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increase in scale, bridging these scientific disciplines offers 
a promising way to upscale observations to entire reef-scape 
scales. We identify steps to harness the strengths of both 
fields and integrate multiple tools at various levels of resolu-
tion and scale. Such bridging approaches offer a way forward 
in understanding and managing coral reef functioning in the 
Anthropocene.
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Introduction

Ecosystems, both terrestrial and marine, share a degree of 
hierarchical organization with sublevels operating at dis-
tinct temporal and spatial scales, collectively contributing 
to larger systems (O’Neill et al. 1989). Consequently, each 
subsystem exhibits varying spatio-temporal heterogeneity 
and patchy distributions, forming the foundation for ecosys-
tem structure and functioning (O’Neill et al. 1989; Azovsky 
2000; Wu 2004). These fundamental characteristics, also 
found in coral reefs, create scale multiplicity in spatial pat-
terns and ecological processes (O’Neill et al. 1989; Levin 
1992). Such that, at smaller scales, ecosystems may be domi-
nated by intricate processes or behaviors of individuals, but 
their influence becomes negligible at intermediate or broad 
scales, where environmental, evolutionary, or geomorpho-
logical processes shape ecosystems (Wiens 1989; Holling 
1992). Therefore, understanding ecosystem structure and 
functioning necessitates studying ecological phenomena at 
scales most relevant to the underlying processes. Detect-
ing patterns relies on two scale components: resolution and 
extent. Extent refers to the overall study area coverage, while 
resolution describes the size of individual observation units 
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(Wiens 1989; Wu and Li 2006). Combining extent and reso-
lution sets the upper and lower dimensional boundaries of a 
study, much like the size and mesh of a sieve (Wiens 1989).

In coral reef ecology, it is crucial to address processes 
across various scales, which can be categorized into three 
dimensions: spatial, temporal, and thematic (Wu and Li 
2006; Lecours et al. 2015). The spatial dimension encom-
passes the spatial resolution (i.e., level of detail measured) 
and geographic extent of an object, area, or process. Tem-
poral resolution refers to the frequency of data collection, 
while temporal extent describes the period of data collec-
tion. Thematic scale, refers to the number of classes identi-
fied within a chosen domain/s, mainly concerning taxonomic 
resolution and the level of organization that can be resolved 
in datasets (Wu and Li 2006; Lecours et al. 2015). As coral 
reefs face increasing threats, it is becoming more important 
for research and conservation responses to address changes 
at broader spatial and temporal scales and in relevant the-
matic classes. However, there exists a mismatch between the 
geographic extent of reef stressors (e.g., marine heatwaves 
which lead to bleaching events) and the extent of scientific 
investigation, monitoring, and management responses. These 
challenges must be addressed if coral reef ecosystems are 
to be effectively managed and conserved into the future 
(Hughes et al. 2017; Bellwood et al. 2019a).

Coral reefs provide crucial functions and ecosystem 
services, such as coastal protection, fisheries, and tourism 
(Moberg and Folke 1999; Woodhead et al. 2019). The pro-
tection of functionally important groups within coral reef 
ecosystems is vital for ensuring the continual delivery of 
these services (Bellwood et al. 2019b; Brandl et al. 2019). 
However, identifying contributors to ecosystem functioning 
is challenging, and their identities may change in response 
to climate change (Bellwood et  al. 2019b; Wolfe et  al. 
2021; Streit and Bellwood 2022). Moreover, coral reefs 
are dynamic environments where interactions among reef 
organisms and other ecosystem components occur at various 
scales and hierarchies (Hatcher 1997; Dietzel et al. 2021; 
Wolfe et al. 2023). Due to their heterogenous nature, spa-
tial variability, and distribution in clumped patches ranging 
from 10 to 1000 s of meters in extent (Hopley et al. 2007), 
changes in coral reefs systems are not distributed homogene-
ously (Morais et al. 2021; Tebbett et al. 2023a). As a result, 
most coral reef functions are scale dependent. For instance, 
the rate and extent of vital functions provided by coral reef 
fishes, such as herbivory or bioerosion, are often estimated 
by assuming that fish presence equals function delivery 
(Bellwood et al. 2003; Graham et al. 2018; Perry et al. 
2022). However, the implicit assumption of homogeneity 
of function across the reef is increasingly being questioned 
(Streit et al. 2019; Tebbett and Bellwood 2020), particularly 
in the face of the escalating scale of reef disturbance. These 
presence-function and scale mismatches present challenges 

when managing and conserving reef systems in the Anthro-
pocene (Bellwood et al. 2019a; Brandl et al. 2019).

In coral reef research, benthic metrics like habitat cover, 
complexity, and diversity are used for evaluating and 
monitoring reef health and structure. They are commonly 
assessed using measures such as coral cover, benthic cover, 
and rugosity (Bellwood et al. 2004; Bruno and Selig 2007; 
Graham and Nash 2013). Coral cover indicates the percent-
age of the seafloor occupied by live coral, while benthic 
cover evaluates the proportion of different substratum types, 
including coral, algae, sand, and rubble (Bruno and Selig 
2007). Rugosity provides a three-dimensional complexity 
estimate, helping to understand habitat diversity and poten-
tial habitat availability for various other reef inhabitants 
(Graham and Nash 2013; Ferrari et al. 2018). Assessing 
these metrics has traditionally involved in-water field sur-
veys by skilled scuba divers. However, these labor-intensive 
surveys are often limited to specific taxa and specific study 
areas, representing only a small portion of the entire reef 
ecosystem (Bellwood et al. 2020; Tebbett et al. 2023a). As a 
result, findings from localized surveys may not fully capture 
broader patterns and variation at wider spatial scales. Valu-
able methods and techniques involving the use of remote 
sensing technologies, both above and below the water, have 
been emerging over recent decades with the aim of overcom-
ing these challenges.

