JCU ePrints

This file is part of the following reference:

Marshall, Lucas (2003) Brecciation within the Mary Kathleen Group of the Eastern Succession, Mt Isa Block, Australia: Implications of district-scale structural and metasomatic processes for Fe-oxide-Cu-Au mineralisation. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/8243

Brecciation within the Mary Kathleen Group of the Eastern Succession, Mt Isa Block, Australia: Implications of district-scale structural and metasomatic processes for Fe-oxide-Cu-Au mineralisation

Thesis submitted by Lucas John Marshall, B.Sc. (Hons.) (UBC) in May, 2003,

for the degree of Doctor of Philosophy in the School of Earth Sciences at James Cook University of North Queensland

i

STATEMENT OF ACCESS

I, the undersigned author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and;

I do not wish to place any further restriction on access to this work

Or

I wish this work to be embargoed until

Or

I wish the following restrictions to be placed on this work:

Signature

Date

ELECTRONIC COPY

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library, is an accurate copy of the print thesis submitted, within the limits of the technology available.

Signature

Date

STATEMENT ON SOURCES

Declaration

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

......(Signature)

(Date)

ABSTRACT

The Eastern Succession of the Proterozoic Mt Isa Block, including the Cloncurry District and the Mary Kathleen Fold Belt (MKFB), contains numerous examples of Fe-oxide-Cu-Au mineralisation. Most deposits, including Ernest Henry, Eloise, Starra and Mt Elliott formed after the peak of ca. 1600-1575 Ma upper greenschist to amphibolite facies metamorphism, and during the waning phases of the Isan Orogeny. Mineralisation was broadly synchronous with emplacement of voluminous phases of the Williams and Naraku batholiths (ca. 1550 – 1500 Ma) and widespread brecciation and accompanying metasomatism. Brecciation and metasomatism were best developed within Cover Sequence 2 stratigraphy, and in particular within calc-silicate rock and meta-siltstone stratigraphy of the Corella Formation, the predominant rocks of the Mary Kathleen Group.

The geometry and distribution of brecciation in the Corella Formation was in part controlled by retrograde buckle folding imposed on a heterogeneous rock sequence that was fractured and boudinaged both pre- and syn-buckle folding. Brecciation is far more widespread in the Cloncurry District relative to the MKFB, reflecting in part a larger proportion of stratigraphy in the Cloncurry District that was at low angles to the shortening direction during the waning phases of the Isan Orogeny, favoring refolding and consequent fracturing. Variations in regional structural trends reflect strain partitioning around competent intrusive bodies, fault reactivation and refolding. Other contributing factors for brecciation include low temperature conditions during late deformation, and the proximity to voluminous intrusions, the emplacement of which likely resulted in transient elevated fluid pressure and strain rates, favoring fracturing and brecciation. The relative paucity of brecciation in most stratigraphic units outside of the Corella Formation reflects a high proportion of incompetent stratigraphy in these sequences (e.g. voluminous micaceous schists within the Soldiers Cap Group), which were able to accommodate strain by plastic flow.

The broad-scale geometry of the Cloncurry District reflects Cover Sequence 3 rocks overlying Cover Sequence 2 rocks, the two sequences being separated by early faults. Marbles within the Corella Formation, and schists in other stratigraphic sequences were not prone to brittle failure, and acted as low permeability barriers to fluid flow. These horizons allowed for the attainment of elevated fluid pressures within large volumes of brecciated rock. During the final stages of brecciation, these low competence marbles and schists were fractured and brecciated, predominantly within discrete fault zones. This shift from widespread brittle-ductile to purely brittle deformation likely reflects progressive cooling, as well as locally elevated fluid pressure and/or strain rate associated with pluton emplacement and degassing. A synchronous district-scale shift from compression to transtension facilitated the development of vertically continuous zones of dilation within faults, resulting in very large fluid pressure gradients and catastrophic fault valving.

