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ABSTRACT

While the photoluminescence of mammal fur is widespread, any potential function based on its
optical properties remains speculative. Using paired photoluminescent and non-photoluminescent
real-fur rat models in a field experiment, we aimed to test whether nocturnal vertebrates reacted
differently to blueish-white photoluminescent fur than to non-photoluminescent fur. Remote
cameras were set out in three different habitats (farmland, rainforest and woodland) in the Wet
Tropics of Far North Queensland, Australia, over three full moon and three new moon phases.
We recorded what species interacted with the models and counted the number of interactions
with each model to calculate pair-wise differences of interactions with photoluminescent and
non-photoluminescent models. No animal group (marsupial, placental mammal or avian) showed
a preference for either model, on either new or full moon, suggesting that they either cannot
detect a difference, or that preference is not based on photoluminescent properties. These
findings do not support a hypothesis of selective pressure from nocturnal vertebrates acting on
the trait of blueish-white photoluminescence in mammal fur.

Keywords: fluorescence, hair, mammal, moon, nocturnal, phosphorescence, terrestrial, visual
function.

Introduction

The appearance of animals can be driven by evolutionary pressures on visual signals (Endler 
1992). The colouration of mammal fur can be beneficial in crypsis, aposematism and social 
signalling, among others (Caro 2013). Mostly limited to the drabness of melanin, some 
mammals use a simple achromatic contrast of white (absence of melanin) alongside 
darker fur for signalling in dim light (crepuscular and/or nocturnal landscapes: Penteriani 
and Delgado 2017). However, recent observations of brightly photoluminescent 
(fluorescent and/or phosphorescent) mammals have attracted considerable media attention, 
and several authors have proposed that ventral or whole-body fur photoluminescence may 
have a visual function as a signal for nocturnal–crepuscular mammals (Kohler et al. 2019; 
Anich et al. 2021; Olson et al. 2021; Pynne et al. 2021). 

Four hypotheses have been proposed for a visual signalling function of photoluminescence 
(Kohler et al. 2019). Kohler et al. (2019) hypothesised that photoluminescence is adaptive in 
nocturnal–crepuscular species. This was based on observations of North and Central 
American flying squirrels (Glaucomys spp.), which are nocturnal–crepuscular, active all 
year round in low light (Dolan and Carter 1977; Wells-Gosling and Heaney 1984), have 
clear ocular lenses (Yolton et al. 1974) and photoluminescent fur. In contrast, ground-
dwelling squirrels are diurnal, hibernate in winter, have yellow ocular lenses, and are 
non-photoluminescent (Kohler et al. 2019). However, yellow lens colouration is not 
common across all diurnal mammals (Hammond 2012; Douglas and Jeffery 2014). Kohler 
et al. (2019)  suggested that clear ocular lenses, which transmit ultraviolet light (Yolton 
et al. 1974) may give stronger low-light vision to nocturnal squirrels (i.e. increased 
photosensitivity), whereas Marshall and Johnsen (2017) explained that yellow long-pass 
ocular filters could facilitate the viewing of photoluminescence rather than hinder it, as they 
narrow the spectral range of absorbance, thereby enhancing contrast. At least for nocturnal 

https://orcid.org/0000-0002-1168-9160
https://orcid.org/0000-0001-5047-0711
https://orcid.org/0000-0002-9963-6345
mailto:linda.reinhold@my.jcu.edu.au
mailto:tasmin.rymer@jcu.edu.au
https://doi.org/10.1071/ZO23021
https://creativecommons.org/licenses/by-nc/4.0/
https://www.publish.csiro.au/zo
https://www.publish.csiro.au/
https://doi.org/10.1071/ZO23021