Ecology and remote sensing constitute pivotal domains 
within coral reef research, both characterized by scale aware-
ness and dependence. Their shared objective is to appraise 
benthic transformations in coral reef systems to improve 
knowledge and ensure sustainability. While in-situ ecologi-
cal studies are increasingly addressing coral reef function-
ing, recent papers have highlighted the constraints placed 
on our understanding because of the limited spatial extent 
of study efforts, across both reefs and habitats, as well as 
the immense associated costs, which constrain our ability to 
describe dynamic phenomena and processes at broad spatial 
scales (Hedley et al. 2016; Estes et al. 2018; Bellwood et al. 
2020; Kench et al. 2022; Tebbett et al. 2023a). However, 
the rapid development of in-water remote sensing tech-
niques to derive 3D structural assessments, at unprecedent-
edly high resolution and across relatively large areas (1ms 
-100ms), holds the potential to significantly enhance our 
capacity to monitor these ecosystems (Ferrari et al. 2016, 
2022; Calders et al. 2020). While, recent advances in aerial 
and satellite remote sensing technologies offer a promising 
avenue to upscale the extent of in-situ observations to the 
reef-scale, of kilometer/hundreds of kilometers, optimizing 
the efficiency of such studies (Hamylton 2017; Dornelas 
et al. 2019; D’Urban Jackson et al. 2020) (Figs. 1 and 2). 
Nevertheless, the potential for scale-dependency raises the 
question: How can the methods used in traditional coral 
reef ecology be optimized to accurately assess biological 
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and ecological processes affected by stressors operating at 
ever-increasing scales? To address this question, this study 
looked at the relative contribution of two fields (traditional 
in-situ coral reef ecology and remote sensing), that both 
assess benthic habitats. This was achieved by conducting a 
systematic review of relevant literature to compare these two 
fields of coral reef research and their inherent approaches, 
in terms of: 1) the geographic distribution of study sites; 2) 
their inherent approaches; 3) the habitats examined, and 4) 
their focal questions. Following this evaluation, we outline 
potential opportunities to create a bridge between these two 
fields to better address the challenges of scale. Ultimately, by 
addressing these aims, this study will help identify positive 
paths toward harnessing the valuable contributions of the 
two fields, traditional in-water coral reef ecology or remote 
sensing, in a world that will have to upscale rapidly to meet 
challenges in the Anthropocene.

Methods

Systematic review

To address our aims, we surveyed the international jour-
nal Coral Reefs, one of the world’s primary journals for 
coral reef studies, as a representative sample of coral reef 

research, similar to the approach of Bellwood et al. (2020). 
We specifically selected the journal Coral Reefs due to its 
comprehensive coverage of research in the coral reef domain 
globally. It serves as an ideal choice for our study, with the 
sole inclusion criterion being scientific quality, provided 
the papers pertain to coral reefs. Importantly, this journal 
has no geographical or methodological constraints; includ-
ing papers from diverse locations and employing various 
approaches. To ensure we sampled a representative range 
of relevant remote sensing studies, we surveyed the jour-
nals Frontiers in Marine Science, PLoS One, Remote Sens-
ing, and Remote Sensing of Environment as representative 
journals for remote sensing-based studies on reefs. We used 
multiple journals as there were fewer relevant articles avail-
able when compared to Coral Reefs. We acknowledge the 
potential omission of some studies through this approach, 
however the attained sample size was robust and representa-
tive of the broader body of scientific coral reef literature (cf. 
Brandl et al. 2019; Sambrook et al. 2019; Bellwood et al. 
2020; Crisp et al. 2022).

Studies were downloaded in August 2023 from two 
databases: ‘Scopus’ and ‘Web of Science’. To facilitate 
direct comparisons, we included search terms that were 
broadly overlapping between the two fields (see below). 
Furthermore, we selected a time slice that ensured both 
fields had a high chance of appearance and influence, i.e., 

Fig. 1   Differences in spatial 
extent and resolution among 
technologies and approaches 
employed in coral reef eco-
system research. Specifically, 
differences among satellite and 
aerial remote sensing platforms 
(i.e., a satellite, b aeroplane, c 
unoccupied aerial vehicles, and 
d drones); and in-water remote 
sensing platforms, includ-
ing e autonomous underwater 
vehicles, f underwater drones, 
and g diver-operated camera 
systems. Figure adapted from 
Harris et al. (2023) based on 
the original schematic in Joyce 
(2004)
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between 2012 and 2021, inclusive. For the four representa-
tive remote sensing journals, the respective search terms 
were: [Topic sentence (TS) = coral* OR “Coral reef”] 
AND [TS = Satellite OR UAV OR drone* OR algorithm 
OR “airborne sensor” OR structure-from-motion OR s-f-m 
OR “structure from motion” OR photogrammetry OR pho-
tomosaic* OR “photo mosaic” OR camera OR “photo-
mosaic” OR “remote sensing” OR multispectral  OR 
"imagery" OR "3D" OR "3D mapping" OR "3D mode-
ling" OR "terrain reconstruction" OR "orthomosaic" OR 
"Large area imaging"]. Hyperspectral sensors hold great 
promise and are gaining importance in assessing benthic 
changes on coral reefs by offering imagery data across 
numerous narrow bands, possibly improving the thematic 
resolution of outputs (Bajjouk et al. 2019; Dierssen et al. 
2021). However, we did not include “hyperspectral” as a 
search term in this review because, at present, these sen-
sors and the platforms on which they operate, have lower 
operational efficiency and are not yet as widely available 
and adopted compared to the majority of methods covered. 

When a study using hyperspectral imagery was encoun-
tered in the review (e.g., Joyce et al. 2013) it was included 
(N = 11).

For the Journal Coral Reefs, the topic sentence was sur-
veyed for: [benth* OR bathym* OR complexity OR cover 
OR rugosity OR map*]. Both searches were limited to full 
articles. After removing duplicates, the initial pool con-
sisted of 747 studies. Among these, 359 were categorized 
as traditional in-water coral reef ecology (i.e., appearing 
in Coral Reefs), and 363 were classified as remote sensing 
(i.e., found in the four remote sensing journals). The search 
in Coral Reefs also yielded 25 studies that primarily used 
remote sensing methods to raise their final metrics (e.g., 
Doo et al. 2017; Newnham et al. 2020). Consequently, these 
were included in the remote sensing category, resulting in a 
total of 388 studies.

