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A systematic review and in silico analysis
of studies investigating the ischaemic
penumbra proteome in animal models
of experimental stroke
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Abstract

Ischaemic stroke results in the formation of a cerebral infarction bordered by an ischaemic penumbra. Characterising
the proteins within the ischaemic penumbra may identify neuro-protective targets and novel circulating markers to
improve patient care. This review assessed data from studies using proteomic platforms to compare ischaemic penum-
bra tissues to controls following experimental stroke in animal models. Proteins reported to differ significantly between
penumbra and control tissues were analysed in silico to identify protein-protein interactions and over-represented
pathways. Sixteen studies using rat (n= 12), mouse (n=2) or primate (n =2) models were included. Heterogeneity
in the design of the studies and definition of the penumbra were observed. Analyses showed high abundance of p53 in
the penumbra within 24 hours of permanent ischaemic stroke and was implicated in driving apoptosis, cell cycle
progression, and ATM- MAPK- and p53- signalling. Between | and 7 days after stroke there were changes in the
abundance of proteins involved in the complement and coagulation pathways. Favourable recovery | month after
stroke was associated with an increase in the abundance of proteins involved in wound healing. Poor recovery was
associated with increases in prostaglandin signalling. Findings suggest that p53 may be a target for novel therapeutics for
ischaemic stroke.
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Introduction

An estimated 7.63 million ischaemic strokes occur

annually which result in a cerebral infarction bordered
by a region of hypo-perfused tissue known as the
ischaemic penumbra.' ¢ Clot retrieval and thromboly-
sis which work to restore the blood supply and salvage
the ischaemic penumbra traditionally need to be per-
formed within hours of stroke onset, but may provide
benefit if administered to late-presenting patients in
whom viable penumbra persists.” '° Elucidating the
biology of the ischaemic penumbra may help to iden-
tify diagnostic markers useful for identifying people
who would benefit from late revascularisation and
highlight novel neuro-protective therapeutic tar-
gets.!"1? Proteomic analysis technologies enable the
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simultanecous identification and quantification of hun-
dreds to thousands of proteins within a biological
sample and offer great potential to improve under-
standing of complex disease processes.'* Proteomics is
being increasingly applied to the stroke field, however,
few studies have been conducted to specifically charac-
terise the penumbra.'>'® The current review aimed to:
1) systematically analyse evidence from studies applying
protein screening to analyse the ischaemic penumbra in
animal models, and ii) identify and characterise the
proteins consistently reported to show significant dif-
ferences in abundance between the penumbra and
healthy regions of the brain.

Methods

This review adhered to PRISMA guidelines and the
Systematic Review Centre for Laboratory animal
Experimentation statement (PROSPERO database reg-
istration number CRD42023461673).'71%

Literature searches

The keyword terms (“prote—omics” OR “protein
omics” OR proteinomics OR Proteomic) AND
(“penumbra” OR “peri-infarct” OR periinfarct OR
“peri infarct”) were used to search the Pubmed data-
base. The Medline (Ovid), Scopus and Web of Science
were searched using the terms (“prote—omics” OR
“protein omics” OR proteinomics OR Proteomic*)
AND (“penumbra” OR “peri-infarct*” OR periin-
farct* OR “peri infarct*”). Subject heading searches
in Medline and Cinahl provided no additional articles.
Retrieved articles were screened by two authors (JVM
and AFT) to identify relevant studies for inclusion in
the current review. Eligible studies had to use a protein
screening platform to compare ischaemic penumbra
tissues recovered from animal models of acute ischae-
mic stroke to control tissues sourced from the same
animal (e.g. biopsies from the contralateral brain hemi-
sphere), or animals undergoing sham surgeries. No
restrictions on date of publication were applied.
Review articles, editorials and articles published in lan-
guages other than English were excluded. Studies
assessing individual pre-selected proteins, or those not
measuring proteins directly within the penumbra were
excluded. Studies testing novel therapies or interven-
tions were excluded unless data comparing penumbra
and control tissues recovered from animals receiving a
vehicle control or sham surgery were reported.
Reference lists of related reviews were also manually
searched to identify potentially eligible studies not
identified by keyword searches. Study authors were
contacted if additional information was needed.

Literature searches commenced on the 17th May
2023 and were finalised on 1st December 2023.