L. M. Reinhold et al. Australian Journal of Zoology 71 (2023) ZO23021

flying squirrels, a clear ocular lens would only be beneficial 
for letting more light into the eye. This photosensitivity 
could counteract the likely inability of flying squirrels to see 
the pink colour of their photoluminescence (Carvalho et al. 
2006). Sensitivity to particular wavelengths is also determined 
by the density and distribution of photoreceptor proteins in the 
retina (Hunt et al. 2007; McDonald et al. 2020). While the 
ability to see ultraviolet light is likely ancestral in vertebrates 
(Hunt et al. 2007), flying squirrels have lost the cone pigment 
that would have enabled them to see ultraviolet light (Carvalho 
et al. 2006), and have mostly rod-based vision (Jacobs 1993). 
However, fur photoluminescence transmutes ultraviolet–violet 
light into longer-wavelength colours, negating any involvement 
of ultraviolet vision. Animals do not need to see the ultraviolet 
excitation wavelengths, only the visible-spectrum emission 
wavelengths, or at least a contrast against the background, to 
discern photoluminescence. 

Kohler et al. (2019) also hypothesised that photolumi-
nescence could be a consequence of remaining active in 
snowy winter landscapes, where snow cover would reflect 
ultraviolet light, thereby boosting the photoluminescence 
of the ventral surface of the flying squirrels. However, 
Toussaint et al. (2023) recorded pink photoluminescence in 
flying squirrels from the warm climates of south-east Asia, 
and photoluminescent fur had also been recorded from 
other mammal species inhabiting snow-free landscapes (e.g. 
Udall et al. 1964; Nicholls and Rienits 1971). 

Both Kohler et al. (2019) and Pynne et al. (2021) proposed 
a visual function for photoluminescence in intraspecific 
communication. To date, there has been no empirical evidence 
to describe a functional role of photoluminescence for 
communication in mammals. Although tested in other animals, 
this hypothesis has only been trialled using artificial ultraviolet 
lighting to boost photoluminescence, or in natural lighting but 
with artificial photoluminescent paint (Arnold et al. 2002; Lim 
et al. 2007; Gerlach et al. 2014; Douglas et al. 2021). 

Kohler et al. (2019), Anich et al. (2021), Olson et al. (2021) 
and Pynne et al. (2021) all hypothesised that photolumi-
nescence is involved in an antipredator context. In this 
context, Kohler et al. (2019) suggested that the photolumi-
nescence of North and Central American flying squirrels 
could be Batesian mimicry to resemble photoluminescent 
pink owls. Whereas the flying squirrels themselves may be 
colour-blind (Carvalho et al. 2006), owls may be able to 
discern colour in low light (Martin 1974; Potier et al. 2020). 
However, reddish photoluminescence may only be emitted in 
response to a strong excitation light; if the excitation light is 
weak and therefore the emission dim, then the photolumi-
nescence will only appear whitish, rendering the ability to 
see pink inconsequential (Harvey 1957). Fur photoluminescence 
has also been suggested to be a form of crypsis, where flying 
squirrels may appear camouflaged against photoluminescent 
lichen (Kohler et al. 2019). Pynne et al. (2021) also suggested 
camouflage against an unspecified background for pocket 
gophers (Geomyidae), citing soil photoluminescence as a 

possible source of luminophores. Photoluminescence may also 
act as aposematism, as suggested for caterpillars (Antheraea 
polyphemus) (Czarnecki et al. 2022). 

To determine if photoluminescence is ecologically 
significant, Marshall and Johnsen (2017) proposed that five 
conditions should be met: (1) luminophores occur in a 
visible location; (2) the appropriate excitation wavelength is 
available, and the emission wavelength is visually relevant; 
(3) the emission wavelength is at maximal sensitivity to the 
viewer; (4) natural lighting conditions required for 
excitation are available; and (5) visually directed behaviours 
change when the photoluminescence is muted. Thus, all 
hypotheses for a visual function of photoluminescent fur in 
crepuscular–nocturnal environments principally rest on the 
premise that natural moonlight or twilight is strong enough 
to activate the luminophores in fur, and that the mammals 
themselves, or their predators, must be able to detect the 
photoluminescence excited by natural light. 