To ensure a meaningful comparison between the two 
fields we adopted a filtering protocol to select studies that 
were broadly comparable. We filtered the initial pool to 
identify suitable studies from the two fields by specifically 

Fig. 2   Examples of the imaging and resolution capabilities of dif-
ferent coral reef remote sensing techniques at Lizard Island Reef in 
the northern Great Barrier Reef. a Satellite imagery (Sentinel-2A 
imagery. GSD = 10m Courtesy of European Space Agency—ESA), b 

unoccupied aerial vehicles and non-consumer grade drones (UAVs) 
(GSD ~ 10cm, but cover larger extents), c consumer-grade drones 
(GSD ~ 2cm, cover much smaller extents), d and e high resolution in-
water photography (GSD ~ 5mm)



Coral Reefs	

1 3

looking for studies that assessed a benthic component on 
coral reefs and were concerned with in-situ measurements 
by screening the Abstract and Methods. To be included, 
remote sensing publications had to be undertaken on tropi-
cal coral reef systems, involve a benthic component (e.g., 
studies focusing on water quality were excluded), and had 
to address an ecological aspect of coral reefs, i.e., they must 
be concerned with metrics and processes (functions) that 
contribute to the movement or storage of energy or material 
on coral reefs. Review-style studies or studies in deep-sea or 
cold-water environments were excluded. Similarly, ecologi-
cal papers had to be conducted on tropical reefs, in less than 
20 m depth, and be non-experimental (i.e., studies employ-
ing terra cotta tiles or collecting specimens for lab experi-
ments were excluded). This screening process resulted in the 
retention of 111 remote sensing studies and 88 traditional in-
water coral reef ecology studies for analysis (see Table S1).

These remaining 199 papers were thoroughly reviewed 
and for each we recorded: 1) the category of the study (i.e., 
traditional coral reef ecology or remote sensing), 2) focal 
question(s) addressed, 3) organisms/parameters investigated, 
4) method/approach employed, 5) geographic region(s) each 
study was conducted in, 6) geomorphic zone(s) surveyed, 
7) whether study sites were identified in a reproducible way 
(i.e., with geographic co-ordinates or shown on a map), and 
8) sensor platform(s), 9) spatial resolution, and 10) whether 
in-water field verification of broad spatial scale remote sens-
ing was undertaken. These variables were chosen to allow 
for effective and insightful cross-domain comparison (see 
Table S2 for additional justification). Reporting the "spatial 
extent" of studies was exceptionally rare, leading us to rely 
on the geomorphic zone/s of operation as a proxy. Due to the 
wide range of papers addressing various themes at a range 
of scales, classifying thematic resolution (e.g., taxonomic 
resolution or number of benthic classes) consistently and 
meaningfully proved nearly impossible, necessitating the use 
of the broader "focal question" category as a substitute. The 
resulting data were then quantitatively explored to identify 
the potential overlap and divergences between ecological 
and remote sensing literature on coral reef systems.

Categorizing studies

Initially, we categorized all studies based on their approach 
or the type of data they generate. For simplicity and illustra-
tive clarity, we classified studies into two categories: direct 
ecological observations, primarily utilizing or generating 
localized in situ data (termed traditional coral reef ecology 
or CR), and remote sensing (RS), primarily involving the 
use or creation of spatially explicit map-based data. The 
focal question(s) addressed in each study were identified 
and divided into the following categories: benthic mapping, 
bathymetry, carbonate budget, bleaching detection, disease 

impact, bioturbation, organism ecology, climate change, 
or community composition. Benthic mapping was defined 
as studies concerned with dividing different substrata into 
respective groups and spatially mapping their location, often 
producing spatially explicit datasets across large extents 
(e.g., identifying the benthic communities across the Capri-
corn Bunker; Hamylton et al. 2017). In contrast, community 
composition studies assessed and categorized an ecosystem 
component into high-detail taxonomic categories, quantify-
ing their presence and abundance often in form of localized 
point based assessments (e.g., assessing spatial and temporal 
patterns in hard coral cover; Roelfsema et al. 2021a). When 
studies addressed multiple focal questions, each of these 
instances was treated as distinct observations in the dataset. 
Thus the number of focal questions identified is greater than 
the number of papers assessed.

Categorizing methods used

We categorized the approaches used in the studies into four 
main groups: direct quantification, sensor-based, linked 
studies, and upscaled linked studies. Direct quantification 
studies involved counting organisms present (e.g., Perry and 
Morgan 2017). Sensor-based studies utilized various sen-
sors such as satellites or cameras, primarily for mapping 
or three-dimensional imaging of the benthic environment 
(e.g., Ferrari et al. 2016). Linked studies combined direct 
quantification and sensor-based approaches, linking in-
situ observations and remote sensing approaches to infer 
stronger relationships between multiple metrics, such as 
assessing how coral colony complexity affects fish distri-
butions (e.g., Oakley-Cogan et al. 2020). Upscaled linked 
studies introduced an additional aspect of aerial remote sens-
ing and ground-truthing to extend ecological observations 
to entire reef-scape scales such as measuring the biomass 
of foraminifera in different reef zones and upscaling that to 
the reef scape scale using classified satellite imagery (e.g., 
Doo et al. 2017).

