahony, & Newell, 2015), but they cannot
generalise beyond the circumscription of the dataset upon which they
are trained (Kamilaris & Prenafeta-Boldú, 2018). DL models, especially
CNNs, are known for their ability to excel in pattern recognition tasks
such as image and sound classification. However, these models are
trained to recognise the patterns that are abundant in the dataset on
which they are trained. Therefore, if a model is trained on a narrow or
non-representative dataset, its ability to generalise to new, unseen data
may be poor. This is of particular concern in fields like ecoacoustics
where the real-world data is incredibly diverse.

Secondly, many ML and DL approaches have historically been
trained on manually pre-cleaned datasets devoid of environmental
noise (Bardeli et al., 2010; Gasc, Sueur, Pavoine, Pellens, & Grand-
colas, 2013; Phillips, Towsey, & Roe, 2018). Environmental sounds
can have varying levels of impact on the results of ecoacoustics stud-
ies but is particularly influential in ones which use sensitive feature
representations (Sánchez-Giraldo et al., 2020). There are, however,
emerging studies that incorporate environmental noise in their training
datasets (Grinfeder et al., 2022), but the extent to which it effects
downstream tasks remains an understudied area. Traditional denois-
ing techniques have been used like low-band and high-pass filter-
ing (Brown, Garg, & Montgomery, 2018b; Neal, Briggs, Raich, & Fern,
2011; Pijanowski et al., 2011), however, they have limitations when it
comes to recordings with overlapping calls or multiple species (Chen,
Chen, Lin, Chen, & Lin, 2012; Huang et al., 2014). These nuances un-
derscore the need for more comprehensive training datasets containing
sufficient environmental noises for better performance on real-world
datasets (Babaee, Anuar, Abdul Wahab, Shamshirband, & Chronopou-
los, 2017), such as those generated by large sensor networks. Evidently,
advancements in ecoacoustic analysis often prioritise increasing accu-
racy for specific tasks, such as those focused on particular taxonomic
groups or geographic areas. While this approach may be sufficient for
research questions with a narrow scope, it may not fully address the
challenges and complexities inherent in large-scale, multi-taxonomic,
and multi-regional datasets. Therefore, while current methods may be
adequate for many specialised research questions, they may fall short
in the context of comprehensive biodiversity inventories or large-scale
ecological monitoring. As DL approaches rely on large quantities of
labelled environmental recordings for supervised learning tasks, the
problem of data scarcity remains a pivotal issue. Thus, progress towards
a suitable solution remains inhibited by the lack of readily available,
annotated, large-scale ecoacoustics datasets that adequately cover real-
world natural soundscapes and the lack of clarity and consideration
around the complexities and causes of variation present in large-scale
systems (Gibb et al., 2018).

1.3. Unique contributions in comparison to other surveys

This paper contributes uniquely to the field by identifying all critical
components of an end-to-end ecoacoustic analysis workflow for large-
3

scale PAM systems. Further, a comprehensive survey of the SoTA
technologies is conducted that falls within the proposed model. Fo-
cus is placed on the types of datasets, ML, DL, visualisation, and
applications thereof through the unique lens of applicability to large-
scale ecoacoustics data analysis. While large-scale ecoacoustics data
analysis offers a broad view, it is essential to align this with the
research questions being addressed. For example, large-scale datasets
could be invaluable for studying the effects of urbanisation on wildlife,
monitoring the migratory patterns of multiple vocal species across a
continent, or investigating the spread of vocal invasive species across
multiple habitats.

To date, and to the best of our knowledge, no other paper eval-
uates publicly available ecoacoustics datasets for their applicability
to large-scale PAM. It will distinguish itself from previous surveys
by considering all components individually and as a whole. Further
emphasis is placed on an overall ecosystem view rather than investi-
gating a specific species or taxonomic group. This is because, while
focusing on specific species or taxonomic groups has its merits, an
ecosystem-level approach offers a more holistic understanding of the
acoustic environment. This broader perspective allows for the capture
of complex interactions among multiple species and their responses to
various environmental factors. For example, an ecosystem-level focus
can reveal how different species’ vocalisations overlap or interact, pro-
viding insights into community dynamics. Furthermore, this approach
is particularly beneficial for identifying broader patterns and trends
that may be missed when focusing solely on individual species. Such
patterns could include shifts in community composition or changes in
vocalisation timing across multiple species, which could be indicative
of larger environmental changes. Focus is also placed on the effec-
tiveness of unsupervised, self-supervised segmentation and labelling
approaches, as the lack of labelled data is the most challenging issue
to date, halting further progress for applications of ML and DL to
large-scale PAM. As such, the primary objectives of this comprehensive
review are to:

• Evaluate current methodologies in the pre-processing, detection,
and classification of ecoacoustic data, particularly in the context
of large-scale PAM.

• Identify efficient data annotation and segmentation techniques
suitable for large-scale acoustic data.

• Assess the accuracy of various classification approaches in recog-
nising species within extensive ecoacoustic datasets.

• Explore the challenges and limitations inherent in these method-
ologies when applied to large datasets and propose potential
mitigation strategies.

Our investigation aims to address the gaps in the current liter-
ature, as highlighted in Table 1. This table juxtaposes our survey
against existing studies, illustrating areas that previous reviews have
not fully covered, particularly concerning large-scale PAM. By focusing
on these gaps, our review endeavours to advance the field of ecoacous-
tics by providing insights into the current state of methodologies and
suggesting avenues for future research.

1.4. Structure of survey

To better organise the structure of this survey, we present the
sequence and interrelation of different steps in a typical PAM data
analysis workflow as illustrated in Fig. 1. Based on this, the remainder
of this paper is structured based on the major tasks presented as follows:
Section 2 introduces key terms and covers the background of ecoacous-
tics for large-scale applications, including the characteristics and types
of available datasets. Section 3 covers the pre-processing and denoising
techniques observed for long-duration ecoacoustic applications, while
Section 4 covers the task of visualising such data. In Section 5, we
discuss and break down the current SoTA data labelling and segmen-
tation techniques, focusing on scalability to large-scale PAM. Section 6
presents a further discussion on the detection and classification tech-
niques and their applications. Finally, Section 7 presents an open set of

problems and future challenges in the large-scale ecoacoustics area.
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Table 1
Comparison between our survey and existing surveys.

Reference Components of
ecoacoustics
analysis framework

Focus on
large-scale
PAM

Evaluation of
ecoacoustics
dataset types

Coverage of signal
pre-processing and
noise removal

Ecoacoustics data
labelling and
segmentation

Long-duration
data
visualisation

Ecoacoustics
detection and
classification

Gibb et al. (2018) G#  # G# # # G#
Babaee et al. (2017) G# # G# G# G# #  
Xia, Togneri, Sohel,
Zhao, and Huang
(2019)

G# # G# # G# # G#

Kvsn, Montgomery,
Garg, and
Charleston (2020)

 G# #  G# G#  

Xie, Colonna, and
Zhang (2020)

G# G# G#  # # #

Bonet-Solà and
Alsina-Pagès (2021)

G# # G# G# G# # G#

Stowell (2022)  G# G# G#  G# G#
Our Survey        

 = Complete Information, G#= Partial Information, #= No Information.
Fig. 1. A typical workflow model for large-scale ecoacoustics data analysis.
2. Ecoacoustics overview

2.1. Ecoacoustics vs. Bioacoustics

Ecoacoustics involves extracting ecological patterns from PAM sys-
tems on an ecosystem level for biodiversity assessments (Sueur &
Farina, 2015). Although related, bioacoustics differs from this by ex-
amining the fabrication, transmission, and reception of animal sounds
from vocal fauna. However, it is important to acknowledge that the use
of PAM is not exclusive to ecoacoustics. Recent trends in bioacoustics
also demonstrate a growing adoption of PAM techniques for species-
specific studies. In contrast, ecoacoustics observations operate on a
much broader scope and provide insights at an ecosystem or biome
4

scale. They can offer a unique window into the habits and behaviours
of populations and communities, which, once captured, can be used as
a valuable means of monitoring vocal fauna (Kvsn et al., 2020). Such
forms of monitoring are becoming of critical importance considering
recent trends of species decline, yet this area, specifically on a large
scale, remains understudied.

To date, much research has been conducted on human speech
analysis and recognition (Abdel-Hamid et al., 2014; Swamy & K.V,
2013). However, there are several key differences between human
speech and animal vocalisations. Human speech generally occupies a
much smaller frequency range than animal vocalisations, and often the
energy at frequencies above 5 kHz is ignored by speech recognition
techniques (Monson, Hunter, Lotto, & Story, 2014). Human speech data
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Table 2
Types of environmental ecoacoustics datasets.

– Large-scale
PAM datasets

Small-scale
PAM datasets

Non-natural and
curated datasets

Distributed citizen
science datasets

Example
Datasets

A2O (Roe
et al., 2021),
NEPAN
(Van Parijs
et al., 2015),
NRS (Haver
et al., 2018),
OKEON (Ross
et al., 2018)

BirdCLEF
(Kahl, Denton,
et al., 2021),
CLO-43SD
(Salamon
et al., 2016)

AudioSet
(Gemmeke et al.,
2017), ESC
(Piczak, 2015),
VGG-Sound
(Chen, Xie,
Vedaldi, &
Zisserman,
2020),
UrbanSound
(Salamon,
Jacoby, & Bello,
2014)

FrogID (Rowley
et al., 2019),
BirdNET (Kahl,
Wood, Eibl, &
Klinck, 2021)

Scale Large Small Medium-Large Medium
Continuous Yes Mostly No No
Natural Yes Yes No Yes
Multi-Class Yes Sometimes Yes No
Multi-Species Yes Yes Yes Yes
Taxa Diversity
Level

High Medium Low-Medium Medium

Multi-Location Yes Sometimes Yes Yes

is also typically non-overlapping, whereas, in environmental record-
ings, several species may call simultaneously at variable distances from
the receiver, with fluctuating directions and loudness. In addition, en-
vironmental factors such as geophony (wind, rain, etc.) or anthrophony
(cars, planes, helicopters) can also obfuscate the signal, rendering
identification of the original vocalisation difficult (Agranat, 2009).
Signals in natural environments may also be reflected and scattered by
objects, such as trees and rocks, further deforming the original signal in
unknown ways. Thus, traditional techniques applied to human speech
are suboptimal for animal vocalisation identification tasks.

Rich soundscapes, such as tropical rainforests or bushland, captured
by large-scale systems can be remarkably complex, with many com-
peting species seeking to communicate simultaneously. Vocalisations
produced by terrestrial species serve multiple purposes, including pro-
moting survival and facilitating reproduction. These vocalisations can
exhibit variations due to a range of factors such as individual char-
acteristics, environmental conditions, and social interactions among
species. Such variations can manifest in frequency, timing, harmonics,
and rhythm, adding layers of complexity to ecoacoustic data analy-
sis (Happel & Happel, 2020). Further still, more types of non-biophonic
sounds are captured, which are typically absent in smaller-scale studies.

