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ABSTRACT 
Background: Web search data have proven to bea valuable early indicator of COVID-19 outbreaks. However, the influ-
ence of co-morbid conditions with similar symptoms and the effect of media coverage on symptom-related searches are 
often overlooked, leading to potential inaccuracies in COVID-19 simulations.
Method: This study introduces a machine learning-based approach to estimate the magnitude of the impact of media 
coverage and comorbid conditions with similar symptoms on online symptom searches, based on two scenarios with 
quantile levels 10–90 and 25–75. An incremental batch learning RNN-LSTM model was then developed for the COVID-19 
simulation in Australia and New Zealand, allowing the model to dynamically simulate different infection rates and trans-
missibility of SARS-CoV-2 variants.
Result: The COVID-19 infected person-directed symptom searches were found to account for only a small proportion of 
the total search volume (on average 33.68% in Australia vs. 36.89% in New Zealand) compared to searches influenced 
by media coverage and comorbid conditions (on average 44.88% in Australia vs. 50.94% in New Zealand). The proposed 
method, which incorporates estimated symptom component ratios into the RNN-LSTM embedding model, significantly 
improved COVID-19 simulation performance.
Conclusion: Media coverage and comorbid conditions with similar symptoms dominate the total number of online 
symptom searches, suggesting that direct use of online symptom search data in COVID-19 simulations may overestimate 
COVID-19 infections. Our approach provides new insights into the accurate estimation of COVID-19 infections using 
online symptom searches, thereby assisting governments in developing complementary methods for public health 
surveillance.
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Introduction

The emergence of a novel coronavirus, severe acute 
respiratory syndrome coronavirus (SARS-CoV-2), in 
December 2019 has led to a global pandemic with dev-
astating health and socio-economic impacts. According 
to the World Health Organisation (WHO), as of 1st March 
2023, more than 758 million people have been infected, 
and 6.8 million have died from COVID-19, the disease 
caused by SARS-CoV-2 [1,2].

In response to this unprecedented public health crisis, 
researchers have leveraged online search data to pro-
vide real-time information and early detection of COVID- 
19 cases [3–7]. Previous studies in the United States 
have found a significant correlation between online 
searches for COVID-19 symptoms and subsequent 
COVID-19 outbreaks [3]. Another study has estimated a 
15-day lag between online symptom search trends and 
COVID-19 case counts in nine countries [8]. These find-
ings suggest that online digital searches have the poten-
tial to improve the monitoring and forecasting of the 
COVID-19 epidemic and act as a valuable adjunct to exist-
ing COVID-19 surveillance systems [6,7]. Predominantly, 
the techniques in online search-based COVID-19 tracking 
analyses involves directly utilising an online search index 
within simulation models [3,4,6–8]. However, this 
approach often fails to adequately account for various 
confounding factors [5], which include (1) the presence of 
comorbid conditions that share similar symptoms with 
COVID-19 and (2) media coverage. Such omissions can 
potentially influence the interpretation of search data, 
leading to overestimating of COVID-19 case numbers. 
This highlights the need for a more nuanced approach to 
using online search data for disease tracking, where 
comorbidities and media influence are appropriately con-
sidered to improve the accuracy and reliability of results.

In particular, the presence of comorbid conditions 
with symptoms similar to those of COVID-19 can intro-
duce significant noise and bias into data derived from 
online symptom searches and may lead to overestimat-
ing COVID-19 cases. Prior research shows a significant 
rise in online searches for symptoms like cough and 
sore throat during the influenza season [9–11]. This 
study focuses on Australia and New Zealand, where flu 
season generally lasts from May to October [12,13]. 
Consequently, there’s an expected spike in online 
searches for symptoms common to the flu and other 
comorbid conditions during this period. This increase 
could lead to inflated COVID-19 infection estimates if 
online symptom search indexes are used directly in 

simulation models, thus affecting the accuracy of the 
results.