Categorizing geographic regions and habitat assessed

To assess how studies from the different fields (CR and RS) 
were distributed globally and determine if number of stud-
ies in a region was related to the area of reef present, we 
categorized the geographic region/s of each study based 
on the size of reef areas mapped by the Allen Coral Atlas 
(2022). For instance, studies conducted in the Great Barrier 
Reef (GBR) were assigned to the corresponding geographic 
region “Great Barrier Reef and Torres Strait” mapped area in 
the Allen Coral Atlas. In cases where a study covered mul-
tiple mapped areas, it was classified as surveying ’multiple’ 
reef areas. To calculate the area of reef present in the studied 
regions the reef areas were extracted from the Allen Coral 
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Atlas in early November 2022 and included the reef’s ben-
thic classes such as Coral/Algae, Microalgal Mats, Rock, and 
Rubble. We excluded Sand and Seagrass as benthic classes 
to maintain a focus on biogenic reef framework building 
structures and to prevent an overrepresentation of mapped 
reef areas, especially in cases with extensive sand banks and 
seagrass habitats, particularly within the Caribbean context. 
Data were handled and visualized using ArcGIS Pro (ver-
sion 2.9) and R (R Core Team 2022), using the ‘tidyverse’ 
package (Wickham et al. 2019).

To assess which coral reef habitats were studied we 
categorized the habitats investigated within each study 
into their corresponding geomorphic zones. Our analysis 
included only those geomorphic zones that were consist-
ently identified, namely back reef, lagoon, reef crest, reef 
flat, and reef slope/fore reef (as defined in Kennedy et al. 
2021). If studies encompassed multiple geomorphic zones, 
each zone was treated as a separate allocation. Studies that 
assessed or mapped entire reef-scapes were categorized as 
‘Entire reef’. To determine the distribution of studies across 
different zones in relation to the proportional reef area each 
zone represents, we calculated the average area of each geo-
morphic zone across all reefs in the Great Barrier Reef and 
Torres Strait mapped region (Allen Coral Atlas 2022) and 
derived the relative proportions. It is important to emphasize 
that our study did not specifically center on this particular 
region and we recognize that it may not be representative 
of reef proportions in all other regions globally. We chose 
this region to represent the proportional reef area of geo-
morphic zones because it has received the most extensive 
scientific attention (Fig. 3A), making it likely to provide the 
most reasonable geomorphic zone area estimates due to the 
substantial mapping efforts (Kennedy et al. 2021; Roelfsema 
et al. 2021b).

Results

A broad and variable geographic spread of studies was iden-
tified (Fig. 3A) with most studies coming from the Great 
Barrier Reef (GBR) (36 in total, 18% of all studies) with a 
relatively equal split between traditional in-water ecology 
and remote sensing (Fig. 3B). Some regions were domi-
nated by remote sensing studies, for example the SW Pacific, 
Hawaiian Islands and the Central South Pacific (over 70% 
of studies) with a paucity of traditional ecological studies 
(N = 9). There was no obvious relationship between the num-
ber of studies conducted in a region and its mapped reef 
area (Fig. 3B, Figure S1). For instance, the South-east Asian 
Archipelago, which had the largest mapped reef area, had 
only six studies included in the review (Fig. 3B). In contrast, 
the Hawaiian Islands, with a relatively small reef extent, 
contributed 17 studies, almost 90% of which were remote 

sensing studies (Fig. 3B). Notably, barely any traditional 
coral reef ecology studies surveyed more than two regions 
(N = 2), while remote sensing studies frequently covered 
multiple regions (N = 13) (Fig. 3B, number 28 – “Multiple”).

Traditional in-water coral reef ecology studies addressed 
a wide range of focal questions, but primarily focused on 
community composition of the benthos, involving a taxo-
nomic level of identification (Fig. 4A). In contrast, most 
remote sensing studies (72%) were concerned predominantly 
with benthic mapping, i.e., the classification of substrata 
into distinctive groups based on spectral signatures, and/or 
quantifying bathymetry (18%) (Fig. 4A). Numerous studies 
(18%, N = 20) using in-water remote sensing technologies 
were bridging this gap in focal questions, increasingly inves-
tigating community composition with a taxonomic level of 
identification similar to that of ecological studies (Fig. 4A, 
Figure S2). Unsurprisingly, remote sensing studies predomi-
nantly (86%) employed primarily sensor-based approaches 
ranging from satellite imagery to unoccupied aerial vehi-
cles (UAVs) or underwater photogrammetry approaches 
(Fig. 4B). These approaches were mainly passive, gaining 
data and producing metrics through imagery processing. 
In-situ field surveys mostly employed methods that directly 
quantify or count the presence of organisms (95%) (Fig. 4B). 
Only 7% (N = 14) of studies used a linked approach combin-
ing direct quantification (e.g., counting fish) with, mostly, 
in-water sensor-based techniques (e.g., photogrammetry), 
allowing for a more nuanced understanding of processes and 
higher-order metrics, such as rugosity (e.g., Oakley-Cogan 
et al. 2020). Notably, only 3% (N = 6) of studies combined 
multiple approaches (i.e., in water counts, drone imagery 
and satellite imagery) to upscale observations to an entire 
reef-scape (Fig. 4B) (e.g., Doo et al. 2017).

Most (73%) remote sensing studies accurately reported 
the location of their study sites in a manner that allowed 
for reproducibility (i.e., giving coordinates). Just over half 
(58%) of traditional coral reef ecology studies did likewise 
(Figure S3). Overall, 45% (N = 40) and 33% (N = 37) of 
traditional coral reef ecology and remote sensing stud-
ies, respectively, did not specify which geomorphic zone 
(i.e., back reef, lagoon, reef crest, reef flat, and reef slope/
fore reef) their study was conducted on. Of those stud-
ies that did specify, geomorphic zones examined by each 
field contrasted markedly (Fig. 5). The reef slope was the 
most surveyed habitat (80%) in traditional ecological stud-
ies (N = 37), while most remote sensing studies (N = 50) 
covered entire reef systems (68%) (Fig. 5). Notably, the 
reef flat, which often accounts for the largest proportion 
of a reef by area (Yamano et al. 2001; Lutzenkirchen et al. 
2023), received relatively little attention by traditional 
coral reef ecology, with only 30% of studies specifically 
mentioning this habitat (Fig. 5). While only 14% of remote 
sensing studies explicitly mention this geomorphic zone, 
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it would be encompassed within the 81% of studies oper-
ating across entire reef systems (Fig. 5). In contrast, the 
smallest of all geomorphic zones on reefs by area, the reef 
crest (at 3% area), was barely assessed by remote sensing 
studies (1%) but received moderate attention by coral reef 

ecologists (26%) (Fig. 5). There were also temporal scale 
constraints, with most studies being single, one-off studies 
(62%). Only 38% of all studies from either field included 
multiple years.

