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Abstract
Growing	evidence	suggests	that	liana	competition	with	trees	is	threatening	the	global	
carbon	sink	by	slowing	the	recovery	of	forests	following	disturbance.	A	recent	theory	
based on local and regional evidence further proposes that the competitive success 
of lianas over trees is driven by interactions between forest disturbance and climate. 
We present the first global assessment of liana–tree relative performance in response 
to	forest	disturbance	and	climate	drivers.	Using	an	unprecedented	dataset,	we	ana-
lysed	651	vegetation	samples	representing	26,538	lianas	and	82,802	trees	from	556	
unique	 locations	worldwide,	derived	from	83	publications.	Results	show	that	 lianas	
perform better relative to trees (increasing liana- to- tree ratio) when forests are dis-
turbed, under warmer temperatures and lower precipitation and towards the tropical 
lowlands. We also found that lianas can be a critical factor hindering forest recovery 
in disturbed forests experiencing liana- favourable climates, as chronosequence data 
show that high competitive success of lianas over trees can persist for decades fol-
lowing	disturbances,	especially	when	the	annual	mean	temperature	exceeds	27.8°C,	
precipitation	 is	 less	 than	1614 mm	and	climatic	water	deficit	 is	more	 than	829 mm.	
These findings reveal that degraded tropical forests with environmental conditions 
favouring lianas are disproportionately more vulnerable to liana dominance and thus 
can potentially stall succession, with important implications for the global carbon sink, 
and hence should be the highest priority to consider for restoration management.

K E Y W O R D S
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https://doi.org/10.1111/gcb.17140
www.wileyonlinelibrary.com/journal/gcb
mailto:
https://orcid.org/0000-0001-7090-5452
https://orcid.org/0000-0003-1258-0885
https://orcid.org/0000-0002-6775-3141
https://orcid.org/0000-0002-2110-5173
https://orcid.org/0000-0002-8993-6168
https://orcid.org/0000-0003-2778-7803
https://orcid.org/0000-0001-6803-271X
https://orcid.org/0000-0002-9280-7244
https://orcid.org/0000-0002-6124-7096
https://orcid.org/0000-0002-4680-8115
https://orcid.org/0000-0002-1964-4397
https://orcid.org/0000-0003-4761-9268
https://orcid.org/0000-0002-2831-2933
https://orcid.org/0000-0003-4430-9408
https://orcid.org/0000-0002-9475-7674
https://orcid.org/0000-0001-6633-1900
https://orcid.org/0000-0002-5955-0483
https://orcid.org/0000-0003-4260-5676
https://orcid.org/0000-0001-6914-3921
http://orcid.org/0000-0002-3261-7326
http://creativecommons.org/licenses/by/4.0/
mailto:kamdoum.senghor@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.17140&domain=pdf&date_stamp=2024-01-19


2 of 18  |     NGUTE et al.

1  |  INTRODUC TION

Trees are undoubtedly central to forest structure and function, 
yet other plant guilds like lianas also influence the dynamics and 
resilience of forests (Schnitzer, 2018; Schnitzer & Bongers, 2002). 
Lianas are woody vines that depend on standing trees for mechan-
ical support to access the forest canopy (Rowe, 2018).	Along	with	
trees and other vascular plant guilds, lianas are integral to many 
forest ecosystems, notably via their contributions to and impacts 
on primary productivity, canopy turnover and carbon sequestra-
tion	(Durán	et	al.,	2015;	Phillips	et	al.,	2005) as well as on forest 
recovery following disturbance (Campbell et al., 2015; Marshall 
et al., 2020).

In	 past	 decades,	 there	 has	 been	 a	marked	 shift	 towards	 the	
relative success (dominance) of lianas over trees in forests across 
the globe (Jones et al., 2017; Londré & Schnitzer, 2006;	Phillips	
et al., 2002; Wright et al., 2004). This increasing liana dominance 
impacts not only forest processes (Laurance et al., 2014; Schnitzer 
et al., 2015) but also their function (Campbell et al., 2018; van 
der Heijden et al., 2015) and trajectories of recovery (Ladwig 
& Meiners, 2010). This has drawn growing interest and spec-
ulation about the future and fate of global forests (Schnitzer & 
Bongers, 2011;	 Verbeeck	 &	 Kearsley,	 2016), where changes in 
atmospheric	 carbon	 dioxide	 (Granados	 &	 Körner,	 2002;	 Phillips	
et al., 2002; but see Marvin et al., 2015),	climate	regimes	(DeWalt	
et al., 2015;	 Gentry,	 1991;	 van	 der	 Heijden	 &	 Phillips,	 2008) 
and increasingly persistent disturbances (Laurance et al., 2001; 
Letcher, 2015;	Putz,	1984; Schnitzer et al., 2021) could favour li-
anas over trees.

Lianas influence forest ecosystem processes through complex 
mechanisms of intense competition with trees for above and be-
lowground resources (Schnitzer et al., 2005;	Toledo-	Aceves,	2015), 
benefitting from faster resource acquisition strategies compared 
to trees (Jones et al., 2017;	Putz,	2023).	As	a	result,	lianas	typically	
play a much more significant functional role than their relatively 
smaller contribution to biomass in most forests. Lianas are known 
to reduce tree recruitment and survival (Marshall et al., 2017; 
Schnitzer et al., 2000, 2014), create structural stresses on host 
trees and suppress their growth (van der Heijden et al., 2013, 
2015;	 van	 der	Heijden	&	Phillips,	 2009), increase tree mortality 
(Ingwell	et	al.,	2010;	Phillips	et	al.,	2005) and slow forest regenera-
tion (Lai et al., 2017; Estrada- Villegas et al., 2020, 2022; Schnitzer 
& Carson 2010). Lianas also increase the susceptibility of trees to 
being killed by lightning, an important agent of forest disturbance, 
by	facilitating	damage	to	additional	trees	(Gora	et	al.,	2023).	In	ad-
dition, forests with abundant lianas have far lower stand biomass 
and carbon than forests with few lianas (see Chave et al., 2001; 
Durán	&	Gianoli,	2013).