In addition, the impact of media coverage in shaping 
public search behaviours and patterns is often over-
looked in these analyses [5]. Studies have shown that 
media influence can significantly alter search behaviours 
and patterns [14]. For evidence, studies of suicide have 
shown that televised depictions of suicide methods can 
lead to an increase in both suicides and suicide 
attempts by these methods [15,16]. Similarly, the devel-
opment of media technology has not only broadened 
access to information about COVID-19 but has also 
shaped search behaviour. A recent study found an associ-
ation between COVID-19 media coverage and polarisation 
of attitudes in the US [17]. In addition, research suggests 
that social media, particularly Twitter, influences individu-
als’ attitudes and behaviour towards COVID-19 [18]. As 
media coverage of COVID-19 increases, people may 
become more aware of the symptoms and more likely to 
seek information, driving up the volume of online 
searches [19]. Therefore, it is vital to consider these fac-
tors, together with the impact of increased media cover-
age on symptom-related online searches, when analysing 
and using online search data in COVID-19 simulation 
models.

Furthermore, it is worth noting that a World Health 
Organisation (WHO) finding highlights the delayed onset 
of COVID-19 symptoms, with an incubation period of up 
to 14 days and subsequent infections affecting the fol-
lowing 14 days [20]. In other words, the number of daily 
infections of each row in our dataset may influence the 
number of infection cases in the following 14 consecu-
tive days. Additionally, there are 13 identified variants of 
SARS-CoV-2 in circulation, including notable strains such 
as Delta and Omicron, each with different rates of infec-
tion and transmissibility [21,22]. However, traditional 
machine learning and deep learning training methods 
respond to a randomly divided dataset to create a train-
ing and test set. The training set is used to build the 
model, while the test set is used to validate the model. 
Consequently, the traditional approach of randomly 
splitting datasets to train machine learning and deep 
learning-based simulation models does not provide reli-
able results in COVID-19 concurrent infection, as it is 
incapable of capturing the logical progression of the 
infection process. Recent studies have also confirmed 
the inadequacy of the traditional one-off training 
method for simulating COVID-19 infection cases [23]. It 
is imperative to identify a new training method for the 
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simulation model that reflects the infection and trans-
mission patterns of COVID-19.

Therefore, this study has two main aims: (1) To intro-
duce a novel machine learning-based approach to ana-
lyse the influence of comorbid conditions and media 
coverage on online symptom search data. Departing 
from conventional health-focused machine learning 
models that output a singular value denoting influence, 
our approach, leveraging quantile regression and 
Extreme Gradient Boosting (XG Boost), estimates a spec-
trum of influence. This provides a more dynamic and 
detailed perspective on the interplay between comorbid 
conditions, media impact and online searches for 
COVID-19 symptoms, ensuring a comprehensive analysis 
beyond simplistic numerical indicators. This approach 
allows the identification of search trends specifically 
attributable to individuals seeking information due to 
COVID-19 infection. (2) To develop a sophisticated recur-
rent neural network (RNN) model, enhanced with long 
short-term memory (LSTM) capabilities, using an innova-
tive incremental batch learning training method. In this 
method, batches are created for each two-week period 
to accurately simulate the timeline of COVID-19 infec-
tion. This training approach will be designed to simulate 
COVID-19 infections in Australia and New Zealand, 
allowing continuous learning and adaptation to the 
varying infection rates and transmissibility characteristics 
of different COVID-19 variants. Meanwhile, the RNN- 
LSTM model will be enriched with the estimated range 
of influence of comorbid conditions and media coverage 
gathered from the first part of this study. This integra-
tion aims to create a more responsive and accurate 
model for simulating COVID-19 infection dynamics, cap-
turing the nuanced effects of external factors on infec-
tion trends.

Overall, this approach will allow for more responsive 
and accurate modelling of pandemic progression in 
these regions. This paper also provides valuable insights 
into defining the COVID-19-specific component of the 
online symptom search and accurately estimating 
COVID-19 infection cases from online search data.