Fig. 3   A Map showing the locations of the major reef regions (Allen 
Coral Atlas 2022). B Graph comparing the mapped reef area (km2) 
(presenting the mapped area of the benthic classes Coral/Algae, 
Rock, and Rubble; sourced from Allen Coral Atlas 2022) of each 

region) to the number of studies included in this analysis from each 
field. The numbers and corresponding name of each major region 
labeled on the map are displayed at the bottom
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Discussion

Unsurprisingly, despite their shared focus on the reef 
benthos, we found that traditional coral reef ecology and 
remote sensing studies generally use different approaches 
and address distinct questions. Integration between the two 
fields is increasing but to-date there are relatively few studies 
using a linked approach, that combines in-water and aerial 

sensor-based methods, to upscale ecological observations to 
the reef-scape level. While not all coral reef ecosystem func-
tions occur at the reef scale (i.e., across multiple reef habi-
tats), negating the need for wholesale upscaling, this lack 
of integration to-date shows that our understanding of coral 
reef systems and their functioning is not easily translatable 
to larger scales. This is concerning, as threats to these sys-
tems are steadily increasing in magnitude. Below, we discuss 

Fig. 4   A Proportion (%) of 
focal questions answered by 
traditional coral reef ecology 
studies (blue) (N = 100) and 
remote sensing studies (orange) 
(N = 139). B Relative propor-
tion (%) of methodological 
approaches employed by tradi-
tional coral reef ecology studies 
(blue) (N = 88) and remote sens-
ing studies (orange) (N = 112). 
Note, when studies addressed 
multiple focal questions, each 
of these instances was treated 
as distinct observations in the 
dataset
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the limitations of each field and outline a joint approach for 
future research and development that could enhance the util-
ity of both fields and provide a basis for positive synergies.

Traditional coral reef ecology

We found that studies in traditional coral reef ecology pre-
dominantly employed methods that aim to directly quantify 
organisms on a very fine taxonomic scale, i.e., genus and 
species. Such detailed in-situ assessments are valuable to get 
a high-resolution picture and to make inferences that may 
help to identify causal relationships and responses to threats 
(Hughes et al. 2017; Bellwood et al. 2019a). High-detail 
data enable us to predict the future impact of disturbances 
on ecosystem functioning in a causal and robust manner, 
especially at the community and population scale.

However, the greatest problem in upscaling these high-
resolution observations is that the delivery of functions by 
coral reef organisms is not homogenously spread across 
reef scapes (Streit et al. 2019; Tebbett and Bellwood 2020), 
emphasizing that there is not one unifying scale at which to 

measure all processes (Holling 1992; Levin 1992; Wu 2004). 
For example, detritivory delivered by Ctenochaetus striatus, 
a reef surgeonfish, was shown to occur over less than 28% 
of the entire reef-scape (Tebbett and Bellwood 2020). Thus, 
where we measure shapes what we understand. While cer-
tain ecosystem functions may occur at smaller scales and 
provide insights into broader patterns, measuring in high 
detail everywhere is impossible. Despite coral reef ecolo-
gists’ substantial effort to broaden their observations’ scope 
and scale, this review identified that study effort is unevenly 
distributed both at the reef-scape scale and at global levels. 
Consequently, as researchers, we need to acknowledge that 
the scale of our research ultimately constrains the scale of 
our understanding and predictions.

For example, traditional coral reef ecology studies pri-
marily target the reef slope, a structurally complex habitat, 
which often supports the highest fish densities and coral 
cover (Wismer et al. 2009; Oakley-Cogan et al. 2020). While 
covering less than a third of the total reef area (when meas-
ured above 20m depth), the reef slope was the focus of 80% 
of all traditional coral reef ecology studies that specified a 

Fig. 5   Comparing the proportion of studies that allocated specific 
geomorphic coral reef zones as their area of operation from the fields 
of traditional coral reef ecology (blue) (N = 48, 45%) and remote 
sensing (orange) (N = 75, 33%). The size of red circles represents the 

average proportional area (%) of each reef habitat based on the aver-
age mapped area of those zones for all reefs of the GBR and Torres 
Strait as mapped by the Allen Coral Atlas (2022)
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habitat. However, relying on a single site or geomorphic 
zone to represent an entire reef overlooks critical within-
reef variability. A long-term study on Heron Island on the 
GBR spanning 16 years across 31 sites, including 567 sub-
sites, revealed significant variation at multiple scales, span-
ning from the entire reef-scale to smaller subsite divisions 
(Roelfsema et al. 2021a). Accordingly, recent papers have 
highlighted the constraints placed on our understanding of 
coral reef functioning by the limited spatial and temporal 
distribution of study effort, which often focuses on only a 
limited subset of available shallow reef habitats (Rocha et al. 
2018; Bellwood et al. 2020; Collins et al. 2022; Kench et al. 
2022; Tebbett et al. 2023a). For instance, we found that the 
reef flat, which may play a significant role in reef function-
ing, and is typically the largest reef habitat in terms of area 
(Bellwood et al. 2018), is often underrepresented in tradi-
tional coral reef ecology studies (Bellwood et al. 2020; Teb-
bett et al. 2023a). In a recent global assessment of coral reef 
benthic composition change based on 24,000 observations 
over 22 years, Tebbett et al. (2023a) found that only 7% of 
the data were derived from reef flat observations. Likewise, 
less than a quarter of all reef ecology studies included our 
analysis investigated the reef flat.