Brecciation was accompanied by widespread metasomatism that ranges from high temperature ($400^{\circ} - 600^{\circ}$ C) Na-(Ca)-rich assemblages (e.g. albite ± actinolite, clinopyroxene, scapolite, magnetite, titanite, etc.) to retrograde (< 400° C) chloritic assemblages. Interpretation of stable (O and C) and radiogenic (Sr) isotopes and mineral chemistry is consistent with this spectrum of alteration assemblages reflecting metasomatic fluids of two predominant origins. The oxygen and carbon isotopic signature of carbonates from Na-(Ca) assemblages indicates that fluids responsible for this style of alteration were not simply equilibrated with magmatic rocks, but were exsolved from crystallizing plutons. Low temperature, low salinity fluids of inferred meteoric origin were introduced late in the paragenesis, and do not appear to have contributed significantly to the mass budgets of Cu-Au ore systems in the district.

Extensive fluid-wallrock interaction prior to mineralisation appears to have been important in the genesis of some deposits that record K- and Fe-rich alteration haloes, including for example the Ernest Henry deposit. However, the occurrence of skarn-like, intrusion-proximal mineralisation that lacks significant K- and Feenrichment at for example Mt Elliott, indicates that fluid-wallrock interaction was not a necessary precursor for all styles of Cu-Au mineralisation in the Cloncurry District.

ACKNOWLEDGEMENTS

I would like to thank Nick Oliver for initiating this project, and for his enthusiasm and support throughout. Funding from JCU, the pmd*CRC and the Society of Economic Geologists are all gratefully acknowledged. MIM Exploration provided logistical support in the field, and Ernest Henry Mining arranged access to drill core at the Ernest Henry deposit. Brian Curtisse is thanked for hospitality at Roxmere station, and Mick Carew, Wade Hodgson, Ha Sy, Bin Fu, Geordie Mark, John McLellan, and Han Long Ying are all acknowledged as jovial field companions. Pete and SheepDog provided the entertainment in Cloncurry, while that task was left up to Red and the late Wally at Roxmere station.

MIM Exploration allowed access to geophysical data, including waveletprocessed data from Fractal Graphics. Barry Murphy, Paul Gow and Peter Jones are all thanked for assistance in manipulating and interpreting the geophysical data. Many thanks to the people and institutions that supplied or assisted with analytical data, including: Ian Cartwright and Ben Petrides (Monash University) for carbon and oxygen isotope analyses; Zach Sharp (University of New Mexico) for oxygen isotope analyses; David Bruce (University of Adelaide) for strontium isotope analyses; Hans Machel and Jeff Lonnee (University of Alberta) for access to, and assistance with CL equipment; Kevin Blake and Alan Chapel (James Cook University) for assistance with microprobe and GADDS analyses; Norm Pearson (Macquarie University) for assistance with LA-ICPMS analysis.

Aspects of this thesis have benefited significantly from discussion with Mike Roberts, Graham Shields, James Cleverley, Bin Fu, Tim Baker, Mike Rubenach, Pat Williams, Peter Pollard, Roger Taylor, Dan Mollicone, Garry Davidson, Geordie Mark, Damien Foster, Tom Blenkinsop, Mick Carew, Josh Bryant, Chris Salt, Dan Johnson, Owen Hatton, Kathryn Lewthwaite and many others. Tom Blenkinsop, Rick Sibson, Rod Holcombe, Mike Roberts and Julian Stephens are all thanked for their time and attention in reading drafts of various manuscripts. Finally, I can't thank Ha Sy enough for her support, humor and in general for toughing it in the tropics.