2.2. Types of ecoacoustics data

Ecoacoustics data can be broadly categorised into four major groups.
The first is large-scale PAM datasets such as the A2O (Roe et al.,
2021). These datasets focus on an overall ecosystem or soundscape
level rather than a specific site or species and generally possess a high
ecoregion diversity and number of taxa monitored. The second is small-
scale PAM datasets such as BirdCLEF (Kahl, Denton, et al., 2021) and
CLO-43SD (Salamon et al., 2016). This dataset group still focuses on
an overall environmental or soundscape level; usually, however, these
datasets are gathered by individual researchers to develop methods
around a single specific geographic area or target species. The high
variance in the number of possible sounds captured distinguishes it
from small-scale PAM. Other forms of related datasets can be grouped
into either a non-natural or curated environmental dataset such as
Environmental Sound Classification (ESC) (Piczak, 2015), which are
manually extracted from public field recordings, or a distributed citizen
science dataset such as FrogID (Rowley et al., 2019) which collects, and
labels audio clips uploaded via crowdsourcing.

As illustrated in Table 2, large-scale PAM datasets present a unique
challenge compared to the other identified dataset groupings. Specifi-
cally, large-scale PAM datasets feature considerably more variance in
the possible number of sounds captured. Not only are sounds captured
within natural environments and are thus subject to highly variable
conditions on a day-to-day basis, but the addition of multiple loca-
5

tions and diverse, often overlapping, species calls distinguish these
large-scale PAM datasets from any other. For this reason, additional
considerations must be made for data handling and further still for
the pre-processing of large-scale ecoacoustics datasets, as they must be
crafted explicitly with these complications considered.

2.3. Ecoacoustics data handling

The task of handling large-scale PAM datasets presents several
unique challenges, the foremost of which being computational bottle-
necks. While advanced multi-species detectors do exist and are actively
improving (Hao et al., 2022; Colin Quinn et al., 2022), the sheer
volume of data, often in the terabytes, poses a significant challenge
for timely processing, especially for researchers without access to high-
performance computing resources. This issue is particularly acute for
practitioners in resource-constrained regions.

Further challenges extend to data archiving and storage. The large
volumes of data generated by PAM projects necessitate robust and
scalable storage solutions (Roe et al., 2021). Traditional on-premises
storage can be costly and difficult to scale, making cloud storage
an increasingly popular alternative. However, the recurring costs and
data transfer speeds can be significant barriers. Furthermore, the or-
ganisation of annotations and detections from ML and DL algorithms
presents a logistical hurdle, a sentiment echoed by a recent study which
found no standard approaches to annotation and a strong need for
interoperability (Vella et al., 2022).

This lack of standardisation hampers the scaling of PAM projects
and complicates data sharing and analysis. As such the need for open
ecoacoustic monitoring is essential. This term refers to a collaborative,
transparent, and accessible approach to ecoacoustic data collection,
analysis, and sharing. Open ecoacoustics monitoring emphasises the use
of standardised platforms and community-driven initiatives to collect,
process, and share ecoacoustic data. This approach not only facilitates
data accessibility and interoperability among researchers but also aims
to democratise the process of ecoacoustic data analysis, allowing for a
broader participation from the scientific community and stakeholders.
Ensuring open access to this data is vital but it does come with its
own set of challenges. This includes, but is not limited to, data privacy
concerns, the need for standardised metadata, and the establishment of
data-sharing agreements that respect the interests of all stakeholders.

3. Signal pre-processing and noise removal

In large-scale continental PAM sensor networks, such as the A2O
(Roe et al., 2021) and NEPAN (Van Parijs et al., 2015), all omnidirec-
tional recorders continuously collect data over many different sites and
ecoregions, leading to high volumes of data. Audio recordings are often
obtained under open-environment conditions, where a large variety
of sounds near the microphone are captured. Ecoacoustic recordings
can have multiple unknown sound sources with sometimes overlapping
unknown mixing agents in both time and frequency (Agranat, 2009;
Happel & Happel, 2020). Qualities such as sound reverberation can
create distortions in the signal, are specific to each ecoregion, and are
highly variable. Pre-processing must be employed before analysis to ex-
tract meaningful information from raw ecoacoustic data efficiently and
accurately. Pre-processing can include noise filtering, downsampling,
compression, conversion, and signal transformation. The previously
applied pre-processing approaches are often unsuitable for large-scale
studies due to computational processing time requirements and the
complexity differences between small-scale datasets and large-scale
acoustic scenes. This presents the need for more sophisticated data
pre-processing techniques.

In addition to the necessity of pre-processing, it is also well recog-
nised that there is a direct link between the results of signal denoising
and the quality of output from feature extraction, segmentation, and
classification (Xie et al., 2020). Without denoising, extracting mean-

ingful information from the raw audio data can become difficult, or in
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some cases impossible, particularly for ML-based methods. This is not
such an important consideration for DL-based methods as they are more
robust to noise (Brown, Garg, & Montgomery, 2018a). Removing noise
may benefit efficiency by reducing the total amount of data; however,
over-removal may erase crucial information from the signal.

3.1. Signal transformation

While large-scale PAM systems often generate high volumes of data
due to continuous recording across multiple sites and ecoregions, it is
important to note that the length of these recordings is not solely a
function of the system’s scale. The length can also be determined by
the recording schedule and can be obtained even with a single recorder,
depending on its capabilities. However, audio sequences may be split
into smaller segments before being used for feature extraction. Such
techniques enable long-duration audio files to be more manageable
and practical in this format while also allowing downstream methods
to work in a more distributed and efficient way without requiring
high RAM storage (Truskinger, Cottman-Fields, Johnson, & Roe, 2013).
Across a broad range of studies, there are a few standard signals
transforms that have been observed among them, including:

• Short-Time Fourier Transform (STFT) changes time-based infor-
mation into frequency-based information. Depending on the ap-
plication, several acoustic indices are used. Acoustic indices are
quantitative measures designed to summarise a characteristic of
the distribution of acoustic energy in an audio recording (Towsey,
Wimmer, Williamson, & Roe, 2014). These indices can integrate
frequency, time, and amplitude information, reflecting the multi-
faceted nature of sound recordings (Sueur, Farina, Gasc, Pieretti,
& Pavoine, 2014). They range from simple summaries that pro-
vide an overview of sound intensity, to more sophisticated cal-
culations that consider the spectral, temporal, and amplitude
variations within a soundscape. Essential for ecoacoustic analysis,
these indices can assist in the interpretation of ecoacoustic data,
such as in some cicada and rain detection cases, where they
analyse frequency information derived from STFT (Brown et al.,
2018b).

• Downsampling is reducing the sample rates of an audio file to
reduce file size. In some cases, such as purely bird-song appli-
cations, downsampling can be used to reduce sample rates to
closely match the signals of interest, e.g., as birds do not normally
vocalise below 11.025 kHz (Pijanowski et al., 2011), audio can
be downsampled to match this more closely, while still retaining
signals of interest;

• Conversion to Mono is converting stereophonic audio to
monophonic-channel audio. It is ideal in most cases because one
channel of audio preserves all sound in a single channel, which is
all that is needed to detect significant audio signals; thus, the file
size can be reduced for more efficient processing. It is important
to note that decisions regarding the sample rate and whether
to record in mono or stereo can be made at different stages.
These choices can be determined during the study design stage
to optimise data storage or can be adjusted post-recording based
on specific research needs;

• Short-Term Windowing is the splitting of input signals into tem-
poral segments. Typically, researchers take the approach of ei-
ther splitting the signal into uniform fixed-length segments or
splitting the signal into adjustable-length windows depending on
the specific application requirements, as long files are typically
non-viable for practical application due to high RAM require-
ments (Truskinger, Cottman-Fields, Eichinski, Towsey, & Roe,
2014);

• Event-Driven Windowing is the purposeful splitting of input sig-
nals through defining the beginning and end point of target sound
events in time. Typically this also compresses the total amount
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of samples and enables the rapid retrieval of features of interest
for further examination (Gage, Towsey, & Kasten, 2017; Qaisar,
Simatic, & Fesquet, 2017).

3.2. Signal denoising

In an ecoacoustics context, signal noise relates to the unwanted
modifications of a signal that may have been captured during the
original audio recording, storage, or transmission. In many cases, noise
represents an error or negative quality in sound recordings, which
can often be detrimental when recovering the original audio sources.
Importantly, background noises from an anthropogenic or geophony
source are often discarded in areas such as bioacoustics (Cai, Ee, Pham,
Roe, & Zhang, 2007). However, in some cases, noise can be beneficial,
such as in the case of ecoacoustics for large-scale PAM. Many non-
biophonic sounds are important to keep intact, as this can further
assist ecological studies into these types of noise’s effects on animal
behaviour (Kok et al., 2023; Potvin et al., 2023). However, some de-
noising is still required as some types of noise, such as white noise, can
render downstream tasks difficult or, in some cases, impossible. This is
particularly true when extracting meaningful information audio data,
specifically with ML-based methods, which are highly noise-sensitive
during feature extraction stages (Nettleton, Orriols-Puig, & Fornells,
2010; Xie et al., 2020).

3.3. Denoising methods

3.3.1. Spectral subtraction
Spectral subtraction is a common approach to audio noise reduction

consisting of subtracting the frequency components from noisy audio
portions to obtain a cleaned and enhanced recording. An example of
its effect can be observed in Fig. 2(b). The primary working principle
is based on generating a noise profile for a given recording, which is
suitable for short-duration segments where the noise stays relatively
consistent within the same recording. An example of where spectral
subtraction worked effectively was a study conducted in 2016 for frog
call classification (Xie, Towsey, Zhang, & Roe, 2016). Here, spectral
subtraction was successfully implemented to improve the segmentation
result for short 44-second environmental recordings of 26 different
anuran species.

However, for longer, continuous recordings, the sound variation
becomes far more significant, and accurately selecting an approximate
noise profile is vital for accurate results. Large-scale PAM systems typi-
cally possess a highly diverse range of noises, so it becomes increasingly
difficult for one noise profile to cover the possible variance adequately.
Thus, spectral subtraction may be suboptimal for applications using
long-duration recordings with rapidly changing background noise and
is better suited for applications employing shorter, non-continuous
event-driven recordings.

3.3.2. Wavelet-based
Wavelet-based denoising uses the time–frequency domain created

by wavelet transforms to localise features for generating sparse signal
representations. An underlying assumption is that undesired noise is
decoupled from the signal of interest by their frequency ranges. As
such, wavelet-based denoising must be carefully applied, as noise can
occur at any frequency. Consequently, its effectiveness will significantly
depend on the type of noise and the signal of interest frequency
ranges. Wavelet-based denoising has been used in ecoacoustic ap-
plications, across a range of species, particularly among those with
vocalisations containing considerable low-frequency energy. The most
common occurrence is cases where wavelet-based techniques have been
applied, including humpback whales (Ren, Johnson, & Tao, 2008),
anurans (Huang et al., 2014), and various bird species (Alonso et al.,
2017).
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Fig. 2. A comparison of two different denoising effects on a waveform for a 30-second-long recording taken from the A2O containing several overlapping bird calls. The first
(a) waveform represents the original, noisy audio recording. The second (b) and third (c) signal waveform plots represent the effects of spectral subtraction and wavelet-based
denoising, as red and orange, respectively, compared to the original signal (a). The fourth panel (d) shows a comparison between spectral subtraction (b) and wavelet-based
denoising (c). These denoising effects were achieved using a combination of SciPy and PyWavelets (Lee, Gommers, Waselewski, Wohlfahrt, & O’Leary, 2019; Virtanen et al., 2020).
In general, wavelet-based denoising can outperform other methods
by measuring Signal-to-Noise Ratio (SNR) and Segmental SNR (SSNR)
across a range of noise conditions. Still, it is also less efficient than
techniques such as low-, band- and high-pass filters, meaning that it
is not as suitable or scalable to large-scale systems (Xie et al., 2020).
Wavelet-based approaches represent a trade-off between flexibility and
efficiency. They are not as efficient as filter-based approaches; however,
as seen in Fig. 2(c) and (d), they can still achieve superior noise reduc-
tion and are not restricted to recordings of similar-frequency species
as the underlying wavelet transform algorithm has high adaptation
potential (Chen, Xie, & Zhao, 2013).