Beyond such biases, or selective focus on specific reef 
habitats, we distinguished regional hotspots of research 
effort on a global scale. Most coral reef ecology studies 
took place in a few well-established research areas with 
existing infrastructure (i.e., research stations), that facilitate 
effective sampling. These infrastructure patterns may drive 
local overrepresentation and possibly ecological bias – not 
because of ecological factors but ease of access (Hedley 
et al. 2016). In addition, published papers may be biased 
toward countries and organizations with resources to support 
publication, potentially overlooking research conducted in 
nations with more limited financial means. Few ecological 
studies were able to survey entire reef systems regionally or 
multiple regions on a global scale.

In sum, these results indicate that traditional coral reef 
ecology studies are valuable but somewhat limited in their 
extent and ability to be upscaled, as observations of organ-
isms and their environments are often spatially sparse. They 
are frequently conducted at scales (spatial, temporal, or the-
matic) that are chosen subjectively and often dictated by 
practical factors such as access, time or costs, rather than by 
the ecosystem processes investigated. These challenges may 
lead to a considerable mismatch (of an estimated 5.6 orders 
of magnitude; Estes et al. 2018) between the scales at which 
ecologists conduct research and the areas their observations 
are supposed to represent (Wheatley and Johnson 2009; 
Lecours et al. 2015; Estes et al. 2018). Ecologists acknowl-
edge the disparity between collected samples and the result-
ing inferences drawn from them. To address this disparity, 
statistical techniques are frequently employed (e.g., Brown 

et al. 2021; Castro-Sanguino et al. 2021; Edgar et al. 2023). 
Nonetheless, the efficacy of a model and its transferabil-
ity heavily depend on the quality of the underlying data it 
relies upon (Yates et al. 2018). The potential for substantial 
enhancement in model performance lies in the improved 
spatial representation of data. Such enhancement becomes 
even more crucial when considering the inherent spatial 
heterogeneity, patchiness, and hierarchical structure within 
ecosystems. Changes in scale can unveil different drivers of 
patterns and processes (Wiens 1989; Holling 1992; Levin 
1992; Wu and Li 2006). Consequently, the presumption that 
observations made in a single reef habitat can aptly repre-
sent an entire reef-scape can introduce scale-related artifacts. 
These mismatches between ecological, observational, and 
analytical scale, ultimately hinder the detection of causal 
relationships in macroecological patterns (Wheatley and 
Johnson 2009; Lecours et al. 2015) and the formation of 
effective management responses (Bellwood et al. 2019a).

If unidentified, such scale artifacts can become wide-
spread and lead to fundamental ecological misinterpreta-
tions. We found that most (95%) traditional ecological 
studies used direct observation techniques which are labor 
intensive to collect and analyze, while also being limited 
to restricted spatial and temporal scales. These limitations 
are likely to cause mismatches among scales. For instance, 
recently, discrepancies across both temporal and spatial 
scales have been found to drive the identified occurrence of 
coral reef phase shifts (Crisp 2022; Crisp et al. 2022). As a 
result, the reporting of phase shifts in the coral reef literature 
may have been overrepresented because most studies detect-
ing phase shift occurrences did not persist long enough to 
capture reverses (i.e., bidirectional change), thus interpreting 
short-lived blooms as shifts (Crisp et al. 2022). Spatially, 
the detectability of phase shifts was highly dependent on the 
scale of sampling, with a decrease in apparent phase shifts 
as spatial scale increased (Crisp 2022).

Remote sensing

Remote sensing approaches may help to address the problem 
of scale in ecological coral reef studies (Hedley et al. 2016; 
Kutser et al. 2020). Unlike traditional in-situ studies, our 
results show that remote sensing studies can assess entire 
reef systems, even in remote locations, and can encompass 
multiple geographic regions globally. Over 60% of remote 
sensing studies in this review assessed entire reef-scapes, 
rather than specific reef habitats. This offers the opportunity 
to evaluate benthic changes across diverse spatial, temporal, 
and thematic scales (Lecours et al. 2015; Hedley et al. 2016; 
D’Urban Jackson et al. 2020).

Accordingly, our results show that remote sensing studies 
have made significant progress in upscaling observations 
to reef-scape scales by combining approaches and linking 
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methodologies. This progress is driven by advances in 
medium and high-resolution sensors, such as satellites, and 
UAVs, as well as in-water photogrammetry studies (Ferrari 
et al. 2016; Bennett et al. 2020; Roelfsema et al. 2021b; 
Remmers et al. 2023). The Allen Coral Atlas (2022), a 
global coral reef mapping project, is an example of recent 
developments. This project used Planet Dove imagery (3 m 
pixel resolution) and a ‘Reef Cover’ classification (Kennedy 
et al. 2021) to map all coral reef systems on Earth. By using 
uniformly defined algorithms and classification systems, this 
is the first to create globally consistent benthic and geomor-
phic reef classes.

Maps are powerful tools for conveying complex spatial 
information to diverse audiences (Stieb et al. 2019). While a 
single map can offer a snapshot of a specific reef or marine 
community, a series of maps can be an effective monitor-
ing tool to track changes in entire coral reef systems across 
extended temporal and spatial scales (Hedley et al. 2016; 
Hamylton 2017). However, only a minority (17%) of the 
remote sensing studies analyzed in this review employed 
multiple time steps. Furthermore, to maximize the utility 
of time-series analyzes, accuracy, i.e., the consistent cor-
rect identification of actual features, is key. Ground-truthing 
fieldwork is commonly used in remote sensing mapping 
studies to train and validate classification algorithms by 
conducting georeferenced surveys (Roelfsema and Phinn 
2010; Hamylton 2017).