TABLE OF CONTENTS

TITL	E PAGE		i
STAT	FEMEN	ΓOFACCESS	ii
ABS	FRACT		iii
ACK	OWLED	OGEMENTS	vi
TAB	LE OF C	CONTENTS	vii
LIST	OF FIG	URES	xiii
LIST	OF TAI	3LES	xxi
DECI	LARAT	ION	xxii
CHA	PTER 1	:	1
INTE	RODUC	TION AND REGIONAL GEOLOGY	
1.1	INTR	ODUCTION	2
1.2	THES	IS AIMS	6
13	RESE	ARCH TOOLS AND METHODOLOGY	7
1.5	131	Field manning core logging and hand specimens	, 7
	132	Structural interpretation	8
	133	Analytical samples	8
	134	Mineral chemistry	8
	1.3.5	Isotopes	9
1.4	THES	IS STRUCTURE	9
1.5	PREV	TOUS RESEARCH	12
	1.5.1	Tectonostratigraphic zones within the Mt Isa Block	12
	1.5.2	Tectonostratigraphic sequences of the Eastern Succession	13
	1.5.3	Structural history	17
	1.5.4	Metamorphic history	20
	1.5.5	Absolute timing of deformation and metamorphism	20
	1.5.6	Intrusive events	23
	1.5.7	Brecciation	25
	1.5.8	Metasomatism	27
	1.5.9	Mineralisation	28

CHAPTER 2: 31 COMPLEXITIES IN THE REGIONAL STRUCTURAL GEOMETRY OF THE EASTERN SUCCESSION, MT ISA BLOCK, AUSTRALIA

2.1	INTRO	DUCTION	32
	2.1.1	Previous work	32
	2.1.2	Approach and methodology	36

2.2	STRU	CTURAL OBSERVATIONS	38
	2.2.1	Regional structural patterns	38
	2.2.2	Budenberri area	39
	2.2.3	Mary Kathleen Fold Belt: Tribulation and Mt Philp areas	39
	2.2.4	Cloncurry Region	39
	2.2.5	Superposed fold analysis	44
	2.2.6	Late fault architecture	48
	2.2.7	Cloncurry 3D architecture	51
2.3	DISCUSSION		57
	2.3.1	D_1 : Thrusting and folding	57
	2.3.2	D ₂ : E-W shortening and isoclinal folding	58
	2.3.3	Reorientation of D_2 folds	60
	2.3.4	D ₃ : E-W shortening, heterogeneous folding,	
		reverse and wrench faulting	61
2.4	CON	CLUSIONS	63

CHAPTER 3: 65 VOLUME GAIN FOLDING AND EFFECTIVE LAYER THINNING AS MODIFICATIONS ON MODELS OF TANGENTIAL LONGITUDINAL STRAIN

,

3.1	INTRODUCTION	. 66
3.2	REVIEW OF FOLDING MECHANISMS 3.2.1 Tangential Longitudinal Strain	67 69
3.3	VARIATIONS ON MODELS FOR TLS3.3.1 Volume gain folding3.3.2 Effective layer thinning	71 71 73
3.4	DISCUSSION	75
3.5	CONCLUSIONS	75

,

CHAF	TER 4	:	77
CONT	ROL (DF BUCKLE FOLDING AND THE LOCAL STRESS F	IELD ON
THE I	DISTRI	IBUTION OF WIDESPREAD BRECCIATION IN THE	
CLON	ICURR	Y DISTRICT, MT ISA BLOCK, AUSTRALIA	
4.1 IN	TRODI	JCTION	78
	4.1.1	Terminology and classification schemes	81
	4.1.2	Buckle folds and accommodation structures	85
	4.1.3	Cloncurry District Geology	85
4.2	CLON	CURRY DISTRICT STRUCTURAL OBSERVATIONS	86
	4.2.1	D2: Soldiers Cap Group	86
	4.2.2	D3: Soldiers Cap Group	88
	4.2.3	D2: Corella Formation	88
	4.2.4	D3: Corella Formation	91
4.3	FOLD	S, FRACTURES, BOUDINS AND BRECCIAS	94
	4.3.1	Folded boudin trains and boudin rotation	94
	4.3.2	Brecciated multilayers	96
	4.3.3	Accommodation structures	99
4.4	DISCU	JSSION	99
	4.4.1	Brecciation as an accommodation mechanism	101
	4.4.2	Contributing factors for brecciation in the	
		Corella Formation	105
	4.4.3	Implications for metasomatic fluid pathways	107
4.5 CC	ONCLU	SIONS	107
APPE	NDIX 4	A: CALCULATIONS FOR FIGURE 4.15	109