However, lianas are not only detrimental. They maintain 
and	 enhance	 forest	 biodiversity	 (Gentry,	 1991; Schnitzer & 
Bongers, 2002; Schnitzer & Carson, 2001) and boost soil fertility 
and carbon cycling through their leaf- litter productivity and turn-
over, which are consistently higher than those of trees per unit 

biomass (Estrada- Villegas & Schnitzer, 2018; Schnitzer, 2018; Tang 
et al., 2012).	Additionally,	lianas	can	benefit	other	plants,	animals,	
soils and overall ecosystem function in both intact and disturbed 
forests by providing them with a wide range of protective services 
or ‘bandage effects’ (Marshall et al., 2020). This is particularly im-
portant for forest management, where increasing consideration of 
liana cutting may help tree growth but harm other vital ecosystem 
functions (Finlayson et al., 2022). Therefore, investigating how 
disturbances and competition from lianas affect trees is deemed 
essential for successfully restoring the world's forests (Marshall 
et al., 2023).

Climatic factors, alongside forest disturbances, are hypoth-
esised as the primary drivers of the global distribution of lianas 
and	 their	 increasing	 dominance	 over	 trees	 (DeWalt	 et	 al.,	2015; 
Marshall et al., 2020;	 Ofosu-	Bamfo	 et	 al.,	 2022; Schnitzer & 
Bongers, 2011). For instance, Schnitzer et al. (2005) and Schnitzer 
and Bongers (2011) suggested that disturbances leading to in-
creased light, higher temperatures and water deficits are con-
ducive to liana proliferation, which could foster liana dominance 
over trees (Marshall et al., 2020). Lianas tend to thrive in forests 
with	reduced	precipitation	and	climatic	water	availability	(DeWalt	
et al., 2015;	Gentry,	1991; Schnitzer, 2018). Their dominance over 
trees is further enhanced by the greater light penetration in the 
understorey of disturbed forests and increased insolation during 
longer	and	more	severe	dry	seasons	 (DeWalt	et	al.,	2010, 2015). 
Hence, adverse shifts in climate, such as prolonged droughts, could 
potentially tip the ecological balance in favour of lianas (Schnitzer 
& van der Heijden, 2019; van der Heijden et al., 2019), fundamen-
tally	 alter	 forest	 dynamics	 (Phillips	 et	 al.,	 2005) and potentially 
lead to arrested natural succession or alternate stable states in 
forest ecosystems (Marshall et al., 2020). This understanding un-
derscores the importance of considering the influences of climatic 
factors and disturbances when examining the competitive success 
of lianas over trees.

However, a critical gap persists in the assessment of liana dom-
inance over trees at the global scale. While numerous local and 
regional studies have contributed valuable insights into liana ecol-
ogy	(Lobos-	Catalán	&	Jiménez-	Castillo,	2019;	Phillips	et	al.,	2005; 
Schnitzer, 2005; Schnitzer & Bongers, 2011), there is a tendency 
to extrapolate these findings to global contexts, often overlooking 
the variability in environmental drivers across different regions. 
This pattern has resulted in the frequent identification and adop-
tion of specific local or regional trends and factors as the primary 
influences and drivers behind the competitive advantages of lia-
nas worldwide. To date, no study has comprehensively combined 
data on lianas and trees in a simultaneous quantitative analysis 
at the global scale to assess their proportional successes and the 
underlying	 driving	 factors.	 Addressing	 this	 gap	 is	 pivotal	 for	 a	
more nuanced understanding of forest dynamics and for guiding 
forest management strategies in the face of global environmental 
changes.

Our	study	aims	to	identify	the	global	drivers	of	liana	dominance	
over trees. We use a newly compiled dataset of measurements of 
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liana	 and	 tree	 relative	 stem	densities,	 basal	 areas	 (BA)	 and	 abo-
veground	biomass	(AGB)	from	83	published	studies	on	all	six	for-
ested continents. We test how relative measures of liana–tree 
attributes vary with climate, topography and both the presence 
of disturbance and the time since the disturbance occurred. We 
then further assess interactions between these variables to test 
a recent hypothesis that the effects of disturbance on liana–tree 
competition vary with climate suitability for lianas (Marshall 
et al., 2020).

2  |  METHODS

2.1  |  Literature survey and data extraction

We gathered data from literature searches in publicly accessible 
databases:	Web	of	Science,	Scopus,	Google	Scholar,	ResearchGate	
and	JSTOR.	Our	search	strings	included	all	records	from	June	1939	
to	December	2019,	using	the	following	keywords/expressions:	liana	
AND	tree	AND	(abundance	OR	density	OR	basal	area	OR	biomass	
OR	species	OR	diameter	OR	diversity	OR	productivity	OR	carbon	
OR	competition	OR	growth	OR	mortality	OR	recruitment	OR	sur-
vival	OR	phenology	OR	presence	OR	occurrence	OR	succession	OR	
recovery	 OR	 ecology	 OR	 load	 OR	 infestation	 OR	 prevalence	 OR	
turnover	OR	litterfall	OR	tolerance	OR	burden).

Searches for published literature were conducted mainly in 
English. However, data of interest were also extracted from publi-
cations	that	were	available	only	 in	French,	Spanish	or	Portuguese.	
Materials found were then imported into Mendeley <www. mende 
ley. com>, and duplicates were discarded. Reference lists from every 
study were also examined for additional suitable articles. This pro-
cess yielded 1351 publications. Titles, abstracts, methods and re-
sults of each retained publication were then screened to check their 
relevance while looking for explicit liana and tree measurements 
based on metrics described in Table 1.

Studies were automatically excluded if they: (1) did not provide 
the specific geographic location of data collection; (2) did not report 
at	least	one	measure	of	stem	density	(SD),	BA,	AGB	or	aboveground	
carbon (Table 1) for both lianas and trees at plot or habitat scale; (3) 
focussed on a single tree and/or liana species or a single taxonomic 
group of trees and/or lianas, instead of whole forest communities 
for both guilds; (4) did not provide the unit sample plot size and the 
total number of plots sampled per habitat; or (5) did not specify 
minimum diameters sampled for both lianas and trees.

Data	extracted	from	the	selected	articles	included	measures	of	
liana and tree community structure (Table 1) and study site names, 
geographical coordinates, habitat type, elapsed time since distur-
bances occurred (for disturbed forests), type of disturbances and 
sampled plot size per habitat type. Where the required data were 
not available directly from the selected papers or their published 
supplemental information, we obtained unpublished data from the 
authors.	 The	 exception	 was	 the	 Gentry	 dataset	 (Gentry,	 1988), 
which	we	accessed	through	the	Missouri	Botanical	Gardens	(<www. 
mobot. org>) and updated growth form and species nomenclature in-
formation	by	matching	voucher	codes	with	the	TROPICOS	database	
(<www. tropi cos. org>),	 as	 in	 van	 der	 Heijden	 and	 Phillips	 (2008). 
Data	associated	with	Phillips	et	al.	 (2002) were also accessible via 
Fores	tPlots.	net	(ForestPlots.net	et	al.,	2021).

