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ABSTRACT Accurate root zone soil moisture (RZSM) estimation is essential for precision irrigation (PI)
systems that seek to optimize water use efficiency. Large-scale in-situ sensors for direct measurement
are costly, while existing satellites lack depth resolution for direct RZSM data. Hence, in-direct RZSM
estimation methods are required. Literature illustrates that RZSM at a location is related to changing soil-
water-plant characteristics. Therefore, these characteristics can provide auxiliary information on RZSM
changes. By leveraging auxiliary information derived from changing soil-water-plant characteristics, this
paper enables indirect RZSM estimation at non-sensor locations, effectively addressing the limitations
inherent in direct RZSM measurement techniques initially discussed. Compared to existing methods, deep
learning (DL) ismost suitable for such data associations as they are auto-tuned to extract relative relationships
from diverse big data. Among DL models, sequential models are apt for finding these relationships as all
these variables are time-series sequences. The transformer neural network (TNN) is the state-of-the-art DL
model for analyzing sequences. However, for in-direct RZSM estimation, the data associations within a
location and multiple sensor sites with the target need to be found. Conventional TNN cannot incorporate
such simultaneous multi-associations, hence, we develop a new TNN model called the hybrid TNN model,
which is able to facilitate the capturing of complicated dependencies through thoughtful feature selection and
engineering. First, sensor locations exhibiting analogous downscaled 1-km satellite soil moisture (SM) are
identified. Next, a dynamic multilayer perceptron (D-MLP) network discerns highly correlated auxiliary-
RZSM data, utilizing both ground-based and downscaled satellite data. Following this, the dual attention
module identifies essential multi-associations, leveraging selected sensor and target region information.
Finally, the Bayesian layer averages multi-location RZSM using the conditional probability generated based
on relative relationships to yield the target location RZSM estimate. Our proposed model shows 13.066%
better RZSM estimation compared to popular sequential models. The hybrid TNN RZSM estimates are used
to monitor root water depletion tolerance levels for optimal PI schedules, which shows 10.846% water and
10.339% cost-saving on our selected sites. Overall the proposed model effectively demonstrates that a more
accurate PI predictive algorithm saves water, improves resource conservation, and reduces irrigation costs.

INDEX TERMS Agriculture, deep learning, hybrid transformer neural network, precision irrigation, root
zone soil moisture.

I. INTRODUCTION
The root zone soil moisture (RZSM) is an indicator of the
vegetation drought stress and the crop water demand, which

The associate editor coordinating the review of this manuscript and

approving it for publication was Frederico Guimarães .

are valuable information for precision irrigation (PI) [1],
[2]. In-situ sensors installed at root zone-specific depths
can provide direct field RZSM measurements [3]. However,
the vast installation of sensors across the field at the
subsurface for RZSM measurements is not economically
viable. Current satellite missions can provide kilometers of
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distributed horizontal spatial details, but only centimeters of
vertical (depth) SM information [4], [5], [6]. This vertical
resolution can only provide knowledge of the surface soil
moisture (SSM) layer, not the RZSM layer.

The limitations in direct RZSMmeasurements from in-situ
sensors and satellite missions are predominantly addressed
by indirect estimation through analytical methods using the-
oretical or empirical models to obtain fine-scale RZSM [7],
[8]. These analytical methods use the relationship between
environmental variables, such as precipitation, temperature,
soil, and plant characteristics (PTSPc) which determines the
RZSM state for indirect estimations [9]. However, these
in-direct methods require in-situ (e.g. sensor) and ex-situ
data (e.g. satellite) to improve the model’s location-specific
RZSM simulation accuracy [10]. Adoption of data-based
methods can help remove these location-based optimization
constraints as they are adaptive to data [11], [12], [13].
Among data-based methods, deep learning (DL) is becoming
increasingly popular due to its deep architectures, which
can extract accurate information from big environmental
data [14], [15].
The application of DL in the realm of RZSM is still

in the nascent stages [16], [17], [18]. However, RZSM
is SSM diffused to lower soil layers [1], [19]. Con-
sequently, the more advanced DL-based techniques for
detailed SSM information, such as perform downscaling
(increasing spatial/temporal details) by correlating the SSM
with auxiliary SSM information available at target location
[20], [21], [22], [23], can be extended to RZSM. Stream
flow, another significant environmental parameter, exhibits
remarkable similarities with moisture distribution within the
root zone [24], [25]. Both parameters offer insights into
the time-series movement of water, albeit within different
mediums. Just as auxiliary information-based DL models
have proven effective in the SSM domain, we can apply
similar knowledge and methodologies from existing DL
research in stream flow to enhance our comprehension of
RZSM [25]. In instances where RZSM source information
(whether in-situ or ex-situ) is scarce or unavailable, the
environmental variables governing RZSM state can serve
as valuable auxiliary information for these DL models.
The literature suggests that employing a sequential DL
model would be well-suited for conducting such correlation
analyses [26], [27].