Materials and methods

Data sources

This study collected data from multiple sources for 
Australia and New Zealand over 30 weeks, spanning 
from August 1, 2022, to March 2, 2023. According to the 
information revealed by the United States Centres for 
Disease Control and Prevention (CDC) and the World 

Health Organisation, the symptoms caused by COVID-19 
included fever, cough, sore throat, runny nose, head-
ache, diarrhoea, etc [24,25]. Hence, this study extracts 
the search indexes for these symptoms from Google 
Trends [26], which reflect the frequency of specific 
search terms relative to the total volume of searches on 
Google over a given period. In addition, the COVID-19 
dataset on media coverage trends in Australia and New 
Zealand was obtained from MediaCloud [27], an open- 
source media analysis platform that tracks, archives and 
makes searchable content from hundreds of newspapers 
and thousands of websites and blogs. In parallel, the 
COVID-19 case dataset is obtained from the John 
Hopkins University COVID-19 data repository [28].

For the data pre-processing step, to process the 
online symptom search index, each symptom search 
index Smobility j will be assigned a Symptom weight 
Wsymptom i, with each symptom given an equal weight. 
Overall, the combined COVID-19 symptom search index 
Stotal i is defined as follows:

Stotal i ¼
Xn

j¼1
Wsymptom i � Smobility j 

Impact of co-occurring illnesses with similar symptoms

To better estimate the online symptoms search led by 
COVID-19, the Google symptoms search index from the 
non-COVID period for Australia and New Zealand was 
first collected. Furthermore, the non-COVID period is 
from January 6, 2019 to October 10, 2019, based on the 
publicly available data.

The minimised impact of co-occurring illnesses on the 
symptoms search index is defined as follows:

Si ¼
Stotal i − lhisotry symptoms

lhisotry symptoms 

Where the Stotal i is a combined COVID-19 symptom 
search index from the data pre-processing step. The 
term lhisotry symptoms defined as the mean value of the 
symptoms search index during the non-COVID period, 
and the Si is the daily COVID-19 symptom search.

Impact of media coverage

This study introduces a novel approach that goes 
beyond the scope of traditional health-focused machine 
learning models, which typically provide a single value 
indicating influence. Using a combination of quantile 
regression and Extreme Gradient Boosting (XG Boost), 
this approach uniquely estimates the upper and lower 
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bounds of the impact of media reports on symptom 
search. This allows for a more dynamic and nuanced 
understanding of the factors driving online searches for 
COVID-19 symptoms, including the complex interplay 
between comorbid conditions and media coverage. This 
innovative approach provides a broader and more 
detailed perspective than traditional single-value 
analyses.

Assuming the daily COVID-19 symptom search, 
denoted Si, consists of two components: the search 
behaviour of individuals who are infected with COVID- 
19 and seek advice via search engines (Ii), and the 
search behaviour of individuals who are influenced by 
media coverage (Ni). The weight of symptom searches 
influenced by media coverage (c) can be define as 
follows:

c ¼
Ni

Si 

A quantile regression model was used to forecast the 
symptom search on day i by using its current Si and 
previous values Si−1: The loss function of the quantile 
regression-based model is defined as follows:

argminSi , f Si , Si−1ð Þ

1
N

XN

i¼1

Y

Si�f Si , Si−1ð Þ
1 − sð ÞjSi − fðSi, Si−1Þj

þ
Y

Si<f Si , Si−1ð Þ
sð ÞjSi − fðSi, Si−1Þj

Where s is a quantile level, and the range of s is from 
0 to 1. The fðSi, Si−1Þ is the predicted value of the symp-
tom search index given prediction variables Si and its 
previous values Si−1: The loss function facilitates the 
estimation of the residual error equantile at different 
quantile levels, using the symptom search index as a 
predictor variable. The equantile represents the 
unaccounted-for component in the symptom search, 
encompassing the impact of media reports and other 
unforeseen factors.