2.2  |  Data processing and standardisation

We used habitat descriptions in the articles to categorise observa-
tions into undisturbed and disturbed forests based on whether any 
previously reported disturbance had occurred in the area. The main 
forest disturbances included logging, clearing, farming, pasture, 
wildfire, hurricane, fragmentation, encroachment or mixed (any 
combination of two or more). Time since disturbance was also re-
corded to assess the persistence of lianas relative to trees over time. 
For studies that reported aboveground carbon instead of biomass, a 
conversion factor of 0.47 was used to convert carbon into biomass 
equivalents,	following	guidelines	from	the	IPCC	(2006).

For each forest category (disturbed or undisturbed) and sam-
ple unit, we calculated liana- to- tree ratios (hereafter LTRs) of 
SD	(LTRSD),	BA	 (LTRBA)	and	AGB	(LTRAGB), which were then used 
as response variables in statistical models to assess liana domi-
nance—that is the competitive success of lianas relative to trees 
(see Marshall et al., 2020). For each data point that had multiple 
samples, we aggregated LTRs according to plot size, category of 
forest	 and	 diameter	 cut-	off.	 In	 these	 instances,	 we	 calculated	
area- weighted mean observations for each metric of LTR to facili-
tate further analyses.

The	above	data	selection	and	standardisation	resulted	in	651	ob-
servations	 from	83	 case	 studies	 (details	 in	Table S1), representing 
556	unique	sample	points	(Figure 1) in 44 countries across five con-
tinents.	Each	sample	point	had	at	least	one	metric	of	SD	(n = 610),	BA	
(n = 462)	and/or	AGB	(n = 396)	for	both	lianas	and	trees	in	disturbed	
(n = 279)	or	undisturbed	(n = 372)	forests	(Table S2).

TA B L E  1 Response	variables	extracted	from	publications.

Metric Description Unit

Stem density Stems per unit area Stem per ha

Basal area Sum of cross- sectional stem surface area reported per unit area m2 per ha

Aboveground	biomass Aboveground	standing	dry	mass	expressed	as	a	mass	per	unit	area Mg per ha

Aboveground	carbon Aboveground	carbon	fraction	of	the	standing	dry	mass	expressed	as	a	mass	per	
unit area

Mg C per ha
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2.3  |  Spatial data

For each unique data point (Figure 1), we extracted bioclimatic 
variables from WorldClim v2.1 (Fick & Hijmans, 2017) at 30- arcsec 
(~1 km)	spatial	resolution.	Maximum	climatic	water	deficit,	that	is	the	
length	 and	 severity	 of	 seasonal	 drought	 (Pfeifer	 et	 al.,	 2018; also 
known as dry- season water stress), was calculated as the greatest 
cumulative deficit in mean monthly rainfall, where a deficit is less 
than	 100 mm	 per	 month—that	 is	 wet	 period	 (Platts	 et	 al.,	 2010; 
Silva Junior et al., 2021). Likewise, topographic variables (elevation 
and slope) were obtained at a similar spatial resolution as climate 
variables	after	aggregating	the	Digital	Elevation	Model	(SRTM	v4.1)	
data from their original 3- arcsec (~90 m)	 spatial	 resolution	 (Jarvis	
et al., 2008).

2.4  |  Modelling approach

To identify the major predictors of the dominance of lianas over 
trees (LTR) at the global scale, we separately tested for key drivers 
expected to alter LTR in disturbed and undisturbed forests. To avoid 
the confounding effects between climate and topography, we fitted 
two models for each response variable: one with topographic pre-
dictor variables and another comprising climatic predictor variables. 
Forest disturbance was included as a two- level factor (‘disturbed 
forests’ and ‘undisturbed forests’) in both models to assess LTRs 
along climate and topographic gradients as modified by disturbance.

Specifically, we assessed LTR as a function of topography (STRM 
elevation and slope; Jarvis et al., 2008) across forest disturbance cat-
egories to validate the long- held view that lianas are more competi-
tive versus trees at low elevations (Schnitzer, 2005). Likewise, we also 
assessed LTR against disturbance categories and climate variables to 
investigate whether forest disturbance and climate (WorldClim bio-
climatic	variables	and	MWD;	Fick	&	Hijmans,	2017) combine to influ-
ence the dominance of lianas over trees. We assessed the effect of 

topography (elevation and slope) on LTR for completeness and con-
sistency	with	previous	works	(DeWalt	et	al.,	2015; Lai et al., 2017; 
Marshall et al., 2020; Schnitzer, 2005; Schnitzer & Bongers, 2011). 
This aimed to better place the relevance of our work in landscape 
science and practice.

In	the	absence	of	repeat	measurements	in	the	majority	of	stud-
ies, we used a chronosequence approach to assess the variation of 
LTR in disturbed forests over time. Specifically, we tested for ef-
fects of time since disturbance to evaluate the hypothesis that tree 
growth does not increase with time relative to lianas at locations 
where climate favours lianas (Marshall et al., 2020). To do this, we 
fitted separate models using only data from disturbed forests, incor-
porating the recorded time since disturbance for each observation 
as a numeric predictor.

2.5  |  Statistical analysis

Data	were	analysed	 in	R	version	4.2.2	 (R	Core	Team,	2022), using 
mixed- effects models. To meet assumptions of normality and pre-
vent heteroscedasticity before modelling, LTR values were sub-
jected to a natural logarithm transformation. To allow effect size 
comparisons, all numeric covariates were standardised by centring 
and scaling them to a mean of zero and unit standard deviation, using 
the built- in ‘scale’ R function (R Core Team, 2022).

To account for anticipated variations among different minimum 
sampled stem diameter thresholds (for instance, a lower cut- off 
might	lead	to	higher	estimates	of	SD,	BA	and	AGB),	we	categorised	
liana–tree minimum diameter cut- offs into groups (Table S2), then in-
cluded discrete random intercepts for these groups in all models. We 
also incorporated the names of study sites as an additional grouping 
random factor to account for potential effects arising from an unbal-
anced sample distribution among the study site groups.