The transformer neural network (TNN) is the state-of-the-
art DL model to process sequential data [25], [28]. It is a new
cognitive model eschewing recurrence implementations in
the previous benchmark sequential DL models, such as Long
short-term memory (LSTM) [29] and Gated recurrent unit
(GRU) [30]. LSTM and GRU receive the input information
indirectly as a set of hidden states passed on through multiple
cells via series processing. While, TNN can pay attention to
every single input directly through parallel processing and
attention mechanism to draw global dependencies between
input and output. The attention mechanism enhances critical
parts of the input while diminishing others so that the network

can devote more focus to the essential information [31]. The
indirect RZSM estimation requires data from multiple sensor
locations to be perceived simultaneously to draw critical
information from target prediction. Hence we find TNNmore
suitable for RZSM estimation.

Furthermore, the LSTM and GRU-based RZSM works
mainly focus on estimating RZSM using meteorological
variables alone [27], [32]. However, other environmental
variables also affect the RZSM state and should be considered
for estimation. Unlike LSTM and GRU, more variables
will enhance TNN learning due to parallel processing and
attention mechanism [33]. Also, existing RZSM works aim
at future predictions of a target location where ground
truth is available [27], [32]. However, the main problem in
the RZSM domain is the limited information on depth at
locations without ground truth due to the shortcomings of
direct measurement by in-situ and satellite devices. Such
measurement constraints were addressed in the SSM domain
using auxiliary variables correlations with the prediction
target [20], [21], [22], [23]. This correlation approach is
extrapolatable to the RZSM domain due to similarities with
the SSM. In order to extrapolate the correlations from sensor
location RZSMand auxiliary data for prediction at a site with-
out direct measurement, we introduce a hybrid TNN model.
We use auxiliary-RZSM variables identified in the literature
for RZSM estimation: SSM, soil type, surrounding RZSM,
target distance, plant type, RZSM depth, root type, plant
daily water requirement, humidity, temperature, rainfall, soil
salinity, and soil temperature [1], [9], [19], [27], [32].

In the proposed model first, as a high-level input abstrac-
tion, sensor locations with similar satellite SSM values as
the target are selected for further analysis. To distinguish the
SSM information from different test locations for similarity
assessment, we use the downscaled 1 km SM from [34]. Next,
a dynamic-MLP (D-MLP) finds the prominent PTSPc pre-
dictor variables from chosen sensor locations by determining
the relative importance of these variables as a function of the
neural network synaptic weights. The network assigns higher
weights if the variables contribute more to the predictions.
The selected sensor RZSM and auxiliary variables from the
sensor and target locations are input to the attention layer of
the proposed hybrid TNN model for further processing.

The attention block first analyses the relative relationship
between the auxiliary variables at sensor and target locations.
Next, the model performs a similar relationship analysis
between sensor location auxiliary variables and RZSM.
To achieve these proposed dual relative relationship analyses
we concatenate an additional attention block to the basic TNN
architecture. Inside the additional block, we implement a
new multi-cross attention mechanism, which simultaneously
analyses cross relative relationships between features from
multiple sensor sites with the target. Unlike the conventional
attention block, which transforms the output using its inputs,
this block transforms the input using the inputs from the other
concatenated block. Such an arrangement helps correlate
the similarities of RZSM-related environmental changes

VOLUME 12, 2024 48899



N. Madhukumar et al.: Hybrid Transformer Network for Soil Moisture Estimation in Precision Irrigation

FIGURE 1. The study area map illustrates the distribution of 78 soil
sensors across the city of Melbourne. The selected prediction sites are
labeled as 1, 2, and 3: Alexandra Garden (1), Batman Park (2), and
Fawkner Park (3). At these three locations, Root Zone Soil Moisture
(RZSM) levels are predicted in-directly by inputting sensor data from all
other locations on the map into the Hybrid Transformer Neural Network.
The model’s estimated RZSM values are then validated using RZSM data
from the target prediction locations (labeled as 1, 2, and 3 on the map).

between target and selected sensor locations. Based on these
relationships, probabilities were generated by the proposed
hybrid TNN using the Bayes theorem in an additional layer
implemented as a preceding layer to the traditional TNN
output layer for each selected sensor RZSM. Finally, the
probabilistic weighted sum of the selected RZSM sensors
provides the required indirect estimates. A probabilistic
weight assignment can reduce the uncertainties in multi-
source ensembling [35] and can enhance the proposed model
prediction accuracy as it combines multi-sensor data.

