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Abstract—Biologically plausible learning with neuronal 

dendrites is a promising perspective to improve the spike-driven 
learning capability by introducing dendritic processing as an 
additional hyperparameter. Neuromorphic computing is an 
effective and essential solution towards spike-based machine 
intelligence and neural learning systems. However, on-line 
learning capability for neuromorphic models is still an open 
challenge. In this study a novel neuromorphic architecture with 
dendritic on-line learning (NADOL) is presented, which is a novel 
efficient methodology for brain-inspired intelligence on embedded 
hardware. With the feature of distributed processing using 
spiking neural network, NADOL can cut down the power 
consumption and enhance the learning efficiency and convergence 
speed. A detailed analysis for NADOL is presented, which 
demonstrates the effects of different conditions on learning 
capabilities, including neuron number in hidden layer, dendritic 
segregation parameters, feedback connection, and connection 
sparseness with various levels of amplification. Piecewise linear 
approximation approach is used to cut down the computational 
resource cost. The experimental results demonstrate a 
remarkable learning capability that surpasses other solutions, 
with NADOL exhibiting superior performance over the GPU 
platform in dendritic learning. This study's applicability extends 
across diverse domains, including the Internet of Things, robotic 
control, and brain-machine interfaces. Moreover, it signifies a 
pivotal step in bridging the gap between artificial intelligence and 
neuroscience through the introduction of an innovative 
neuromorphic paradigm. 

Index Terms—Spike-driven learning, neuromorphic, spiking 
neural network (SNN), online learning, dendritic learning 

I. INTRODUCTION 
euromorphic engineering is a promising avenue towards 
building the next generation of intelligent 

supercomputing systems [1]-[3]. Inspired by the advanced 
information processing scheme of biological neural systems, 
neuromorphic systems have achieved significant breakthrough 
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when dealing with brain-inspired computation tasks. In 
comparison with general-purpose computers, neuromorphic 
systems are considerably more efficient and suitable for 
real-time an d large-scale neural computation. They exhibit 
substantial potential for implementing streamlined natural 
signal processing systems, pattern recognition systems, and 
real-time autonomous agents [4]-[6]. Distinguished by their 
massively parallel computing substrate and co-localized 
memory and computation, neuromorphic hardware possesses 
formidable capabilities in addressing the von Neumann 
bottleneck issue, enhancing computational efficiency, and 
reducing power consumption [7]. A prominent question arises 
regarding the efficient realization of learning properties in 
spiking neural networks (SNNs) within neuromorphic systems. 
Effectively achieving biologically realistic spike-driven online 
learning on neuromorphic computing systems continues to pose 
a noteworthy challenge. 

The human brain boasts an extraordinary capacity for 
learning, enabling individuals to absorb information from 
sensory stimuli and continually optimize their learning 
processes as they acquire new skills. In recent years, 
researchers have delved into the concept of "learning to 
optimize" within neuroscience, with a specific focus on 
efficient learning rules that rapidly converge to favorable 
solutions. This notion was introduced by Lansdell and Konrad 
[8], emphasizing the pivotal role of dendrites in individual 
neurons as they encode learning signals. This form of learning, 
emerging from the realm of neuroscience, has paved the path 
for optimizing synaptic strengths in the sensory and association 
cortex, consequently enhancing overall learning performance 
throughout the neural network. 

Within the domain of computational neuroscience, the 
challenge of establishing connections for cognitive behaviors is 
widely recognized as the "credit assignment problem" [9], [10]. 
While artificial neural networks have yielded potent techniques 
to address this problem, establishing a coherent link between 
the learning algorithms employed in these networks and the 
biological learning mechanisms of the human brain remains a 
crucial, yet unanswered, query. 

To bridge this knowledge gap, a pivotal facet of learning in 
the biological brain involves performance enhancement 
through task exposure. By harnessing neural cortical 
physiology, a neural system can leverage the 
learning-to-optimize capability through the apical and basal 
components within the dendritic trees of pyramidal neurons 
[11]. Through the utilization of distinct neuronal compartments 
responsible for integrating various signals, individual neurons 
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can achieve independent integration—a biologically plausible 
resolution to the credit assignment problem when it pertains to 
learning to optimize functions. 

While neuromorphic engineering has exhibited substantial 
potential in crafting intelligent supercomputing systems, 
devising an efficient approach for realizing spike-driven online 
learning on neuromorphic computing systems has remained 
elusive. The integration of the learning-to-optimize capability 
in a biologically realistic manner has often been underestimated 
or inadequately implemented [12]. Current systems, like the 
TrueNorth system, lack support for synaptic plasticity rules and 
associated learning capabilities [5]. Consequently, there exists 
a pressing demand for a proficient neuromorphic learning 
architecture to surmount these limitations. 