The strength of short-wavelength emissions from bright 
sunlight is enough to excite most natural photoluminescence 
(Marshall and Johnsen 2017). However, subtle photolumi-
nescence may be masked by the reflectance of bright 
sunlight (Viitala et al. 1995). At twilight, the overpowering 
middle wavelengths of the sun taper off, allowing lesser-
intensity wavelengths to become more dominant without so 
much interference from reflection (McFarland and Munz 
1975; Endler 1993). It is the shorter wavelengths that have 
the potential to excite photoluminescence that would stand 
out against an otherwise dark and monochromatic background 
(Pohland 2007). 

The irradiance of the full moon is approximately 1000 
times less than that of twilight, and it lacks the defined peaks 
of blue and red light, instead mimicking the more gradual 
spectrum of daylight (McFarland and Munz 1975; Johnsen 
et al. 2006). Excitation by full moonlight has been tested 
experimentally and shown to trigger the natural photolumi-
nescence of scorpions (Vaejovis sp.), with nocturnal flying 
insects reacting to photoluminescent scorpions on a full 
moon but not on a new moon (Kloock 2005). However, 
subsequent experiments on other photoluminescent scorpions 
(Centruroides granosus) found that their house cricket (Acheta 
domesticus) prey did not react to photoluminescence or lack 
thereof in either laboratory trials with moonlight simulation 
or in natural outdoor lighting under a half moon (Gálvez 
et al. 2020). 

The plausibility of the excitation of photoluminescence by 
relatively low-intensity ambient light in a visual function role 
also relies on the adequate visual sensitivity of the observer to 
detect the emitted photons. The notion that nocturnal animals 
may have highly sensitive vision had previously been 
overlooked, with studies predominantly focusing on the 
importance of olfaction for mammals and hearing for birds of 
prey (Penteriani and Delgado 2017). However, an emerging 
body of research is beginning to understand more about the 
evolution of nocturnal-specific visual systems and indicates 
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that nocturnal landscapes are visually rich in detail to 
nocturnal animals (Warrant 2004; O’Carroll and Warrant 
2017). In addition, marsupial and placental mammals differ 
in the evolutionary retention of visual pigments, with 
marsupials possessing a third type of cone photoreceptor 
(Arrese et al. 2002). While some predictions can be made 
from eye anatomy about the range of vision of an animal, 
behavioural trials are required to confirm the functional 
vision of the animal (Jacobs 1993; Arrese et al. 2006; 
O’Carroll and Warrant 2017). 

Therefore, we investigated whether wild nocturnal 
animals preferentially choose to interact with a blueish-white 
photoluminescent model compared to a non-photoluminescent 
model. We deployed pairs of real-fur rat models, one 
photoluminescent and the other not, and recorded the 
initial interactions on full moon versus new moon nights. It is 
possible that the use of a single species (brown rat, Rattus 
norvegicus) to represent generic photoluminescent fur may 
affect species interactions with the models generally. 
Similar-sized species could avoid the models due to increased 
perception of competition (Brown et al. 2022), regardless of 
responses to photoluminescence. However, it is equally 
plausible that animals might approach the models due to local 
enhancement (Range and Huber 2007) or due to species 
differences in neophilia and neophobia (Bergman and 
Kitchen 2009). 

If the ability to detect blueish-white photoluminescence is 
ubiquitous in mammals, we had several predictions: (1) We 
predicted that, if full moonlight was strong enough to 
excite the photoluminescence in mammal fur, as it was for 
Kloock’s (2005) scorpions, and if nocturnal vertebrates can 
see this photoluminescence, wild animals would demonstrate 
a preference for one model type under a full moon, but not 
under a new moon. (2) If mammals use photoluminescent 
fur as a means of intraspecific communication that is more 
visible to themselves than to their predators, as suggested 
by Kohler et al. (2019), we expected that similar-sized 
mammals would interact more with photoluminescent 
models, whereas interactions from predators such as dogs 
(Canis familiaris), cats (Felis catus) and owls (Strigiformes) 
would show no difference. (3) Alternatively, if photoluminescent 
fur acts as a camouflage mechanism, as suggested by Kohler 
et al. (2019), Anich et al. (2021), Olson et al. (2021) and 
Pynne et al. (2021), and if the substrate on which the models 
were placed was similarly photoluminescent, then we 
expected that the photoluminescent models would receive 
fewer interactions than the non-photoluminescent models 
on a full moon when their photoluminescence was activated. 
(4) Finally, if photoluminescent fur acts as aposematism, then 
we expected photoluminescent models would receive fewer 
interactions specifically from predators. If, however, the 
ability to detect photoluminescence is species-specific, as 
birds, marsupials and placental mammals have different 
visual systems, then we expected species-specific responses in 
the same directions as described above (e.g. for intraspecific 