3.3.3. Low-, band- and high-pass filtering
Low-band- and high-pass filtering is the process of removing un-

wanted sounds within a particular frequency range. For example, if
birds only call between 1 kHz and 12 kHz, then all other frequency
ranges can be ignored (Pijanowski et al., 2011). Removal of such
unwanted sounds outside of the specified frequency range is typically
achieved through attenuation. Such approaches to denoising are con-
ceptually simple and take comparatively less computational power than
wavelet-based denoising and spectral subtraction. As such, it has seen
wide usage as a pre-processing step for acoustic recordings such as
birdsong (Brown et al., 2018b; Neal et al., 2011).

However, as illustrated in Fig. 3(b), (c) and (d) a caveat with
such techniques is that they are unfit for recordings with overlapping
calls due to the potential of mis-attenuation and removal of useful
information outside of the specified ranges. In addition, accurate de-
noising is generally restricted to a single species or taxonomic group
with vocalisations in a known, similar frequency range, thus limiting
the effectiveness to typically singular or closely related species with
low inter-individual call variation such as anurans (Chen et al., 2012;
Huang et al., 2014).
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3.3.4. Image-processing based noise reduction
Image-processing-based approaches in ecoacoustics are applied to

spectrograms, which are the transformed 2-dimensional representation
of an ecoacoustic waveform. Once in this form, there are a variety
of image-based techniques that can be used to reduce noise, such as
edge detection (Hussein, Hussein, & Becker, 2012), smoothing (Lin,
Chou, Akamatsu, Chan, & Chen, 2013), and other enhancement pro-
cesses (Esfahanian, Erdol, Gerstein, & Zhuang, 2017) that can improve
the spectrogram quality for downstream detection and classification
tasks. An example illustration of edge detection as applied to a noisy
ecoacoustics spectrogram sample can be observed in Fig. 3(e).

Such techniques have varying performance and flexibility, which is
primarily determined by the species of interest. For example, image-
based denoising has been shown to improve the classification accuracy
for identifying bat vocalisations but has varied performance for other
species (Heim et al., 2019). In the literature, the primary usage of
image-based denoising is in tandem with other denoising methods for
improving the SNR of ecoacoustic recordings. However, this can lead
to increased computation requirements and thus may not be as suitable
for large-scale systems in terms of scalability.

3.3.5. Deep learning-based noise reduction
Deep learning is a well-used method for localising the source of

sound in acoustic environments, and reducing the overall noise lev-
els, particularly when using deep convolutional networks trained to
estimate the Direction of Arrival (DOA) for speech sources (Grumiaux,
Kitić, Girin, & Guérin, 2022). Much work has gone into localising
speech sources due to their importance in speech recognition tasks.
For example, in a paper from 2019 (Chakrabarty & Habets, 2019), the
researchers used a supervised learning-based CNN for multi-speaker
environmental source localisation and accurately separated speakers in
a dynamic environment.
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Fig. 3. A comparison of spectrograms with the low-, band-, high-pass filter, and image-processing-based noise reduction (edge detection) applied for a 30-second-long recording
taken from the A2O containing several overlapping bird calls. Librosa, a Python package for audio analysis was used for the low-, band- and high-pass filters, while OpenCV was
used for finding the contours for edge detection for image-processing-based noise reduction (McFee et al., 2023).
Outside of speech, other methods of sound event localisation extend
to various types of sound classes, such as in the DCASE 2019 chal-
lenge (Politis, Mesaros, Adavanne, Heittola, & Virtanen, 2021). In these
cases, and depending on the challenge and the given dataset, several
other types of sound, including anthrophony such as knocking on doors,
phone ringing, etc., and some limited biophony such as barking dogs
are present in the recordings. An advantage of source localisation is that
it is just as capable of localising sources in clear single-source cases as
with noisy, multi-source acoustic scenes, irrespective of time overlaps.
Owing to the uniqueness of spectral characteristics, neural networks
can exploit source localisation to great effect.

However, despite the advantages of sound event localisation, ap-
plying such techniques in ecoacoustics remains challenging due to
interference by simultaneous unknown sound sources, typically also
with an unknown mixing agent in the form of noise, rendering source
isolation difficult (Lin & Tsao, 2019). It also remains inhibited by
the lack of data completeness with accompanying labels, particularly
for the full range of animal species present in natural ecoacoustics
soundscapes.

3.3.6. Performance measures
The primary purpose of denoising is to increase the effectiveness

of downstream tasks, including segmentation and classification, where
evaluation is measured by the output of the final task rather than on the
choice of denoising. However, two primary metrics are proposed in the
literature for directly evaluating denoising algorithms, namely SNR and
SSNR (Xie et al., 2020). SNR can be characterised as the ratio of signal
power to noise power and is often expressed in decibels. It describes
the level of the wanted signal relative to the quantity of background
noise (Farina, Eldridge, & Li, 2021).

Moreover, SSNR is computed by calculating the SNR on a frame-
by-frame basis over the signal and averaging those values, thereby
factoring equal weighting for loud and soft recording portions. In
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addition to quantitative metrics which directly measure the signal-to-
noise ratio, efficiency is another significant consideration, particularly
as the need for scalability grows due to the implementation of large
PAM networks.

3.3.7. Discussion of ecoacoustics denoising approaches
In ecoacoustics, noise can be detrimental to recovering original

audio sources, or it can be used to provide additional information,
such as in the case of large-scale PAM for studying the effects of non-
biophonic sounds on animal behaviour. As illustrated in Fig. 3, low-,
band-, and high-pass filtering approaches are simple and commonly
used for attenuating unwanted sounds, but they lack the flexibility
required for recordings with overlapping calls. Spectral subtraction can
be practical for short, episodic recordings but not for long, continuous
sequences with rapidly changing background noise. Wavelet-based de-
noising can outperform other methods in terms of noise reduction, but
it is computationally expensive and lacks scalability. Image-processing-
based approaches are applied to spectrograms to reduce noise, but
they have varying performance and flexibility depending on the species
being investigated. Deep learning is a well-used method for localis-
ing the source of sound and reducing noise levels, particularly for
speech sources, but it remains inhibited by a lack of labelled natural
soundscape data. Table 3 below displays the representative denoising
approaches according to their target animal species. Image-processing-
based approaches are the most widely used across all target species,
with wavelet-based approaches in a close second.

3.4. Feature extraction

Feature extraction relates to obtaining a set of values representative
of the original properties of the signal data to reduce the input data
to facilitate subsequent learning and generalisation. Every audio signal
consists of many features. However, the method of extracting the



Expert Systems With Applications 252 (2024) 124220T. Napier et al.
Table 3
A summary of signal denoising approaches used for different animal species.

Author Denoising approach Target species

Xie et al. (2016) Spectral Subtraction Anurans
Huang et al. (2014) Wavelet-Based Anurans
Alonso et al. (2017) Spectral Subtraction Anurans
Heim et al. (2019) Image-Processing Based Bats
Hussein et al. (2012) Image-Processing Based Bats
Brown et al. (2018b) High-Pass Filter Birds
Ren et al. (2008) Wavelet-Based Ortolan Bunting

(Birds)
Neal et al. (2011) Band-Pass Filter Birds
Hussein et al. (2012) Image-Processing Based Birds
Ren et al. (2008) Wavelet-Based Humpback Whale
Lin et al. (2013) Image-Processing Based Cetaceans
Esfahanian et al. (2017) Image-Processing Based North Atlantic Right

Whale
Ren et al. (2008) Wavelet-Based Rhesus Monkey

characteristics of the dataset that are relevant is highly dependent on
the problem to be solved. The process of extracting the right features
for subsequent analysis is critical for ensuring downstream tasks are
efficient and, likely; no single feature set will consistently outperform
another across all possible scenarios.

Mel-Frequency Cepstrum Coefficients (MFCCs) are one of the most
common representations used, which signifies the short-term power
spectrum of a sound using quasi-logarithmic spacing to roughly re-
semble the resolution of the human auditory system. MFCCs have
demonstrated several advantages, particularly in environmental acous-
tics, due to their simplistic nature and inherent robustness (Davis &
Mermelstein, 1980; Mcloughlin, Stewart, & McElligott, 2019; Trawicki,
Johnson, & Osiejuk, 2005). MFCCs are particularly useful in speech
recognition and birdsong studies, meaning that the algorithms devel-
oped are well-optimised and robust. However, they have also been
shown to be susceptible to interference from background noise due
to an underlying dependence on the spectral form (Wu & Cao, 2005).
Moreover, using MFCC features can introduce redundant information,
and excluding this whilst maintaining a precise representation of the
original signal can become challenging during algorithm optimisation.

Furthermore, a study in the 2016 DCASE challenge revealed that
MFCCs ranked among the topmost popular feature representation, with
the best result of 89.7% classification accuracy of a multi-class acous-
tic scene using a combination of MFCCs and spectrograms for in-
put. MFCCs were also among the lowest in terms of mean Equal
Error Rate (EER), with a score of 0.174 for a domestic audio tag-
ging task (Mesaros, Heittola, Benetos, Foster, Lagrange, Virtanen, &
Plumbley, 2018). MFCCs were commended for accurately representing
a signal’s spectral properties, allowing for high inter-class variability
for class discrimination by classical ML approaches. Although MFCCs
achieved good results, the TUT database (Mesaros, Heittola, & Virtanen,
2016) on which these approaches were trained was obtained from real-
life environmental conditions and thus had overlapping sounds, con-
sisting mainly of anthrophony, with comparatively smaller quantities
of biophony and geophony.

Another standard feature set used in ML applications is Acoustic
Indices. Acoustic indices are quantitative measures that describe vari-
ous acoustic properties, such as frequency spectrum, temporal structure
or amplitude fluctuations (Sueur et al., 2014). In the context of ML,
a diverse array of acoustic indices are commonly extracted from raw
audio recordings, serving as feature sets to describe various aspects
of the input sound. These indices have proliferated significantly in
recent years, reflecting the growing complexity and scope of ecoacous-
tic analysis. Prominent examples include the Acoustic Entropy Index
(AEI) (Sueur, Aubin, & Simonis, 2008) and the Acoustic Complexity
Index (ACI) (Pieretti, Farina, & Morri, 2011) which are used to broadly
characterise the diversity of sounds in a given audio recording. They
have been successfully employed in automated species classification
9

applications, such as the identification of 12 different species of frog
choruses in environmental recordings (Brodie, Allen-Ankins, Towsey,
Roe, & Schwarzkopf, 2020). However, a notable caveat is that acoustic
indices can be sensitive to recording conditions. Environmental factors
such as background noise interference and overlapping calls can influ-
ence the acoustic properties of the sound and render models unable
to generalise to other datasets apart from those upon which they were
trained (Alcocer, Lima, Sugai, & Llusia, 2022).