Despite improvements, aerial and satellite remote sensing 
products are often still limited in their ability to provide an 
ecological understanding of coral reef systems. Most remote 
sensing studies are concerned with benthic mapping, but as 
spatial extents increase, spatial and taxonomic resolution 
decreases accordingly. Thus, simply mapping broad benthic 
classes does not measure the ecological status of the benthos 
(Hedley et al. 2016). Without empirical ecological in-situ 
data and multiple time steps, they at best, detect changes, 
not the cause of change, which is key when developing man-
agement responses. Furthermore, mapped benthic classes 
derived through aerial and satellite remote sensing technol-
ogy are often based on spectral signatures, restricting accu-
rate datasets to shallow reef zones due to the spectral inter-
ference of water. Moreover, the spectral similarity of benthic 
organisms, such as algae and coral, makes it extremely dif-
ficult to separate them (Knudby et al. 2010; Kutser et al. 
2020). While not specifically assessed in this review, hyper-
spectral sensors, with their expanding capabilities and the 
ability to assess a narrower range of spectral bands, hold the 
potential to enhance discrimination of benthic components 
(Bajjouk et al. 2019; Dierssen et al. 2021). Beyond spectral 
limitations, submergence and light attenuation in the water 
column also pose significant challenges for aerial and satel-
lite remote sensing (Purkis 2018). Despite improvements in 
sensor capabilities, including global coverage, higher spatial 

and temporal resolution (Hedley et al. 2016; Kutser et al. 
2020), accurately distinguishing spectrally similar substrata 
in a heterogeneous environment modulated by variable water 
depth and quality remains a major challenge (Lucas and 
Goodman 2015; Purkis 2018). Even moderate-spatial and 
high-spatial resolution sensors are often unable to reliably 
differentiate benthic groups, such as algae and hard coral. 
As a result, aerial and satellite remote sensing studies have 
difficulty detecting the main ecological transformation on 
coral reef systems (i.e., algae to/from coral; Tebbett et al. 
2023a) (cf. Cornet and Joyce 2021). This predicament is 
reflected in the distribution of focal questions identified 
herein. While most traditional in-water ecological studies 
address community composition, possibly elucidating the 
response of individual species or groups to environmental 
variables, most remote sensing studies employing aerial sen-
sors are currently limited to mapping broad benthic classes 
(i.e., coral and/or algae as one class). Consequently, there is 
a mismatch between aerial and satellite remote sensing data 
sets, and the eco-physiologically based demands of potential 
end users (i.e., ecologists and reef managers) (Kutser et al. 
2020).

To establish a functional and mechanistic understand-
ing of coral reef systems and their changes, integrating 
remote sensing studies with empirical ecological in-situ 
data is essential. This gap is being effectively bridged using 
relatively new techniques, particularly in-water photogram-
metry, which plays a crucial role in expanding quantitative 
data on structural complexity (Friedman et al. 2012; Figueira 
et al. 2015; Ferrari et al. 2016; Pygas et al. 2020; Remmers 
et al. 2023). These techniques actively leverage in-water 
remote sensing technology to unite ecological observations 
with advanced tools, promising a more comprehensive and 
holistic comprehension of intricate ecosystems like coral 
reefs. However, comparable links at larger extents afforded 
by aerial and satellite remote sensing, remain elusive.

Future directions

As human-induced stressors continue to reshape ecosystems, 
coral reefs are particularly vulnerable (Hughes et al. 2017; 
Bellwood et al. 2019a; Woodhead et al. 2019). To under-
stand and manage these fragile ecosystems in the Anthropo-
cene, we may benefit from novel approaches and the integra-
tion of scientific disciplines (Dornelas et al. 2019; Williams 
et al. 2019). Indeed, as threats escalate in scale, it is essential 
to establish dynamic relations and to upscale observations 
by combining multiple tools that vary in scale and resolution 
(Dornelas et al. 2019).

Below we identify approaches that may enable us to 
harness the best of both traditional coral reef ecology and 
remote sensing fields, offering the greatest potential to 
address the scale mismatch between coral reef research and 



	 Coral Reefs

1 3

anthropogenic threats by rapidly upscaling observations and 
inferences. Shallow reef environments (i.e., reef flats and 
crests) offer the optimal habitats for these upscaled studies 
as they impose the fewest limitations for aerial and satel-
lite remote sensing (Hedley et al. 2016; Purkis 2018; Kutser 
et al. 2020). Furthermore, these habitats are ecologically 
critical (Kench and Brander 2006; Bellwood et al. 2018), 
yet are often underrepresented in coral reef ecology stud-
ies (Bellwood et al. 2020; Kench et al. 2022; Tebbett et al. 
2023a). To understand coral reef ecosystem functioning on 
regional and global scales, in-situ measurements, which pro-
vide the finest detail but present multiple trade-offs and a 
lack of scalability, need to be linked directly (in space and 
time) with multiple sensors that are less detailed in resolu-
tion but offer effective and continuous large spatial coverage 
(Fig. 6) (Calders et al. 2020).

For effective cross-scale work, combining ground-tru-
thed remote sensing with high-detail ecological observa-
tions in shallow reef settings, like inner and outer reef flats, 
is crucial. To ensure accurate benthic maps from moder-
ate to high-resolution (< 3m) satellite imagery, georefer-
enced images could be taken along transects or quadrats, 

estimating benthic structure and organism abundance in-
situ (e.g., Roelfsema et al. 2021b). Several studies have 
successfully upscaled in-situ ecological measurements 
via remote-sensed benthic maps (e.g., Doo et al. 2017; 
Hamylton et al. 2017; Williamson et al. 2021) (Fig. 6). 
This approach appears to be particularly promising with 
the possibilities to expand on these concepts, combining 
the strengths of both fields for ongoing cross-calibration 
between sensors and upscaling of ecological observations 
to large reef-scape scales (Fig. 6). These methods involve 
“small-area-high-resolution” in-situ observations and in-
water technologies (< 1cm resolution) across shallow reef 
sites to provide ecological context and ground-truthing, 
ensuring accurate delineation of key benthic components 
and data reliability (Fig. 6A, B), while recent “large-area-
lower-resolution” (< 3m) imagery and mapping methods 
further enhance the reliability of upscaling ecological 
observations and novel metrics (Fig. 6C).