communication, we expected heightened responses to 
photoluminescent models, but only for rodents specifically). 

Methods

Ethics statement

This field experiment was conducted under Queensland 
Department of Environment and Science Research Permit no. 
WA0036056, under the Nature Conservation (Animals) 
Regulation 2020. All study sites were located on private 
property, with permission from the landowners. The study 
was approved by the James Cook University Animal Ethics 
Committee (approval no. A2768), and in compliance with 
the Australian Code for the Care and Use of Animals for 
Scientific Purposes. The hairspray used on the models was 
designed to be safe for use on human hair, so was not 
expected to have harmful effects on other species. Wild 
animals were free to interact with the models or not, and at 
no time experienced any unexpected adverse events. 

Study sites

The study took place between September 2021 and March 
2022. Three habitats (described below) on the Atherton 
Tablelands (Far North Queensland, Australia) were selected 
to encompass different conditions of sky light, with minimal 
interference from city skyglow. Faunal composition was 
factored into site choice to include both ground-dwelling 
mammals that were of similar size to the models, and nocturnal 
avian predators. Each site was sampled six times, during three 
new moon periods and three full moon periods. Due to logis-
tical constraints, the farmland and rainforest  sites  were  sampled  
concurrently for the first three months, and the woodland site 
was sampled separately for the second three months. 

Farmland
The open farmland site (17°14 046″S, 145°31 039″E) 

encompassed two properties separated by a dirt road, 9 km 
east of the small town of Atherton (bordering Kairi). The site 
has some skyglow visible from Atherton, but no local lighting, 
and provided for full moon illumination under an open sky. 
The farm on the northern side was a recently harvested sugar 
cane (Saccharum sp.) field bordering a Rhodes grass (Chloris 
gayana) field on the adjoining farm to the east, with fields of 
legumes at the northern corner. This area was relatively flat. 
The farm to the south was a young avocado (Persea americana) 
plantation bounded by a dirt road, an older avocado plantation, 
harvested sugar cane and a fenced, treed creek line and cattle 
(Bos taurus) paddock that the block sloped down towards. 

Rainforest
The rainforest site (17°17 022″S, 145°38 016″E) encom-

passed two adjoining hilly private properties in secondary 
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rainforest backing onto a creek, 8 km south-east of the small 
town of Yungaburra. The canopy was mostly closed but not 
dense, allowing dappled light through. Each property had 
household dwellings on rainforest acreage, but there was 
minimal interference from artificial lighting. 

Woodland
The woodland site (17°21 026″S, 145°19 048″E) comprised 

ironbark (Eucalyptus sp.), red bloodwood (Corymbia 
gummifera) and lemon-scented gum (C. citriodora) woodland, 
with Cypress pine (Callitris sp.) thickets, and an understorey 
of native grasses and forbs. The canopy was open, and the site 
sloped from a granite range down to an annual creek. The 
woodland habitat provided a mix of filtered light. Being 
10 km from the small town of Herberton and in an off-grid 
part of Watsonville, it experienced no interference from 
artificial skyglow. 