In this study, the quantile levels 10–90 and 25–75 are 
used to determine the maximum range of residual error 
emax and the quantile level 50 is used to determine the 
minimum range of residual error emin: The quantile level 
Q10 represents the estimated symptom search value 
below which 10% of the observations lie when the pre-
dictor variable, symptom search, is held constant. 
Similarly, the quantile level Q90 indicates the estimated 
symptom search value below which 90% of the observa-
tions lie when the predictor variable, symptom search, is 
held constant.

The equation provided serves as an example for 
quantile levels ranging from 10 to 90, specifically 

designed to define the maximum and minimum impact 
of media coverage.

emax ¼ eQ90 − eQ10 

emin ¼ eQ50 

Where emax represents the maximum unexplained 
component in symptom searches for quantile levels 10– 
90, determined by the difference between the residual 
errors at quantile level 90 (eQ90) and those at quantile 
level 10 ðeQ10Þ: The emin represents the minimum unex-
plained part, detemined by the residual errors at quan-
tile level 50 (eQ50).

Then, to estimate the effect of media coverage on 
symptom search, we used an Extreme Gradient Boosting 
(XG Boost) regressor model to estimate emax and emin, 
respectively, based on media coverage trends. The 
rationale for using the XG Boost regressor is similar to 
boosting logic in machine learning. Unlike the bagging 
approach, which trains models in parallel based on dif-
ferent datasets, the boosting model trains sequentially 
based on the residual error of the previously trained 
model. This approach is ideal for determining the impact 
of media coverage on the unexplained component in 
the quantile regression model. The XG boost model 
function is defined as:

eXGboost max ¼
XN

i¼1

L emax, p0
i þ Ov

� �
þ

1
2

kO2
v 

eXGboost min ¼
XN

i¼1

L emin, p0
i þ Ov

� �
þ

1
2

kO2
v 

Where p0
i is the initial prediction for dependent varia-

bles emax or emin at day i and Ov is the vector of weights 
assigned to each tree in the XG Boost model, with each 
weight indicating the strength of the corresponding tree’s 
prediction for a given observation. k is a hyperparameter 
that controls the strength of the regularisation term. 
eXGboost max is the estimated maximum unexplained com-
ponent using media coverage trends, while eXGboost min is 
the estimated minimum unexplained component.

Lastly, the error ratio between the quantile regression 
model at the quantile 50 level and XG boost model was 
used to determine the range of the weight of symptom 
searches influenced by media coverage(cmin , cmax). The 
range of c is defined as follows:

cmax ¼
eQ50 − eXGboost min

eQ50 

cmin ¼
eQ50 − eXGboost max

eQ50 

As a result, the range of the symptom-seeking behav-
iour of infected individuals can be estimated and 
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included as an additional attribute in the simulation 
model.

RNN-LSTM model for simulation for different quantiles

Moreover, the proposed method with Recurrent Neural 
Network (RNN)-Long Short-Term Memory (LSTM) embed-
ding COVID-19 simulation model is established by using 
a novel incremental batch learning training method. In 
the incremental batch learning process, each batch is 
created for a 2-week period to simulate the COVID-19 
infection period. During the training process, the first 
batch is used to train the model and initialise the model 
parameters. Then, the following batches are used for the 
incremental deep learning process to continuously 
update the model parameters to dynamically simulate 
COVID-19 infection cases. Overall, the proposed RNN-LSTM 
model provides a continuous learning capability driven by 
the training model, which allows the model to simulate 
the different infection rates and transmissibility of SARS- 
CoV-2 variants. Figure 1 and Table 1 illustrate the LSTM 
architecture, where the input gate determines the propor-
tion of new information to be added to the cell state, and 
the forget gate determines the proportion of information 
to be forgotten. The state candidate gate computes a new 
candidate cell state, and the output gate generates an out-
put vector that weights the current cell state based on its 
relevance to the current output.

To assess the performance of the proposed approach, 
it was compared with several machine learning methods 
using a traditional one-off training method based on the 

original symptom search index and the media coverage 
index. Overall, three performance metrics were used to 
evaluate the proposed model, including coefficient of 
determination (R2), root mean square error (RMSE) and 
mean absolute error (MAE).