CHAPTER 5: 114 EXAMPLES OF DILATIONAL FAULT ZONE BRECCIATION AND VEINING IN THE EASTERN SUCCESSION, MT ISA BLOCK, AND DISCUSSION OF POTENTIAL GENETIC MECHANISMS

5.1	INTR	ODUCTION	115
	5.1.1	Dilational fault zones and brecciation	117
	5.1.2	Regional geology	119

5.2	FIELI	D EXAMPLES OF DILATIONAL FAULT ZONES	121
	5.2.1	Mt Elliott Cu-Au	121
	5.2.2	Roxmere-Marimo shear zone	123
	5.2.3	Tribulation calcite vein	126
	5.2.4	Gilded Rose breccia type area	131
	5.2.5	Ernest Henry Cu-Au	133
5.3	DISC	USSION	138
	5.3.1	Clast generation and implosion brecciation	138
	5.3.2	Large width veining	141
	5.3.3	Clast transport, fluidization and gas streaming	145
	5.3.4	Catastrophic fault valving	151
5.4	CONC	CLUSIONS	152
CHA	PTER 6	ó:	154
SILI	CATE A	AND OXIDE MINERAL AND ISOTOPE GEOCHEM	AISTRY AS
MON	VITORS	OF FLUID CHEMISTRY IN DISTRICT-SCALE	
MET	CASOM	ATIC PROCESSES, EASTERN SUCCESSION, MT	ISA BLOCK
6.1	INTR	ODUCTION	155
	6.1.1	Regional geology	156
6.2	META	ASOMATIC ASSEMBLAGES	159
	6.2.1	Roxmere – Marimo area	159
	6.2.2	Budenberri	167
	6.2.3	Tribulation calcite vein	168
	6.2.4	Gilded Rose breccia type area	168
	6.2.5	Mt Avarice quarry	169
	6.2.6	Correlation of metasomatic assemblages	170
	6.2.7	Spatial distribution of metasomatic assemblages	171
6.3	ISOT	OPE GEOCHEMISTRY	171
	6.3.1	δ^{18} O vs. δ^{18} O plots	174
	6.3.2	δ^{18} O histograms	176
	6.3.3	Summary	180
6.4	SILIC	CATE CHEMISTRY	180
	6.4.1	Feldspar chemistry	181
	6.4.2	Clinopyroxene chemistry	181
	6.4.3	Amphibole chemistry	183
	C A A	Distite Chamister	107

6.5	OXIDI 6.5.1 6.5.2	E CHEMISTRY Magnetite chemistry Hematite chemistry	193 194 199
6.6	DISCU	JSSION	199
6.7	CONC	LUSIONS	202
CHAP FLUII REGIO MINE	TER 7) SOUI ONAL RALIS	: RCES AND FLUID-WALLROCK INTERACTION IN ALTERATION AND IRON OXIDE-Cu-Au ATION, EASTERN SUCCESSION, MT ISA BLOCK: 1	212 NSIGHT
FROM	1 C, O	AND Sr ISOTOPES	
7.1	INTRO	DUCTION	213
	7.1.1 7.1.2	Regional Geology Theoretical background, sampling and	214
		analytical procedures	217
7.2	CARB	ON and OXYGEN STABLE ISOTOPES	222
	7.2.1	Cloncurry District	226
	1.2.3	comparisons	231
	7.2.4 7.2.5	Zn-Pb-Ag mineralisation Cu-Au mineralisation	236 238
7.3	STRO	NTIUM ISOTOPES	244
7.4	CATH	ODOLUMINESCENCE AND CARBONATE	
	CHEM	IISTRY	245
	7.4.1	Marbles	248
	7.4.2	High temperature, sodic-(calcic) alteration systems	253
	7.4.3	Retrograde breccias and veins	253
	7.4.4	Ernest Henry ore breccia	256
	7.4.5	Ernest Henry marble matrix breccia	256
7.5	DISCU	JSSION	258
	7.5.1	Fluid pathways inferred from stable isotope ratios	258
	7.5.2	Metasomatic fluid sources	260
	7.5.3	Role of fluid-wallrock interaction in Cu-Au Mineralisation	263
7.6	CONC	CLUSIONS	265