Rat model preparation

We selected brown rats primarily for their ease at obtaining 
sufficient pelts to run this experiment. Although the brown 
rat is a non-native species to Australia, it does occur in the 
wild in the Wet Tropics bioregion, and elsewhere is known 
to be preyed on by native predators, including northern 
quolls (Dasyurus hallucatus) (Pellis and Officer 1987) and 
eastern grass owls (Tyto longimembris) (Clulow et al. 2011). 
In addition, when we compared the fur photoluminescence 
of the rats to native rodents and antechinuses, it was 
similar in intensity and blueish-white in colour, indicating 
that brown rat fur would be an adequate model. 

Thirty-six frozen brown rats of mixed sex and colour, bred 
locally on the Atherton Tablelands, were purchased from a 
commercial supplier (Bugs Alive, Cairns, Australia) because 
roadkill carcasses were rarely intact enough to secure the 
numbers of pelts required. Rats were used because their fur 
is highly photoluminescent (Rebell et al. 1956; Udall et al. 
1964). All rats, regardless of visible pelt colour (white, brown 
or black), displayed bright blueish-white photoluminescence 
when exposed to 365–410 nm ultraviolet–violet light, with 

the photoluminescence of white fur most prominent. Rats 
were skinned, and the pelts salted before being fitted over a 
non-photoluminescent grey or black PVC model rat (20 cm 
straight head–body length). The PVC feet and tail remained 
exposed. Pelts were stitched into place and craft eyes fitted 
on the head. Model rats were allowed to air-dry in a dark, 
air-conditioned (~24°C; 50–65% relative humidity) room 
for 2–3 weeks. Finished models were paired by sex, colour 
and size so that both rats in a pair looked similar. Nine pairs 
were white, two pairs were white with light brown hoods, two 
pairs were brown, two pairs were black, and one pair was 
grey. The remaining four rats were used as spares. 

To remove luminophores from one rat of each prepared rat 
model pair (n = 16), pelts were washed in 50°C tap water in a 
laundry tub for 1.5 h, with several kettles of boiling water 
poured over them. This method was a practical way of 
replicating studies that reduced tryptophan metabolite 
photoluminescence in fur to approximately one-third of its 
previous observable intensity (Rebell 1966; Nicholls and 
Rienits 1971). Photoluminescence was further extinguished 
using ultraviolet-protectant hairsprays (‘Clarins UVB UVA 
high protection 30 Sun Care Oil Mist’ hair oil; ‘Batiste dry 
shampoo and colour protect, with UV filter to protect fade’ 
for white rat pelts; ‘Batiste dry shampoo beautiful brunette’ 
and ‘divine dark’, and ‘Tony and Guy brunette’ hairspray 
for brown pelts). When illuminated with 365–410 nm torches, 
the suppressant methods used were effective in removing the 
glow, with the photoluminescent rat appearing much brighter 
than the non-photoluminescent rat (Fig. 1). Regular 
‘Schwarzkopf’ or ‘Woolworths homebrand’ hairspray was 
then sprayed over all models to mask differing odours. When 
rain showers were forecast, model rats were also sprayed with 
‘Maseur Weather Guard boot and garment spray’. The 
suppression of photoluminescence in the fur of the non-
photoluminescent models was checked before each field 
session to ascertain that there was a marked difference in 
photoluminescence within each pair of rats. Ultraviolet-
protectant hairsprays were reapplied as needed. Damaged 
rats were repaired or replaced with spare matching rats as 
necessary. 

Fig. 1. Visual difference between photoluminescent (left) and non-photoluminescent (right) white
rats of the same pair (a) under white light and (b) under 365 nm ultraviolet light. Photographs
taken after six field deployment sessions.
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Remote camera set-up

Sixteen remote cameras were used (n = 13 PR700 20MP 
1080P 120° Detecting Range Hunting Trail Camera Waterproof 
Hunting Scouting Camera with Auto IR Filter for Wildlife 
Monitoring; n = 2 Anaconda 16MP Trail Camera Camo; 
n = 1 16MP 1080P Hunting Trail Camera Infrared Security 
Night Vision Waterproof Cam). Different camera models were 
used because some cameras failed prior to commencement. 
Videos were chosen over photographs or marks left on models 
to better capture animal behaviours (Akcali et al. 2019). All 
cameras had a trigger speed of 0.2–0.6 s, with a 20 m passive 
infrared (PIR) sensing distance. Cameras were set with high 
sensitivity and to record in 1080P resolution infrared video 
with a 2 s delay between videos. Videos were set to record 
for 20 s. 