Results

Minimised the impact of comorbid conditions with 
similar symptoms

Figure 2 presents the overall trend of symptom searches 
over a 30-week period in Australia and New Zealand, 
including both searches driven by co-occurring condi-
tions with similar symptoms and those specifically attrib-
uted to COVID-19.

It was found that the estimated search score for 
COVID-19 related research in New Zealand increased 
slightly from 24.21% to 30.67% over the study period, 
while in Australia, it increased from 23.59% to 28.04%. 
These observations suggest a slightly higher propensity 
for COVID-19 related online information seeking among 
New Zealanders compared to their Australian counter-
parts. Notably, the increase in the search index is con-
sistent with a marked increase in daily confirmed 
COVID-19 cases in Australia over the same period. A 
similar trend was also observed in New Zealand, where 
there was an increase in COVID-19 cases, particularly in 
November and December 2022.

Overall symptom search index remained higher than 
the mean value of the non-COVID period from August 

Figure 1. Long Short-Term Memory Network structure.
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2022 to February 2023, although it gradually decreased 
over the 30-week period in both countries. This change 
was mainly driven by the search index led by COVID-19.

Estimate the impact of media reports on the 
symptoms search

This section aims to evaluate the impact of media cover-
age and to determine the element of online symptom 
search using the proposed method by integrating both 
the media coverage index and the symptom search vari-
ables based on the 10–90 and 25–75 quantile scenarios.

As shown in Figure 3, the pink shaded area represents 
the dynamic impact of media coverage on online symp-
tom searches. This area is defined by the lower and upper 
bounds of media-influenced symptom search activity. This 
allows the examination of the variation of media influence 
during the study period. It was observed that the influence 
of media coverage was a dominant factor in the total 
online symptom searches. It also revealed a slightly greater 
impact of media coverage for individuals residing in New 
Zealand than Australia.

On average, the maximum effect of media coverage 
accounted for approximately 50.96% of online symptom 

searches in New Zealand (61.77% vs. 40.15%), while an 
average of 50.40% in Australia (63.43% vs. 37.37%). The 
study also showed that the impact of media coverage 
on people’s symptom-seeking behaviour increased 
slightly over the 30 weeks in both scenarios. The max-
imum impact of media influence on search, for the 10– 
90 quantile, the impact of media reports on people’s 
symptom-seeking behaviour peaks at around 0.10 in 
week 27 for Australia, while in New Zealand, it peaks at 
around 0.12 in week 30. A similar trend can be seen for 
the 25–75 quantile, with a peak of 0.04 at week 25 for 
Australia and a peak of 0.08 at week 30 for New 
Zealand.

For the estimated minimal effect of media influence, 
media coverage was found to have a stable and minimal 
effect on symptom searches for both countries. More 
specifically, the 50th percentile scenario is used to indi-
cate the lowest possible impact of news reports on 
symptom searches for Australia and New Zealand. The 
margin of error for both countries was relatively con-
stant, with only small fluctuations over the 30-week 
period. In Australia, the study found that the lower 
bound of media influence on symptom search 
accounted for approximately 12.94% of total symptom 

Table 1. Long Short-Term Memory Network (LSTM) formula.
LSTM  
Componenta Formula Function

Input Gateb it ¼ rðXt Ui þ ht−1 WiÞ The Input Gate, controlled by the Sigmoid (r) 
function, determines the amount of information 
added to the cell state by transforming the input 
value into a range of 0 to 1.

Forget Gatec ft ¼ rðXt Uf þ ht−1 Wf Þ The Forget Gate, controlled by the Sigmoid (r) 
function, determines the proportion of 
information to be forgotten from the cell state 
by transforming the input value into a range 
from 0 to 1.

State Candidate Gate (Cell update gate)d ~Ct ¼ tanhðXt Ug þ ht−1 WgÞ The State Candidate Gate, using the Tanh function, 
calculates a new candidate cell state by 
integrating both current and previous inputs.