Based on the hybrid TNN RZSM estimates, we simulated
PI schedules for the test locations for further evaluation. The
proposed hybrid TNN model is compared with TNN [25],
LSTM [27] and GRU [32] based related works for perfor-
mance evaluation. A comparison of irrigation scheduling
with these three models using quantitative measurements is
conducted for the amount of water saved. These evaluations
and comparisons will provide new insights for improvements
in the RZSM estimation. The main contributions of this paper
are summarized as follows:

1) A novel hybrid transformer neural network is
designed to create a more discriminative extraction of
auxiliary-RZSM variables for daily in-direct RZSM
estimation.

2) A new deep learning-based method is proposed to fuse
climate model outputs with satellite and ground-based
data to aid in PI scheduling without requiring the
large-scale installation of in-situ sensing stations.

3) A new deep learning-based decision support system for
PI is developed to reduce irrigation water loss.

4) Proposedmethod produces highly accurate RZSM esti-
mates across multiple root depths and when integrated
as part of an intelligent PI automation system aids in
water and cost-saving irrigation schedules compared to
state-of-the-art neural network-based approaches.

The remaining paper is organized as follows: the study
area and proposed model are elaborated in Section II.
The simulation results are shown in Section III. Finally,
a conclusion is drawn in Section IV.

II. MATERIALS AND METHODS
In this section, we introduce a novel hybrid TNN model
for indirectly estimating RZSM, with the objective of
enhancing PI decision-making. To evaluate the proposed
model’s performance, we will conduct a comparative
analysis against hybrid-GRU [27], LSTM-Technique [32],
and Multi-head TNN [25] within an irrigation framework.
Both hybrid-GRU [27] and LSTM-Technique [32] predict
RZSM using a sequential DL model, incorporating multiple
auxiliary-RZSM variables as input to make informed irriga-
tion decisions. Multi-head TNN [25] is a recent auxiliary
variables-based prediction model. These comparisons will
provide a benchmark for the proposed hybrid TNN-based
RZSM estimation accuracy when compared to conventional
TNN, LSTM, and GRU. Hence, we find these works highly
valuable for comparison.

To facilitate a meaningful comparative analysis, the con-
figuration of the comparison models, namely hybrid-GRU,
LSTM-Technique, and Multi-head TNN, strictly follows the
specifications outlined in the respective literature [25], [27],
and [32]. Additionally, the configuration of our proposed
model is detailed in Section II-B. To ensure a fair comparison,
all competing models are provided with the same input
variables (detailed in Section II-A) as those for the proposed
model. However, since these input variables are measured in
different units (for example: temperature in degrees Celsius,
precipitation in mm/day, etc.), they are re-scaled into [0,
1] using Min-Max normalization as a pre-processing step.
This ensures that all input features are treated equally in the
learning process by all four models.

Finally, the Nash Sutcliffe coefficient of efficiency (NSE),
determination coefficient (R2), and normalized mean bias
error (NMBE) will be used to compare the performances of
the four models. The subsequent section describes the study
area, dataset, and input variables used in this study.

A. STUDY AREA AND DATASET
To test our proposed model we require a dataset having
multiple RZSM sensing station readings installed over a vast
spatially distributed area having similarities in the soil-plant-
atmosphere domain. Hence we use the City of Melbourne
(Australia) Soil Sensor Readings (CoMSSR [36]) dataset.
The CoMSSR dataset contains historical readings for RZSM
sensors and related auxiliary-RZSM variables within parks
across the city of Melbourne. The units and readings at
eight soil depths (0-80 cm) from 78 soil sensors installed
locations are included within the CoMSSR dataset. The
Soil Sensor Locations (SSL) dataset can be used to get the
locations (latitude and longitude) where soil sensors have
been deployed across the city. The CoMSSR dataset is joined
to the SSL dataset [37] using the site-id column. The SSL
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FIGURE 2. The layout of the three test sites: (a) Alexandra Garden (5.2 hectares) is located at 37.82037◦S 144.971938◦E with clay loam soil. It has an
avenue of oak trees around the garden; (b) Batman Park (1.47 hectares) is located at 37.821766◦S 144.956348◦E with medium to heavily textured clay
plus some sand. The park consists of sparse maturing eucalyptus trees with no understorey or saplings, and (c) Fawkner Park (41 hectares) is located
at 37.838434◦S 144.981016◦E with sandy loam soil. The park has elm, oak, and fig trees.

dataset information can be further used to link with the soil
type by area maps (STBAM) dataset to get the soil type infor-
mation [38]. The CoMSSR, SSL, and STBAMdatasets can be
accessed for hourly values from the city of Melbourne-open
data portal (https://data.melbourne.vic.gov.au/). The model is
tested using data from June 2020 to February 2021, while the
remaining 1 year and 2 months of data (preceding June 2020)
from the CoMSSR, SSL, and STBAM datasets are used for
training purposes.

