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Abstract 

In the past, age classes in A canthaster planci (L.) populations have been interpreted 

from modes in size frequency distributions. The relationship between size and age 

has continued to be used in studies despite increasing evidence of growth 

characteristics which are inconsistent with inherent assumptions. This approach was 

rationalised because the ability to determine age is fundamental to understanding the 

ecology and life history of this unique species, capable of developing maSSIve 

outbreak populations and incurring widespread mortality of hard coral speCIes. 

Therefore, the aims of the project were to develop a valid method of age 

determination and employ it to investigate the population dynamics, the morphometry 

of individual and skeletal growth and other life-history characteristics of several 

populations from the Western Pacific region. 

Valid age determination in echinoderms has been achieved almost exclusively with 

echinoid species through skeletochronometric techniques. Periodic growth rings are 

generally found in larger skeletal elements such as test plates, since the echinoderm 

skeleton consists of an open tridimensional network, the calcitic stereom. However, 

the Asteroidea characteristically develop a skeleton of smaller ossicles which allows 

for a wide range of flexible movement, for locomotion, climbing and food handling. 

An exception is A. planci which has large spines that rest on pedicels, rooted in the 

aboral body wall, that do not restrict its habits. 

The aboral spine ossicles of adult A. planci have a linear growth pattern unlike the 

mode of development previously reported for echinoids. Numerous growth lines, 

perpendicular to the long axis were evident in spine sections and confirmed with 

tetracycline staining, apparently caused by frequent growth episodes. Spine growth 

in adults is by elongation with addition of new stereo in at the base, preserving the 

entire growth history. Broad pigment bands develop parallel to the growth lines and 

are visible on the ossicle surface after the removal of soft tissues. Therefore, it was 

hypothesised that spine pigment band counts (SPBC) can be used to determine age 

. in A. planci, commencing after sexual maturity, in the third (2+) year. At this time, 
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body growth slows and spine ossicle growth changes from enlargement in three 

dimensions to a mode primarily of elongation. Therefore, one SPBC (light and dark 

band pair) = 3+ years, two SPBC = 4+ years, etc,. A biosynthetic mechanism was 

proposed to explain the functional role of the pigment banding process. 

Field studies were conducted on Davies Reef, Central GBR, to validate the SPBC 

method. They consisted of mark\recapture exercises and collections of morphometric 

data for seasonal and longer-term growth analyses. The recapture rate for marked 

individuals was 3.5%. Twelve of thirteen recaptured individuals whose release 

periods were at least twelve months supported the validation of age classes 3+, 4+ 

and 5+ years. A further ten recaptures were obtained with release periods of less 

than twelve months, with incomplete band pair formation, also supporting the method. 

Further independent evidence comes from morphometric results, including: annual 

incremental growth in the SPBC classes; a significant increase in mean spine ossicle 

length over the 38 month study period; consistent estimates of the growth constant 

(K = O.039mo:l) between the recapture and morphometric analyses; and the 

coincidence of the timing of the outbreak from survey results with the estimated age 

of the first outbreak cohort. 

The outbreak population density on Davies Reef was approximately 420ha: 1• This 

is at the lower end of the scale of outbreak sizes, and consisted of four principal 

cohorts, estimated to have settled between 1983 and 1986. A significant reduction 

in population size over the study period, following a profound decline in coral cover, 

was caused by high mortality rates in the post-outbreak cohorts. Lower mean 

asymptotic body sizes in each successive cohort occurred as a response to the 

increasingly limited resources. 

A. planci can grow to well over 60cm in diameter and 4kg in wet weight, but more 

often exhibits lower ranges, well below maximum attainable size. The mode of 

growth varies between habitat-dependent, asymptotic growth ( determinate) and plastic 

asymptotic growth (indeterminate). Therefore, determinate growth occurs when 

constraints are imposed on an underlying potential for indeterminate growth. Further 
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physiological studies are required to describe precisely how A . planci reach very large 

body sizes under solely intrinsic resource limitation. 