The effect of plot size on the variation in LTR was accounted for by 
weighting observations by a power transformation of plot size using a 

F I G U R E  1 Distribution	of	data	sources	used	for	this	study.	The	green	gradient	shades	indicate	areas	with	≥30%	tree	cover,	as	derived	
from	Global	Forest	Change	v1.9	(Hansen	et	al.,	2013).
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non- linear term, that is assuming that plot size increases variation in 
SD,	BA	and	AGB	when	smaller	but	having	reduced	or	no	effects	when	
plots are larger (see Cuni- Sanchez et al., 2021). Variance weighting was 
included	in	the	structure	of	‘lme’	models	using	the	‘varPower’	function	
in	the	 ‘nlme’	R	package	(Pinheiro	et	al.,	2022). Subsequently, models 
were refitted with the ‘lmer’ function in the ‘lme4’ package (Bates 
et al., 2015), incorporating these estimated weights.

Spatial autocorrelation patterns were addressed by incorporat-
ing correlation terms constructed using geographic coordinates of 
sample	points,	 in	 line	with	the	approach	by	Dormann	et	al.	 (2007) 
using	 the	 ‘corSpatial’	 function	 in	 the	 ‘nlme’	 R	 package	 (Pinheiro	
et al., 2022). To further complement and minimise the potential ef-
fects of spatial patterns, we used the best distance- based Moran's 
eigenvector maps (MEMs), generated for each LTR response met-
ric, as a covariate in each model (Bivand & Wong, 2018). The MEM 
sets were generated using the ‘dbMEM’ function in the ‘adespatial’ 
R	package	(Dray	et	al.,	2022). We used ‘listw.candidates’ and ‘listw.
select’ functions to select the best ones among spatial weighting 
matrix candidates, which we built, tested and compared following 
the nearest- distance neighbours' method as in Bauman et al. (2018).

We	 used	 the	 standardised	 variance	 inflation	 factors	 (VIF)	 fol-
lowing a stepwise approach to select predictors and avoid mul-
ticollinearity	 (Peng	 &	 Lu,	 2012). By assessing both the marginal 
R- squared (Rm

2) and conditional R- squared (Rc
2)	based	on	Nakagawa	

et al. (2017), we identified and removed predictors with the highest 
VIF >4 and lowest Rm

2 values. This process was repeated until all 
remaining	predictors	had	a	VIF	≤4.	This	procedure	was	carried	out	
using the ‘car’ package (Fox & Weisberg, 2019).

Bootstrapping (1000 iterations) was executed on best- fitted 
models to estimate parameters using the ‘bootMer’ function 
(Bates et al., 2015). We further undertook hierarchical partitioning 
of variance in these models (Chevan & Sutherland, 1991; Jaeger 
et al., 2019) to dissect the individual contributions of each predic-
tor to variation in LTRs. This was executed using the ‘glmm.hp’ (Lai 

et al., 2022) and ‘partR2’ (Stoffel et al., 2021) R packages. Since our 
best models did not retain any interaction terms, we used a subset 
of disturbed forest data to fit separate models. This allowed us to 
assess the interactive effects of time since disturbance and each en-
vironmental predictor on liana–tree ratios within disturbed forests.

We quantified the effect sizes of retained predictors on LTRs 
through multimodel inference and averaging (Zhang et al., 2016). To 
do this, we generated all potential combinations of predictors from 
the best- fitted models. We then restricted all model subsets to a 
95%	confidence	set,	where	 the	Akaike	 Information	Criterion	 (AIC)	
weights	of	 the	models	 sum	 to	0.95,	 thus	 excluding	highly	unlikely	
models. Following this, we averaged the coefficients of predictors, 
using	the	AIC	weights	from	each	generated	model	subset.

The multimodel inference and averaging were carried out using 
the	‘dredge’	and	‘model.avg’	functions	from	the	‘MuMIn’	R	package	
(Barton, 2022). This method allows variables with limited support to 
shrink towards zero and accounts for the relative importance and 
contribution of each predictor across combinations of all model sub-
sets.	It	also	takes	into	consideration	uncertainties	and	the	variabil-
ity in coefficients and effect sizes among the best- selected models 
(Dormann	et	al.,	2018).

3  |  RESULTS

3.1  |  Forest disturbance

Forest disturbance was the most influential predictor of LTRs, dem-
onstrating the highest individual contribution to the fixed- effect 
variance explained (Rm

2) in both topography and climate models 
(Figure 2).	 In	 topography-	based	models,	 disturbance	 stood	 out	 by	
individually	explaining	23%,	19%	and	1%	of	the	variance	of	LTRAGB 
(Rm

2 = .34;	Rc
2 = .59),	LTRSD (Rm

2 = .21;	Rc
2 = .90)	and	LTRBA (Rm

2 = .02;	
Rc

2 = .71),	 respectively.	 In	 parallel,	 the	 climate-	based	 models	 also	

F I G U R E  2 Individual	contributions	of	
each predictor to the explained variance 
in best- fitted mixed- effects models 
predicting liana- to- tree ratios (LTRs) of 
aboveground	biomass	(AGB),	basal	area	
(BA)	and	stem	density	(SD).	The	table	
insert shows the total proportions of 
variance explained in each model.
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6 of 18  |     NGUTE et al.

showed the importance of forest disturbance in predicting LTRs, 
with	corresponding	individual	contributions	of	15.6%,	15%	and	0.2%	
to the variations in LTRAGB (Rm

2 = .43;	 Rc
2 = .67),	 LTRSD (Rm

2 = .25;	
Rc

2 = .93)	and	LTRBA (Rm
2 = .36;	Rc

2 = .71),	respectively.
Forest disturbance had a significant positive effect on LTRs 

(Figures 3 and 4). The values of LTRSD (p < .001;	Figures 3a and 4a), 
LTRBA (p < .001;	Figures 3b and 4b) and LTRAGB (p < .001;	Figures 3c 
and 4c)	were	114%	(95%	confidence	interval	95%–132%),	40%	(16%–
63%)	and	245%	(210%–279%)	higher	in	disturbed	forests	than	in	un-
disturbed forests, respectively.