xi

CHAP SYNT	PTER 8: HESIS AND CLONCUSIONS	273
8.1	INTRODUCTION	274
8.2	STRUCTURAL FRAMEWORK	274
8.3	WIDESPREAD BRECCIATION IN THE CORELLA FORMATION	275
8.4	DILATIONAL FAULT ZONE CHARACTERISTICS	277
8.5	METASOMATIC FLUID SOURCES	279
8.6	METAL AND LIGAND SOURCES	281
8.7	STRUCTURAL AND GEOCHEMICAL SYNTHESIS	282
8.8	 FE-OXIDE-CU-AU CLASSIFICATION 8.8.1 Mt Elliott-style deposits 8.8.2 Ernest Henry-style deposits 8.8.3 Reduced Cu-Au deposits 8.8.4 Starra-style deposits 8.8.5 Osborne-style deposits 	284 284 286 286 287 287
8.9	SUMMARY	287
REFE	RENCES	289
APPE	NDICES	315
	APPENDIX A: SAMPLE LIST	316
	APPENDIX B: ISOTOPE DATA	321
	APPENDIX C: MICROPROBE DATA	322
	APPENDIX D: LA-ICPMS DATA	323

.

LIST OF FIGURES

CHAPTER 1

FIGURE 1.1. Map of Precambrian Australia.	3
FIGURE 1.2. Tectonostratigraphic subdivisions of the Mt Isa Block.	4
FIGURE 1.3. Geology of the Eastern Succession, Mt Isa Block.	5
FIGURE 1.4. Eastern Succession geochronological ages.	14
FIGURE 1.5. Eastern Succession stratigraphic column.	15
FIGURE 1.6. Schematic E-W cross-section of the Eastern Succession.	21
CHAPTER 2	
FIGURE 2.1. Geology of the Eastern Succession, Mt Isa Block.	33
FIGURE 2.2. TMI aeromagnetic structural skeleton map.	37
FIGURE 2.3. Aerial photograph with mapped geology from the Budenberri area.	40
FIGURE 2.4. Geological maps from the Tribulation and Mt Philp areas.	41
FIGURE 2.5. Geological map of the Cloncurry Region.	43
FIGURE 2.6. Structural geology map of the Spinifex area.	46
FIGURE 2.7. Block diagram of the Spinifex area.	47

FIGURE 2.8. Structural geology map of the Compass area.	49
FIGURE 2.9. Block diagram of the northern Compass area.	50
FIGURE 2.10. Block diagram of the northern Cloncurry District.	52
FIGURE 2.11. gOcad block diagram of upwards projected wavelet processed aeromagnet the Cloncurry 1:100000 map sheet.	54 ic data for
FIGURE 2.12. Schematic illustration of the effect of fault reactivation on fold geometry.	59
FIGURE 2.13. Model for the development of anomalous fold patterns in the northern Clo District.	62 ncurry
CHAPTER 3	
FIGURE 3.1. Approximate fields for models for passive folding, flexural flow, TLS and the effects of a matrix with finite viscosity.	68 TLS with
FIGURE 3.2. Profile sections of theoretical sinusoidal Class 1B folds and calculated stra	70 ain ratio.
FIGURE 3.3. Examples of the propagation of fold related extensional fractures trough clayers.	72 ompetent
FIGURE 3.4. Schematic representations of volume gain folding and effective layer thin	74 ning.
CHAPTER 4	
FIGURE 4.1.	79

FIGURE 4.1. Geology of the Eastern Succession, Mt Isa Block.