Sexually dimorphic characteristics were found in the Davies Reef outbreak 

population, where male starfish had lower gonad weights, and longer lifespans, 

promoting high fertilization rates during the decline phase of outbreaks. Higher 

estimated reproductive effort and a seasonal oscillation in whole body diameter of 2 

to 3cm occurred in the post-outbreak cohorts. Therefore, larger body sizes in the pre­

outbreak cohorts allowed for storage of relatively greater energy reserves to offset 

fluctuations in body size and the energetic demands of reproduction, promoting 

iteroparity and longevity. When resources became limited in higher densities, body 

reserves were drawn upon more heavily in order to support the increased reproductive 

effort causing resorption of body wall and skeletal tissues, resulting in shrinkage and 

presumably reduced lifespan. 

Among the Western Pacific populations studied (Suva Reef, Guam and Davies Reef) 

reproductive tactics were described as "big-bang iteroparity" (Davies Reef and Suva 

Reef), approaching semel parity in higher density outbreaks, and iteroparous with a 

lower reproductive output (Guam). A life-history strategy of phenotypically 

polymorphic bet-hedging is proposed for A. planci, which varies according to sex, 

population density, the pattern of mortality from stress (decreased production), and 

disturbance (loss of biomass). Therefore, A. planci owes its success to the ability to 

vary its channelling of resources into the various functions of growth, somatic 

maintenance, protection and reproduction. To maintain this variable strategy between 

iteroparity and semelparity implies that periodic outbreaks of A . planci occur within 

regions under natural conditions. The immediate concerns of management agencies 

regarding the prediction of outbreaks should focus on the dynamics of expanding 

populations i.e. those leading to primary outbreaks. These issues can only be 

addressed through the implementation of long-term population studies, including the 

assessment of age structure, particularly in areas where primary outbreaks are 

suspected to occur. 
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Ust of Figures 

CHAPTER 2. Validation of the SPBC method of age determination 

Figure 2.1. Map of the Western Pacific Region with location of seven populations 

used in the comparative morphometric study between spine ossicle length and whole 

body diameter. 

Figure 2.2(a-h). 

(a) Aboral spine ossicle and pedicel from the aboral arm of A. planei. The spine 

ossicle shows 6 pigment bands on its shaft and a pigment capped spine apex (a). The 

pedicel has a flanged root (r) at its base and pigment bands occur toward the tip (t). 

The base of the spine ossicle (b) rests on the tip of the pedicel (t), where the whole 

spine articulates. (bar = 10mm) 

(b) Section of the base of an aboral spine ossicle, showing stereom growth stained 

with tetracycline. The stained region lies parallel to the basal surface (b). (bar = 

O.Smm) 

(c) Section of the tip of an aboral spine pedicel showing stereom growth stained with 

tetracycline. The stained region lies parallel to the surface of the pedicel tip. (bar 

= 0.7mm) 

(d) Longitudinal thin-section of an aboral spine ossicle demonstrating numerous 

growth lines parallel to the spine base (b) in both the medulla (m) and outer cortex 

(c). (bar = 0.3mm) 

(e) Longitudinal thin-section of aboral spine ossicle from A. planei raised in the 

laboratory (20 months). The developing structure of the medulla with linear 

arrangement of trabeculae (It) is distinct from the rest of the juvenile spine stereom. 

(bar = O.Smm) 
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(f) Adult aboral spme ossicle in longitudinal section showing detail of the 

intersection between the spine apex and shaft. The medulla (m) develops from the 

spine apex. The cortex (c) develops and expands from the remanent juvenile spine 

margins. (bar = 0.5mm) 

(g) Spine and pedicel ossicles from a juvenile A. planei reared in the laboratory (BD 

= 12cm) and an adult A. plane; (BD = cm) collected from Davies Reef, Central 

GBR. The spear-like spine apex has developed prior to the spine shaft in the older 

specimen. (bar = 10mm) 

(h) Aboral spines from one A. planei recaptured after 6 months on Davies Reef, 

Central GBR (October, 1988 to April, 1989 (A». Pigment bands are matched 

between the two sets of spines revealing the new spine growth and banding in the 

lower group of 3 spines. (bar = 10mm) 

Figure 2.3a-c. Spine ossicle samples from 3 marked and recaptured individuals which 

demonstrate the growth and banding pattern developed over 12 to 14 months; 

arrowheads indicate light bands (L) developed between dark bands (D) on the shaft 

after spine apex (scale approx. bar = 0.7mm): 

(a) Released 10/89, for 14 months (growth = D + L) 

(b) Released 10/89, for 18 months (growth D + L + D) 

(c) Released 3/90, for 14 months (growth L + D) 

(d) Recapture after identification in the field using two adjacent regenerated arms 

(arrows) which are smaller than neighbouring arms. and the spines are 

commensurately short (body diameter = 37cm). 
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Figure 2.4. Plot of linear regression for spine ossicle growth increment and spine 

ossicle length (at 0.5 x duration of the interim period) in 23 recaptured A. planci from 

Davies Reef (October, 1988 to December, 1991). Where the interim period is the 

time between release and recapture. 