This paper introduces NADOL (Neuromorphic Architecture 
for Dendritic Online Learning), an innovative neuromorphic 
architecture to facilitate learning processes. NADOL harnesses 
biologically plausible dendritic learning mechanisms, enabling 
spike-driven online learning. Additionally, we digitize neuron 
and synaptic activities while optimizing them to mitigate 
hardware expenses. We implemented NADOL on BiCoSS—an 
advanced neuromorphic system tailored for intricate SNNs and 
based on field-programmable gate arrays (FPGAs). FPGAs 
have proven indispensable in high-performance SNN 
computation [13-15]. NADOL furnishes a valuable foundation 
for designing neuromorphic online learning systems and 
evaluating their learning efficacy. Ultimately, NADOL's online 
learning capabilities pave the way for acquiring novel features 
from dynamic environments—a critical stride toward achieving 
lifelong learning. Moreover, the presented work bears practical 
implications, with applications ranging from autonomous 
embedded robots and the Internet of Things (IoT) to 
brain-machine interfaces and experimental neuroscience 
platforms [16-19]. 

The structure of this paper unfolds as follows: Section II 
elucidates the dendritic learning mechanism and theory. A 
comprehensive digital neuromorphic architecture of NADOL is 
introduced in Section III. Section IV presents the experimental 
findings, followed by discussions in Section V. The paper 
culminates in Section VI with concluding remarks. 

II. DENDRITIC LEARNING MECHANISM AND THEORY 

A. Neuromorphic architecture 
Previous studies have shown that online learning can be 

realized by using feedback signals that transmit neural 
information about credit to compute local error signals in 
hidden layers [22], [23]. They have presented a pivotal study 
aimed at unraveling the intricacies of the human brain's 
learning mechanisms, offering the potential to harness 
multi-layer neural architectures that rival the efficacy of 
backpropagation. However, the models encounter challenges 
when aligning them with real brain functions, as they 
necessitate a distinct feedback pathway to transmit neural 
information for determining local error signals, as illustrated in 
Fig. 1(a). This pathway is accountable for computing the 

disparity in error signals within the hidden layers, a 
computation that involves contrasting feedback triggered by 
feedforward propagation of sensory information and feedback 
guided by teaching signals. To compute the necessary disparity, 
sensory information must be segregated from the feedback 
signals driving the learning process. However, this strategy 
lacks biological realism in the context of the human brain. Such 
an approach requires pairing within the feedback pathway, 
entailing that each neuron in the hidden layer should be paired 
with a corresponding feedback neuron. Unfortunately, there 
exists no substantiated evidence confirming this architectural 
arrangement. The presence of numerous error neurons for each 
hidden layer neuron to communicate an error signal 
inefficiently seems implausible. Consequently, a dedicated 
separate feedback pathway for learning, utilizing cell-by-cell 
interactions and signed signals, appears incompatible with the 
operations of the real brain. 

 
Fig. 1. Architectures for credit assignment for dendritic learning. (a) Deep 
learning architecture with the implicit feedback pathway in previous studies. (b) 
Network architecture with segregated dendrites proposal with details of the 
proposed network architecture with dendritic learning strategy. (c) Illustration 
of the two-phase training scheme on NADOL. 
 

Inspired by neural morphology, different signals can be 
integrated at distinct dendritic locations. Previous studies have 
shown that feedback signals from higher-order regions are 
transmitted into the distal apical dendrites of pyramidal neuron 
in the primary sensory regions of neocortex, which are 
electronically considerably far from the basal dendrites that 
receives feedforward sensory information [24]. Therefore, this 
study employs the anatomy of pyramidal neurons to provide 
segregation of feedforward and feedback information to 
compute local error signals and perform learning in 
biologically plausible neural network. As shown in Fig. 1(b), 
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since neurons in hidden layers involve segregated basal and 
apical dendritic compartments, the feedforward and feedback 
signals can be integrated separately to realize credit assignment 
for learning. The input signals are first encoded by spiking 
neurons in the input layer. Spikes from the input layer are then 
transmitted by synapses with synaptic weight W0 to the basal 
dendrites in the hidden layer. After being processed by soma, 
the neural information are transmitted by synapse with synaptic 
weight W1 to basal dendrites in the output layer. The soma in the 
output layer outputs the feedback information with synaptic 
weight Y to the apical dendrites in the hidden layer to realize the 
backpropagation task. This architecture builds upon prior 
research utilizing compartmental models [5], [22], [25]. The 
utilization of basal and apical dendritic compartments enables 
the integration of feedback signals alongside feedforward 
pathways. This ensures the generation of error information for 
hidden layers, facilitating accurate credit assignment-a 
biologically plausible process as observed in the mammalian 
neocortex. In essence, the significance of dendritic learning and 
its application for credit assignment encompasses four key 
aspects. Firstly, through the adoption of the dendritic learning 
methodology, a clear segregation between feedforward and 
feedback pathways is achieved. This segregation resolves the 
credit assignment challenge by employing diverse neuron sites. 
This circumvents the issue of gradient disappearance arising 
from the amalgamation of different information streams within 
a single compartment. Secondly, since backpropagation is 
absent in the brain, any neural-inspired hardware seeking to 
emulate the brain's functionality should adhere to biologically 
viable algorithms and architectures, such as the proposed 
dendritic learning framework. Thirdly, the dendritic learning 
approach directly furnishes feedback to hidden neurons, 
offering a hardware advantage by minimizing the processing 
time required for sequential error propagation. Fourthly, the 
utilization of dendritic learning permits a reduction in the 
number of connections for feedback pathways, given that the 
number of output neurons is typically significantly lower than 
that of input neurons. Consequently, the dendritic learning 
solution offers a pivotal avenue for comprehending the 
mechanics behind spike-driven learning in the human brain. 
This endeavor serves to bridge the gap between neuroscience 
and artificial intelligence, thereby advancing our understanding 
of these interconnected disciplines. 