Spectrograms and mel-spectrograms are also common feature sets
used in deep learning (Stowell et al., 2018). Spectrograms provide a
detailed, and visually interpretable representation of the frequency con-
tent of an audio signal over time, which encapsulates both spectral and
temporal features. Due to this, however, spectrograms can also have
a high-dimensional feature space. In contrast, mel-spectrograms offer
reduced dimensionality by aggregating spectral information into mel-
frequency bands, which can impact the ability of models to accurately
capture certain spectral characteristics of the audio signal. Despite this,
mel-spectrograms have seen use in deep learning species classification
tasks based on natural soundscape recordings (LeBien et al., 2020;
Mcloughlin et al., 2019).

Several other acoustic features exist, including spectral and tempo-
ral features. While an exhaustive description of all features is beyond
this survey’s scope, a few notable characteristics have merit for large-
scale ecoacoustics. First is zero-cross rating, the rate at which the signal
changes from positive to negative and helps detect sounds in noisy
environments. Spectral flatness is also helpful for detecting how noisy
a signal is, and the spectral centroid can be used to describe the timbre
of a signal. Typically, these individual features are not often the only
parameter measure for a signal but are often combined to enable better
characterisation of a target signal.

3.5. Discussion of signal pre-processing techniques

As seen in Table 4, careful application of signal pre-processing
techniques to large-scale ecoacoustics datasets must be considered to
counterbalance signal degradation effects, decrease processing times,
and obtain accurate downstream results. This process involves signal
transformation, signal denoising, and feature extraction, each serving
a unique purpose in enhancing the quality and interpretability of
ecoacoustic recordings. The implications of these pre-processing tech-
niques extend beyond data preparation; they influence the efficacy of
subsequent analyses and the ecological interpretations derived from
them.

Signal transformation is instrumental for making raw ecological
data amenable to detection and classification algorithms. Similarly,
denoising techniques remove extraneous noises that may mask critical
bioacoustic signals, thereby clarifying the desired vocalisations. More-
over, feature extraction is an essential step for distilling complex audio
data into representative features that encapsulate the key character-
istics of a soundscape. These processes not only simplify the dataset,
making it more manageable for analysis, but also aid in reducing the
risk of model overfitting, thus ensuring more robust and generalisable
findings. This is essential in studies aimed at understanding animal
behaviour and communication within natural habitats.

However, several challenges remain across these signal pre-
processing areas. For signal denoising, a key difficulty is the balancing
the removal of unwanted noise while preserving ecologically significant
sounds, particularly in diverse and dynamic soundscapes typical of
large-scale PAM. For feature extraction, the selection of meaningful
features is crucial, as it directly impacts the accuracy and relevance
of ecological interpretations derived from the data.

Future improvements in signal pre-processing could focus on en-
hancing algorithmic efficiency, reducing computational demands, and
developing more adaptive methods capable of handling the inherent
variability and complexity of natural soundscapes. Such advancements
would not only bolster the accuracy and reliability of ecoacoustic
analyses but also expand the scope and scale of biodiversity monitoring
efforts globally.
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Table 4
A summary of the advantages and disadvantages of signal pre-processing techniques.

Approach Summary Advantages Disadvantages Example references

Signal Transformation Modifies the original raw signal
into a smaller, more practical
format that is more meaningful
and compatible with detection
and classification algorithms

Organises the signal data and
improves the efficiency and
quality of any subsequent
analysis techniques

For large volumes of data, it
can become a time-consuming
and resource intensive process

Brown et al. (2018b),
Qaisar et al. (2017),
Truskinger et al. (2014)

Signal Denoising Removes unwanted and
disruptive sounds from the input
signal to clarify the underlying
desirable vocalisations and
other information.

Can enhance the quality of the
audio recording and attenuate
interference and distortions
while retaining the underlying
signals.

Can potentially remove
additional helpful information
from the signal such as
overlapping vocalisations or
sounds with a distant source

Brown et al. (2018a,
2018b), Gibb et al. (2018);

Feature Extraction Relates to the extraction of a
set of values that are
representative of the original
properties of the signal data

Reduces the complexity and
volume of the original data,
which increases the efficiency of
subsequent analysis and reduces
the risk of model overfitting

Accurate results are reliant on
the selection of meaningful
features extracted from the
original data

Babaee et al. (2017),
Bonet-Solà and
Alsina-Pagès (2021),
Rama Rao, Garg, and
Montgomery (2018)
Fig. 4. A standard spectrogram (a) and a Mel-frequency spectrogram (b) illustrating the
frequency components of a 30-second-long recording taken from the A2O containing
several overlapping bird calls. Intensity of colours represents the magnitude of the
frequency components in decibels (dB). The horizontal axis shows time in seconds,
and the vertical axis represents frequency in hertz (Hz)

4. Visualisation of large ecoacoustic data

4.1. Background and challenges

With the introduction and technological advances of large PAM
systems, it is now possible to record and store years’ worth of audio
at multiple locations across a continent—far in excess of what human
experts can manually examine. As such, audio recordings of such length
must be reduced or compressed without excess loss of information or
detail. Visualisation of sound is one approach, as human visual inter-
pretation has the most significant capacity to synthesise and integrate
large amounts of information. However, visualising large-scale audio
datasets remains a largely underexplored yet crucial area.

Traditionally, ecologists have used spectrograms, which are two-
dimensional representations of sound. As illustrated in Fig. 4(a), time
is generally expressed on the 𝑥-axis and frequency (Hertz or kilohertz)
increases up the 𝑦-axis, with the sound’s amplitude illustrated with
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colour intensity in decibels (dB). Typical spectrograms are a few sec-
onds long, but they can be extended as long as required to capture
the target animal’s vocalisation. However, recordings longer than a
few seconds must be first temporally split into fixed-length segments
for visualisation with spectrogram representations. This is because
the traditional representations cannot compress longer time sections
meaningfully. In a typical spectrogram whose pixel rows and columns
comprise the frequency bins and spectra respectively, a 24-hour long
recording, if using a standard temporal scale of 0.02 spectra per frame
and 35.7 pixels per centimetre display monitor, would be shown as a
1.2 km wide image (Towsey, Truskinger, & Roe, 2015).

To enhance the ecological utility of these visualisations, Fig. 4(b)
introduces the Mel-frequency spectrogram. This approach modifies the
frequency scale to align more closely with human auditory perception.
This makes Mel-frequency spectrograms particularly effective for distin-
guishing subtle differences in sound that are often crucial in ecological
monitoring, such as differentiating between similar vocalisations of
species or discerning between animal sounds and environmental noise.

4.2. Visualisation approaches

4.2.1. Long duration false colour spectrograms
Long Duration False Colour (LDFC) spectrograms are an evolution

of the standard spectrogram in that they incorporate combinations of
acoustic indices to increase visualisation scalability (Towsey et al.,
2018). Typically LDFC spectrograms are created by mapping three
uncorrelated acoustic indices to red, green and blue (RGB) colour
channels. Acoustic indices are calculated at a 1-minute resolution,
allowing a full 24 h of recording to be represented on a standard
monitor. They are designed to assist in gaining a comprehensive insight
into a day’s acoustic activity, which can enable the rapid detection of
periods containing low ecoacoustic activity. In addition, they can also
be useful for identifying species that produce consistent sounds over
long periods such as chorusing frogs or insects (Brodie et al., 2020).
Some example LDFC spectrograms taken from the day-long recordings
from the A2O are illustrated in Fig. 5.

Meaningful results in the case of LDFC spectrograms depend heavily
on the specific hand-picked acoustic indices (Bradfer-Lawrence et al.,
2019). Consequently, information on species identity, specific geo-
phonic activity, and anthropogenic events is lost, although it can be
potentially changed by constructing the LDFC using specifically crafted
acoustic indices. Another drawback is that they are largely ineffective
in identifying species that call during morning chorus sequences or in
tandem with many other species at similar times due to the 1-minute
temporal resolution at which they are typically calculated. Accurate in-
terpretation of LDFC spectrograms requires some specialist knowledge
to fully understand their meaning, indicating that they are not non-

expert friendly and thus may be difficult to standardise. Furthermore,
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Fig. 5. An example of three LDFC spectrograms generated from consecutive days in May-April 2021 in the Tarcutta Hills, New South Wales, Australia region from the A2O sensor
network showcasing the variation in acoustic activity on a day-to-day basis. The horizontal grid lines are at 1 kHz intervals. Each false colour was obtained by combining the ACI,
Temporal Entropy (H[t]), and Acoustic Cover (ACR) indices in red, green, and blue colours respectively, as per Towsey, Zhang, et al. (2014).
they still suffer from the limitations of visualising more than 24 h of
recording simultaneously for the same reason as standard spectrograms;
they cannot be effectively scaled for multi-day visualisation without
loss of information meaning.

4.2.2. Zooming spectrograms
A promising technical contribution that attempts to overcome the

challenges of multiple day-long recordings is using zooming spectro-
grams (Towsey et al., 2015). This technique’s visualisation enables the
multi-scale viewing of long-duration recordings at minute, hour, day,
or year intervals. Zooming spectrograms enable researchers to focus on
specific portions of the recording containing acoustic events of interest,
such as bird songs or insect calls. Through this, the structure and
timing of acoustic signals can be more easily examined in relation to
environmental factors such as weather, time of day, or location.

Zooming spectrograms can overcome the issue of visualising multi-
day acoustic activity. However, due to the underlying reliance on a
combination of false-colour spectrogram images, it is still ineffective
at accurately representing species identities during overlapping vo-
calisations. Furthermore, the surrounding context may be lost when
zooming in on a specific portion of the sound, making it more difficult
to understand the overall acoustic environment and the relationship
between independent events.

4.2.3. Long-term spectral averages
Long-Term Spectral Averages (LTSAs) offer another approach to

visualising large-scale acoustic datasets. In LTSAs, the signal is di-
vided into smaller segments, and the Fourier Transform is applied
to each segment to obtain its frequency spectrum. These individual
spectra are then averaged over time to produce a single spectral profile
that represents the average frequency content of the entire signal. By
averaging the frequency content over these longer durations, LTSAs
provide a condensed yet informative view of the acoustic environment,
making them particularly useful for viewing long-term trends and
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patterns in recordings with sparse acoustic activity such as deep-sea
ecosystems (Lin & Tsao, 2018; Ryan et al., 2016).

The strength of LTSAs lies in their ability to reduce the data di-
mensionality while preserving essential features of the soundscapes.
This makes them highly applicable for monitoring long-term changes
in ecoacoustic environments, such as seasonal variations in animal
vocalisations. However, while LTSAs excel at capturing broader trends,
the averaging process can obscure finer details, such as short-term
vocalisations or transient noise events. This makes them less suitable
for studies requiring precise identification of individual species or
specific acoustic events. Additionally, LTSAs are constrained by the
resolution of the display medium, which can limit their effectiveness
for visualising extremely large datasets.

4.3. Discussion of large ecoacoustic data visualisation

As depicted in Table 5, selecting an appropriate visualisation ap-
proaches to expansive ecoacoustics datasets is crucial for enhancing
data interpretability and facilitating insightful ecological analyses.
These approaches, encompassing LDFC Spectrograms, Zooming Spec-
trograms, and LTSAs, serve distinct roles in rendering acoustic data
more accessible and informative. The impact of these visualisation
strategies extends beyond mere data representation; they significantly
influence the depth and breadth of ecological insights that can be
gleaned from large datasets. As such, their utility in large-scale PAM
is contingent upon continuous methodological refinement to enhance
detail resolution, computational efficiency, and adaptability to diverse
ecological contexts.