The latitude and longitude information from the SSL
dataset can be used to obtain the weather data from the
nearest weather station accessible through the Bureau of
Meteorology (BOM), Australia (http://www.bom. gov.au/).
The weather station number from BOM can be used to join
with the BOM forecast dataset [39]. The SSL dataset is
further used to generate the fine resolution SSM for the
78 sensor locations. The fine resolution SSM is generated
using the 9 km Soil Moisture Active Passive (SMAP)
and 1 km Moderate Resolution Imaging Spectroradiome-
ter (MODIS) satellite data, which can be accessed from
NASA earthdata (https://search.earth data.nasa.gov/search).
The sensor locations can be mainly classified as dry and wet
regions. The Alexandra Gardens and Batman Park are wet
regions as they are located near the Yarra River. Fawkner
Park represents the case of a dry location far from any water
bodies. Furthermore, these three test locations have the most
widely available soil types in theworld [40]. Hence ourmodel
is tested at these three locations illustrated in Fig. 2. The
proposed model is elaborated further.

B. MODEL DESIGN
Fig. 3 illustrates the framework of the proposed decision
support system for precision irrigation (DSS-PI). The pro-
posed DSS-PI is made of three parts: 1) the SSM similarity
assessment, 2) the RZSM estimation, and 3) the irrigation
processor. Each part of the proposed DSS-PI is detailed
below.

1) SSM SIMILARITY ASSESSMENT
Satellite imagery is made up of pixels and it represents the
relative reflected light energy recorded for that part of the
image. Each pixel represents a square area on an image
and is a measure of the sensor’s ability to resolve ground

objects. The reflected energy from a light spectrumwill be the
same for objects that are similar in composition. Currently,
satellites can only provide SSM information. Since SSM
and RZSM are correlated, a similarity assessment of satellite
pixels can help identify similar pixel-valued sensor sites with
the target location without a sensor to further derive RZSM
information.

A minimum of 1 km resolution is required to distinguish
the SM pixels from the sensor sites in the CoMSSR
dataset [36]. Currently, SMAP provides the highest resolution
global daily SM of 9 km. Since this resolution is not
sufficient for our application we downscale the 9 km SMAP
SM to 1 km using the 3D-Bi-LSTM model [34] from our
previous work. The target location 1 km downscaled SM
is evaluated to check the overall similarity with all the
sensor location’s 1 km SM. Based on the SSM similarity
sensor locations are selected. In order to identify the most
important pixels that can contribute to the target prediction
and reduce the complexity of analysis, we select pixels with
at least fifty-percent similarity to the target. Next, the selected
location features are passed on to hybrid TNN for further
analysis.

2) RZSM ESTIMATION
Fig. 4 illustrates the proposed RZSM estimation using the
hybrid TNN model. The D-MLP network forms the first
processing layer of the proposed neural network. In the
D-MLP the number of neurons is dynamically set at each
cycle based on the similarity assessment in the current
iteration. This design helps to analyze all locations with
high similarity scores for any selected time rather than
limiting the analysis to a fixed number of sites. Also, for
locations with similar similarity scores, the closer in the range
locations are given higher weights. This weight allocation is
because closer regions to the target will have more similar
environmental conditions. Hence the D-MLP hidden layer
weights are further tuned based on the range value from the
target location.

The calculation of whether a sensor is close or far in the
distance (d) is performed using the longitude and latitude
of the target point and g ∈ {1, 2, 3, . . . ,G} selected sensor
locations. The closest regions will have similar hydrological
cycles compared to the farther located sensors. Hence the
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FIGURE 3. The framework of the decision support system for precision irrigation (DSS-PI). The dynamic information
(SMAP, MODIS, and BOM) and static (CoMSSR, SSL, and STBAM) information are given as input to the proposed DSS-PI
to get RZSM and irrigation information. First, the DSS-PI performs SSM similarity assessment using SMAP and MODIS
data for selecting sensor locations for further analysis. Next, the RZSM estimation module outputs RZSM information
using CoMSSR, SSL, STBAM, and BOM data. Finally, the irrigation processor provides the irrigation information using
predicted RZSM and BOM rainfall data.

D-MLP assigns more weight to the decisions made from the
information from closer sensor locations (Wp > Wq ∀ dp <

dq if p ̸= q).
Once the D-MLP weights are optimized, I auxiliary-

RZSM information f ig ∈ {f 1g , f 2g , . . . , f Ig } from the g selected
similar locations are passed on to the D-MLP for finding
the prominent auxiliary-RZSM information features. The
D-MLP determines the relative prominence [41] of the
predictor variables as,

Vij =

K∑
k=1

Wik •Wkj, (1)

where Vij is the relative importance of any input variable
f ig with respect to j ∈ {1, 2, . . . , J} output neuron (for J
number of output neurons), K is the number of neurons
in the hidden layer, Wik is the synaptic connection weight
between the input neuron i and the hidden neuron k , and
Wkj is the synaptic weight between the hidden neuron k
and the output neuron j. The D-MLP selects the top-ranked
features, denoted as I/2, from the relevant list of I total
predictor variables extracted from selected sensor locations,
and forwards them to the attention module for root zone soil
moisture (RZSM) prediction. Within the attention module,
the multi-head attention component is dedicated to capturing
dependencies within the input sequence, while the multi-head
environmental inter-similarity attention component specifi-
cally focuses on identifying similarities and patterns across
different sensor locations, thereby enhancing the model’s
environmental understanding.