B. Algorithm and Theory 
The proposed network model contains an input layer with 

784 neurons, a hidden layer with 50 physical neurons and an 
output layer with 10 neurons. The two-phase training scheme is 
shown in Fig. 1(c). The green arrows represent the signal 
transmission from apical dendrite to soma, and red crosses 
stand for the disconnection between apical dendrite and 
somatic compartment. It means that the connection between 
dendrite and soma is blocked during the transmit time, and the 
connection is realized at the end of the forward phase and target 
phase respectively. Two phases are alternated to train the 
network: the forward and target phases as shown in Fig. 1(c). In 
the forward phase I(t)=0, while it induces any given neuron i to 
spike at maximum firing rate or be silent according to the 

category of the current input image when the network 
undergoes target phase. The values of I(t) in the target phase 
will be positive and negative when correct and incorrect 
objectives are recognized respectively. At the end of the 
forward phase and the target phase, the set of plateau potentials 
αf and αt are calculated respectively. The term ∆ts represents a 
time delay of the network dynamics before integrating the 
plateau. ∆t1

 and ∆t2
 represent the time periods for the 

transmission of the spike information during forward and target 
phases respectively. During the transmission, the network 
dynamics are updated at each time-step. An image from the 
MNIST dataset is employed to transmitted into the input layer 
with one neuron per image pixel. Neurons in the input layer are 
simple Poisson spiking neurons where their firing rates are 
determined by their corresponding input image pixel intensity. 
Neurons in hidden layer contains three compartments, 
including the apical compartments with the membrane voltage 
V0a, the basal dendrite compartment with voltage V0b, and the 
soma compartment with voltage V0. The output layer contains 
two-compartment neurons, one for each image category. 
Poisson spiking neurons are used in the input layer with the 
firing rate determined by the intensity of image pixels ranging 
from 0 to Φmax. Neurons in the input layer are modeled with 
three compartments containing basal dendrites, apical dendrites 
and soma compartment. Feedforward signals from the input 
layer and feedback signals from the output layer are transmitted 
into basal and apical synapses. Presynaptic spikes from input 
layer neurons are filtered into spike trains sinput(t) as follows 

( ) ( )input input
j jk

k
s t t tκ= −∑                            (1) 

where tjk
input is the kth spiking time of input neuron j. The 

response kernel is described as follows 
( ) ( ) ( ) ( )sL tt

L st e e tττκ τ τ−−= − Θ −              (2) 
where τs and τL are long and short time constants, and Θ is the 
Heaviside step function. The spike trains at apical synapses are 
filtered in the same manner. The basal and apical dendritic 
membrane voltages for neuron i are described as follows 
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where b0 is bias term, W0 is the synaptic matrix of feedforward 
signals in hidden layer, and Y represents the feedback weight 
matrix. Soma membrane potential is defined as 
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where VR is the resting potential and gl is the leak conductance. 
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Conductance gb is from the basal dendrite to the soma, and ga is 
conductance from the apical dendrite to the soma. The synaptic 
weights Yij are randomly initialized using a normal distribution 
with mean value μ=0.0293 and standard deviation δ=0.6321. 
These weights are fix during learning. This configuration is 
based on the previous study by Lillicrap et al., which used 
random synaptic feedback weights to support error 
backpropagation [47]. In this study, researchers pointed out that 
a precise and symmetric backward connectivity pattern is 
impossible in human brain. This strong architectural constraint 
is not necessary for effective error propagation. In contrast, a 
simple mechanism was presented in study [47], which can 
assign the credit by multiplying errors by even random synaptic 
weights. This approach is effective to transmit teaching signals 
across multiple layers. It also provides a potential mechanism 
to explain how the brain could use error signals without 
architectural constraints on learning. Constant τ is defined as 

m

l

C
g

τ = .                                          (5) 

where Cm represents the membrane capacitance of the spiking 
neuron. The instantaneous firing rates of the hidden layer 
neurons are described by Φ(t), which is defined as follows 