Future advancements in visualisation approaches should aim to ad-
dress these challenges by developing more sophisticated algorithms ca-
pable of providing clearer, more detailed representations of ecoacoustic
data. Enhancements in computational strategies and the integration of
ML techniques may also offer promising avenues for improving the scal-
ability and effectiveness of these visualisation methods in large-scale
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Table 5
A summary of visualisation approaches for large-scale ecoacoustic data.

Visualisation
approach

Key characteristics Advantages Disadvantages References

Long Duration
False Colour
(LDFC)
Spectrograms

LDFC Spectrograms enhance
the scalability of visualising
ecoacoustic data by
integrating various acoustic
indices into the red, green,
and blue (RGB) channels.

This method allows for the
observation of daily variations
in acoustic activity, providing
a scalable solution for large
datasets and enhancing the
visual interpretability of
complex ecoacoustic data.

However, this approach may struggle
with accurately representing specific
species identities during periods of
overlapping vocalisations, and the
interpretation of these spectrograms
generally requires a certain level of
expertise.

Towsey, Zhang, et al.
(2014), Towsey et al.
(2018)

Zooming
Spectrograms

Zooming Spectrograms offer a
multi-scale perspective on
long-duration recordings,
allowing for detailed
inspection at intervals ranging
from minutes to years, thus
focusing on particular acoustic
events of interest.

They enable a thorough
examination of the structure
and timing of acoustic signals,
providing insights into the
relationship between acoustic
events and environmental
factors, which is invaluable
for focused ecological studies.

The main drawback of this approach
is that surrounding context may be
lost when examining specific portions
of time, which may limit
understanding of the of the acoustic
environment and its dynamics.

Towsey et al. (2015)

Long-Term
Spectral Averages
(LTSAs)

LTSAs simplify the
visualisation of large-scale
acoustic datasets by dividing
the signal into smaller
segments, applying the Fourier
Transform to each, and then
averaging these to represent
the overall frequency content.

LTSAs are particularly
effective for providing a
condensed yet informative
overview of the acoustic
environment, making them
ideal for observing long-term
trends and patterns in areas
with sparse acoustic activity.

However, the averaging process
inherent in LTSAs can obscure
important details such as short-term
vocalisations and transient noise
events, and their effectiveness is
constrained by the resolution of the
display medium, limiting their utility
for very large datasets.

Lin and Tsao (2018),
Ryan et al. (2016)
ecoacoustic studies. This extends to the improvement of the resolution
and clarity of visual representations, developing automated tools for
pattern recognition and anomaly detection, and creating interactive
platforms that allow users to explore and analyse acoustic datasets
intuitively.

5. Ecoacoustics data labelling and segmentation

5.1. Background

Audio segmentation involves isolating a signal of interest from a
mixture of signals to be used for further processing. Several segmenta-
tion methods observed throughout the literature utilise other datasets
to pre-train before training on the target dataset because there are
insufficient levels of labelled data (Dufourq, Batist, Foquet, & Durbach,
2022; Tan et al., 2018; Zhong et al., 2020). This represents the most
pressing issue halting further progress. As large-scale PAM sensor net-
works generate thousands of hours of audio daily, accurate labelling
remains a significant challenge. The need for accurately labelled data
is great because downstream DL classification relies on large quantities
of data for generalisation. More is needed to adequately train models to
detect a majority of the species vocalising, and perhaps the geophony
occurring in a large ecoacoustics soundscape.

Thus, a more scalable and efficient solution for labelling species
and non-biophonic sounds from large amounts of long-duration record-
ings is required. Current signal processing methods on smaller and
curated ecoacoustics datasets do not address inherent complexities
with large-scale datasets such as overlapping target sounds, envi-
ronmental and background noises, reverberation, distance of target
species from the recorder, and the variability of sound inter- and
intra-species (Bravo Sanchez, Hossain, English, & Moore, 2021). PAM
systems record continuously over many differing ecoregions. As exem-
plified in Figure 6, each consecutive day recorded, even within the
same area, can have a completely different acoustic makeup from the
previous day, further demonstrating the need for automation.

5.2. Manual annotation

Before the roll-out of large-scale sensor networks, traditional ap-
proaches generally involved manual annotation by ornithologists and
ecologists using their expertise. However, with the volume of data
12
captured by large-scale PAM sensor networks, manual labelling of
ground truths is now too resource intensive. Now, other approaches
such as data augmentation (Lasseck, 2019) and simulated synthetic
data generation (Glotin, Ricard, & Balestriero, 2022) has been used to
increase training data artificially (Stowell, 2022).

Manual approaches to labelling ecoacoustics data are highly time
demanding and unscalable. Typically, experienced operators are
needed, and it can take an average of 120 s to listen and annotate per
30-second sample (Linke & Deretic, 2019; Stowell & Sueur, 2020). The
scalability challenges become particularly pronounced in large-scale
PAM operations, which may involve extensive geographic coverage,
high sensor density, or long-duration monitoring (Truskinger et al.,
2014). Such operations generate vast datasets that far exceed the
capacity for manual annotation, thus necessitating a more scalable
solution.

5.3. Crowdsourcing approaches

A recent approach to overcome the lack of labelled data has been
to use crowdsourcing to annotate audio scenes; however, progress
is slow, and data still requires expert verification, and hence they
are limited in scale and have varying performance (Cartwright et al.,
2017; Shamir et al., 2014). It has seen wide adoption in ML areas for
other domains such as computer vision (Krishna et al., 2016; Parent &
Eskenazi, 2011). However, technique improvement has been slow for
non-speech applications, such as ecoacoustics, due to the need for more
data compared to other image-based tasks and practical audio labelling
tools (Cartwright et al., 2017; Shamir et al., 2014). Another major
issue is that citizen scientists have varying levels of skill and often
lack expertise, and training them is a substantial undertaking. Further-
more, another reason for the lack of adoption is that crowdsourcing
techniques require an ongoing engagement from the community of non-
experts, which can sometimes be challenging to attract and not all
questions can be answered using citizen science methods. There is also
some concern regarding the scalability when applied to strong multi-
label annotation. It may require considerably more effort due to the
need for multiple passes over the data (Cartwright et al., 2017).

Despite its drawbacks, some tasks, such as weak labelling (Trusk-
inger et al., 2013), can benefit from crowdsourcing. It can be an
efficient and effective method for recruiting volunteers and providing

reliable data to experts if the system is well-designed. Three major
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characteristics define such a system: (1) anyone can participate, (2) all
participants use the same protocol and tools so data can be combined
effectively and be of high quality, and (3) the data collected assists ex-
perts with deriving conclusions efficiently. However, such approaches
still need to be underpinned by human involvement and are not fully
scalable to large-scale annotation tasks.

5.4. Acoustic indices

An acoustic index is a statistic used to summarise a particular aspect
of the distribution of acoustic energy within a recording. Primarily
they have been increasingly employed to save time during the labelling
process by providing a meaningful summary of the acoustic events
within a recording. As acoustic indices are algorithmically simple,
they can be rapidly developed and are highly scalable, making them
ideal for large-scale PAM applications (Stowell & Sueur, 2020). There
are many different acoustic indices, such as the acoustic richness in-
dex (Sueur et al., 2014) or ACI (Pieretti et al., 2011), and often a
select few are used in tandem to describe an acoustic scene and can
be specifically crafted to filter the acoustic features of a particular
species. One such example is from a study conducted in 2021 which
was able to achieve around 70% accuracy for broad label assignment
(insect, birds, geophony, etc.) using a semi-automated, multi-index
approach (Scarpelli, Liquet, Tucker, Fuller, & Roe, 2021).

However, it has been observed that, while increasing the efficiency
of data labelling compared to traditional methods, the efficacy of
acoustic indices may be hindered by several key challenges. While
acoustic indices can be used to summarise a set of acoustic energy, this
comes with the risk that target sounds may be obscured by non-target
noise, thus masking the signal of interest and rendering their summaries
ineffective (Metcalf et al., 2020). Due to its continuous nature, this can
be particularly problematic in the context of large-scale environmental
PAM, which can have higher proportions of non-biophonic sounds, such
as geophony and anthrophony. Consequently, signals of interest can be-
come partially or fully masked, leading to reduced index effectiveness
and misleading correlations. Additionally, a recent study has shown
that acoustic indices and ML models may not be universally reliable
for predicting species richness across diverse ecosystems (Sethi et al.,
2023). Here, the authors indicate that while changes in the soundscapes
could indicate shifts in ecological communities, the acoustic features
themselves were not consistently predictive of species richness across
different datasets. This raises questions about the unreliability of acous-
tic indices, particularly when applied to varied ecological contexts, and
as such, that acoustic monitoring should be used cautiously and in
tandem with traditional in-person surveys for more reliable biodiversity
assessments. This sentiment is shared by another study (Alcocer et al.,
2022), which also shows that acoustic indices are not always good
approximations of biodiversity. However, a recent study (Allen-Ankins
et al., 2023) has successfully shown that acoustic indices were reason-
able for predicting frog and bird diversity, but varied with habitat, and
that combinations of indices were better than one index alone.

5.5. Unsupervised learning approaches

Unsupervised segmentation or clustering, in the context of ecoa-
coustics, is the process of grouping signals which are the most similar to
each other and as dissimilar from signals in other groups as possible. It
enables rapid automatic separation of input audio signals with similar
features, without the requirement for labelled data. Using unsupervised
learning to drive the use of DL remains understudied. However, unsu-
pervised learning can provide high degrees of scalability to the labelling
of long-duration recordings, which is particularly useful because the
primary bottleneck for downstream DL classification tasks is typically
the quantity of labelled data. However, it is worth noting that, de-
spite the efficiency, segmentation results from unsupervised learning
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typically have lower accuracy than supervised or semi-supervised tech-
niques and method validation generally requires expert intervention
for the interpretation of discovered patterns (Babaee et al., 2017;
Rama Rao et al., 2018); however, evaluation can be performed on the
formed clusters and the model used to create them.

There are two main approaches when evaluating unsupervised
learning clustering results, depending on the availability of ground-
truth labels. Since the most likely use case of unsupervised learning
is when ground-truth labels are unavailable, the evaluation must be
performed on the model itself. Cluster evaluation can be achieved for 𝑘-

eans and Gaussian Mixture Models (GMM) by looking at the external
easure of purity, reaffirmed by the internal measure of the silhouette

ndex. Furthermore, Class-average Mean Average Precision (CMAP) is
he mean of the per-class precision scores, and label-weighted label-
anking average precision (lwlrap) is the mean of the per-example
recision’s scores (Denton, Wisdom, & Hershey, 2022). Both are closely
elated metrics useful for multi-class multi-label contexts and have
een the primary target metric for many BirdCLEF competitions (Kahl,
enton, et al., 2021) and DCASE audio challenges (Politis et al., 2021).