Figure 2.5. (a) Relationship between spine ossicle length and estimated age (month) 

from the Davies Reef population, using samples October, 1988 and April, 1989; (b) 

Relationship between whole body diameter and estimated age (month) from the 

Davies Reef population, using samples October, 1988 and April, 1989. 

Figure 2.6. The effect of sample size on the coefficient of variation (CV %) for: (a) 

Spine ossicle length (mm); (b) Whole spine appendage (mm). 

Figure 2.7. The effect of sample size on the coefficient of variation (CV %) for: (a) 

Primary oral ossicle weight (g); (b) Secondary oral ossicle weight (g). 

Figure 2.8. The influence of starvation over six months on three morphometric 

variables: (a) Whole wet weight (g); (b) Whole body diameter (cm); (c) Underwater 

weight (g). 

Figure 2.9. (a) Plot of standardised residuals for multiple regreSSIOn model 

demonstrating a lack of residual trend in data after model has been fitted. (b) Plot of 

log transformed spine ossicle length (mm) and whole body diameter (cm) for seven 

populations sampled from the Western Pacific Region: Davies Reef, Central GBR 

(DA); Hook Island, Whitsunday Group GBR (HI); Lady Musgrave Reef (LM), 

Southern GBR; Tonga (TO), Central Pacific; Guam (GU) North West Pacific; Kiribati 

(KI) Central Pacific Lord Howe Island (LH), NSW; and Suva Reef, Fiji (SU), Central 

Pacific. 
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CHAPTER 3. The Davies Reef population study 

Figure 3.1 Serial map of the Central Section (GBR) showing the annual distribution 

of outbreaks of A. planci between 1983 and 1988. The position of the reef used for 

the population study is indicated: Davies Reef (October, 1988 to December, 1991). 

Figure 3.2 Size/frequency distributions of whole body diameter (BD) cm from 

Davies Reef (October 1988 to December 1991). 

Figure 3.3 Size/frequency distributions of whole spine ossicle length (S) mm from 

Davies Reef (October 1988 to December 1991). 

Figure 3.4 Size/frequency distributions of whole spine appendage length (WS) mm 

from Davies Reef (October 1988 to December 1991). 

Figure 3.5 Size/frequency distributions of spine pigment band counts (SPBC) from 

Davies Reef (October 1988 to December 1991). 

Figure 3.6 Size/frequency distributions of estimated age (AGE) from Davies Reef 

(October 1988 to December 1991). 

Figure 3.7 Size/frequency distributions of primary oral ossicle weight (PO) g 

estimated age (AGE) from Davies Reef (October 1988 to December 1991). 

Figure 3.8 Size/frequency distributions of secondary oral ossicle weight (PO) g 

estimated age (AGE) from Davies Reef (October 1988 to December 1991). 

Figure 3.9 Plot of fitted cubic spline curves (dotted) for whole body diameter (BD) 

and (T) in the principal cohorts (1984 to 1987) and overlay of combined mean plot 

(solid) with SE, over the 38 month study on Davies Reef (October, 1988 to 

December, 1990) 
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Figure 3.10 Plot of mean and SE of whole body diameter (BD) in each sample and 

(T) joined by straight lines in each cohort (1983 to 1988) over the study period on 

Davies Reef (October, 1988 to December, 1990). 

Figure 3.11 Plot of linear regressions (dotted) for spine ossicle length (S) and (T) in 

the principal cohorts (1984 to 1987) and overlay of combined means and SE with a 

cubic spline fit (dashed) and linear regression fit (solid), over the 38 month study on 

Davies Reef (October, 1988 to December, 1990) 

Figure 3.12 Plot of mean and SE of spine ossicle length (S) in each sample and (T) 

joined by straight lines in each cohort (1982 to 1988) over the study period on Davies 

Reef (October, 1988 to December, 1990). 