( ) ( )( ) ( )0
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1 i
i i V t
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+

          (6) 

where Φmax is the maximum firing rate of the neurons. The 
neurons in the output layer are modeled with a dendrite and a 
soma compartment, which is defined as follows 
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where gl is the leak conductance and gd is the conductance from 
the dendrite to the soma. The current I(t) are somatic currents to 
drive neurons in the output layer towards a desired somatic 
potential, which is defined as follows 

( ) ( ) ( )( ) ( ) ( )( )1 1
i Ei E i Ii I iI t g t E V t g t E V t= − + −      (8) 

where gE(t) and gI(t) are time-varying excitatory and inhibitory 
conductances, and EE and EI represent the excitatory and 
inhibitory reversal potentials.  

There are two processing phases in the network computing, 
which are forward and target phases. As shown in Fig. 1(c), 
during a forward phase an image to the input layer neuron 
without any teaching current into the output layer between time 
t0 to t1. During the target phase from t1 to t2, the image is also 
given into the input layer, and the teaching signals are received 
in the output layer. At the end of t2, another plateau potential αt 
is calculated across the hidden layer. At t1 a plateau potential αf 
is computed in all the hidden layer neurons. Plateau potentials 
αf and αt for forward and target phases are defined as follows 
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where σ represents the nonlinear sigmoid function as 

( ) 1
1 xx

e
σ −=

+
                                 (10) 

The terms t1 and t2 represent the end times of the forward and 
target phases respectively, which are given by 
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( )

1 1 0

2 2 1

s

s

t t t t

t t t t

∆ = − + ∆


∆ = − + ∆
                            (11) 

where ∆ts=30 ms. The plateau potentials are used in the hidden 
layer to update the corresponding weights of basal dendrites. 

Feedforward synaptic weights are updated at the end of each 
target phase. A loss function is defined in output layer to update 
the synaptic weights W1 to cut down the loss function as follows 

2
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The average membrane potential of soma in output layer 
neuron i in the forward phase is defined as follows 
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where kd=gd/(gl+gd). Therefore, we can get the relationship as 
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This equation of gradient is used in the output layer to update 
the weights based on gradient descent 
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where η1 represents a learning rate constant and P1 stands for a 
scaling factor to normalize the firing rate scale.  

The loss function for basal dendrites in the hidden layer to 
update their synaptic weights W0 is defined as follows 

2
1 0* 0
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2
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.                          (16) 

The target firing rate Φ0* is defined as follows 
0* 0

f
t f

i i i iφ φ α α= + −                            (17) 
where αf and αt are plateau potentials in forward and target 
phases respectively. Therefore, the loss function in the hidden 
layer can be expressed as 

20

2

t fL α α≈ −                                 (18) 

The gradient can be described as 
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with the parameter kb=gb/(gl+gb+ga). Basal weights are 
computed to descend the gradient as follows 

0
0 0 0 0

0

0
0 0 0 0

0

LW W P
W

Lb b P
b

η

η

 ∂
→ − ∂


∂ → − ∂

 .                         (20) 

where η0 represents a learning rate constant and P0 stands for a 
scaling factor to normalize the firing rate scale in the hidden 
layer. 

III. DIGITAL NEUROMORPHIC ARCHITECTURE 

A. Top-level architecture 
In order to increase the network scale significantly, a 

time-multiplexing method is used. The top-level architecture of 
the proposed neuromorphic system is shown in Fig. 2, 
including an input layer, the hidden layer with physical neurons 
and an output layer with 10 physical neurons. The input layer 
and the hidden layer are both implemented by using the 
time-multiplexing technique. A global counter processes the 
time-multiplexed layers sequentially. Finite-state machine 
(FSM) is employed to control the system timing, and weight 
updating units are used to calculate credit assignment signals 
and update the synaptic weights for deep learning. The 
updating weights for the physical neurons are stored in the 
weight buffer. The neurons in input layer are responsible for the 
generation of weight for each pixel of the input digit and the 
stimulus for each neuron in the first hidden layer by summing 
the weighted pixels. In order to save the hardware resource and 
avoid the use of 784 multipliers to calculate the multiplication 
between all the values of filtered spike trains and the 
corresponding weights, the input digit are pre-processed by 
converting the pre-calculated filtered spike trains (FSTs) to a 
binary value, so that there is a significant reduction of the 
computational elements in the computation of the hidden layer. 

 
Fig. 2. The top-level architecture of the on-line learning network. 

B. Equations discretization 
Hardware implementation requires the representation of 

information transmission and processing in the form of discrete 
manner, rather than continuous differential form. Therefore, the 
Euler method was adopted for discretization of dynamics that 
mentioned above. The discrete form of soma membrane 
potential mentioned in equation (4) can be expressed as 
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where n  represents the number of iterative steps and n∆  
stands for the time step in the Euler method. τ represents the 
time constant. 