While combining these approaches will ensure more 
empirically linked upscaling onto larger reef-wide scales, 
the utility of each approach may be enhanced by:

Fig. 6   Schematic summary outlining a potential approach using 
in-situ assessments, as well as multiple layers of sensors of varying 
resolution, to bridge scientific disciplines and upscale observations 
onto reef-scape scales. After multiple shallow reef areas are sur-
veyed using a ‘small-area-high resolution’ sensor (A) and ground-

truthed using in-situ assessments and sub-cm resolution in-water 
remote sensing technology (B), observations can be extrapolated and 
upscaled using a ‘large-area-lower-resolution’ sensor (C). Geomor-
phic map in (C) taken from (Phinn et al. 2012)
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1.	 Standardizing procedures in coral reef ecology to 
enhance data reproducibility, facilitating robust com-
parisons across scales and disciplines. While local and 
regional ecological monitoring protocols may be stand-
ardized, global standardization will improve comparabil-
ity. The MERMAID project (https://​datam​ermaid.​org/), 
an open-source application that gathers and manages 
real-time coral reef health data, provides an example 
of this approach. However, existing long-term benthic 
databases such as Caribbean Coastal Marine Productiv-
ity or National Oceanic and Atmospheric Administration 
lack uniformity, hindering cross-validation, particularly 
for finer-resolution benthos categorization (Tebbett et al. 
2023a, 2023b). Consolidating these datasets under a 
common protocol would increase the value of data for 
training and validation of remote sensing mapping algo-
rithms (Lyons et al. 2020).

2.	 The reliable recording and reporting of survey sites is 
crucial to data sharing and study replication. Therefore, 
including the survey start location using global posi-
tioning system (GPS) and indicating the direction of the 
surveys would significantly improve the spatial accuracy 
and reproducibility of ecological studies.

3.	 Technological advances, especially in the field of remote 
sensing, have opened numerous new frontiers in the 
marine realm. However, moving forwards, we need to 
ensure that new techniques are responding to critical 
questions. Despite increasing spatial resolution, current 
methodological advances are largely used for the same 
applications. To fully harness the capacity of recent 
technological innovations and advance our understand-
ing of coral reef functioning in the Anthropocene, we 
must ensure that critical questions are being addressed 
and that technology is being developed to address 
these key questions, rather than retrofitting questions to 
new tools. We need to move beyond traditional stud-
ies that describe patterns to a deeper understanding of 
the functional and mechanistic basis of change. Inte-
grating remote sensing and coral ecology studies may 
not directly yield causal insights. However, it has the 
potential to enhance our comprehension of complex 
relationships (Wedding et al. 2019). This integration, 
particularly when spatially explicit, can offer insights 
into seascape dynamics.

4.	 Just as certain parameters of coral biology, such as 
coral respiration, can only be accurately measured in 
controlled laboratory experiments, with specialized 
equipment, there are certain parameters of coral reef 
processes that cannot be reliably measured using broad-
scale remote sensing methods, no matter how advanced 
the technology becomes. For instance, discerning fine-
scale rugosity (< 1 m) of coral colonies or distinguishing 
between live corals and dead corals coated in filamen-

tous algae can be challenging using aerial and satellite 
remote sensing data, often necessitating optimal condi-
tions. Therefore, it is crucial for coral reef ecologists, 
biologists, and remote sensing scientists to collaborate 
and develop new and meaningful indicators or prox-
ies for coral reef processes that are applicable to both 
remote sensing and ecological methods and that oper-
ate at shared scales. Recent success has been shown in 
employing high-resolution (< 1 m) airborne sensors such 
as LiDAR to accurately describe broadscale coral habitat 
complexity (Asner et al. 2020; Harris et al. 2023). Fur-
thermore, the utilization of automated image annotation 
for coral reef monitoring, which demonstrates accurate 
estimations of benthic abundance with a high agreement 
of 97%, significantly expedites data analysis by over 200 
times and reduces costs by 99% (González-Rivero et al. 
2020). Approaches like these enable the translation of 
detailed in-water measurements to broadscale remotely 
sensed methods with increased accuracy and relevance.

5.	 To advance our understanding of ecosystems and their 
vulnerability in the Anthropocene, increased public 
availability of datasets is crucial (Calders et al. 2020). 
However, despite the benefits of open science, data 
sharing lacks incentivisation and it is often perceived 
to have potential negative ramifications (Perrier et al. 
2020; Gomes et al. 2022). To promote public availability 
of datasets, data source citations in perpetuity, a grow-
ing component in the field of remote sensing, as well as 
open-source databases such as MERMAID, could pro-
vide incentives that would ensure collaboration, promo-
tion, recognition, and reward. Without these incentives, 
the collection of new data is likely to be impeded.

Overall, our review of studies investigating the benthic 
habitat of shallow water tropical reefs suggests that a gap 
exists between traditional coral reef ecology and remote 
sensing studies. Although advances have been made, espe-
cially through in-water photogrammetry, drones, and high-
resolution satellite mapping, a more concentrated approach 
is recommended to effectively bridge this gap, especially at 
large scales. Coral reef ecologists rely on detailed observa-
tions that may not match the spatial scale needed for robust, 
broadly applicable inferences about complex and dynamic 
relationships within seascapes. Bound by logistical chal-
lenges and resource-intensive high-detail data, they often 
focus on a subset of habitats, inevitably creating scale arti-
facts. Remote sensing studies can supply continuous data-
sets across a range of scales and broader extents, offering a 
potential way to assess and study the scale of changes in the 
Anthropocene. However, they need ongoing spatially and 
temporally matched ecological data to ground-truth obser-
vations, ensure accuracy, and start the process of exploring 
mechanistic explanations for change. As anthropogenically 

https://datamermaid.org/
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caused stressors continue to escalate in scale, our study 
suggests that bridging these two scientific disciplines will 
be challenging but offers promising ways to upscale obser-
vations to entire reef-scape scales. We identify potential 
avenues for increasing the utility of each field, recognizing 
limitations and emphasizing collaborative approaches. In 
a world characterized by intensifying global change, such 
bridged approaches, integrating multiple tools at varying 
levels of resolution and scale, will be crucial to advance our 
understanding and management of coral reef functioning in 
the Anthropocene.
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