1

FIGURE 4.2. Geological map of the Cloncurry Region, highlighting the widespread dist of brecciation.	80 ribution
FIGURE 4.3. Geometric fold classes and variables used in describing fold geometry.	82
FIGURE 4.4. Geometric boudin classification scheme.	84
FIGURE 4.5. Aerial photographs of D_2 and D_3 folds in the Soldier's Cap group.	87
FIGURE 4.6. Photographs and line drawings of D_2 folds in the Corella Formation.	89
FIGURE 4.7. Outcrop map and photographs of pre- D_3 boudins in the Corella Formation	90
FIGURE 4.8. Aerial photographs and line drawings of D_2 and D_3 folds in the Corella Fo	92 rmation.
FIGURE 4.9. Photographs and line drawing of D_3 folds in the Corella Formation.	93
FIGURE 4.10. Sketches from photographs of pre- and syn-D ₃ fracture geometries in the C Formation.	95 Corella
FIGURE 4.11. Photographs and sketches of complex geometries produced by folding of boudinaged and fractured sequences.	97
FIGURE 4.12. Photographs illustrating a continuum between fracturing, boudinage and b processes in the Corella Formation.	98 recciation
FIGURE 4.13. Aerial photograph and mapped geology of D_2 and D_3 folds in the Budenbergion.	100 erri
FIGURE 4.14. Schematic illustration of the development of stratabound and discordant c breccias by boudin/clast rotation.	102 ataclastic

xv

FIGURE 4.15. Illustration of the minimum amount of incompetent material required to accommodate space problems associated with Class 1b folding.	104
CHAPTER 5	
FIGURE 5.1. Geology of the Eastern Succession, Mt Isa Block.	116
FIGURE 5.2. Illustration of the control of fault mode on the geometry of dilational zones resultant fluid pressure gradients.	118 and
FIGURE 5.3. Simplified N-S cross section through the Mt Elliott Cu-Au deposit.	122
FIGURE 5.4. Photographs of Mt Elliott outer carapace breccias.	124
FIGURE 5.5. Outcrop map from the Roxmere waterhole.	125
FIGURE 5.6. Photographs of breccias and veins from the Roxmere – Marimo area.	127
FIGURE 5.7. Geological maps and sketch from a photograph from the Tribulation - Lim area.	128 e Creek
FIGURE 5.8. Photographs of breccias and veins from the Tribulation Quarry.	130
FIGURE 5.9. Geological map and sketches from photographs from the Gilded Rose brec area.	132 cia type
FIGURE 5.10. Photographs of breccias and granitic textures from within occurrences of C Rose style brecciation.	134 Filded
FIGURE 5.11. Simplified cross-section through the Ernest Henry deposit.	136

FIGURE 5.12. Photographs of ore breccias and the marble matrix breccia from the Ernest deposit.	137 t Henry
FIGURE 5.13. Summary diagram of key features from Mt Elliott, Roxmere - Marimo, Tr Gilded Rose and Ernest Henry.	139 ibulation,
FIGURE 5.14. Schematic fluid pressure curves for implosion brecciation.	141
FIGURE 5.15. Schematic pressure-time diagram, Mohr circles and cross-sections for the large width veins.	143 genesis of
FIGURE 5.16. Schematic fluid pressure curves for fluidization and gas streaming.	149
CHAPTER 6	
FIGURE 6.1. Geology of the Eastern Succession, Mt Isa Block.	157
FIGURE 6.2. Photographs of metasomatic rocks from the Roxmere – Marimo area, the Budenberri Rockhole, the Tribulation Quarry, the Gilded Rose type area, 6 Hill and the Mt Avarice Quarry.	160 Camel
FIGURE 6.3. Photomicrographs of typical metasomatic assemblages from the Roxmere area, the Budenberri Rockhole, the Tribulation Quarry, Gilded Rose style and the Mt Avarice Quarry.	163 – Marimo breccias
FIGURE 6.4. Paragenetic diagrams for key field areas.	166
FIGURE 6.5. Alteration distribution maps for the Cloncurry Region.	172
FIGURE 6.6. δ^{18} O vs. δ^{18} O plots for metasomatic mineral pairs.	175
FIGURE 6.7. δ^{18} O fractionation curves for quartz, magnetite and actinolite.	177