  The discrete form of neurons in the output layer that 
modeled with a dendrite compartment and a soma compartment 
that mentioned in equation (7) can be expressed as 

( ) ( )
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The discrete form of current I(t) that drive neurons in the 
output layer towards a desired somatic potential mentioned in 
equation (8) can be expressed as 

( ) ( ) ( )( ) ( ) ( )( )1 1
i Ei E i Ii I iI n g n E V n g n E V n= − + −      (23) 

The discrete form of plateau potentials αf and αt for forward 
and target phases mentioned in equation (9) can be expressed as 
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Therefore, a step-by-step breakdown of the continuous 
algorithm can be converted into the discrete counter parts based 
on Euler method. 

C. Input and hidden layer architecture 
The time-multiplexing architecture of the input layer and the 

hidden layer is shown in Fig. 3(a), which contains a global 
counter, two neuron processors for each hidden layer, one input 
layer and two buffers for the updating weights of the two 
hidden layers. The neuron processor in the hidden layer 
consists of three parts according to the neuronal morphological 
properties, including apical dendrite unit, soma unit and basal 
dendrite unit. Fig. 3(b) depicts the detailed architecture of the 
soma unit. Pipeline technique is employed in the calculation, 
aiming at the maximum working speed on the digital chip. 
ADD and SUB modules represent the pipelined adder and 
subtractor, and SHF module stands for the barrel shifter to 
replace the multiplication between a variable and a constant. By 
replacing the multipliers with the shifters, the hardware 
resource cost can be cut down significantly. 
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The working flow of the FSM is illustrated in Fig. 3(c), which 
contains eight states, including idle, first time delay, forward 
phase, first plateau potential (PP) computation, second time 
delay, target phase, second PP computation, and weight 
updating. By using the FSM controller, the complex calculation 
stage can be controlled in good hardware performance. 

 
Fig. 3. The digital neuromorphic architecture of the hidden layer. (a) The 
architecture of the time-multiplexed system. (b) The architecture of the soma 
unit. (c) The diagram flow of the FSM. 
 

Fig. 4 shows the digital neuromorphic architecture of the 
basal dendrite in the hidden layer. Each binary filtered spike 
train is employed to control a multiplexer with two inputs, one 
for its corresponding synaptic weight and the other for zero. In 
the proposed algorithm, 784 weighted pixels should be summed, 
which will cost a significant amount of logic elements on chip. 
In order to cut down the hardware resource overhead, the 
proposed architecture perform this sum in four clock cycles. 
The digital neuromorphic architecture of the basal dendrite unit 
is shown in Fig. 4, and it contains two progressive summation 
unit. Assuming that there are aN  weighted pixels input to the 
basal dendritic unit, then the basal dendritic unit can complete 
the summation of 2

aN  weighted pixels in one operation. The 
blue area represents a multiplexer module, which contains 14 
multiplexers that select data from 0 and W0, generating 14 
outputs. These 14 outputs are fed into a 1st-layer 14-input 
parallel adder module, represented in pink area. This module 
calculates the sum of the 14 inputs and produces one output. 
The combination of a blue module and a pink module can 
calculate the sum of 14 weighted pixels. We have construct 14 
such module combinations, forming the multiplexer array and 
the parallel adder array. Therefore, at the output of the 1st-layer 
14-input parallel adder array, we have 14 outputs. Subsequently, 
these 14 outputs are fed into a 2nd-layer 14-input parallel adder 
module for summation. For the bias terms, we have designed 14 
buffers corresponding to blue area, and their outputs b0 are fed 
into the 1st-layer 14-input parallel adder for summation, 
resulting in 14 outputs. Then, these 14 outputs are fed into the 
2nd-layer 14-input parallel adder for summation, producing the 
bias summation result corresponding to the blue module. 
Finally, in the gray module, the bias summation result is added 

to the sum of the weighted pixels using a pipelined adder, and 
finally, the result will feed into the accumulator for the 
summation of four clock cycles. Therefore, if we want to sum 
up 784 weighted pixels in four clock cycles, we should sum up 
196 weighted pixels in one clock. Since we have set up 14 
multiplexer arrays and the corresponding 14 parallel adder 
modules, we only need to calculate the sum of 14 weighted 
pixels within one module. The proposed architecture of the 
input layer contains an input buffer, a global counter, a W0 
weight buffer and a b0 bias buffer, a 14 multiplexers with 2 
inputs, four 14-input parallel adders and an accumulator. The 
input buffer stores the input digits. The global counter will send 
the stored digit to the multiplexers for the generation of the 
weighted pixels. The lowest 14 bits are input into the 
multiplexer in the first clock cycle, and other pixel bits will be 
transmitted sequentially in another three clock cycles. The 
accumulator sums all the 784 pixels up in four clock cycles and 
send the stimulation into the first hidden layer. Pipeline 
technique is used in the design for the sake of the enhancement 
of the maximum operating frequency. The architecture of the 
apical dendrite unit is the same with the basal dendrite unit, 
without the bias part in its architecture. The basal and apical 
dendrite units in the hidden layer use the signals of FST. The 
detailed architecture for the FST computation is described in 
the following section. 