An approach such as Ozanich, Thode, Gerstoft, Freeman, and Free-
an (2021) applies deep-embedded clustering, a form of unsupervised

earning that combines an element of deep learning with clustering
lgorithms to automatically detect unlabelled signals in a coral reef
oundscape. The feature vector used by the authors included hand-
icked spectral and temporal features. It resulted in an accuracy level
f 77.5% and could be achieved for a combination of fish and whale
ignals. For other marine species, unsupervised clustering has a near-
erfect allocation of whistles for individual dolphins (Kershenbaum,
ayigh, & Janik, 2013). Here, the authors compared the results from 𝑘-
eans clustering, hierarchical clustering, and an Adaptive Resonance
heory (ART) neural network. In a similar area, but in a terrestrial
pplication, unsupervised learning has also been used for the syllable
lustering of ultrasonic rodent vocalisations, such as in the DeepSqueak
nalysis software (Coffey, Marx, & Neumaier, 2019) which implements
wo unsupervised clustering algorithms, both 𝑘-means and ART. Addi-
ionally, a recent study introduces a noteworthy advancement in the
ield of unsupervised learning for ecological soundscapes, particularly
n its ability to handle multi-species detection without requiring la-
elled data (Guerrero, Bedoya, López, Daza, & Isaza, 2023). This is
significant step forward for large-scale PAM, especially in biodi-

erse regions where labelled data is scarce. However, the paper does
ave limitations that could impact its scalability and accuracy in real-
orld applications. For instance, the algorithm’s performance can be

mpacted by background noise, a common issue in large-scale PAM.
dditionally, the methodology involves complex pre-processing and
egmentation steps, which could be computationally intensive for large
atasets.

Thus, existing clustering approaches have demonstrated reasonable
ccuracy and reliability in most cases. Still, existing approaches typ-
cally focus on a select few target species or a particular taxonomic
roup. Thus, they vary in flexibility to different environments and
calability to large sensor networks.

.6. Weakly-supervised approaches

Weakly-supervised approaches allow for labelling to take place that
s imprecise or lacks detail. It represents a middle-ground between data
abel quality and efficiency, as weak-labelled data can be more rapidly
enerated than most other techniques. In the literature, some studies
uch as Kong, Xu, and Plumbley (2017) can only determine if there is
he presence of a birdcall within an audio recording, and thus it does
ot consider other potential targets like other taxonomic groups such as
nurans or other groups of sound like anthrophony or geophony often
ound in environmental recordings. Despite this, the authors achieved
n accuracy of around 81% on unseen data, with the trade-off being
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that such an approach loses granularity and transferability to novel
applications.

Another example can be observed in Coban, Syed, Pir, and Mandel
(2021), but like the previous study, achieved a single-label true and
false-positive detection for each species. Despite this, however, the
approach does include other call varieties outside of birdsong, but
the training data only covers a select number of bird and amphibian
species in great conservation need, and of that, only a maximum of two
common variations of call types are used. The authors here used a semi-
automated template-based sound detection approach with a graphi-
cal user interface for post-validation and achieved a mean-average
precision equal to 89.3% and total average precision of 97.5

5.7. Self-supervised learning approaches

Self-Supervised Learning (SSL) is a technique to generate a labelled
dataset from unlabelled data. SSL eliminates the need for data la-
belling by taking unstructured data as input and generating its labels.
The SSL model decides whether the labels generated are reliable and
accordingly uses them in the next iteration to adjust their weights.
However, SSL is computationally expensive because it needs to make
sense of the unlabelled data and generate the corresponding labels;
thus, generally, SSL has lower accuracy than traditional supervised
learning models because they generate their labels without any external
support for determining whether its computations are correct. Despite
this, SSL approaches consistently outperform semi-supervised methods
while being conceptually simpler.

An example can be seen in Saeed, Grangier, and Zeghidour (2021)
where the authors use a contrastive learning approach pre-trained on
AudioSet to achieve an accuracy equal to 80.2% on test data taken from
the Bird Song Detection dataset. However, it is important to note that
the authors use a binary classification approach that only considers
the presence or absence of bird sound within the given recording.
Several approaches, such as Denton et al. (2022), use an unsupervised
approach based on acoustic indices as its input feature vector. The
authors here use a combination of 𝑘-means and hierarchical clustering
to achieve high quality separation of birdsong. A similar method is
applied in Coban et al. (2021); however, the authors still had to
apply data augmentation due to small quantities of labelled data. Data
was manually listened to and annotated with multiple labels, further
exemplifying the strong need for automation; however, the dataset used
did contain a baseline level of background noise to be expected in
natural environments.

The use of SSL methods in ecoacoustics has the potential to allow
for increased accuracy gain from unlabelled data. Some of the more
notable and applicable approaches include Swapping Assignments be-
tween multiple Views (SwAV) (Caron et al., 2021), SimCLR v2 (Chen,
Kornblith, Swersky, Norouzi, & Hinton, 2020), SimSiam (Chen & He,
2020) or DeepCluster (Caron, Bojanowski, Joulin, & Douze, 2019).
These represent some recent audio SSL computer vision approaches
with the most applicability and potential for achieving accurate labels
for large-scale natural soundscapes (Liu et al., 2022).

5.8. Discussion of ecoacoustics labelling and segmentation approaches

Table 6 shows several labelling and segmentation approaches in the
literature; however, few can handle the full unique breadth of sounds
observed in large-scale PAM datasets. While traditional and citizen
science proved to be useful earlier in history, they lack the scalability
requirements to handle long-duration data. Automated methods such
as acoustic indices have been used to save time by providing a bio-
logically meaningful summary of sound; however, accurate results still
heavily depend on specific hand-picked methods (Bradfer-Lawrence
et al., 2019). Furthermore, these types of methods lack consistency and
may not be transferable to different environments, and in addition,
are susceptible to poor performance because background sounds in
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recordings may contribute more to indices than sounds of interest,
rendering their summaries ineffective (Scarpelli et al., 2021).

Results from unsupervised model-based approaches often possess
lower accuracy than supervised, semi-supervised or self-supervised
techniques and methods validation generally requires expert interven-
tion for the interpretation of discovered patterns (Rama Rao et al.,
2018; Thakur & Rajan, 2016). Existing clustering approaches have
demonstrated relatively high levels of accuracy in some cases, but
they typically only focus on a select few target species or a particular
taxonomic group and are thus varied in terms of flexibility.

Weakly-supervised learning in large-scale ecoacoustics is beneficial
in some select cases, but evidently, it will only be of significant benefit
when the training dataset used is large enough to represent the full
distribution of possible sounds. While it does represent a more efficient
way of obtaining labelled data over traditional methods, it suffers from
a lack of flexibility. Thus, further testing must be conducted using
a dataset from multiple sources, ideally including Google’s Audioset,
VGG-Sound and other bioacoustics-specific datasets such as BirdCLEF,
depending on the application.

In light of these observations, it is clear that there are persistent
challenges that currently exist. While current methods have made
strides in data labelling and segmentation, they often fall short in
addressing issues like data imbalance, computational efficiency, and
the adaptability to diverse acoustic environments. These limitations
not only restrict the scalability of these approaches but also raise
questions about their real-world applicability, and highlights the need
for interdisciplinary research collaborations and more comprehensive
datasets to advance the field effectively.

6. Ecoacoustics detection and classification

In ecoacoustics, classification predicts one or more categorical la-
bels, such as species or call type. Although often used interchangeably,
the detection task differs from classification in that it generally provides
temporal detail of when a sound event occurs. In general, detection
in ecoacoustics can be broken into three main approaches. The first
is detection as binary classification, which returns a binary (yes/no)
decision as to whether the presence of a target signal is found within
a recording, which is commonly named occupancy detection (Stowell,
2022). The primary advantage of such a technique is that it allows for
large amounts of data to be quickly sifted through by ignoring sections
of the recording containing no significant sound events.

The second involves defining both the start and end times and
the types of sound events, otherwise known as Sound Event Detection
(SED) or Acoustic Event Detection (AED) (Morfi et al., 2021). While
this adds a degree of complexity and annotation time, it allows for su-
perior segmentation of significant acoustic events. The third approach
is image object detection, which consists of localising a vocalisation by
surrounding it in a 2-Dimensional (2D) bounding box within a spectro-
gram image, where each bounding box represents a single sound event.
Without adding considerable complexity to the annotation process,
using bounding boxes permits downstream classification tasks to lever-
age developments and optimisations in computer vision techniques.
Many studies have successfully evaluated the classification performance
of models based on prior signal detection; however, techniques that
integrate both a component of detection and classification for multi-
species identification in noisy soundscapes are notably rarer (LeBien
et al., 2020).

6.1. Traditional approaches

6.1.1. Manual approaches
In recent history, the identification of animals has been a task

reserved only for expert ecologists and ornithologists. Typically, the
identification of species would take place mainly aurally and visually
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Table 6
A summary of ecoacoustics data labelling and segmentation approaches.

Approach Scalability Flexibility to
different ecoregions
and taxa

Accuracy Efficiency Noise
handling

Long-duration
handling

Example references

Manual Annotation Low High 90% Slow No No Linke and Deretic (2019)
Crowdsourcing Low-Medium High 90% Slow No Sometimes Cartwright et al. (2017),

Shamir et al. (2014)
Acoustic Indices High Low-Medium 70% Fast Yes Sometimes Metcalf et al. (2020),

Scarpelli et al. (2021)
Unsupervised
Learning/Clustering

High Varied 77%–90% Varied No Yes Coffey et al. (2019),
Guerrero et al. (2023),
Kershenbaum et al. (2013),
Ozanich et al. (2021)

Weakly-Supervised
Learning

High Medium 90% Fast No Yes Coban et al. (2021), Kong
et al. (2017)

Self-Supervised
Learning

High Varied 80% Slow No Yes Denton et al. (2022),
Saeed et al. (2021)
using the playback of recordings alongside the associated spectro-
gram (Swiston & Mennill, 2009). However, identification in this form
relies on the availability of individuals with the expertise to iden-
tify diverse animal sounds, which presents potential concerns with
observer bias. Despite this, it can still take an expert some time to
make an accurate assessment, limiting manual observations to small
volumes (Joshi, Mulder, & Rowe, 2017). Even if an expert can rapidly
identify animals from recordings without bias, there is simply too much
sound to examine and label in long-term environmental recordings.

6.1.2. Probabilistic approaches
Probabilistic methods have been developed to assist in identifying

species. One of the primary approaches is Hidden Markov Models
(HMMs), which probabilistically infers whether a signal of interest is
present based on an underlying multi-state model. The main advan-
tages of these approaches are that they incorporate temporal detail on
signals. However, such models are typically complex for non-experts
to develop and understand. In addition to requiring large amounts
of training data, many existing approaches only consider a particular
species.

For instance, in Trawicki et al. (2005), the authors used a combina-
tion of HMMs with MFCC feature vectors as input for the classification
of a type of bird, the Norwegian Ortolan Bunting (Emberiza hortulana),
with relative success, equal to 63% to 92% accuracy depending on
the number and similarity of songs used. The dataset used contained
approximately 8500 manually labelled songs averaging a length of
1.5 s, which is not insignificant. Moreover, this manual labelling would
need to be repeated if the technique was applied to another species.