Setting of remote cameras was adapted from Gillespie et al. 
(2015). Cameras were placed 70 cm above the ground facing a 
small clearing and tilted downwards to frame the model pairs. 
Any long grass obscuring either the cameras or the models was 
trimmed, but not removed completely, to reduce the chance of 
false triggers. For each camera station, the model pair (one 
photoluminescent and one non-photoluminescent model) 
was set on natural ground (mostly dirt, grass or leaf litter) 
1.5 m directly in front of the camera post/tree. Non-
photoluminescent synthetic black cord was used to tether 
the models to the camera post/tree to prevent them from 
being carried off by predators. Models were placed two 
body lengths apart (=40 cm), facing each other and the 
camera at a 45° angle. We acknowledge that this proximity 
could mean that animals may have avoided both models if 
photoluminescence serves as a warning (but see Results). 
Within each habitat, half of the camera stations had the 
photoluminescent model on the left, and half had the 
photoluminescent model on the right. The side on which 
the photoluminescent model was placed was alternated once 
within each habitat to reduce bias. Pair sides were kept 
consistent within each full/new moon pair. 

Experimental design

The study mostly followed the experimental design of Kloock 
(2005) but was adapted for interactions with vertebrates 
rather than flying insects. Within each habitat, camera 
stations were set out for three nights at a time at each full 
moon and new moon phase, apart from one full and new moon 
set at the woodland site, which were each left out for four 
nights because the full moon fell more evenly over four 
nights than three. Weather was mostly clear or partly cloudy; 
however, it cannot be known whether there was a cloud over 
the moon at the time of each interaction. 

Camera stations were set as far apart as possible within the 
confines of each property. For the open farmland site, four 
cameras were set at 200 m intervals on a line of old fence 
posts dividing the upper adjoining fields, and four cameras 

were set at 150 m intervals on the fence posts bounding the 
lower creek line or dirt road. In the rainforest site, four 
cameras were set 100 m apart along narrow tracks on each of 
the two properties. In the woodland site, initially 13 camera 
stations were spaced 100–200 m apart along tracks. This 
number was reduced to nine stations towards the end of the 
experiment as some rat models were damaged irreparably. 
Only these nine stations were used in the statistical 
analyses for the woodland site. 

Behavioural observations

Interactions between wild animals and the model pairs were 
scored only on first approach; i.e. the rat model that was 
interacted with first, regardless of subsequent interactions 
with the other model. This ensured the greatest chance of the 
interactions being based on sight, and before the infrared light 
from the camera interfered with natural illumination. 
Interactions where animals were foraging in the leaf litter 
and accidentally touched a model in the process of sniffing 
food from the ground were not counted. Video sequences 
more than 10 min apart, or where there was a group size of 
two or more animals in the same frame interacting with 
models, were counted as separate events. If an animal was 
observed coming back to the models in numerous consecutive 
videos, only the first model interaction was scored. Wild 
animals were identified to species where possible. We also 
categorised animals into broad taxon groups (bird, marsupial 
or placental mammal). Only interactions between sunset and 
sunrise were used in the analyses. While lighting phase 
(golden hour, civil twilight, nautical twilight, astronomical 
twilight or dark) was recorded for each interaction, sample 
sizes were not sufficient to allow for robust statistical analyses. 