Data extraction and risk of bias assessment

Data extraction was independently conducted by three
authors (JVM, CP, AFT) focusing on: i) Animal spe-
cies, strain, age and sex, i) Methods of ischaemic
stroke induction, iii) The time between stroke onset
and sample collection, v) Methods used to identify
the penumbra, and vi) The choice of protein screening
platform. Risk of bias was assessed using a 3-domain
tool addressing study design, and the reporting of pro-
teomic outcomes (Supplement 1). Each domain was
independently scored by 3 authors with relevant exper-
tise (domain 1: JVM, CP, AFT; domains 2 and 3: JVM,
MKH, PM). The CAMARADES checklist was modi-
fied to assess experimental design, including criteria
specific to the current review.'” The reporting of
protein identification and quantification methodolo-
gies was assessed using applicable criteria of the
Proteomics Standards Initiative checklist (Supplement
1).2° All studies were assessed against domain I,
domains 2 and 3 were applied where appropriate.
Domain scores, and an overall score were calculated
(expressed as a percentage of applicable fields to nor-
malise between studies), scores of <50%, 50-75% or
>75% denote high, moderate or low risk of bias,
respectively.

In silico analysis of protein expression data

Panels of proteins dysregulated within the penumbra
were characterised in silico. To be eligible for inclusion,
studies had to provide details of the relative abundance
of named proteins which were reported to show signif-
icant differences in expression between penumbra and
control samples. Wang et al. (2022) did not provide
lists of differentially abundant proteins, but did
upload raw proteomic data to the ProteomeXchange
repository (Accession: PXD030788). Data were down-
loaded and reanalysed with the Spectronaut software
package (v 10.0.230605.50606, Biognosys, Switzerland)
in a library-free manner to compare protein abundance
between samples collected from sham-operated
controls, and animals undergoing cerebral ischaemia
(vehicle control group, detailed methodology provided
in Supplement 2).?' Proteins showing a >2-fold differ-
ence in abundance between samples (false discovery
rate corrected p-value <0.05) were considered to be
significantly different, and were included in the
in silico analyses.

To permit data pooling, the naming of differentially
expressed proteins was standardised according to gene
symbol using the GeneCards database to identify
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aliases where needed. Some array-based papers
reported data detailing the expression of post-
translationally modified proteins, splice variants, or
multiple isoforms of functionally related proteins
which did not have a unique gene symbol and these
could not be included in the analyses. Studies employ-
ing two-dimensional electrophoresis demonstrated that
some differentially abundant spots contained multiple
co-migrating proteins. Such data were not considered
in the in silico analyses unless the protein(s) driving
observed differences in abundance were identified
using targeted approaches (e.g. western blotting or
ELISA). Protein datasets were initially grouped
according to whether they were generated from
models of permanent or transient cerebral ischaemia
and were subdivided into those providing data from
samples collected during the early hyperacute, late
hyperacute, acute, or sub-acute phases (0—<6 hours,
624 hrs, 24hrs-7 days and 7 days-3 months post
stroke, respectively based on Stroke Roundtable
Consortium definitions).***

Inter-study differences in the reporting of relative
protein abundance and ambiguity regarding sample
sizes for some investigations prevented formal meta-
analysis. Thus proteins were reclassified according to
whether they were reported to more or less abundant in
the penumbra than control tissues. Those showing con-
tradictory differences in the direction of over- or under-
abundance between studies were removed. Protein
panels were de-duplicated and imported into
Cytoscape (v. 3.10.1) to identify protein-protein inter-
action networks (String database, confidence cut-off
0.8). Networks comprising at least 4 interacting pro-
teins were analysed for functional enrichment to

identify over-represented pathways. As 12 of the 14
included studies conducted in rodent models of stroke
used experimental rats (the remainder used mice), net-
work and pathway analyses were conducted using the
Rattus norvegicus genome as a reference. Two studies
used cynomolgus monkeys (Macaca fasicularis) for
which there was no available reference genome within
the Cytoscape package.”** Network and functional
enrichment analysis of data from these studies was con-
ducted using the human genome as a reference as the
closest homologue.* Pathways and gene ontology cat-
egories showing a false discovery-rate corrected p-value
<0.05 were considered to be significantly over-
represented across the assessed proteins.