Another example of probabilistic methods’ performance was in a
study conducted in 2014 (Zilli, Parson, Merrett, & Rogers, 2014) for
detecting Cicada activity using HMMs applied to crowdsourced smart-
phone recordings. Here, the authors used data captured by visitors
to New Forest, a national park on the south coast of England, via a
smartphone app. F1-scores of 67% to 82% were reached depending
on the feature vector used, reflecting the balance between the model’s
precision and recall. Precision, in this context, measures the accuracy of
the system in identifying true Cicada events among all detected events,
while recall assesses the system’s ability to capture all actual Cicada
events within the noisy, crowd-sourced data. An F1-score of 67%
indicates a moderate balance between these two metrics, suggesting
room for improvement in either precision, recall, or both. In contrast,
a score of 82% denotes a stronger alignment between the system’s
ability to accurately identify true Cicada events and to minimise missed
actual events. Despite these results, the technique lacked robustness to
noise, leading to noticeable decreases in performance. Additionally, the
calls used lasted long periods without interruption and were clearly
distinct from background noises, which may hold true when applied
to cicadas, but may not always be the case in other contexts within a
large soundscape.
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Another emerging probabilistic approach is the use of Gaussian Mix-
ture Models (GMMs), particularly in the context of assessing acoustic
heterogeneity in transformed landscapes. A recent study introduced
a novel Acoustic Heterogeneity Index (AHI) that employs GMMs to
model the acoustic dissimilarity between sites experiencing varying lev-
els of landscape transformation (Rendon, Rodríguez-Buritica, Sanchez-
Giraldo, Daza, & Isaza, 2022). This methodology involves a compre-
hensive five-step process, which includes noise filtering, acoustic index
estimation, temporal pattern inclusion, and GMM-based classification.
Tested in tropical dry forests, the approach achieved F1-scores of
92% and 90% in different regions. However, it is worth noting that
the method was specifically tailored for landscape transformation and
may not be directly applicable for species identification. Additionally,
the study did not address how well the GMMs would perform in
acoustically complex and noisy environments, leaving room for further
investigation.

6.2. Machine learning approaches

6.2.1. Decision tree
Decision trees are supervised learning algorithms that classify un-

known signals based on their similarity to previously learned features
from training data. In 2010 there was a study that experimented with
Ocellated Turkey (Meleagris ocellata) acoustics and used several classifi-
cation algorithms, including decision trees, Artificial Neural Networks
(ANN), Support Vector Machines (SVM), random forest and fuzzy clas-
sifiers (Kampichler et al., 2010). They found that neural networks and
SVMs were not performant enough. Instead, the use of both decision
trees and random forests was capable of achieving a high level of
accuracy while also having discernible transparency.

Furthermore, a more recent study demonstrated the efficacy of
using time-series motif discovery and random forest classification for
categorising broad sources of sound in ecoacoustic data (Scarpelli et al.,
2021). Specifically, the study’s approach focuses on broad categories
like birds, insects, and geophony. Their approach was able to achieve
70% accuracy in the label assignment across two datasets. While this
type of approach has its merits, it may not be sufficient for researchers
interested in identifying specific species or understanding nuanced
environmental interactions.

6.2.2. Artificial neural network
Artificial Neural Networks (ANN) have been extensively used in

various classification and detection tasks due to their inherent ro-
bustness against fuzzy data and their ability to carry out non-linear
discrimination. ANNs were used for insect detection in a study over two
decades ago in 2001 (Chesmore & Nellenbach, 2001). Here, the authors
used ANN to identify 25 different species of British grasshoppers and
crickets accurately. Combining time domain signal processing with
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an ANN, the authors’ preliminary findings demonstrated high classi-
fication accuracy approaching 100%. Furthermore, they proposed that
the technique was applicable to other insect varieties and other taxa,
including birds. However, as more noise was introduced, the system’s
performance gradually deteriorated, and the identification accuracy
was non-uniform across all species, with two species, in particular,
showing a significant decline.

A more recent example of ANN was used to classify call sequences
emitted by bats (Preatoni et al., 2005). The authors aimed to evaluate
four different classification methods, with ANN among them, by collect-
ing 126 3-second sound samples. The authors purposefully eliminated
noise through digital filtering to ensure only the cleanest ultrasonic
clicks remained, consequently bringing into question its efficacy in
real-world test cases. Following a comparison of each of the four
methods, it was concluded that ANN performed accurately, but to
warrant its further use it needed to demonstrate more benefits over
other techniques, such as multiple discriminate function analysis. In
another similar study, the authors developed a technique for classifying
independent bird calls, yielding mixed results ranging from 67% to
97% accuracy (Zilli et al., 2014). As such, ANNs have shown some
promise in various classification tasks, however, their performance
can be impacted by the presence of noise and their superiority over
alternative techniques needs further validation.

6.3. Advanced neural approaches

6.3.1. Transfer learning
Transfer learning is another approach, which can bypass the need

for random initialisation of a neural network, instead allowing for the
transference of knowledge from one task, to another closely related
one, through the reuse of learned information (Tan et al., 2018). The
most common pretraining is now conducted using Google’s AudioSet –
an immense dataset of audio recordings taken from YouTube videos –
enabling the inheritance of knowledge to be applied to new domains,
such as predicting calls of interest, without needing to annotate large
amounts of data.

Transfer learning has shown mixed results. A recent approach in
2022 saw the use of transfer learning as applied to PAM (Dufourq
et al., 2022). Here, the authors attempted to conduct a large-scale
investigation on four passive acoustic datasets containing the calls of
a select few endangered species. Contrary to most preconceptions that
large amounts of data are needed for training deep learning models, the
authors showed that transfer learning performed well, achieving an F1-
score of 82% on a small dataset of 25 samples. However, it was revealed
that such results could result from low inter-species call variation, and
high signal-to-noise ratios, indicating that such a technique might not
be as applicable to continent-scale datasets.

Another example can be seen in Zhong et al. (2020) where they use
transfer learning combined with pseudo-labelling to train the model,
initially trained on ImageNet, on the pseudo-labelled data to predict the
labels on unlabelled data. The authors use a dataset taken from Puerto
Rico, in which they apply a template matching process to segment
sound events of interest, which are then labelled manually as either
positive or negative matches. They concluded that transfer learning and
pseudo-labelling could classify the presence or absence of 24 species
better than using a pre-trained ResNet50 CNN and training using a
VGG16 architecture. However, while these results are promising, the
data used to train the model is only partially representative of a
whole soundscape and may not cover the diversity of inter-species call
variation and external sounds such as geophony and anthrophony. This
is particularly evident because their model does not perform equally for
each of the 24 species in their dataset.

As shown, transfer learning approaches can achieve relatively ac-
curate results. However, they lack adaptability because the quality of
the output labels still relies on sufficient data that covers the range
16

of possible sounds. Despite the mostly positive relationship between
the size of training data and the classification accuracy, the output of
transfer learning is only as good as the initial annotations. Due to the
broad spectrum of sounds found in large-scale PAM datasets, ensuring
adequate coverage may still take considerable effort.

6.3.2. Deep learning
For DL-based approaches, signals are often detected and classified

based on similarity to a learned, labelled training dataset. The primary
advantage of these techniques is that they overcome issues of noise-
sensitivity feature extraction stages present in other approaches by
learning features directly from the input data. However, to avoid
overfitting, DL approaches require extensive datasets; thus, signifi-
cant progress is halted by the need for publicly available labelled
datasets which adequately cover the full range of inter and intra-sound
variations found in large-scale ecosystems.

In the literature, two major approaches to DL classification exist.
The first is to use spectrograms, or Mel-spectrograms, as the most
common input (LeBien et al., 2020; Mcloughlin et al., 2019; Stowell
et al., 2018). This is because techniques developed around image-based
input data are well-optimised; however, some information is lost due
to the transformation from raw input to spectrogram representation.
The other recent approach directly uses raw audio data as input for
minimised information loss. As developments continue into raw audio
models, with developments such as WaveNet (van den Oord et al.,
2016), progress towards automated species classification may move in
this direction once more standardised neural network architectures are
proven to work well for a variety of tasks. Thus, this research may
benefit, soon, from a hybrid approach that incorporates a component
of raw audio waveforms in addition to spectrogram images.

DL has been used in some species classification tasks; for example,
in a study in 2018 (Fazekas et al., 2018), a CNN was used to identify
bird songs. Input data used by the authors consisted of field recordings
collected from habitats which were subsequently cleaned and separated
into acoustic events, noise, and irrelevant segments. Using the cleaned
data, the authors concluded that frequency features are more easily
distinguishable than time features. While the result indicated that
noise within the recording improved performance, from this study,
it is inconclusive if the recordings contained sufficient environmental
noise and variation that could be applied to different ecoregions. More
recently, the scope and complexity of DL applications has expanded.
For instance, a study conducted in Sonoma County, California, used a
pre-trained CNN fine-tuned with a custom-labelled dataset to classify
a broad range of soundscape components, achieving an overall F0.75-
score of 0.88 (Colin Quinn et al., 2022). Another study in Guangzhou,
China, used CNNs and Target Sound Area Ratios (TSAR) to quantify
the dominance of seven types of acoustic scenes in urban forests,
achieving an F1-score of 0.97 (Hao et al., 2022). These studies not
only underscore the growing role of DL in ecoacoustics analysis, but
also highlight the potential for these methods to capture complex
interactions between human activities and biodiversity, thereby con-
tributing to ongoing conservation efforts. Thus, DL approaches offer
advantages in feature learning directly from input data but require
extensive datasets. The choice between image-based and raw audio-
based approaches is a topic of exploration, and future advancements
may involve hybrid models combining both approaches.

6.4. Performance measures

For sound event detection, two primary metrics are used for eval-
uation: segment-based and event-based metrics, which are typically
drawn from comparing the system output and ground truthed la-
bels (Xia et al., 2019). In the context of this study, TP (True Positives)
refers to the number of correctly identified positive instances, TN (True
Negatives) to the number of correctly identified negative instances,

FP (False Positives) to the number of negative instances incorrectly
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Table 7
A summary of ecoacoustics detection and classification approaches.

Category Approach Summary Advantages Disadvantages Accuracy Efficiency Example references

Traditional
Approaches

Manual
Methods

Species
identification would
typically take place
by experts based on
examination of
physical
characteristics.

Often required for initial
verification
(ground-truthing) to
ensure that the species
captured by PAM are
actually visually seen at
the given location.

Reliant on the availability of
human experts and can be
susceptible to observer bias.

High Low Joshi et al. (2017),
Swiston and Mennill
(2009)

Probabilistic
Methods

Probabilistically
infers whether a
signal of interest is
present, based on
an underlying
multistate model.

Incorporates temporal
detail on the signal.

Complex to develop for
non-experts. Requires large
quantities of training data.
Many existing methods only
consider a particular type of
species or sound.

Moderate-
High

Moderate-
High

Trawicki et al.
(2005), Zilli et al.
(2014)

Machine
Learning
Approaches

Decision
Trees

Supervised
algorithms classify
unknown signals
based on their
similarity to
previously learned
features from
training data.

Uses a while-box model
to provide transparent
and comprehensible
Boolean logic decisions
via visualisation.

Requires a high quantity of
expert-verified data. Feature
extraction techniques are
often highly noise-sensitive,
and learners can create
complicated trees that
overfit the data.

Moderate Moderate Kampichler et al.
(2010), Scarpelli
et al. (2021)

Artificial
Neural
Networks

Artificial neural
networks model the
human brain with
building blocks
designed to mimic
the neurons in the
human brain.

Can be flexible and be
used for both regression
and classification
problems. Any data
which can be made
numeric can be used in
the model.

Uses a black-box model
where results can be more
difficult to interpret.