Pair differences

All statistical analyses were conducted using RStudio 
(RStudio Team 2020, ver. 1.0.153; R Core Team 2020, ver. 
4.1.2). Following Kloock (2005), we calculated the pair 
difference for each camera station at each habitat as the 
number of first interactions with the photoluminescent 
model minus the number of first interactions with the non-
photoluminescent model. More first interactions with the 
photoluminescent model indicated a positive pair difference, 
while more first interactions with the non-photoluminescent 
model indicated a negative pair difference. Data were tested 
for normality (Shapiro-Wilk test) and transformed using the 
orderNorm function (bestNormalize package, Peterson 2022). 
We first ran a linear mixed effects model (LMER; lmerTest 
package, Kuznetsova et al. 2022) with Gaussian distribution 
to assess whether pair differences were affected by moon 
phase. Habitat, replicate and moon phase were included as 
fixed effects, and camera number was included as a random 
effect. We then ran a second model (as moon phase and 
replicate had no significant effect, see Results) with habitat 
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and animal type as fixed effects only. Significant differences in 
the main effects were identified using Tukey’s post hoc tests 
(emmeans package, Lenth et al. 2022). 

Results

General observations

Eleven species of marsupial, at least nine species of placental 
mammal and four species of bird interacted a combined total 
of 142 times with the models between sunset and sunrise 

Fig. 2. A northern quoll (Dasyurus hallucatus) choosing a rat model in
woodland.

(Supplementary Table S1). Only dogs, cats and northern 
long-nosed bandicoots (Perameles pallescens) were recorded 
interacting in all habitats. Rodents interacted with the 
models in the farmland and rainforest sites, but not in the 
woodland site. Northern quolls (Fig. 2) were observed only 
in the woodland site, where they interacted enthusiastically 
with the models. Eastern grass owls were observed interacting 
only during one moon session, in the open farmland site. 

Pair differences

There was an overall pair difference of zero (i.e. equal 
numbers of interactions with each model type) when pooled 
for both moon phases. There were no significant effects 
of habitat (LMER: χ22 = 0.60, P = 0.739), replicate 
(χ22 = 1.35, P = 0.508), moon phase (χ21 = 0.48, P = 0.488) 
(Fig. 3) or camera number (χ21 = 0.03, P = 0.872) on the pair 
differences. In addition, there was no significant effect of 
habitat (F2,4 = 0.10, P = 0.907) or animal type (F2,4 = 0.93, 
P = 0.466) on the pair differences. 

Discussion

With speculation increasing about a visual function for fur 
photoluminescence, this study aimed to test whether wild 
nocturnal vertebrates would respond to the natural photolumi-
nescence of real fur in natural lighting. The experimental 
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Fig. 3. Mean ± s.e. pair difference between photoluminescent and non-photoluminescent models pooled from all habitats
(farmland, rainforest and woodland) and all animal types (bird, marsupial, placental) on new moon versus full moon phases over
three replicates.
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design loosely followed that of Kloock (2005), who concluded 
that scorpion photoluminescence could be detected by flying 
insects during a full moon. In this study, we only tested the 
response of nocturnal vertebrates to blueish-white rat fur 
photoluminescence, which is likely caused by tryptophan 
metabolites (Rebell et al. 1957). Consequently, the responses 
observed here may be specific for these types of luminophores. 
However, the longer excitation wavelengths of porphyrin 
luminophores, leading to pink-orange-red photoluminescence 
in species such as flying squirrels (Toussaint et al. 2023), could 
elicit a different response, such as Batesian mimicry or crypsis 
(Kohler et al. 2019), and warrant further investigation. 

In contrast to Kloock’s (2005) study on the response of 
flying insects to scorpion photoluminescence, we found no 
significant difference in preference for non-photoluminescent 
over photoluminescent rat models for any habitat, moon 
phase or animal type (birds, marsupials or placentals). 
There are two possible explanations for these findings: (1) 
the light of the full moon was not strong enough to excite 
the photoluminescence in the model fur to a level where it 
was visible to nocturnal mammals and birds, contrary to 
Kloock’s (2005) observations for nocturnal flying insects; or 
(2) the lack of distinction could mean that, even if nocturnal 
vertebrates can detect the photoluminescence, it does not 
affect their behaviour and they have no preference for or 
against it. Although intraspecific communication with live 
rats of the same species was not tested, our findings indicate 
that blueish-white photoluminescence in the fur of nocturnal 
mammals does not provide a visual function for either 
communication between similar-sized mammals, or predator 
avoidance, as suggested by several recent studies (Kohler et al. 
2019; Anich et al. 2021; Olson et al. 2021; Pynne et al. 2021). 
The lack of behavioural change in response to the trialled 
moonlight activation of photoluminescence does not meet 
Marshall and Johnsen’s (2017) criteria for ecological 
significance. 