The output of the multi-head attention module comprises
attention weights assigned to each feature in the input
sequence, facilitating the model’s ability to concentrate on
pertinent information while disregarding noise or irrelevant
data. Similarly, the output of the multi-head environmental

inter-similarity attentionmodule captures environmental sim-
ilarities and patterns across various sensor locations, aiding
the model in comprehending the broader environmental
context.

By assimilating insights from the environmental inter-
similarity, the model can generalize across diverse sensor
locations and adjust its predictions based on the broader
environmental context. Leveraging the outputs from the
attention module, the proposed model executes a Bayesian
averaging technique [35] on selected sensor locationmoisture
data to predict the target RZSM accurately.

To calculate the probability values to perform the Bayesian
average of the RZSM from selected sensors, first, the cross
attention layer of the hybrid TNN evaluates the percentage
similarity of features at the target location and selected
sensor locations. Let f sg ∈ {f 1g , f 2g , . . . , f Sg } be the D-MLP
selected prominent features, where S = I/2 is the number
of chosen features. The f sg is encoded as csg through position
encoding [42]. At a gth location, the SM can be expressed as
a function of s ∈ {1, 2, . . . , S} prominent auxiliary-RZSM
variables csg,

yg(t) = zPg
( S∑
s=1

csg(t)
)

∀ t ∈ {1, 2, 3, . . . ,T }, (2)

where zPg is the mapping function for the given hybrid
TNN predictor neuron Pg. Eq. (2) gives the RZSM at a
gth sensor location. However, we aim to find the RZSM
at location h ̸= g without sensor. Hence we estimate
yh(t) through Bayesian average of RZSM from g sensor
locations. To estimate this, the relative relationship between
the independent variable csg(t) at each g

th location and csh(t)
at target location ‘h’needs to be derived. The proposed hybrid
TNN’s inter-similarity attention layer queries how related
the encoded feature csh at the target location is to the same
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FIGURE 4. Root zone soil moisture estimation using the hybrid transformer neural network (hybrid TNN).
The hybrid TNN has three modules: (1) Prominent feature selection module: from the similar SSM sensor
locations, the D-MLP (violet box) selects prominent predictor variables from auxiliary-RZSM variables. The
selected feature name is used to select the same feature from the target (white box); (2) Attention module:
the selected variables undergo position encoding to track the order of the selected variable sequence. The
position encoded selected features from target and sensor sites are provided to the multi-head attention
module (brown box). The module finds the relative relationship between the selected sensor and target
location data. The multi-head environmental inter-similarity attention module (light blue box) finds the
relative relationship between the multi-location RZSM and prominent predictor variables from sensor sites;
(3) Bayesian ensemble module: performs a Bayesian average of multi-sensor RZSM using the conditional
probability (green box) generated based on the attention module output to estimate target RZSM.

features at G locations. The relative relationship between csh
and {cs1, . . . , c

s
G} is {rh→1, . . . , rh→G}. For any location u ∈

g, this can be expressed as,

rsh→u(t) =
e
min(csh(t),c

s
u(t))

max(csh(t),c
s
u(t))

∑G
g=1 e

min(csh(t),c
s
g(t))

max(csh(t),c
s
g(t))

∀ s ∈ {1, . . . , S},

t ∈ {1, . . . ,T }. (3)

The relative relationship in Eq. (3) is used to get the
transformed input features from g locations ‘ ˜csg(t)’ as,

˜csg(t) =

G∑
g=1

rsh→g(t)c
s
g(t)∀ s ∈ {1, . . . , S}, t ∈ {1, . . . ,T }.

(4)

Transforming the RZSM at g locations in Eq. (2) using the
transformed auxiliary-RZSM variables in Eq. (4) as,

ˆyg(t) = fpg( ˜csg(t))∀ Pg, s ∈ {1, . . . , S}, t ∈ {1, . . . ,T },

(5)

where ˆyg(t) is the predicted RZSM. The objective of each
hybrid TNN predictor neuron, denoted as Pg, is to find out the
relationship between ˜csg(t) and ˆyg(t). To ensemble the relative
SM at g locations for getting the SM at target location, the
Bayesian average is used. The ensemble SM prediction, given
the data ˜csg(t), is

yen(t) =

G∑
g=1

p(ŷ|Pg, c̃sg)(t)p(Pg|c̃sg)(t)yg(t)
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FIGURE 5. The Irrigation processor with two main parts: (a) Irrigation frequency assessment module (light violent square
with dashed black outline) and (b) Irrigation amount assessment module (light green square with dashed black outline).
The irrigation frequency assessment module examines if irrigation is required using hybrid TNN predicted RZSM (brown
ellipse) and water depletion tolerance (dark blue rectangle) data. The irrigation amount assessment module subtracts the
water available from BOM rainfall data (dark blue square) and hybrid TNN RZSM from plant water requirement (green
cylinder) data.