Moderate-
High

Moderate Fox et al. (2008),
Zilli et al. (2014)

Advanced
Neural
Approaches

Transfer
Learning

Transfer learning
allows a neural
network to leverage
pre-existing
knowledge from one
task to improve
performance on a
closely related, but
different, task,
reducing the need
for extensive data
annotation.

Has demonstrated
promising classification
accuracy, even with
small datasets, by
utilising pre-trained
models on large, diverse
audio datasets like
Google’s AudioSet.

May struggle with
adaptability across diverse
soundscapes, as the quality
of its output is heavily
dependent on the initial
annotations and may not
account for the full range of
inter-species call variations
or external sounds like
geophony and anthrophony.

High Moderate-
High

Dufourq et al.
(2022), Zhong et al.
(2020)

Deep
Learning

Signals are detected
and classified based
on similarity to a
learned training
dataset.

Superior at distinguishing
latent features in a
dataset and highly
suitable for large
ecoacoustics datasets.

Accurate results require data
to undergo several stages of
cleaning and pre-processing.
Training can also be
computationally expensive
and time intensive.

High Low-
Moderate

Fazekas et al.
(2018), Hao et al.
(2022), Colin Quinn
et al. (2022)
identified as positive, and FN (False Negatives) to the number of
positive instances incorrectly identified as negative.

Standard metrics can be used for classification to evaluate re-
sults (Bravo Sanchez et al., 2021). Here, metrics such as accuracy,
precision, recall, F1-score, and the Receiver Operator Characteristic
(ROC) - Area Under the Curve (AUC), or (ROC-AUC) can be calculated.
Accuracy is the ratio of correctly predicted instances to the total
instances and is calculated using the equation:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)
.

Precision is the ratio of true positive instances to the total positive
instances, as high precision relates to a low false positive rate. Precision
is calculated using the equation:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
(𝑇𝑃 + 𝐹𝑃 )

.

Recall, also known as sensitivity, is the ratio of true positives to all
instances in a class. Recall is calculated using the equation:

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
(𝑇𝑃 + 𝐹𝑁)

.

F1-score is the weighted average of precision and recall. The F1-
score considers precision and recall, which usually makes it a better
17
metric for evaluating a model than accuracy as long as false positives
and false negatives have a similar cost. The F1-score is calculated using
the equation:

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
(𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

.

In addition, ROC-AUC metric are the measures of the ability of a
classifier to distinguish between classes, where generally the more sig-
nificant the AUC, the better the performance of the model at different
threshold points between positive and negative classes.

6.5. Discussion of ecoacoustics detection and classification approaches

As summarised in Table 7, no single detection and classification
approach is ideal in all scenarios. The application spectrum of these ap-
proaches is vast, ranging from conservation biology and environmental
monitoring to landscape ecology and behavioural studies. For instance,
probabilistic methods, such as HMMs, offer a robust framework for
detecting specific vocalisations against a backdrop of ambient noise,
proving invaluable in studies focusing on species with well-defined call
structures. On the other hand, ML techniques, including Decision Trees

and Artificial Neural Networks, provide a powerful tool for classifying
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Table 8
A comprehensive overview of the open problems and future challenges in ecoacoustics data analysis.

Open problem Current status Future directions

Open Ecoacoustics
Monitoring

• The transition to open ecoacoustics monitoring is
hampered by complex issues, including the allocation
of computational resources, efficient data handling,
and maintaining data privacy.
• These challenges hinder the progression to a more
collaborative and accessible ecoacoustics research field.

• Priority should be placed on the development of
open ecoacoustics platforms to encourage
community-driven initiatives.
• These platforms must support standardised data
sharing and annotation formats to unify and expedite
advancements in ecoacoustics research

Scalable, Real-Time
Monitoring

• The current state of algorithms in PAM studies
present a significant challenge when it comes to their
application in real-time monitoring of species on a
large scale.

• Emphasis should be placed on optimising algorithmic
design to reduce computational requirements without
compromising the quality of analysis.
• It is also imperative that these algorithms are tested
in diverse and realistic field conditions to ensure their
robustness and adaptability in various ecological
settings.

Species
Spatiotemporal
Monitoring

• The analysis of species’ movement and behaviour
through spatiotemporal monitoring is impeded by the
problem of non-trivial sound propagation in diverse
outdoor environments.
• This challenge is compounded by environmental noise
and the complexity of overlapping vocalisations, which
obscure target signals and hinder accurate analysis.

• Advancements in spatiotemporal monitoring
techniques, particularly in direction-of-arrival and
spatial analysis, are crucial.
• Future developments should focus on refining these
techniques to accurately capture the directionality and
spatial distribution of vocalising species, even in
acoustically complex environments.

Robust Sound
Distinction

• Identifying and isolating overlapping sounds,
especially during periods of high acoustic activity such
as dawn choruses, remains a significant challenge.
• This difficulty extends to differentiating between
biophonic, geophonic, and anthrophonic sounds, which
are crucial for understanding environmental
interactions and species behaviour.

• Future research should aim to enhance the ability to
distinguish overlapping sounds accurately and retain
crucial information, particularly for non-biophonic
sounds that play a key role in ecological studies.

Flexible Visualisation
of Extended Duration
Data

• Current visualisation methods struggle to effectively
represent the diversity of ecoregions and the
continuous nature of recordings, limiting their utility
in broad-scale ecological analysis.

• Investigating and developing innovative interactive
visualisation methods is essential. These methods
should be capable of effectively managing and
compressing long-duration data, providing clear and
comprehensive visual representations that cater to the
needs of large-scale PAM.

Training Without
Large Datasets

• SSL methods show promise for training models with
limited, unbalanced data. However, their effectiveness
for large-scale, multi-class applications in ecoacoustics
remains under-explored and uncertain.

• Intensive research into the efficacy of SSL for
ecoacoustics is needed. Additionally, exploring the use
of simulated sounds to augment existing datasets
could provide a pathway to improve model training
and accuracy.

Open Set Recognition • There is a growing need for the capture and creation
of a model that is generalised such that it can detect
new vocalisations that were not accounted for in the
original training set.
• The ability to extend the boundaries of the known
set of target classes, also known as open set
recognition is a growing necessity (Stowell, 2022).

• Future research should focus on developing
hierarchical unsupervised learning approaches. These
approaches would be instrumental in efficiently
detecting novel occurrences within continuous
datasets.

Object Detection and
Image Segmentation
for Sound Event
Detection

• Leveraging object detection and image segmentation
techniques in sound event detection, such as using
architectures like You Only Look Once (YOLO) and
Region-Based Convolutional Neural Networks (R-CNN),
is a relatively unexplored area.

• Advancing the use of object detection and image
segmentation techniques in ecoacoustics would enable
more nuanced and detailed analysis of soundscapes,
leading to higher-resolution recognition of acoustic
events and more informative downstream analysis for
ecological research.
complex acoustic data, facilitating the identification of multiple species
within a recording.

The wide variance in detection and classification approaches reflects
the dynamic complexity of natural soundscapes, where factors such
as species diversity, habitat characteristics, and ambient noise levels
interplay. This diversity necessitates a tailored approach to ecoacoustic
analysis, where the choice of method aligns closely with the specific
research objectives, whether it be broad-scale biodiversity assessment
or targeted species monitoring. Thus, corresponding approaches will
depend greatly on the associated dataset, species of interest and re-
quired detection granularity, with binary presence detection entailing
the least annotation work and bounding boxes the most.

However, it is crucial to note that these methods also come with
their own set of limitations and challenges. For instance, adaptability to
diverse soundscapes remains a significant hurdle, as many techniques
are tailored for specific environments or species and may not perform
18
well when applied universally. Another challenge lies in the handling
of background noise, which can significantly impact the accuracy of
both traditional and ML-based methods. Moreover, the dependency
on extensive, well-annotated datasets for training ML models poses
a barrier to the scalability and applicability of these techniques. The
future of ecoacoustics detection and classification lies in addressing
these challenges through the development of more adaptable, efficient,
and universally applicable methods. Additionally, strengthening inter-
disciplinary collaborations and open ecoacoustics platforms will be
crucial for advancing the field, enabling the sharing of data, tools, and
methodologies across the global ecoacoustics community.

7. Open problems and future challenges

As the field of ecoacoustics continues to evolve and expand, it
becomes increasingly apparent that several key challenges need to
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be addressed to fully realise the potential of automated, large-scale
ecoacoustics data analysis. Despite notable progress in the field, these
challenges represent significant barriers to the development and im-
plementation of effective and comprehensive ecoacoustic monitoring
systems.

The challenges highlighted in this section stem from a variety of
factors including technological limitations, data complexity, and the
need for advanced analytical methodologies. Addressing these chal-
lenges requires a multifaceted approach, involving innovations in ML
and DL, improvements in data processing and management techniques,
and the development of more sophisticated tools for data visualisation
and interpretation. The successful navigation of these challenges will
pave the way for more accurate, efficient, and scalable ecoacoustics
data analysis, thereby enhancing our ability to monitor and understand
the natural world.

Table 8 provides a comprehensive overview of the most press-
ing open problems and future challenges identified in the field of
ecoacoustics data analysis. For each challenge, we discuss the current
status and outline potential future directions, offering insights into the
advancements needed to address these critical issues.

8. Conclusion

With the recent developments in PAM hardware and processing,
there are now greater volumes of raw ecoacoustics data than ever
before, far surpassing the capabilities of current techniques to analyse
it fully. Analysis methods must be refined to achieve truly useful bio-
diversity monitoring, including multi-species detection, classification,
and the processes surrounding data labelling and visualisation.

This comprehensive review has delineated the current state and ad-
vancements in pre-processing, detection, and classification techniques
within the field of ecoacoustics, particularly emphasising their ap-
plication in large-scale PAM. We have critically examined various
methodologies, highlighting their strengths, limitations, and suitabil-
ity for large-scale ecoacoustic data analysis. Our discussion under-
scores the imperative need for more nuanced, robust, and reproducible
approaches that can handle the complexities inherent in large-scale
ecoacoustic datasets.

Current techniques lack the flexibility or accuracy required to trans-
late the unique breadth of sounds captured by large-scale PAM sen-
sor networks. This can mainly be attributed to the need for labelled
datasets that adequately cover the complexities. Such datasets are
difficult to create due to the challenges surrounding the labelling of
long-duration ecoacoustics data. As such, this survey has identified
several open challenges and future directions for ecoacoustics analysis
research as applied to large-scale PAM.

Looking forward, several avenues for future research emerge from
our review. Firstly, the development of more sophisticated ML and DL
models that can effectively handle the high variability and volume of
ecoacoustic data is paramount. These models must be adept at distin-
guishing between overlapping biophonic, geophonic, and anthrophonic
sounds, ensuring accurate species identification and ecological monitor-
ing. Secondly, priority should be placed on the development of robust,
optimised algorithm design to reduce computational requirements and
ensure that large-scale PAM datasets can be effectively analysed. Lastly,
fostering transparent, accessible datasets and collaborative platforms
will enable for more rigorous validation of techniques, and accelerate
innovation.

By addressing these gaps, we can significantly enhance our under-
standing of biodiversity and ecosystem health, contributing to more
informed conservation and management decisions. The potential of
ecoacoustics in providing insights into environmental changes, species
diversity, and ecosystem dynamics is immense, and with continued
19

research and technological advancements, its impact can only grow.
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