Figure 3.13 Plot of linear regressions (dotted) for whole spine appendage length 

(WS) and (T) in the principal cohorts (1984 to 1987) and overlay of combined means 

and SE with a cubic spline fit (dashed) and linear regression fit (solid), over the 38 

month study on Davies Reef (October, 1988 to December, 1990) 

Figure 3.14 Plot of mean and SE of whole spine appendage length (S) in each 

sample and (T) joined by straight lines in each cohort (1982 to 1988) over the study 

period on Davies Reef (October, 1988 to December, 1990). 

Figure 3.15 Plot of linear regressions (dotted) for primary oral ossicle weight (PO) 

and(T) in the principal cohorts (1984 to 1987) and overlay of combined means and 

SE with a cubic spline fit (dashed) and linear regression fit (solid), over the 38 month 

study on Davies Reef (October, 1988 to December, 1990). 

Figure 3.16 Plot of mean and SE of primary oral ossicle weight (PO) in each sample 

and (T) joined by straight lines in each cohort (1982 to 1987) over the study period 

on Davies Reef (October, 1988 to December, 1990). 
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Figure 3.17 Plot of linear regressions (dotted) for secondary oral ossicle weight (SO) 

and (T) in the principal cohorts (1984 to 1986) and overlay of combined means and 

SE with a cubic spline fit (dashed) and linear regression fit (solid), over the 38 month 

study on Davies Reef (October, 1988 to December, 1990). 

Figure 3.18 Plot of mean and SE of secondary oral ossicle weight (PO) in each 

sample and (T) joined by straight lines in each cohort (1983 to 1987) over the study 

period on Davies Reef (October, 1988 to December, 1990). 

Figure 3.19. Linear regression analysis of mean whole body diameter (cm) and 

estimated population density (ha.- I ) in four populations from the GBR region: Helix 

Reef (from Kettle, 1990); Davies Reef; Butterfly Bay, Hook Island; and Lady 

Musgrave Reef. 

Figure 3.20 Linear regression analyses of spine ossicle length (S) and estimated age 

(AGE) in three populations: Davies Reef (n = 1549); Butterfly Bay, Hook Island (n 

= 68); and Lady Musgrave Reef (n = 9). 

CHAPTER 4. 

Figure 4.1. Regional map of the Indo-Pacific with inset detail of the 5 study areas: 

Davies Reef (GBR), Suva Reef (Fiji) and the north western side of Guam with the 

positions of Hospital Point, South Tumon Bay and Double Reef. 

Figure 4.2. Size frequency distributions of whole body diameter (cm) for A. planci 

in five populations. 

Figure 4.3. Size frequency distributions of underwater weight (g) for A. planci in 

five populations. 

Figure 4.4. Size frequency distributions of whole wet weight (g) for A. planci in 5 

populations. 
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Figure 4.5. Size frequency distributions of spine ossicle length (mm) for A. planei 

in five populations. 

Figure 4.6. Size frequency distributions of whole spine length (mm) for A. plane; in 

five populations. 

Figure 4.7. Size frequency distributions of spine pigment band counts for A. planei 

in five populations. 

Figure 4.8. Size frequency distributions of estimated age (year) determined by spine 

pigment band counts for A. planei in five populations. 

Figure 4.9. Size frequency distributions of primary oral ossicle weight (g) (adjusted 

for number of arms per individual) for A. plane; in five populations. 

Figure 4.10. Size frequency distributions of secondary oral ossicle weight (g) 

(adjusted for number of arms per individual) for A. planci in five populations. 

Figure 4.11. Size frequency distributions of inter brachial ossicle weight (g) (adjusted 

for number of arms per individual) for A. plane; in five populations. 

Figure 4.12. Size frequency distributions of madre po rite ossicle weight (g) (adjusted 

for number of madreporites per individual) for A. plane; in five populations. 

Figure 4.13a-i. Plots of standardised residuals derived from ANOV A for nme 

variables in five populations of A. plane;. 