Across	 all	 studies	 with	 disturbed	 forest	 data	 points,	 sampling	
occurred	0–60 years	 post-	disturbance,	 and	 yet,	 in	 these	disturbed	
forests, LTRs did not change significantly with the time elapsed since 
disturbance (Rm

2 = .03–.11;	Rc
2 = .27–.71;	p = .249–.761;	Figure 3d–f).

3.2  |  Climate

Apart	from	forest	disturbance,	climate	variables	also	appeared	as	im-
portant predictors of LTRs (Figure 2).	Mean	annual	temperature	(MAT)	
had the highest explanatory power of all climate predictors, individu-
ally	explaining	19%,	15.7%	and	2.7%	of	the	variance	of	LTRBA (Rm

2 = .36;	
Rc

2 = .71),	LTRAGB (Rm
2 = .43;	Rc

2 = .67)	and	LTRSD (Rm
2 = .25;	Rc

2 = .93),	
respectively.	We	found	overall	positive	effects	of	MAT	on	LTRs	in	all	

forests (Figures 3a–c and 5d–f). LTRSD	 increased	by	1.5%	(0.4–2.5%;	
p = .004;	 Figures 3a and 5d), LTRBA	 by	 10%	 (8.2%–12%;	 p < .001;	
Figures 3b and 5e) and LTRAGB	by	9.9%	(7.8%–12%;	p < .001;	Figures 3c 
and 5f)	for	each	0.5°C	increase	in	MAT.	The	positive	effects	of	MAT	
on LTRSD persisted in disturbed forests (Rm

2 = .08;	Rc
2 = .48;	p < .001;	

Figure 3d). However, in undisturbed forests, LTRSD did not show a sig-
nificant	trend	with	MAT	(Rm

2 = .05;	Rc
2 = .97;	p = .89;	Figure 5d).

The diurnal temperature variability relative to the annual tem-
perature range (i.e. isothermality) was another important climatic 
predictor of LTRs (Figure 2).	 It	 respectively	explained	10.8%,	2.1%	
and	 1.5%	 of	 the	 variations	 in	 LTRBA (Rm

2 = .36;	 Rc
2 = .71),	 LTRAGB 

(Rm
2 = .43;	 Rc

2 = .67)	 and	 LTRSD (Rm
2 = .25;	 Rc

2 = .93).	 Isothermality	
also showed positive effects on LTRs (Figures 3 and 5). We found 
that	lianas	relatively	had	greater	SD	and	BA	than	trees	in	highly	iso-
thermal regions (Figure 3a,b),	increasing	respectively	by	10%	(4.7%–
15.3%;	 p < .001;	 Figure 5g)	 and	 35.3%	 (25.3%–46.7%;	 p < .001;	
Figure 5h) for an increase in isothermality of 10. The relationship 
was less clear for LTRAGB, which showed no significant association 
with isothermality (p = .734;	 Figure 3c).	 Isothermality	 was	 not	 re-
tained in the best models fitted using disturbed forest data subsets.

Mean	 annual	 precipitation	 (MAP)	 explained	 5.1%,	 1.6%	 and	
1.2%	of	the	variances	in	LTRAGB	(2.5%,	Rm

2 = .43;	Rc
2 = .67;	Figure 2), 

LTRBA (Rm
2 = .36;	Rc

2 = .71;	Figure 2) and LTRSD (Rm
2 = .25;	Rc

2 = .93;	
Figure 2),	 respectively.	 Lianas	 showed	 significantly	 greater	 BA	

F I G U R E  3 Effect	sizes	of	change	in	liana-	to-	tree	ratios	(LTRs).	Points	indicate	coefficients	(±95%	confidence	intervals)	calculated	from	
best- fitted linear mixed- effects models using multimodel inference across all forests (filled symbols) and disturbed forest subsets (open 
symbols). Effect sizes are standardised to show the change in LTR for stem density (a and d), basal area (b and e) and aboveground biomass (c 
and	f)	per	unit	SD	of	each	predictor.	Asterisks	indicate	significant	effects	(*p < .05,	**p < .01,	***p < .001).	Coefficient	values	can	be	found	in	
Tables S3 and S4.
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    |  7 of 18NGUTE et al.

relative	to	trees	in	drier	forests	(i.e.	with	decreasing	MAP,	Figure 3b). 
In	 fact,	 LTRBA	decreased	by	4.2%	 (2.1%–6.2%;	p < .001)	with	each	
100 mm	increase	in	MAP	(Figure 5i).

Precipitation	seasonality	explained	2.8%	of	the	variance	in	LTRBA 
(Rm

2 = .36;	Rc
2 = .71;	Figure 2).	It	also	had	equal	contributions	to	ex-

plained variances in LTRAGB	(2.5%,	Rm
2 = .43;	Rc

2 = .67;	Figure 2) and 
LTRSD	(2.5%,	Rm

2 = .25;	Rc
2 = .93;	Figure 2).	No	significant	effects	of	

precipitation seasonality were found on LTRs (p ≥ .266;	Figure 3).
The	 maximum	 climatic	 water	 deficit	 (MWD)	 individually	 con-

tributed	 2.1%,	 2%	 and	 1.6%	 to	 the	 variances	 explained	 for	 LTRSD 
(Rm

2 = .25;	Rc
2 = .93;	Figure 2), LTRAGB (Rm

2 = .43;	Rc
2 = .67;	Figure 2) 

and LTRBA (Rm
2 = .36;	Rc

2 = .71;	Figure 2),	respectively.	It	showed	no	
significant relationships with LTRs (p ≥ .157;	Figure 3).

3.3  |  Topography

Topographical predictors, namely elevation and slope, exhibited 
smaller individual contributions to LTR variations when compared 
to forest disturbance (Figure 2). Specifically, elevation accounted 
for	8%	and	1%	of	the	variability	in	LTRAGB (Rm

2 = .34;	Rc
2 = .59)	and	

LTRSD (Rm
2 = .21;	Rc

2 = .90),	respectively.	The	contributions	of	slope	
to LTRAGB and LTRSD	variances	were	3%	and	1%,	respectively.	Both	
elevation and slope had very negligible individual contributions to 
LTRBA (Figure 2) variance explained.