 
Fig. 4. The digital neuromorphic architecture of the basal dendrite unit. 

 

D. Output layer architecture 
The output layer architecture is similar with the hidden layer, 

without the apical unit realization. The computation of the basal 
dendrite unit uses the FST signals, whose computational 
architecture is depicted in Fig. 5(a). The PLA1 module is the 
hardware realization of the PLA equation of σ(V0). In terms of 
equations (1) and (2), a sliding time window of 10 ms is used 
for the computation of sinput(t). Therefore, ten time deviation 
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values for (t-tjk
input) are computed, which are from κ(0), κ(1), 

κ(2) to κ(9). In order to simplify the on-chip computation, the 
values of κ(t) for each time value are pre-calculated, which are 
shown in Table I. The values of the response kernel are 
obtained according to equation (2). The multiplication 
operations are replaced by shifting operations using SHF 
modules. The shift operation is a low-cost computational 
method that can effectively reduce hardware resource overhead 
and computation time. We convert the values in Table I into the 
shift number to represent it in digital neuromorphic architecture. 
For κ(9), since 0.0269 can be expressed as  

6 7 9 10 112 2 2 2 2− − − − −+ + + + , it can be implemented using five 
SHF modules, shifting by 6, 7, 9, 10, and 11 bits respectively. 
Similarly, for other values of κ, we can calculate them based on 
equation (2) and represent them as corresponding shift numbers. 
For κ(8), since 5 7 8 11 120.0436 2 2 2 2 2− − − − −= + + + + , it can be 
implemented using five SHF modules, shifting left by 5, 7, 8, 
11, and 12 bits respectively. For κ(0), since 5 60.0475 2 2− −= + , 
it can be implemented by two SHFs, shifting left by 5 bits and 6 
bits respectively. As shown in Fig. 5(a), “PARA. ADD” 
represents the parallel adder that has multiple inputs, while 
“ADD” represents the adder with two inputs. However, since 
the shift operation can only handle integer values or powers of 
two in binary decimal representation, it introduces 
approximation errors when using non-power-of-two constants. 
We tested the displacement error of multiplication operation. 
As shown in Fig. 5(b), the architecture of the basal dendrite unit 
in the output layer uses accumulator to sum up the updating 
variable values of the time-multiplexed 100 neurons. The MUL 
module represents the multiplication operation, which uses 
logic elements to realize.  

The detailed architecture of the MUL module is shown in Fig. 
5(c). The proposed MUL module is used to realize the 
multiplication operation between two variables with powers of 
2 using a logic shift block, aiming at multiplier-less 
implementation with lower resource cost and power 
consumption. Two variables “a[n]” and “b[n]” are input into 
the MUL module, and the value of a[n] is expected to be in the 
range from 0 to1. The bus splitter is employed to split a bus into 
single-bit outputs, which are numbered from the least 
significant bit to the most. The MUX module contains several 
multiplexers to select the input data flow based on the 
information from the bus splitter. If the information from the 
bus splitter equals to 1, b[n] is shifted leftwards. The variable 
b[n] is routed into each data port and then all the outputs of 
multiplexers are summed up. The multiplication of two neural 
variables can be realized based on this method with no 
multiplier usage, which can reduce the on-chip resource 
significantly. 

 

(d)

(c)

(b)

(a)

 
Fig. 5. Detailed digital neuromorphic architecture of the proposed neuron in 
output layer. (a) Architecture of the FST module. (b) Architecutre of the basal 
dendrite unit in the neuron processor. (c) The digital neuromorphic architecture 
of the MUL module. (d) Architecture of the weight updating unit. 
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TABLE I 
PARAMETER VALUES OF THE RESPONSE KERNEL 

 
Parameter Value Parameter Value 
κ(0) 0.0475 κ(1) 0.0510 
κ(2) 0.0543 κ(3) 0.0571 
κ(4) 0.0591 κ(5) 0.0600 
κ(6) 0.0581 κ(7) 0.0533 
κ(8) 0.0436 κ(9) 0.0269 
 

E. Weight updating architecture 
In order to realize the spike-driven on-line learning, the 

weight updating units are implemented in the proposed 
dendritic learning architecture as shown in Fig. 5(d). Demux 
module represents the demultiplexer, which select to output 
either the target PP or the forward PP for the computation of the 
gradient. The value of ƞ0P0 is pre-calculated as 3.68. The 
accumulator module is used to accumulate the input values of 
variables “V0[N]” and “sinput[N]” within a certain time period. 