The hypothesis that photoluminescence may enhance 
camouflage against a substrate (Kohler et al. 2019) does not 
appear relevant for ground-dwelling mammals in the Wet 
Tropics showing blueish-white photoluminescence. While many 
organic and inorganic substances have a mild background 
glow (Tomalia et al. 2019), the varying dirt, leaf litter and 
grass substrates on which the model pairs were placed had 
insignificant photoluminescence compared to that of rat fur 
when observed with the same torches (see Reinhold (2021) 
for photographs of live mammals against natural back-
grounds, and Reinhold (2023) for photographs of two species 
of roadkill mammals against dirt/gravel and grass backgrounds, 
both on the Atherton Tablelands). This observation questions 
the likelihood of ground-dwelling mammal blueish-white 
photoluminescence functioning as camouflage. The lack of 
avoidance of our photoluminescent models suggests that 
aposematism is also not a likely function for mammalian fur 
photoluminescence. 

Nocturnal mammal activity has been shown to decrease 
with increasing moon illumination, suggesting that prey 
animals may trade-off foraging and predation risk during 
full, but not new, moon periods (Clarke 1983; Linley et al. 
2021). We found a similar response for the number of 
interactions (Fig. S1). However, we found no difference in 
the pair choice with moon phase, indicating that animals, 
when they did interact, did not favour one model over the 
other, providing further support for a lack of blueish-white 
photoluminescence being used as a warning or an attractant. 
The tendency for prey-sized mammals to avoid open spaces on 
full moon nights would also reduce the opportunity to display 
their photoluminescence, further suggesting a lack of visual 
function for photoluminescent fur. 

Our predictions were based on the ability to observe 
blueish-white photoluminescence either being ubiquitous 
to mammals or being species-specific. The expression of 
photoluminescence in mammal fur is common (Reinhold 
et al. 2023). Of the 16 wild mammal species identified in this 
study, the 10 that have also been examined with ultraviolet– 
violet light all display fur photoluminescence (either pink 
and/or blueish-white) to some degree (Reinhold 2021, 2023). 
In addition, diverse mammal taxa have photoluminescence 
effected by similar luminophores in their fur (e.g. tryptophan 
metabolites in brown rats and common brushtail possums 
(Trichosurus vulpecula): Rebell 1966; Nicholls and Rienits 
1971; porphyrins in bandicoots and northern quolls: Reinhold 
2023). Therefore, detection and use of photoluminescence in 
visual communication is unlikely to be species-specific. 
However, sample sizes and interactions were quite low, and 
species differences may have been masked by pooling 
sample sizes of different species. Targeted studies focusing 
specifically on Rattus species or northern quolls could be 
insightful. However, targeting these species specifically 
would require extensive amounts of time in the field. While 
laboratory studies could be informative, they are limited by 
the need for unfiltered natural lighting. Additional studies 
focused on pink-orange-red porphyrin photoluminescence 
would add insights to understanding whether none, all, or 
just some, fur photoluminescence may serve a visual function. 
The abundance of varying excitation wavelengths in twilight 
or daylight may also provide conditions conducive to 
photoluminescence display that were not met by moonlight. 

This is the first study on vertebrates testing photolumi-
nescence of real mammal fur in natural lighting conditions 
in the field. This is also the first study to test whether 
the photoluminescence of fur is preferentially selected by 
nocturnal mammals or birds, that is, whether it has the 
potential for a visual function. We found no evidence for a 
visual function for blueish-white photoluminescence in 
the fur of nocturnal mammals, highlighting that without 
behavioural tests, a trait function should not automatically 
be assumed. 
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