∀ t ∈ {1, 2, 3, . . . ,T }, (6)

where yen(t) represent the RZSM at the location h ̸= g
for t ∈ {1, . . . ,T } time instants. yg(t) is the actual RZSM
measured by the sensors at g locations. p(ŷ|Pg, c̃sg) is the SM
PDF based on Pg alone, estimated from training data, and
p(Pg|c̃sg) is the posterior probability of predictor Pg being
correct for the given training data, ˜csg(t). Next, the estimated
RZSM (yen(t)) is provided to the irrigation processor for
further processing.

3) IRRIGATION PROCESSOR
Fig. 5 illustrate the proposed irrigation processor. The
irrigation frequency module in the irrigation processor
decides whether irrigation is required or not based on the
water depletion tolerance rate (R(t)) for each irrigation type.
The R(t) value is calculated using [43] as follows,

R(t) = Pwr (t) −

(
Pwr (t) × DT

100

)
∀ t ∈ {1, 2, 3, . . . ,T },

(7)

where Pwr (t) is the daily water requirement of the plant and
DT is the soil water depletion tolerance by the PI system. The
Pwr (t) should not drop below R(t) to maintain water levels
above wilting point.

The DSS used for PI knows the irrigation requirements in
the farm using Eq. (7) and use this information for controlling
an automatic irrigation system for precise application ofwater
to plants. Themain type of irrigation system used for PI is drip
irrigation. Ideally, for drip irrigation systems, the DT should
be in the range of 20 to 25 [43].

The proposed irrigation processor decides on when irriga-
tion should occur as follows,

∀ yen(t) ≤ R(t) : Irrigation required (8)

∀ yen(t) > R(t) : Irrigation not required.

If irrigation is required, the amount of water to be given
through irrigation is evaluated next. The amount of water to
be provided through irrigation is calculated as

A(t) = Pwr (t) − (yen(t) +W (t)) ∀ t ∈ {1, 2, 3, . . . ,T },

(9)

where A(t) is the amount of irrigation water, Pwr (t) is the
daily water requirement of the plant, yen(t) is the hybrid TNN
estimated RZSM, and W (t) is the estimated water available
from rainfall for the selected day using [44]. The proposed
model is tested in Section III.

III. RESULTS AND DISCUSSION
In this section, simulations are performed to evaluate the
effectiveness and potentialities of the proposed hybrid TNN
for RZSM and irrigation predictions at three different test
sites in Melbourne, (1) Alexandra Gardens, (2) Batman
Park, and (3) Fawkner Park. Both quantitative and resource
conservation efficiency comparisons are conducted with the
Multi-head TNN [25], LSTM-Technique [32] and Hybrid
GRU [27].

A. QUANTITATIVE PERFORMANCE EVALUATION
To demonstrate the effectiveness of the hybrid TNN,
we conduct a comparative analysis between predicted and
actual values obtained from soil sensors at various soil depths
across the three test locations. Figures 6 (a)-(c) depict the
percentage change in average predicted soil moisture across
eight layers relative to the actual values. Positive and negative
changes along the vertical axis signify over-prediction and
under-prediction, respectively. Over-predictions of RZSM
can lead to inadequate irrigation, while under-predictions
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FIGURE 6. Comparative analysis of percentage changes in average
predicted soil moisture across eight layers, relative to actual values, for
Hybrid GRU [27] (blue dotted line with x marker), LSTM-Technique (red
semicolon line) [32], Multi-head TNN [25] (black dashed line), and Hybrid
TNN from June 2020 to February 2021 at three locations: (a) Alexandra
Gardens, (b) Batman Park, and (c) Fawkner Park. Notably, the Hybrid TNN
prediction (green line) exhibits the least deviation from the actual values.

can result in irrigation flooding by automatic irrigation
systems. The visualizations in Figures 6 (a)-(c) highlight
that the predictions by the hybrid TNN closely align
with the actual RZSM, outperforming hybrid GRU [27],
LSTM-Technique [32], and Multi-head TNN [25]. This
suggests a higher level of reliability in the hybrid TNNmodel,
which is crucial for preventing both under-irrigation and
potential irrigation flooding by automatic irrigation systems.
Additionally, Table 1 presents the training and testing times
for the four comparison models. Notably, the proposed
hybrid TNN demonstrates significantly lower training and
testing times compared to the other three competing models,
indicating reduced time and computational complexity.