Results

Literature searches

Thirty-five potentially eligible articles were identified
after excluding duplicates (Figure 1). Manual searches
of reference lists of related articles identified an addi-
tional study which was considered to be likely to be
eligible for inclusion.>® The full texts of 31 articles
were assessed, of which 15 were excluded, most com-
monly as they did not specifically assess tissues recov-
ered from the ischaemic penumbra.®* Sixteen studies
fulfilled inclusion criteria.''2"**#>41"32 Gjx included
studies investigated the effect of novel interventions
on penumbral protein expression, but provided data-
sets detailing penumbra protein expression in animals
not receiving these treatments which  were
included 21:25:45:46.49.52

Records identified from

Records identified from reference Detabaset: Tota'. b .204

lists of relevant reviews Madine - 45
1) Pubmed n= 53
o SCOPUS n=53

Web of Science n = 52

Records removed before screening:
Duplicate records removed
(n=136)

!

Records screened
{n=87)

Records excluded
(n=37)

:

N Reports sought for retrieval
(n=31)

Reports not retrieved
(n=0)

;

Reports assessed for eligibility
(n=31)

Reports excluded with reasons: Total n =15
N Assesses a sub-set of proteins (n = 4)

Does not specifically examine penumbra tissue (n=7)
Only provides data for groups receiving drug treatment (n=4)

l

Studies included in qualitative
review
(n = 186)

Figure I. PRISMA flow diagram showing the selection of included studies.
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Characteristics of included studies

Table 1 details the design of the sixteen included stud-
ies, 12 used experimental rats, two used mice, and two
used cynomolgus macaques (Macaca fasicularis).
Stroke was commonly induced using middle cerebral
artery occlusion (MCAQ),'!:21:24:25.41.42.46.4749 1 yho.
tothrombosis,* #>#3%51and  one study used
endothelin-1 infusion.>* Cerebral ischaemia was perma-
nently induced in eight studies, ''*!"" #3430 4nd seven
investigated  temporary  ischaemia  (ischaemia-
reperfusion).?! 242346474952 y 4 5 et al. (2009) presented
data from groups of animals exposed to either perma-
nent, or transient cerebral ischemia.’! The time
between ischaemic stroke induction and brain sampling
ranged from 1- hour to twenty eight days, and several
studies used multiple groups to assess temporal changes
in penumbral protein composition. Inter-study varia-
tions in the approaches used to identify and sample
the ischaemic penumbra, choice of control tissues and
protein screening platform were observed.

Risk of bias assessment

Risk of bias outcomes are shown in Supplement 3. All
included papers were assessed against Domain 1 crite-
ria (scores ranging from 30.8%-61.5%). All except
Noll et al. (2022) exclusively used male animals,*® and
experiments by Yao et al. (2009) were the only ones to
incorporate common risk factors of ischaemic stroke
within models.”’ The STAIR guidelines were refer-
enced by one study,*' and methods for stroke induction
were variably reported. Sample sizes for all investiga-
tions were relatively small and were not informed by
power calculations. None of the studies used cerebral
imaging to visualise the ischaemic penumbra and
instead relied on post-mortem anatomy to estimate
penumbra location, resulting in inter-study variation
in the origin of the analysed tissues. Only one paper
fulfilled all criteria relating to protein identification and
quantification via mass spectrometry.>* Total scores
for the included papers ranged from 22.2%-61.5%
denoting moderate - high risk of bias.

Changes to the penumbra proteome during permanent
cerebral ischaemia. Six studies assessed the penumbra
proteome within 24 hours of permanent stroke induc-
tion.!1:21:43745:30 Of these, Yao et al. (2009) and Pang
et al. (2019) did not report the identity or relative
abundance of proteins detected during the proteomic
assessment, preventing reanalysis of their mass
spectrometry-derived data.''>! Western blots pre-
sented by Pang et al. (2019) demonstrate an increased
abundance of transforming protein RhoA (RHOA),
and isoform 1 of cell division control protein

42 homolog (CDC42) in the penumbra within 4 hours
of stroke induction."" The remaining four studies used
commercially available cell signalling- and neurobiology
antibody arrays to measure panels of proteins in brain
samples collected during the early (<6 hours post-stroke
induction) and/or late (624 hours post-stroke) hyper-
acute phase (Table 1) and provided quantitative datasets
which were included in the in silico analyses.*>*>>