Output Gatee Ot ¼ rðXt Uo þ ht−1 W0Þ The Output Gate is controlled by the sigmoid 
function that controls the current state, which is 
used to generate an output vector that weights 
the current cell state based on how relevant it is 
to the current output.

Outputf Ct ¼ rðft � Ct−1 þ it � ~Ct Þ
ht ¼ tanh Ctð Þ � Ot

Create a new cell state and hidden state

aIn this table, Xt denotes the daily COVID-19 case numbers, and ht−1 represents the output of the previous time step of the LSTM cell, which influences the function 
of each gate.

bIn the input gate, Ui is the weight matrix applied to the current input (daily case numbers), adjusting how this data influences the cell state. The Wi is the weight 
matrix for the previous state ht−1, which helps in incorporating historical data trends into the current state analysis. The it presents the extent of new information 
to be added to the cell state.

cIn the forget gate, Uf is the weight matrix for the current input in the forget gate, influencing which parts of the new data should be prioritised or downplayed. 
The Wf is the weight matrix for the previous state in the forget gate, determining the extent to which past data influences the current cell state. Lastly, the ft 
used to decide the amount of information from the cell state to be discarded.

dIn the state candidate gate, Ug is the weight matrix for the current input (daily case numbers) in the state candidate gate, shaping the new state proposal. The 
Wg is the weight matrix for the previous state in the state candidate gate, blending historical trends into the new state formulation. The ~Ct is used to calculate a 
potential new value for the cell state, considering current and previous inputs.

eIn the output gate, the Uo is the weight matrix for the current input in the output gate, crucial for deciding how the current data influences the final output. The 
W0 is the weight matrix for the previous state in the output gate, playing a role in how past trends and states affect the current output. The Ot is used to control 
what part of the cell state is transmitted to the output.

fIn the output, the Ct represents the predicted case at time t while ht is the new state of the LSTM cell after processing the current input.
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search in the 10–90 quantile scenario, whereas the 
lower bound of media influence on symptom search 
contributed approximately 18.90% in the 25–75 quan-
tile scenario. Similar patterns were observed in New 
Zealand, where the lower bound of media-influenced 
symptom search contributed only 8.31% and 15.99%, 
respectively.

In addition, infected person-led symptom search 
accounted for approximately 23.63% of COVID-19 symp-
toms in Australia in the 10–90 quantile scenario, while it 
increased to approximately 43.73% of total symptom 
search in the 25–75 quantile scenario. Similar patterns 
were observed in New Zealand, where infected person- 
led symptom searches accounted for approximately 

Figure 2. Minimised the impact of comorbid conditions with similar symptoms in (a) Australia and (b) New Zealand, respectively. The pink 
area represents the search range for comorbidities with similar symptoms. Specifically, the comorbid conditions with similar symptoms were 
estimated using data collected during the non-COVID-19 period, from 6th January 2019 to 10th October 2019. Meanwhile, the blue area in 
the graph represents the COVID-19 related search.
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29.92% and 43.86% in the 10–90 and 25–75 quantile 
scenarios, respectively.

Proposed method with RNN-LSTM embedding model

Lastly, the estimated impact of comorbid conditions 
with similar symptoms and media reports were incorpo-
rated into the proposed method with the RNN-LSTM 
embedding model (quantile 10–90 & 25–75) for COVID- 
19 tracking analysis. We compared the proposed model 
(Quantile 10–90 & 25–75) with several simulation 
approaches, which were trained by using traditional 
methods in the online keyword search index domain. 
The results, presented in Table 2 and Figure 4, show a 
clear improvement in simulation performance using the 
proposed method with RNN-LSTM embedding (Quantile 
10–90 & 25–75) for all three metrics. It is worth noting 
that the proposed method with RNN-LSTM embedding 
(quantile 25–75) achieves better results than RNN-LSTM 

embedding (quantile 10–90) for both Australia and New 
Zealand.