TABLE 1. Time complexity comparison of Hybrid TNN, Multi-head
TNN [25], Hybrid GRU [27] and LSTM-Technique [32].

TABLE 2. RZSM prediction accuracy comparison of the proposed Hybrid
TNN, Multi-head TNN [25], Hybrid GRU [27], and LSTM-Technique [32] at
eight soil layers on the RZSM dataset with three test locations data.

Further quantitative measurements are considered to
synthesize the model’s performance effectiveness over eight
months for three stations. Table 2 shows the performance
comparison of the hybrid GRU [27], LSTM-Technique [32],
Multi-head TNN [25] and hybrid TNN across eight different
soil layers on the RZSM dataset with the three test locations
data using Nash Suttcliff coefficient of efficiency (NSE),
determination coefficient (R2), normalized mean bias error
(NMBE) and Standard deviation (SD). Significantly, the
proposed hybrid TNN demonstrates superior performance
compared to the hybrid GRU, LSTM-Technique, and Multi-
head TNN. This is highlighted by the hybrid TNN’s NSE
value, which is closest to 1, indicating a significantly higher
relative accuracy in predicting RZSM. Specifically, the
proposed hybrid TNN has R2 values closer to 1, indicating a
highly reliable prediction model. The negative NMBE values
indicate that all the four models ([25], [32], and proposed
hybrid TNN) do not overfit the dataset. Lower SD values in
Table 2 by the proposed model suggest reduced uncertainty
compared to the other comparison models.

VOLUME 12, 2024 48905



N. Madhukumar et al.: Hybrid Transformer Network for Soil Moisture Estimation in Precision Irrigation

FIGURE 7. Comparison of RMSE average over the active root zone depths
of target tree by the Hybrid GRU [27], the LSTM-Technique [32],
Multi-head TNN [25], and the proposed hybrid TNN for: (a) Oak Tree
(0-50 cm), Alexandra Garden, Melbourne, (b) Eucalyptus Tree (0-30 cm),
Batman Park, Melbourne, and (c) Oak Tree (0-50 cm), Fawkner Park,
Melbourne from June 2020 to February 2021.

Figs. 7 (a)-(c) compares the average root mean square error
(RMSE) over the active root zone depths from June 2020 to
February 2021 at three test sites. Lower RMSE implies higher
prediction accuracy. Fig. 7 (a) illustrates the RZSMprediction
error for an oak tree at Alexandra Gardens, Melbourne. The
oak tree’s active root zone lies in the 0-50 cm layer [45],
[46]. Fig. 7 (b) illustrates the RZSM prediction error for a
eucalyptus tree at Batman Park, Melbourne. Eucalyptus trees
have shallow roots and grow up to 20-30 cm soil depth [45],
[46]. Fig. 7 (c) illustrates the RZSM prediction error for an
oak tree at Fawkner Park, Melbourne. In Figs. 7 (a)-(c), the
lowest prediction error is indicated by the proposed hybrid
TNN in all three locations. In addition to the RMSE, the
vertical error bars in Figs. 7 (a)-(c) illustrate the standard

TABLE 3. Total comparative water savings in Kilolitre (KL) by by Hybrid
TNN based irrigation against Multi-head TNN [25], Hybrid GRU [27] and
LSTM-Technique [32] across all three test locations during 2020-2021
using recycled water.

TABLE 4. Total comparative cost savings in Australian Dollar (AUD) by
Hybrid TNN based irrigation against Multi-head TNN [25], Hybrid GRU [27]
and LSTM-Technique [32] across all three test locations during 2020-2021
using recycled water.

deviation of prediction accuracy by each model. The error
bars indicate a less standard deviation of prediction for
the proposed hybrid TNN compared to hybrid GRU [27],
LSTM-Technique [32], and Multi-head TNN [25].

The lower RMSE of hybrid TNN also indicates its usability
in addressing the performance drop in existing PI decision
support systems [7] due to the RZSM estimation error accu-
mulations than hybrid GRU [27], LSTM-Technique [32], and
Multi-head TNN [25]. The resource conservation efficiency
evaluation of the hybrid GRU [27], LSTM-Technique [32],
Multi-head TNN [25] and hybrid TNN-based irrigation
schedules are conducted further in Section III-B.

B. RESOURCE CONSERVATION EFFICIENCY ASSESSMENT
In this section, we present the drip irrigation simulation
results of the hybrid GRU [27], LSTM-Technique [32],
Multi-head TNN [25] and proposed hybrid TNN. As dis-
cussed before drip irrigation is a widely adopted irrigation
system for PI. The irrigation is simulated from June 2020 to
February 2021 for three test locations. The water balance,
water savings, and cost savings are evaluated for resource
conservation efficiency performance comparisons between
the hybrid GRU [27], LSTM-Technique [32], Multi-head
TNN [25] and proposed hybrid TNN.