Characterising the penumbra proteome during the
early hyper-acute phase (<6 hours post stroke). Lists
of differentially proteins showing differences in abun-
dance between penumbra and control samples within
6 hours of stroke onset were compiled (Supplementary
file 2). Inter-study contradictions of the association
of MAPIA (microtubule associated protein 1A),
MYOSA (myosin 5a), TPH1 (tryptophan hydroxylase
1) and PLCG1 (phospholipase C gamma 1) with the
penumbra were observed (more abundant in some
studies, less abundant in others). These proteins were
removed leaving a non-redundant list of 131 proteins
for analysis (75 more abundant, 56 less abundant in the
penumbra compared to controls). These proteins gen-
erated a highly interactive network, in which the over-
abundant over-abundant protein p53 (gene name
TP53) was the most connected hub (Figure 2(a)).
Pathway  analysis revealed  significant  over-
representation of mediators of apoptotic, cell cycle
and signalling pathways (ATM-, 1L-3-, p53-, MAPK-
, and Wnt signalling) within the network, with p53
implicated in seven of the ten most highly ranked path-
ways (Figure 2(a)).

Characterising the penumbra proteome during the late
hyper-acute phase (624 hours post stroke).
Demyanenko et al. (2017, 2018) and Uzdensky et al.
(2017) presented array data comparing protein abun-
dance in penumbra and control samples collected 24
hours after ischaemic stroke induction.****>> PRKCB
was removed due to conflicting inter-study reports of
over- or under-abundance in the penumbra leaving 85
unique proteins (32 more abundant, 53 less abundant)
for in silico analysis. Over representation of p53 related
proteins in the ischaemic penumbra was suggested by both
network and pathway enrichment analyses (Figure 2(b)).

Characterising the penumbra proteome during the
acute phase (24 hours — 7 days post-stroke). Acute
phase changes to the penumbra proteome were
assessed in three studies.*'*** Agulla et al. (2014)
and Brea et al. (2015) employed comparable methods
to sequentially extract proteins from the soluble, insol-
uble and membrane fractions of penumbra and contra-
lateral controls, 48 hours after the induction of
permanent cerebral ischaemia.*'** Protein screening
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Figure 2. Protein-protein networks and functional enrichment analysis of proteins reported to show significant differences in
abundance between penumbra samples and controls collected during the: a) early- (<6 hours post-stroke) and b) late (6—24 hours
post-stroke) hyperacute phases after ischaemic stroke induction. Red and blue shaded bubbles denote proteins which are more, or
less abundant in the penumbra compared to control respectively. p53 is positioned centrally. Singletons and interactions involving only
2 proteins are not shown (expanded views are shown in Supplements 4 and 5). Inset tables detail the 10 most highly ranked
wikipathway categories represented by proteins within the networks using the Rattus norvegicus genome as a reference. Genes in
category refers to the number of proteins belonging to the Wikipathway category, observed genes refers to the number of proteins
present in the network for each category. P-values refer to the degree of over-representation (corrected for multiple testing). The
inclusion of p53 in multiple pathways is denoted in bold and underlined text.

data were not provided by Agulla et al. (2014),
although presented western blots and IHC images indi-
cated a significantly higher abundance of heat shock
protein HSP72 in the penumbra.*' In contrast, Brea
et al. (2015) reported significant differences in the
abundance of 60 proteins (including HSP72) detected
using 2-dimensional electrophoresis and/or gel-free
combined fractional diagonal chromatography
(COFRADIC, employed on a single biological
sample).*> Of note, HSP-70, serotransferrin and
serum albumin were the only proteins suggested to
differ in abundance between penumbra and control
tissues by both 2DE and COFRADIC. Noll and col-
leagues (2022) used an array-based method to measure
proteins in situ using tissue sections from mice
experiencing 3 days of permanent cerebral ischaemia,
and reported significant differences in the abundance of
3 proteins (BAG family molecular chaperone regulator
3 (BAG3), Glial fibrillary acidic protein (GFAP) and
Phospho-Tau S199 (tau-S199)) between the penumbra
(defined as the peri-infarct region by the authors) and
contralateral equivalent.* Proteins showing significant dif-
ferences between penumbra and control samples reported
by the three studies were compiled. After de-duplication

and exclusion of proteins without a unique symbol a
non-redundant list of 59 proteins (four at lower-, 55 at
higher-abundance in the penumbra) was analysed in
silico. Two small networks of interacting proteins
were observed, in which mediators of the complement
and coagulation cascades, but no other pathways, were
over-represented (Supplement 3).
Changes to the penumbra proteome in
ischaemia-reperfusion