LTRAGB significantly varied with elevation (p < .001;	 Figure 3c,f), 
displaying a non- linear trajectory as it decreased, depending on for-
est disturbance (Figure 5c).	 For	 each	 increase	 in	 elevation	of	 100 m	
above sea level, LTRAGB	declined	by	25.4%	(17.4%–33.3%)	in	disturbed	
forests, while showing no significant change in undisturbed forests 
(Figure 5c). Meanwhile, neither LTRSD (p = .910;	Figures 3a and 5a) nor 
LTRBA (Rm

2 = .02;	Rc
2 = .71;	p = .263;	Figures 3b and 5b) varied signifi-

cantly with elevation. However, LTRSD showed a significant negative 
relationship with elevation in disturbed forests (p = .01;	 Figure 3d). 
LTRs did not change significantly with slope (p = .201–.901;	Figure 3).

3.4  |  Interactions between time since 
disturbance and climate

The effect of climate variables on LTRBA was modified by time since 
disturbance (Rm

2 = .13;	Rc
2 = .36;	p ≤ .002;	Table 2; Figure 6). LTRBA 

showed a steady decrease with time since disturbance (Figure 6a) 
at	 cooler	 temperatures	 (MAT	 <23.4°C)	 but	 increased	 with	 time	
at	higher	 temperatures	 (MAT	>27.8°C),	while	no	change	was	ob-
served	at	mid-	temperature	values	 (23.4°C≤	MAT	≤27.8°C).	LTRBA 
increased with time since disturbance in sites with lower annual 
precipitation	(MAP	<1614 mm)	but	decreased	with	time	for	higher	
precipitation	 sites	 (MAP	 >3334 mm),	 while	 no	 change	 was	 ob-
served	around	average	precipitations	(1614 mm	≤	MAP	≤3334 mm;	
Figure 6b). LTRBA decreased with time since disturbance in sites 
with	low	water	deficit	(MWD	>	−140 mm)	but	increased	with	time	
when	 MWD	 <	 −829 mm,	 while	 no	 significant	 change	 was	 ob-
served	around	mid-	values	of	MWD	(−140 mm	≥MWD	≥−829 mm;	
Figure 6c). The interactions between topographic variables and 
the elapsed time since disturbance did not show any significant 
effect on LTRBA (Rm

2 = .03;	Rc
2 = .28;	p ≥ .313;	Table 2). However, no 

interactive effects between time since disturbance and climatic or 
topographic variables were found to be significant for either LTRSD 
(Rm

2 = .01–.04;	Rc
2 = .61–.64;	p ≥ .138;	Table 2) or LTRAGB (Rm

2 = .25–
.34; Rc

2 = .82–.89;	p ≥ .245;	Table 2).

4  |  DISCUSSION

This study is the most geographically extensive and data- rich assess-
ment	of	the	competitive	success	of	lianas	over	trees	to	date.	It	pro-
vides fundamental new information supporting recent hypotheses 
regarding environmental drivers of liana- mediated forest recovery 
following	 disturbance.	 Independent	 disturbance	 and	 environmen-
tal effects on liana dominance are clear in the models (Figure S1; 
Tables S5 and S6).

F I G U R E  4 Mean	liana-	to-	tree	ratio	(LTR)	of	(a)	stem	density	(SD),	(b)	basal	area	(BA)	and	(c)	aboveground	biomass	(AGB)	across	forest	
categories	predicted	by	mixed-	effect	models.	Error	bars	denote	bootstrapped	95%	confidence	intervals	(1000	iterations).
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8 of 18  |     NGUTE et al.

4.1  |  Effects of forest disturbance

Relative	 to	 trees,	 lianas	 exhibited	 increased	 SD,	 BA	 and	 AGB	 in	
disturbed forests. This, and our observation that disturbance con-
sistently was the best predictor in all models, supports previous 
assertions that increasing light resulting from canopy loss may be 
a	 main	 driver	 of	 liana	 abundance	 (Phillips	 et	 al.,	 2002; Schnitzer 

et al., 2021; Schnitzer & Bongers, 2011), suggesting that increased 
competition with trees in disturbed forests may impact forest re-
covery (Lai et al., 2017). The increase in LTRs in disturbed forests 
is most likely a consequence of liana proliferation post- disturbance 
(Schnitzer, 2015, 2018), whether through natural—for example cy-
clones and treefalls—or anthropogenic activities—for example log-
ging and shifting agriculture (see Campbell et al., 2018; Laurance 

F I G U R E  5 Liana-	to-	tree	ratios	(LTR)	and	predictors	across	all	forests.	Lines	and	ribbons	show	fitted	slopes	(±95%	bootstrapped	
confidence	intervals,	1000	iterations)	for	SD,	stem	density	(a,	d	and	g),	BA,	basal	area	(b,	e,	h	and	i)	and	AGB,	aboveground	biomass	(c,	f),	
predicted	by	best-	fitting	mixed-	effects	models	with	restricted	maximum-	likelihood	estimation	using	data	from	all	forests.	Dashed	lines	
indicate non- significant effects.
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    |  9 of 18NGUTE et al.

et al., 2001; Schnitzer et al., 2000). This highlights the central role of 
forest disturbance in shaping liana dominance (Marshall et al., 2020) 
and underscores the necessity of integrating lianas and disturbance 
dynamics in forest recovery models (Campbell et al., 2015; Heinrich 
et al., 2023;	Poorter	et	al.,	2021).

Disturbances	 that	 open	up	 the	 canopy	enhance	 light	 availabil-
ity and indirectly affect other crucial resources such as water and 
soil nutrients (Marvin et al., 2015; Schnitzer & Bongers, 2011; 
Schnitzer et al., 2021). These changes can provide lianas with com-
petitive	advantages	 (di	Porcia	e	Brugnera	et	al.,	2019;	Putz,	2023) 
and boost their relative success over trees in disturbed forests (Ledo 
& Schnitzer, 2014; Schnitzer, 2018). Lianas are also known to exhibit 
relatively higher abundance and biomass recovery rates than trees 
in early forest successions, where disturbances are more recent and 

have stronger effects (Estrada- Villegas et al., 2020; Lai et al., 2017; 
Letcher & Chazdon, 2009;	Umaña	et	al.,	2020).

4.2  |  Effects of climate

Our	findings	offer	further	insights	into	how	climate	impacts	liana	domi-
nance.	Temperature	(MAT)	is	consistently	shown	among	our	models	to	
be	the	main	environmental	driver	of	liana	dominance	over	trees.	Given	
its	consistent	relationship	with	elevation,	MAT	is	also	likely	to	be	the	
principal	reason	for	the	observed	elevational	trends.	Previous	studies	
investigating patterns and drivers of liana success across world forests 
have also attributed higher liana abundance with higher temperatures 
(DeWalt	et	al.,	2015; Schnitzer, 2005;	van	der	Heijden	&	Phillips,	2008).