Discussion

This study highlights the significant influence of media 
coverage and comorbid conditions with similar symp-
toms on online symptom searches. The proposed 
method, which integrates an RNN-LSTM embedding 
model, showed improvements over other simulation 
techniques, particularly after accounting for the impact 
of media coverage and the presence of comorbidities.

Regarding the online search data, the approach used 
in this study has successfully measured the magnitude 
of the impact of media coverage on symptom search 
using a machine learning-based component analysis 
model. It has been identified that most symptom search 
volume in Australia and New Zealand is driven by media 
reports and co-occurring illnesses, overshadowing the 

Figure 3. Estimated components of COVID-19 symptom search in Australia and New Zealand with (a) (c) the quantile 10–90 scenario, (b) 
(d) the quantile 25–75 scenario, respectively. The green area represents minimal media influence on symptom search, while the grey area 
represents minimal infected person-led symptom search. The pink area in the figure represents the uncertainty zone, bounded by the lower 
and upper bounds of media-influenced symptom searches, which visualises the dynamic impact of media coverage on online symptom 
searches and highlights the range of uncertainty in the analysis.
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volume of symptom searches conducted by those 
infected with COVID-19. Previous studies have indeed 
found a statistically significant correlation between 
online interest and COVID-19 case numbers in various 
regions, including Europe [29] (specifically Italy, Spain, 
France, the UK and Germany), the USA and China [3,30]. 
However, these studies do not adequately take into 
account the impact of co-occurring conditions with simi-
lar symptoms, a factor that our research has significantly 
identified. This study has shown that symptom searches 
for co-occurring conditions account for a larger propor-
tion of online symptom searches than those specifically 
related to COVID-19. This suggests that using online 
symptom search data directly in COVID-19 infection sim-
ulations may lead to inaccurate or unreliable results, 
given the significant inclusion of symptom searches 
related to other diseases.

In addition to the impact of co-occurring illnesses 
with similar symptoms, the role of media coverage in 
online COVID-19 symptom search has been previously 
primarily ignored in simulation models [4,30]. However, 
a recent study has attempted to use an auto-regression 
model to estimate the influence of media reports on 
COVID-19 symptom search [5]. However, the constant 
weight given to the estimation of symptom searches 

influenced by news reports in the auto-regression model 
contradicts our finding, as shown in the component ana-
lysis of this study, that the influence of media coverage 
on online symptom searches is dynamic and fluctuates 
over time. Therefore, the auto-regression model does 
not accurately capture the fluctuating impact of media 
coverage on individuals’ search behaviour. Meanwhile, 
the proposed simulation model outperformed their 
ElasticNet model, which was previously used for COVID- 
19 simulation modelling.

In the context of simulation modelling, it is crucial to 
thoroughly analyse and understand the dynamics of 
virus transmission and infection patterns. By monitoring 
changes in transmission and infection estimates over 
time, valuable insights into epidemiological situations 
can be gained, as well as an assessment of the effective-
ness of implemented outbreak control measures [31,32]. 
Researchers have identified an asymptomatic period of 
between 7 and 14 days for each infected individual 
[20,33]. This phenomenon poses a significant challenge 
to pandemic control, as these individuals are unknow-
ingly contributing to the transmission of the virus. In 
light of these factors, the traditional method of ran-
domly splitting datasets, which is commonly used for 
simulation purposes, proves ill-suited to accurately 

Table 2. Results of model evaluation.

Model

Australia New Zealand

R2 RMSE MAE R2 RMSE MAE

Proposed Method with RNN-LSTM Embedding (Quantile 10–90) 0.8948 0.0519 0.0392 0.7746 0.1013 0.0780
Proposed Method with RNN-LSTM Embedding (Quantile 25–75) 0.9130 0.0472 0.0331 0.7813 0.0998 0.0780
RNN-LSTM 0.7724 0.4770 0.3911 0.3068 0.8325 0.6464
Linear regression 0.6843 0.5618 0.4887 0.1938 0.8978 0.6642
ElasticNet 0.4812 0.7202 0.5489 0.1002 0.9485 0.7660

Figure 4. Estimation of COVID-19 cases using the proposed method with the RNN-LSTM embedding model for (a) Australia and (b) New 
Zealand for the 10–90 and 25–75 quantile scenarios.
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represent the complex dynamics of COVID-19 transmis-
sion. An alternative approach, incremental batch learn-
ing, emerges as a more viable option. This method 
allows for continuous learning and adaptation of the 
simulation model to capture the evolving infection and 
transmission patterns better, providing greater accuracy 
and reliability in simulating COVID-19 scenarios.