In the proposed architecture, the PLA1 and PLA2 modules 
implement the piecewise linear approximation (PLA) functions, 
which are used to cut down the hardware resource cost of the 
nonlinear functions in the SNN model as shown in Fig. 6. The 
functions σ(x) and σ’(x) are modified using the PLA method, 
which is described as follows 

( )

1 1 1

2 2 1 2

1

, when 
, when 

...
, when 

PLA

i i i

k x b x p
k x b p x p

f x

k x b x p −

+ ≤
 + < ≤= 

 + >

            (25) 

where ki and bi are the slope and intercept of the modified PLA 
functions, and i=1, 2,..., n. An exhaustive search algorithm is 
employed to determine the segment points on the nonlinear 
curves.  The determination of the coefficient values are based 
on the error evaluation criterion as follows 

( ) ( )( ) ( )( )2 2

1

n
error ori PLA orii

CF f i f i f i n
=

= −∑     (26) 

where n represents the total sampling points. The functions fori 
and fPLA represent the original and approximated functions. If 
the modified function cannot meet the precision requirement of 
CFerror, the segment number will be added by 1 until it can be 

met. The multiplication operation is replaced with addition and 
shifting operations in the proposed digital neuromorphic 
architecture. The value ki in the proposed PLA functions should 
be a power of 2, such as 1, 2, 4 or 0.5, 0.25, etc. The parameter 
values of the PLA methods are listed in Table II. 

 
TABLE II 

PARAMETER VALUES OF THE PROPOSED PLA FUNCTIONS 
 

σ(x) k b Condition 
i=1 0.0078125 0.05 x≦-3.4 
i=2 0.0625 0.24 -3.4<x≦-1.3 
i=3 0.25 0.5 -1.3<x≦1.3 
i=4 0.0625 0.76 1.3<x≦3.4 
i=5 0.0078125 0.95 3.4<x 
i=6 0 0.9999 σ(x)≦0 
i=7 0 0.0001 σ(x)≧1 
σ’(x) a b Condition 
i=1 0.0078125 0.05 x≦-3.2 
i=2 0.03125 0.15 -3.2<x≦-2 
i=3 0.0625 0.25 -2<x≦0 
i=4 -0.0625 0.25 0<x≦2 
i=5 -0.03125 0.15 2<x≦3.2 
i=6 -0.0078125 0.05 x>3.2 
i=7 0 0.0001 σ’(x)≦0 
 

 
Fig. 6. PLA functions in the weight updating architecture. 

IV. EXPERIMENTAL RESULTS 
To demonstrate the capabilities of the proposed architecture, 

it is implemented on a single chip of BiCoSS, a digital 
neuromorphic system with powerful computational capability 
[27]. The computation of the fixed-point representation is 
realized in binary form. Although BiCoSS presents an essential 

TABLE III Comparison of NADOL with Previous Digital Neuromorphic Architecture Implemented on FPGAs. 
 

Performance [49] [50] [51] [21] [35] [36] [37] [52] [53] [54] [55] [56] Ours 
Platform Virtex-6 

FPGA 
Virtex-7 
FPGA 

Spartan-6 
FPGA 

Spartan-6 
FPGA 

Kintex-7 
FPGA 

Virtex-6 
FPGA 

Cyclone-4 
FPGA 

Zynq-7045 Virtex-6 Virtex-7 Zynq-7030 Zynq-7405 BiCoSS 

Max 
Frequency 

189MHz 63.389 
MHz 

75 MHz 25 MHz 148.4 
MHz 

83.209 
MHz 

65.03 
MHz 

250 
MHz 

120 
MHz 

100 
MHz 

301.8 
MHz 

200 
MHz 

70.25 MHz 

Learning 
speed 

N/A N/A 6.58 
fps3 

6.25 
fps3 

N/A N/A N/A 1349 fps 0.06 
fps 

61 fps 163.9 fps 22.5 fps 6.77-129.87 
fps  

Neuron 
model 

LIF H-H LIF LIF LIF Izhi. LIF LIF LIF LIF LIF LIF MC-LIF 

Online 
Learning 

Yes No Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes 

Biological 
plausibility 

Low High Low Low Low Moderate Low High High High High High High 

Application Vision Simulation Vision Vision Learning Learning Anditory Vision Vision Vision Vision Vision Learning 
N/A: Data not available. Abbreviation: Slice registers (SRs) 
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platform to implement the proposed architecture, the presented 
NADOL can be realized on different kinds of neuromorphic 
systems, including mixed-analog-digital systems.  