TA B L E  2 Averaged	interactive	effects	of	the	time	since	disturbance	and	moderator	variables	on	liana-	to-	tree	ratios	(LTRs)	of	stem	density	
(SD),	basal	area	(BA)	and	aboveground	biomass	(AGB)	in	disturbed	forests.

Moderator Response n Coefficient 95% CI z p

Elevation LTRSD 270 0.03 −0.05	to	0.11 0.35 .504

LTRBA 163 −0.02 −0.07	to	0.04 0.54 .587

LTRAGB 131 0.09 −0.17	to	0.26 0.94 .698

Slope LTRSD 270 0.06 −0.02	to	0.15 1.48 .138

LTRBA 163 −0.03 −0.10	to	0.03 1.01 .313

LTRAGB 131 −0.19 −0.60	to	0.23 0.89 .375

Mean annual precipitation LTRSD 270 0.05 −0.05	to	0.15 0.97 .332

LTRBA 163 −0.51 −0.76 to −0.26 4.03 <.001

LTRAGB 131 −0.15 −0.20	to	0.18 0.42 .679

Mean annual temperature LTRSD 270 −0.02 −0.08	to	0.04 0.69 .489

LTRBA 163 0.27 0.46–1.69 3.15 .002

LTRAGB 131 0.38 −0.23	to	0.98 1.41 .245

Maximum climatic water deficit LTRSD 270 0.005 −0.11	to	0.12 0.09 .932

LTRBA 163 0.64 0.24–1.04 3.15 .002

LTRAGB 131 0.04 −0.51	to	0.56 0.35 .886

Note: Bold text denotes significant effects.

F I G U R E  6 Interactive	effects	on	liana-	to-	tree	ratio	of	basal	area	(LTRBA)	of	the	time	elapsed	since	disturbance,	with	(a)	MAT	(mean	
annual	temperature);	(b)	MAP	(mean	annual	precipitation);	and	(c)	MWD	(maximum	climatic	water	deficit)	as	moderator	variables.	Moderator	
categories	(i.e.	low,	mid	and	high)	denote	the	observed	16th	(mean-	SD),	50th	(mean)	and	84th	(mean + SD)	percentiles.
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10 of 18  |     NGUTE et al.

Increased	temperatures	afford	lianas	strong	competitive	physio-
logical advantages over other forest growth forms (Schnitzer, 2018). 
For instance, lianas thrive better than trees at higher temperatures, 
as is the case during lengthy seasonal droughts (Schnitzer & van 
der Heijden, 2019; van der Heijden et al., 2019), which cause an 
increase in evapotranspiration demand from the atmosphere (Slot 
et al., 2014).	Positive	 temperature	change	has	also	been	shown	to	
affect tree communities across tropical forests both compositionally 
and structurally (Bennett et al., 2021; Feeley et al., 2007; Sullivan 
et al., 2020).

The positive relationship observed between metrics of LTRs and 
isothermality—a measure that also captures temperature seasonality 
across the year (Fick & Hijmans, 2017;	Noce	et	al.,	2020)—indicates 
that	 lianas,	 relative	to	trees,	are	more	 likely	 to	show	 increased	SD	
(LTRSD)	 and	BA(LTRBA) in tropical regions. These regions are char-
acterised by a greater uniformity in diurnal temperature ranges and 
less variation over the year (Visher, 1923). Lianas are most abun-
dant, and likely most dominant, in forests experiencing the highest 
seasonality	 (DeWalt	et	al.,	2010, 2015; Schnitzer, 2005). This rela-
tionship is also consistent with recent explanations (Schnitzer, 2018; 
Schnitzer & van der Heijden, 2019) and conceptual hypotheses 
(Marshall et al., 2020).

In	contrast	to	the	patterns	observed	with	temperature	and	iso-
thermality, LTRs were more weakly and negatively associated with 
MAP,	as	 this	 relationship	was	significant	only	 for	LTRBA.	Our	 find-
ings	indicate	that	as	MAP	decreases,	lianas	are	more	likely	to	show	
an	increase	in	BA	relative	to	trees.	This	aligns	with	earlier	observa-
tions	of	lianas	thriving	in	drier	forest	conditions	(DeWalt	et	al.,	2015; 
Gentry,	 1991; Schnitzer, 2005; Schnitzer & Bongers, 2011), com-
pared with trees that appear limited by lower precipitation, occur-
ring mostly in wetter climates (Schnitzer & van der Heijden, 2019). 
Our	results	also	 follow	predictions	that	 the	competitive	effects	of	
lianas over trees should be greater under conditions of increased 
water scarcity (Marshall et al., 2020; Schnitzer, 2018). However, in 
a pantropical meta- analysis, Estrada- Villegas et al. (2022) found no 
significant increase in liana impacts on tree performance at lower 
MAP.	Their	finding	is	consistent	with	van	der	Heijden	et	al.	(2019), 
who previously observed that the negative effect of lianas on trees 
remained strong in both drier and wet conditions.

Our	global	 findings	 contrast	with	 results	 from	 the	Neotropics,	
where previous studies found no significant relationship between 
liana abundance and mean annual precipitation (van der Heijden 
&	Phillips,	2008).	In	this	same	region,	Estrada-	Villegas	et	al.	 (2021) 
also found that lianas did not negatively affect tree biomass accu-
mulation in young successional dry forests. However, other studies 
(Estrada- Villegas et al., 2020; Lai et al., 2017), which used the same 
experimental design as Estrada- Villegas et al. (2021), have found 
that lianas do inhibit tree biomass accumulation in humid early suc-
cessional	forests.	Our	results	also	appear	inconsistent	with	those	of	
Durigon	 et	 al.	 (2013), who found that lianas were more prevalent 
in wetter forests at the global scale, noting that this latter analy-
sis was based only on liana occurrence data and had fewer sample 
points, all from undisturbed forests. We could, therefore, attribute 

the observed disparity to differing scales and methods or regional 
variations.