Late hyper-acute phase changes. Four studies investi-
gated the penumbra proteome within the hyper-acute
phase following transient cerebral ischaemia.!*4¢-31:52
One did not report the differentially abundant proteins
and was excluded from in silico analyses.”' Zgavc et al.
(2013) reported significance differences in the relative
abundance of 14 protein spots following 2DE analysis,
from which 26 constituent proteins were identified via
mass spectrometry.”> He et al. (2016), and Wang et al.
(2022) both used quantitative mass spectrometry
to characterise the penumbra proteome, 24, and
12 hours post-stroke induction.>'**® He and colleagues
reported significant differences in the abundance of
9 proteins between penumbra and controls, whereas

response to
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Wang et al. (2022) did not report the identity of differ-
entially abundant proteins. Reanalysis of mass spec-
trometry data deposited by Wang et al. (2022),
resulted in the identification of 25,000 peptides corre-
sponding to approximately 2,300 quantifiable proteins.
Comparing protein abundance between vehicle con-
trols and sham-operated rats revealed significant differ-
ences in the abundance of 33 proteins (15 more, and 18
less abundant in the penumbra samples compared to
controls, Table 2, Supplement 5). Collectively, the stud-
ies provided a non-redundant list of 49 proteins
reported to vary significantly between penumbra and
control samples. An interaction network of eight pro-
teins was observed (Supplement 6), in which mediators
of the complement and coagulation cascades were over-
represented (FDR corrected p-value: 0.023).

Acute phase changes. Junker et al. (2007), He et al.
(2016) and Teppo et al. (2020) detailed protein abun-
dance in penumbra and control samples recovered
from mice,*® and rats,*’** within 2-4 days of stroke
onset. Junker and colleagues conducted a gel-based
protein screen, but only presented data to support a
significantly higher abundance of annexin-3 and -5
within the penumbra compared to sham controls (cor-
roborated by Teppo et al. (2020)). He et al. (2016) and
Teppo et al. (2020) reported differences in the abun-
dance of 4, and 308 proteins, respectively. Of note,
both studies reported significant differences in the rel-
ative abundance of acidic leucine-rich nuclear phos-
phoprotein 32 family member B (ANP32B) within the
analysed tissues but provided contradictory informa-
tion regarding the direction of difference and this pro-
tein was therefore excluded from further analyses.
Compiling data from all three studies provided a
non-redundant list of 308 proteins for analysis (202
more, and 106 less abundant in the penumbra than
controls). A complex interaction network, most signif-
icantly enriched with mediators of protein translation
was observed (Wikipathways term WP149, FDR cor-
rected p-value 9.69 x 10~, Supplement 7). Other path-
ways associated with IL-3 and G-protein signalling,
recovery from spinal cord injury, and cytoskeleton reg-
ulation were weakly over-represented (all p-values:
0.043, Supplement 7).

Early Sub-acute changes. Two studies published by
the same laboratory employed non-human primate
models to investigate the ischaemic penumbra prote-
ome, one month after experimental stroke induction
(Table 1).>*?° Zhang et al. (2016) conducted an analysis
to identify proteins modulated by tetramethylpyrazine
nitrone; proteomic data reported from animals receiv-
ing vehicle only were considered in this review
(published data contrasts penumbra and paired

contra-lateral samples).””> Law et al. (2017) reported
findings of experiments to identify proteins associated
with favourable, or poor recovery evidenced by low, or
elevated cerebral infarctions, respectively.* Both stud-
ies used comparable quantitative mass spectrometry
(isobaric tag for relative and absolute quantitation).
For the purposes of the current review, data provided
by Zhang et al (2016) and Law et al. (2017) were divid-
ed into those associated with good outcome (differen-
tially regulated proteins identified by Law et al. (2017),
and those in the low-infarct group reported by Zhang
et al. (2016), total number of proteins: 48); and those
associated with poor outcome (differentially regulated
proteins identified by Law et al. (2017), and those in the
high-infarct group reported by Zhang et al. (2016),
total number of proteins: 49). Protein-protein interac-
tion networks generated from these data are shown in
Figure 3, with functional enrichment analyses suggest-
ing that favourable outcome was associated with an
over-abundance of proteins associated with wound
healing (3 A). In contrast proteins associated with pros-
taglandin synthesis and signalling were highly over-
represented in animals experiencing poor outcomes
(3B).