FIGURE 6.8. Cumulative δ^{18} O histograms for silicate and oxide minerals in igneous roch regional alteration, and Cu-Au ore-proximal metasomatism.	178 ks,
FIGURE 6.9. Ternary plots for feldspar and pyroxene compositions.	182
FIGURE 6.10. Classification of calcic amphiboles.	184
FIGURE 6.11. Compositional fields for amphibole analyses.	185
FIGURE 6.12. Compositional fields for biotite analyses.	188
FIGURE 6.13. Plots of biotite-chlorine chemistry.	190
FIGURE 6.14. Trace element composition of magnetite grains.	196
CHAPTER 7	
FIGURE 7.1. Geology of the Eastern Succession, Mt Isa Block.	215
FIGURE 7.2. Photographs of representative carbon and oxygen isotope samples.	218
FIGURE 7.3. Carbon and oxygen isotope data from MKFB marbles and calc-silicate roc metasomatised during emplacement of the Burstall granite.	223 eks
FIGURE 7.4. Carbon and oxygen isotope data from late to post-peak metamorphic meta systems in the MKFB.	225 somatic
FIGURE 7.5. Carbon and oxygen isotope data from the Cloncurry District.	227
FIGURE 7.6. Carbon and oxygen isotope data from calcareous and carbonaceous litholo breccia and vein infill within the Soldiers Cap Group of the Cloncurry Dis	230 ogies, and strict.

FIGURE 7.7. Carbon and oxygen isotope data from the Cloncurry District and MKFB.	232
FIGURE 7.8. Model curves for the depletion in carbon isotope values during metamorph decarbonation.	235 nic
FIGURE 7.9. Isotopic data from the Dugald River Zn-Pb-Ag deposit.	237
FIGURE 7.10. Carbon and oxygen isotopic data from the Ernest Henry deposit.	239
FIGURE 7.11. Isotope data from the Great Australia Cu-Au deposit.	241
FIGURE 7.12. Carbon and oxygen stable isotope data from Cu-Au deposits hosted within Sequence 3.	242 Cover
FIGURE 7.13. Correlation diagram of ⁸⁷ Sr/ ⁸⁶ Sr vs. 1/Sr for Cloncurry District calcite sam	246 ples.
FIGURE 7.14. 87 Sr/ 86 Sr vs. δ^{18} O ratios for Cloncurry District calcite samples.	247
FIGURE 7.15. CL images of textures commonly observed in Eastern Succession calcite g	249 trains.
FIGURE 7.16. Ternary diagrams of carbonate compositions.	252
FIGURE 7.17. CL images and associated microprobe traverse from Cloncurry District ma	254 arbles.
FIGURE 7.18. CL images and microprobe traverses for calcite infill in sodic-(calcic) and retrograde breccias.	255
FIGURE 7.19. CL images and microprobe traverses for calcite in Ernest Henry ore brecc marble matrix breccia.	257 ia and
FIGURE 7.20. Carbon and oxygen stable isotope data from Cloncurry District marbles, th Henry marble matrix breccia and sodic-(calcic) alteration.	259 ne Ernest

FIGURE 7.21. 264 Carbon and oxygen isotope data for all samples presented in this study.

CHAPTER 8

278

FIGURE 8.1. Schematic cross-section of widespread brecciation within the Corella Formation, and influence on fluid pressure.

FIGURE 8.2.

285

Schematic cross section of the Cloncurry District, illustrating the structural and stratigraphic setting of various styles of late metamorphic Cu-Au mineralisation, relative to brecciation in the Corella Formation.

LIST OF TABLES

CHAPTER 6

TABLE 6.1.2Data sources2	204
TABLE 6.2.2Mineral separate stable isotope data2	205
TABLE 6.3. Representative microprobe analyses	
6.3a. Feldspar 2	206
6.3b. Pyroxene 2	207
6.3c. Amphibole 2	208
6.3d. Biotite 2	209
TABLE 6.4.2Biotite-Cl chemistry	210
TABLE 6.5. 2	211
Average magnetite mineral chemistry	
CHAPTER 7	
TABLE 7.1.2MKFB carbon and oxygen isotope data from carbonates	267
TABLE 7.2.2Cloncurry District carbon and oxygen isotope data from carbonates	268
TABLE 7.3.2Ore deposit carbon and oxygen stable isotope data from carbonates2	270

TABLE 7.4. Strontium isotope data from carbonates

272