Fig. 8 illustrates the water balance of the drip irrigation
schedules produced using the three RZSM predictions. Drip
irrigation systems are usually designed to keep root zone
moisture close to the optimum level by daily moisture
evaluation. Irrigation will be applied when the root zone

48906 VOLUME 12, 2024



N. Madhukumar et al.: Hybrid Transformer Network for Soil Moisture Estimation in Precision Irrigation

FIGURE 8. Comparison of irrigation water balance by Hybrid GRU [27]
(blue semicolon line with x marker), LSTM-Technique [32] (grey dashed
line), (3) Multi-head TNN [25] (green line) and (4) Hybrid TNN (red line) at
(a) Alexandra Garden, (b) Batman Park, and (c) Fawkner Park. The hybrid
TNN line is closer to zero (most optimum irrigation) than the other
models.

water depletes below 20% of the requirement [43]. The daily
water depletion tolerance for the trees on the three sites is
13.52 mm, 9 mm, and 21.03 mm.

The values are calculated by substituting daily water
requirement of the tree species from literature ([36], [45])
in Eq. (7). All four models, schedule irrigation to meet
the plant water requirement post subtracting the daily
water obtained from rainfall. The Melbourne (Olympic
Park), BOM, Australia weather station data is used to
schedule irrigation at Alexandra Gardens and Batman Park
for supplementing rainfall water. The Hawthorn (Scotch
College), BOM, Australia weather station data is used for
Fawkner Park irrigation.

The irrigation water balance by the hybrid GRU [27],
LSTM-Technique [32], Multi-head TNN [25] and hybrid

TNN irrigation scheduling systems is shown in Fig. 8 (a)-(c).
The proximity of each model’s water balance graph to
zero indicates higher closeness between predicted and actual
irrigation amounts. The plant irrigation water requirement at
each test site is closely met by the hybrid TNN compared
to hybrid GRU, LSTM-Technique, and Multi-head TNN.
Fig. 8 (a)-(c) illustrate that more irrigation water is wasted
by hybrid GRU [27], LSTM-Technique [32], and Multi-head
TNN [25] compared to the proposed hybrid TNN.

To further quantify the water and cost saved by the
proposed hybrid TNN, the irrigation water amount by the
three competing models is compared for the three test
locations. All three test locations use recycled water for
irrigation. Table 3 shows that the proposed hybrid TNN
conserved 60,325.04KL, 58,860.84KL, and 53,370.09KL of
water compared to hybrid GRU [27], LSTM-Technique [32],
and Multi-head TNN [25] respectively in total over the three
test locations. Next, the irrigation cost calculation for all
the four models is carried out through a comprehensive
approach involving three main steps. Firstly, the irrigation
water cost for each model is determined by multiplying the
amount of water utilized by the respective model with the
corresponding water tariff rate (referenced in the footnote
of Table 4). Secondly, the power consumption associated
with pumping irrigation water for each model is quantified
by multiplying the energy used with the energy tariff rate
(referenced in the footnote of Table 4). Finally, the total
cost for each model is derived by summing both the water
cost and the energy cost. Overall, Table 4 shows that hybrid
TNN saved 21,304.11 AUD compared to hybrid GRU [27],
19,693.49 AUD compared to LSTM-Technique [32] and
16,325.83 AUD compared to Multi-head TNN [25] in total
cost savings over the three test locations for a duration of one
year.

The average savings by hybrid TNN is 10.846% water
and 10.339% cost compared to the comparison models. From
the results in this section, it can be concluded that the
proposed hybrid TNN attains a more precise water balance
than hybrid GRU [27], LSTM-Technique [32], and Multi-
head TNN [25], thus reducing water loss and increasing
irrigation profitability.

IV. CONCLUSION
Irrigation traditionally complements rainfall, but a significant
portion of rainwater is lost through deep percolation and
run-off. Theoretical studies emphasize that water beyond
the root zone is unusable for plants. Therefore, precision
irrigation (PI) should focus on the root-zone soil moisture
(RZSM). This paper introduces a hybrid TNN for RZSM
estimation to provide decision support for PI. The model
incorporates a dynamic MLP (D-MLP) network layer to
select nearby soil moisture (SM) sensor locations data aligned
with the target location. This selected data then passes
through a proposed dual attention block and a Bayesian
layer to estimate RZSM, subsequently informing irrigation
schedules. Performance evaluation demonstrates the superior
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accuracy of the proposed model-based RZSM compared to
existing state-of-the-art deep learning models. Furthermore,
simulation results reveal increased water and cost savings
with the proposed hybrid TNN-based irrigation compared to
the state-of-the-art competing models.
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