Discussion

The current review aimed to assess all available prote-
omic data provided by studies specifically designed to
characterise the ischaemic penumbra following experi-
mental ischaemic stroke. Sixteen eligible studies were
included which collectively appraised penumbral biol-
ogy in the context of permanent cerebral ischaemia or
following reperfusion. Marked inter-study differences
in experimental design, and the sensitivity and specific-
ity of the employed protein screening tools must be
considered when interpreting findings, however avail-
able data provide some insight into the processes
occurring within the ischaemic penumbra as a founda-
tion for discovery of novel drug targets, and diagnostic
and prognostic markers.

Homogenous design and reporting made it possible
to analyse data from four included studies.** *>3 All
four studies reported a higher abundance of the tumour
suppressor protein p53 within the penumbra, a finding
corroborated by independent investigations (reviewed
in>%). p53 is a transcription factor that regulates multi-
ple processes including apoptosis, angiogenesis, neuro-
inflammation and cell proliferation,>* >¢ as reflected in
the current network analyses. Although the pathophys-
iological consequences of an increase in p53 abundance
cannot be inferred from proteomic data alone, indepen-
dent reports suggest that this protein may contribute to
stroke pathology by influencing several key process-
es.”” For example, suppressing p53 activity significantly
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Figure 3. Protein-protein networks and functional enrichment analysis of proteins reported to show significant differences in
abundance between penumbra samples and controls associated with a) favourable, and b) poor outcome one month following
induction of transient cerebral ischaemia in cynomolgus monkeys. Inset table details wikipathway categories over-represented by
proteins within the networks using the Homo sapiens genome as a reference. Genes in category refers to the number of proteins
belonging to the wikipathway category, observed genes refers to the number of proteins present in the network for each category.
P-values refer to the degree of over-representation (corrected for multiple testing).

reduced the inflammatory response in both in vitro, and
in vivo models of ischaemic stroke (discussed in detail
by Gao et al. (2023)).°® Similarly, rats receiving the
synthetic p53 inhibitor pifithrin-o before, or within
one hour of stroke induction developed fewer apopto-
tic neurons (evidenced by fewer caspase-3 and TUNEL
positive cells on IHC), had smaller cerebral infarctions
and experienced better functional outcomes than those
receiving vehicle alone.’®* Teertam et al. (2020),
observed similar reductions in stroke-induced apopto-
sis in rats receiving resveratrol, compared to vehicle
controls, and attributed this to increases in sirtuin-1
and mir-149-5p expression which suppressed p53 activ-
ity.%> Other reported benefits of p53 inhibition follow-
ing stroke, include increased proliferation of neural
progenitor cells,’” preservation of the blood-brain
barrier,’ and enhanced angiogenesis.°’ In contrast
Guzenko and colleagues (2023) reported the accumu-
lation of p53 isoforms acetylated at lysines 320 and 373
(p53k320 and 373, respectively) within the cytoplasm of
neurons within the penumbra following experimental
ischaemic stroke and observed that the p53k320

isoform promoted cell survival.®? Collectively, avail-

able evidence suggests that p53 inhibition during the
hyper-acute phase following ischaemic stroke may be
beneficial however, the involvement of p53 in multiple
homeostatic processes, and potential cross-reactivity of
available inhibitors complicates the clinical assessment
of this hypothesis.”® Clarifying which of the multiple
pathways mediated by p53 confer the greatest damage
following ischaemic stroke onset may help to uncover
more specific therapeutic targets.

The processes driving penumbral biology during
later stages of permanent cerebral ischaemia, or in
response to reperfusion are less clear. Relatively few
proteins were reported to differ between penumbra
and control tissues recovered from animals experienc-
ing >24 hours of cerebral ischaemia, or those undergo-
ing less than <24 hours of reperfusion. Interestingly,
network analyses suggested that coagulation and com-
plement activation were occurring in both groups. The
greatest proteomic differences were observed in sam-
ples collected between one and seven days after the
induction of transient cerebral ischemia, however
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only one Wikipathway category, ‘translation factors’,
showed clear over-representation. This suggests that
the penumbra undergoes widespread protein synthesis
in the acute phase following reperfusion, however other
key processes occurring at this time cannot be inferred
from current data.