Figure 4.14. Allometric relationships between whole body diameter (cm) and eight 

morphometric variables (two whole body and six skeletal ossicle variables) for A. 

planci in five populations. 
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Figure 4.15. Allometric relationships between underwater weight (g) and eight 

morphometric variables (two whole body and six skeletal ossicle variables) for A. 

planci in five populations. 

Figure 4.16. Allometric relationships between whole wet weight (g) and eight 

morphometric variables (two whole body and six skeletal ossicle variables) for A. 

planci in five populations. 

Figure 4.17. Relationships between all estimated age groups using spine pigment 

band counts (year) and nine morphometric variables (three whole body and six 

skeletal ossicle variables) for A. planci in five populations. 

Figure 4.18. Relationships between estimated age groups> three years using spine 

pigment band counts and nine morphometric variables (three whole body and six 

skeletal ossicle variables) for A. planei in five populations. 

Figure 4.19a. Plot of standardised residuals of underwater weight (g) and whole body 

diameter (cm) for A. planei in five populations. 

Figure 4.19B. Linear regressions ofln (underwater weight) (g) and In (whole body 

diameter) (cm) for A. planei in five populations omitting estimated age < three years. 

Figure 4.20a. Plot of standardised residuals of whole wet weight (g) and whole body 

diameter (cm) for A. planei in five populations. 

Figure 4.20b. Linear regressions of In (whole wet weight) (g) and In (whole body 

diameter) (cm) for A. planei in five populations omitting estimated age < three years. 

Figure 4.21 a. Plot of standardised residuals of whole wet weight (g) and underwater 

weight (em) for A. planei in five populations. 4.21b. Linear regressions of In (whole 

wet weight) (g) and In (whole body diameter) (em) for 5 populations omitting 

estimated age < three years. 
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Figure 4.22. Linear regressions of In (spine ossicle length) (mm) and age (month) 

estimated by spine ossicle pigment band counts for A. planci in five populations 

omitting estimated age < three years. 

Figure 4.23a-d. Growth curves derived from; (a) whole body diameter (cm) and 

estimated age (month), (b) spine ossicle length (mm) and estimated age, (c) whole 

wet weight (g) and estimated age (month), and (d) underwater weight and estimated 

age (month) using spine ossicle pigment band counts in three Western Pacific A. 

p/anci populations; Davies Reef (GBR), Double Reef (Guam) and Suva Reef (Fiji) 

populations. 

Figure 4.24a-f. Standardised residual plots for final models estimated for six skeletal 

ossicle types for A. planci in five populations 

CHAPTER 5 

Figure 5.1. Percentage frequency histograms of gonad weights (g) in five A. planci 

populations from the Western Pacific region; (a) Davies Reef PRE group, (b) 

Davies Reef PST group, (c) Suva Reef, (d) Hospital Point, Guam, (e) South Tumon 

Bay, Guam, (f) Double Reef, Guam. 

Figure 5.2. Relationship between (GW) (g) and (WET) (g) for five A. planci 

populations from the Western Pacific region using the power equation, (GW) = a . 

(WET)b; for (a) testes weight, and (b) ovary weight; where (GW) = gonad weight 

(g); (WET) = whole wet weight; a and b are constants. 

Figure 5.3. Linear regression analyses of In (GWT) and In (WET) for male starfish 

in five A. planci populations from the Western Pacific region; where (a) is the 

residual plot for fitted values, and (b) is the regression plot. 
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Figure 5.4. Linear regression analyses ofln (GWO).and In (WET) for female starfish 

in five A. planet populations from the Western Pacific region; where (a) is the 

residual plot for fitted values, and (b) is the regression plot. 

Figure 5.5. Relationships between In (GW) and estimated age (AGE) in five A. 

planet populations from the Western Pacific region; where (a) testis weight, and (b) 

ovary weight. 

Figure 5.6. Relationships between In (AGWO) (ovary weight, adjusted for mean 

whole wet weight = 1636 g) and estimated age (AGE) in five A. planet populations 

from the Western Pacific region. 

CHAPTER 6 

Figure 6.1. A putative life-history strategy for A. planei; a phenotypically 

polymorphic bet-hedging strategy is determined by the post-settlement density, the 

levels of stress experienced, the reproductive schedule and various forces of mortality 

resulting in a continuum developed between the semelparous outbreaking pattern and 

the iteroparous long-lived pattern. 
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