4.3  |  Effects of time since disturbance under 
varying climate conditions

Strikingly,	we	found	an	increase	in	liana	relative	BA	over	time	since	
disturbance	with	higher	MAT	(>27.8°C),	greater	MWD	(<−829 mm)	
and	 lower	MAP	 (<1614 mm).	 It	has	been	acknowledged	that,	com-
pared to trees, lianas have better morphological and physiological ad-
aptations to stress induced by rising temperature and water scarcity 
(Asner	&	Martin,	2012; Schnitzer, 2018; Schnitzer & Bongers, 2011). 
It	is	therefore	plausible	that	in	disturbed	forests	with	less	precipita-
tion, rising temperatures or pronounced climatic water deficits (e.g. 
lengthy seasonal droughts), lianas gain more competitive advantages 
over trees (Schnitzer & van der Heijden, 2019). However, in the 
longer term, lianas might experience a higher mortality than trees 
due to their greater susceptibility to drying hydroclimates (Willson 
et al., 2022).

Understanding	how	liana	dominance	in	disturbed	forests	varies	
over time under different climate regimes is crucial for predicting the 
responses of degraded forest landscapes to climate change. Based 
on the trends in LTRs, the results suggest that some disturbed for-
ests, with persistent high liana dominance, may not easily be able 
to return to a stable climax state with increasing time since distur-
bance. This result supports the hypothesis that under climates fa-
vouring lianas, the effects of liana dominance often persist long after 
disturbance, stalling forest recovery for decades as a result of liana 
feedbacks and tipping point thresholds (Marshall et al., 2020).

4.4  |  Elevational change in liana dominance

Global	patterns	of	liana	dominance	assessed	in	our	study	were	simi-
lar to those predicted by Marshall et al. (2020) based on local data 
that is showing a decline in liana dominance towards higher eleva-
tion. Like this earlier local work, we also observed that LTRAGB were 
disproportionately greater towards lowland disturbed forests, as 
suggested by the non- linear trend. This observation fills an impor-
tant knowledge gap, as prior studies mostly focused on the indi-
vidual effects of elevation on lianas or trees (e.g. Jiménez- Castillo 
et al., 2007; Schnitzer, 2005), leaving effects on relative dynamics 
between the two largely theoretical until now (Schnitzer, 2018).

4.5  |  Implications and limitations of our models

Our	study	demonstrates	the	drivers	and	patterns	of	liana–tree	rela-
tive	forest	attributes.	Associated	findings	have	considerable	implica-
tions for global forest models aiming to understand how lianas affect 
ecosystem functioning and the recovery of forests from disturbance 
under a changing climate (Campbell et al., 2015). For instance, by 
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providing global evidence, our analyses allow us to validate the 
empirical hypothesis that the dominance of lianas over trees was 
consistently driven by forest disturbance interacting with climate 
factors (Marshall et al., 2020).	Assessing	various	attributes	of	forest	
stands and adding topographic variables to our analyses permit us to 
extend our understanding of the interaction between liana and trees 
beyond current perspectives, using a larger sample size than previ-
ous	studies	(DeWalt	et	al.,	2015;	Durán	et	al.,	2015;	Gentry,	1988; 
Schnitzer, 2005; Schnitzer & Bongers, 2011). The observations pro-
vide fundamental new information about global forest successional 
dynamics while also indicating that forest management may be able 
to better prioritise action towards regions and elevations that are 
disproportionately more vulnerable to liana dominance.

Despite	including	broad	geographical	coverage	of	forests	glob-
ally, there remain some limitations to our study. First, the locations 
included in our dataset are mostly tropical (and especially from the 
neotropics) and are dominated by low- elevation sites, especially for 
disturbed forest samples. This sample bias might potentially obscure 
some patterns and affect relationships between response metrics 
and	 climate	 variables.	 Additionally,	 the	 uneven	 distribution	 of	 ob-
servations across forest disturbance categories might skew certain 
trends. This is particularly important because sample observations 
are unbalanced between the forest stand metrics used in our anal-
yses, with some response measures unavailable at some locations. 
Finally, the spatial distribution of samples is not completely ran-
dom.	 Despite	 accounting	 for	 spatial	 autocorrelation,	 the	 lack	 of	
true independence among samples might jointly affect patterns in 
predictors and their relationships with response variables (Berdugo 
et al., 2017).

We believe that relying on single metrics might be insufficient 
for assessing the effects of climate and forest disturbance on the 
relative success of lianas over trees. This is because no single met-
ric appears to consistently capture the variation in liana–tree ra-
tios across different climatic or topographic gradients, irrespective 
of whether the forests are disturbed or undisturbed. To develop 
more nuanced, holistic models that predict patterns and drivers of 
liana–tree dynamics, we recommend the use of comprehensive, geo-
graphically balanced datasets. These datasets should encompass di-
verse ecologically pertinent variables, such as liana load and burden 
(Muller- Landau & Visser, 2019), net primary productivity (Meunier 
et al., 2022), wood density (Chave et al., 2009, 2014) and other 
functional	 traits	 (Kattge	 et	 al.,	 2020). Moreover, assessing liana 
dominance	should	involve	extensive	site	investigations	(Ichihashi	&	
Tateno, 2015; Wright et al., 2004, 2015).

5  |  CONCLUSIONS

In	this	study,	we	confirmed	that	forest	disturbance	and	climatic	fac-
tors are major drivers of liana dominance in global forests. We also 
found that the competitive effects of lianas on trees vary with time 
since disturbance and along climate gradients in disturbed forests. 
Lianas	 tend	 to	 have	 a	 higher	 relative	 BA	 than	 trees	 in	 disturbed	

forests subjected to less precipitation, high temperature or condi-
tions	of	increased	climatic	water	deficit.	Overall,	we	provide	global	
insights into how lianas affect forest dynamics and recovery through 
structural	 attributes.	 Quantifying	 the	 global	 patterns	 and	 drivers	
of liana–tree competition through forest stand attributes is crucial 
for understanding their impacts on the global carbon sink, forest 
recovery from disturbance, timber yields and resilience to climatic 
change.	Our	findings	advance	the	current	knowledge	of	the	causes	
and consequences of liana dominance in forest ecosystems under 
global climate and land- use change. This can support the develop-
ment and implementation of forest management and restoration 
measures worldwide that may be targeted towards regions and el-
evations with climate disproportionately favouring lianas to enhance 
carbon sequestration, biodiversity and other ecosystem services in 
degraded forest landscapes.
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