Moreover, the Recurrent Neural Network (RNN)-Long 
Short-Term Memory (LSTM) has been identified as a reli-
able approach for handling long sequential time series 
data, as supported by previous research [23]. The Long 
Short-Term Memory Network (LSTM), which combines 
the RNN with effective solutions for short-term memory 
limitations and gradient problems, is a promising tech-
nique [34]. Notably, both proposed methods using the 
RNN-LSTM embedding model (quantile 25–75 and quan-
tile 10–90) successfully simulate the spread of COVID-19 
in Australia and New Zealand, as shown in this study. 
Interestingly, the quantile 25–75 model outperforms the 
quantile 10–90 model. This study suggests that the dif-
ferences in prediction accuracy are primarily influenced 
by the maximum impact of media influence on these 
searches. Specifically, the estimated maximum impact of 
media influence on searches decreases from 73.23% in 
the 10–90 quantile range to 56.21% in the 25–75 quan-
tile range.

Overall, the proposed method provides valuable 
insights into the factors contributing to online symptom 
search and highlights the significant impact of media 
coverage in both the 10–90 and 25–75 quantile scen-
arios. Furthermore, this approach can inform the 
response to COVID-19 by enabling governments to esti-
mate the approximate number of infected cases through 
online symptom searches.

This study is not without some limitations. Firstly, our 
study was limited to Australia and New Zealand, a geo-
graphical limitation that may limit the generalisability of 
our results to other regions. This focus raises concerns 
about the external validity of our findings, as infection 
cases and trends outside these countries were not con-
sidered. Secondly, our analysis relied primarily on the 
Google online symptom search dataset, potentially over-
looking the diversity of search behaviour across different 
search engines. The reliance on a single search engine 
may not capture the full range of online behaviour 
related to COVID-19 symptoms, thereby affecting the 
representativeness of our dataset and potentially intro-
ducing bias. Thirdly, the digital divide and different lev-
els of internet access in diverse populations pose a 
further challenge. Relying on online search data risks 

excluding groups with limited internet access or who 
are less likely to use online search engines, particularly 
in regions with lower digital connectivity. These limita-
tions highlight the need for a more comprehensive 
approach in future research to ensure wider validity and 
inclusivity.

Conclusion

In summary, this study highlights that in Australia and 
New Zealand, symptom searches influenced by media 
reports and co-morbidities significantly outweigh the 
search behaviour of COVID-19 infected individuals seek-
ing advice via search engines. This suggests that direct 
use of online symptom search data in COVID-19 infec-
tion models could lead to inflated infection estimates. 
This study shows that media-influenced searches are 
slightly more common in New Zealand than Australia.

Furthermore, an RNN-LSTM model with innovative 
incremental batch learning, was used to dynamically 
simulate the varying infection rates and transmissibility 
of SARS-CoV-2 variants. Enhanced with estimated ranges 
of influence from comorbid conditions and media cover-
age, this model provides a more adaptive and accurate 
tool for simulating COVID-19 infection dynamics, effect-
ively capturing the complex effects of external factors 
on infection trends. The model demonstrates a clear 
improvement in three key metrics(R2, RMSE and MAE) 
and effectively manages the impact of comorbid condi-
tions on symptom search using historical data from the 
non-COVID-19 period.

Overall, the approach used in this study provides 
novel insights into the estimation of COVID-19 infections 
through online symptom searches. This approach could 
assist governments in accurately estimating COVID-19 
cases, thereby improving public health surveillance and 
response strategies.
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