Only two investigations assessing the sub-acute pro-
teomic response to ischaemic stroke were identi-
fied.*** Proteins associated with wound healing were
associated with favourable outcome 1 month following
stroke induction. In contrast molecules involved in
prostaglandin synthesis and signalling (e.g. annexins
A 1, 2 and 5) were at high abundance in the ischaemic
penumbra of animals experiencing poor outcome.
Annexins Al and 2 have been reported to act to
reduce cerebral infarct volume, inflammation and
thrombosis in animals models of ischaemic stroke
(see Ansari et al. (2018) and Mendez-Barbero et al.
(2022) for comprehensive reviews).*** It is therefore
possible that increased expression of these proteins fol-
lowing stroke may be a compensatory response and
they may be useful prognostic biomarkers to predict
stroke recovery. High serum annexin A7 concentration
has been positively correlated to NIHSS score and was
associated with early neurological deficit and severe
disability or death within 3 months for patients
experiencing intra-cerebral haemorrhage, and high
plasma annexin 5 concentration was reported to pre-
dict high risk of death following myocardial infarc-
tion.®>®  Clinical cohort studies investigating the
association of annexins with outcome following ischae-
mic stroke are needed.

Determining the relevance of the penumbra prote-
ome of animal models to patients is complicated by a
lack of comparable studies conducted on human pen-
umbra biopsies.'® Two studies have conducted proteo-
mic analyses on samples recovered from donors, and
have reported significant differences in the proteins
present within the penumbra (defined as the peri-
infarct tissue), the infarction core and biopsies from
non-stroke controls.®”*® Samples in both studies were
provided after donor death (within 6 hours), and it is
unclear whether tissues collected post-mortem reflect
the in vivo proteome. In contrast, Dayon et al. (2010)
demonstrated significant differences in the protein con-
tent of cerebral fluid aspirates collected from the site of
the ischaemic infarct, penumbra and contralateral
brain hemisphere of patients undergoing decompres-
sive craniotomy following middle cerebral artery terri-
tory stroke.”” Whilst this novel approach bypasses
limitations associated with the analysis of post-
mortem tissues, generated data do not represent the
penumbra and there remains little direct evidence of
the protein-level changes occurring within the penum-
bra of patients experiencing ischaemic stroke.®

The current review highlights significant inter-study
heterogeneity in the design and reporting of outcomes
from investigations of the ischaemic penumbra prote-
ome. Importantly, no consistent method to identify and
sample the penumbra was employed and tissues were
obtained from different regions of the brain. RCTs
demonstrating benefits of late reperfusion have
detected ischaemic penumbra in patients by identifying
a mis-match in areas highlighted by diffusion- and
perfusion-weighted magnetic resonance imaging
(MRI).* ' Imaging studies have demonstrated that
the same mis-match method can be applied to animal
models of ischaemic stroke,®’® however this was not
used by any of the included investigations and it is
therefore unclear whether the analysed tissues reflect
the penumbra identified in patients. Some studies mit-
igated this risk by presenting histological evidence
demonstrating hypoxic stress in the assessed tissues (e.g.
perineuronal oedema, hyperchromic nuclei or expres-
sion of neurological stress markers),2#23:43:44:48.50
Others''! adopted methods to isolate regions of the
brain reported to functionally recover post-stroke
described by a prior investigation,”! or did not provide
evidence to confirm the phenotype of the assessed
tissue, and the relevance of the sample is therefore
unclear.?! 241424547 1t s also noteworthy that most
of the included studies used young, healthy animals
which does not represent the human population at
risk of stroke.* Only one study included female ani-
mals,*® and all proteomic investigations had group
sizes of 10 animals or fewer. Moreover, all studies con-
tributing data into the hyper-acute response to cerebral
ischaemia used antibody arrays to assess the penum-
bral proteome. This is a potential source of bias since
the arrays assess a relatively small panel of proteins
known to drive a range of pre-selected cellular path-
ways, and the possibility of overlooking other differen-
tially abundant proteins must be considered. Finally,
the current analysis was conducted using simplified
data in which proteins were classified as either over-
or under-abundant within the penumbra. Whilst this
highlighted over-arching cellular pathways, an analysis
using quantitative proteomic data would provide great-
er sensitivity to identify pathways showing the greatest
dysregulation within the penumbra.

In conclusion, the current study identified consistent
evidence of over-representation of p53 related proteins
in the ischaemic penumbra following experimental
stroke. Well-powered, studies which combine clinically
accepted approaches to identify the ischaemic penum-
bra with high-throughput modern proteomics to
detect changes in protein abundance and post-
translational modification are needed to further current
understanding. Dedicated studies in females who have
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been excluded from many of the past studies are also
needed.
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