We implemented our multi-compartment spiking neural 
network with dendritic compartments on the BiCoSS system. 
VHDL language was used in the synthesis process on the 
FPGA, which possesses stronger behavior description ability 
compared to other hardware description languages. The 
resource utilization is shown in Table III and compared with 
several representative FPGA implementations. Since the size of 
the input image is 28×28, the total number of pixels of the 
network input M is 784, and we denote the neuron nodes of 
hidden layer is represented by N. Therefore, the average 
encoded input spike counts E and output spike counts per 
training image F are 1232 and 1.05 respectively [52]. 
Assumming that trainingT  represents the average learning time 

and fpsT  represents the frame rate, they can be calculated as 

( ) ( )1.05 2 16 16trainingT T E N F M N = × × × + + × + +  (27) 

1fps trainingT T=                          (28) 
where T represents the time clock and the value of T in our 
work is 70.25 MHz. In our experiment, we employed multiple 
hidden layer neuron sizes for performance investigation. When 
N=200, the trainingT and fpsT  in our work are 7.7ms and 129.87 

frames per second (fps) respectively. When N=4000, the trainingT

and fpsT  in our work are 147.7ms and 6.77 fps respectively. 
Farsa et al. implemented a hardware unit for neural 

computing and an SNN neural morphology system for pattern 
recognition tasks on Virtex-6 FPGA [49]. Neil et al. introduced 
an event-driven low-power neural network accelerator [51], 
although specific resource utilization data were not provided, 
the system supports up to 65536 neurons. Bonabi et al. 
proposed a Hodgkin-Huxley (H-H) neuron model using the 
coordinate rotation digital computer algorithm, which exhibits 
strong biological plausibility [50]. Similarly, Gholami et al. 
presented the Izhikevich (Izhi.) neuron model with moderate 
biological plausibility [36]. However, the cost significantly 
increases with the number of multipliers, and these designs 
inevitably use DSP blocks for multiplication between two 
variables, making it difficult to scale the network. Ma et al. 
introduced the Darwin Neural Processing Unit, a highly 
configurable neuromorphic hardware coprocessor based on 
SNN [21], which achieves good performance and efficiency, 
but falls short in terms of maximum operating frequency 
compared to other works. Asgari et al. proposed a 
context-dependent learning system with low energy 
consumption and fast speed, utilizing the low power 
consumption advantage of the Kintex-7 FPGA, but only 
implemented 16 neurons [35]. Similarly, [37] implemented a 
neural morphology auditory system with 66 neurons. Both of 
these works lack good scalability. In contrast, the NADOL 
architecture proposed in this study innovatively implements a 
scalable, biologically plausible large-scale digital 

neuromorphic system. Its mechanism of utilizing dendrites for 
spatiotemporal credit allocation helps bridge the gap between 
neuroscience and artificial intelligence, serving as a low-power 
system for AI applications and a real-time online simulation 
platform for understanding neural mechanisms. 

We chose MNIST classification to test the performance of 
NADOL, particularly its training efficiency. It is worth noting 
that, due to the adoption of dendritic learning mechanisms with 
strong biological plausibility in our NADOL architecture, the 
goal of the MNIST classification test is not to achieve higher 
accuracy compared to ANN or less biologically plausible SNN. 
Instead, we aim to demonstrate the high efficiency 
characteristics of the NADOL architecture. Therefore, we 
measured the training energy overhead (%) between training 
and inference. By examining this performance metric, we can 
directly compare it with learning systems based on ANN 
implemented on chips, including [46], [47], [20]. As shown in 
Fig. 7, the training energy overhead (%) of our proposed 
NADOL architecture is 6.6%, significantly lower than the 
56.5% reported in [20], resulting in an 88.3% reduction. The 
improvement is realized by algorithmic modifications, parallel 
processing for on-chip learning, and the spike-driven sparse 
encoding in the SNN framework. 

 
Fig. 7. Comparison of the learning energy over the inference energy with other 
neuromorphic on-line learning systems. 
 

We then investigate the effects of the neuron number on the 
learning capability of NADOL. In the data presented in this 
study, the images in the MNIST training set are presented one 
at a time, and each exposure to the full set of images is 
considered an “epoch” of training. At the end of each epoch, the 
classification accuracy on a separate set of test images is 
assessed with a single forward phase for each image. The 
classification accuracy is judged by which output neuron has 
the highest average firing rate during the test image forward 
phases. In Fig. 8-10, we vary various parameters in our model 
to study their effect when performing more learning epochs. As 
shown in Fig. 8, NADOL shows a high classification capability 
in 10 epochs. However, the accuracy is only slightly enhanced 
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with the neuron number increased from 500 to 3000. Adding 
more neurons beyond 4000 does not improve the learning 
accuracy. Therefore, NADOL with 4000 neurons is the most 
beneficial configuration with the strongest learning 
performance. NADOL presents a scalable architecture for 
learning by dendrites, which supports the scale up of the 
neuromorphic network model. 

 
Fig. 8. Classification accuracy with different numbers of neurons in the hidden 
layer. 
 

In order to further investigate the tradeoff between accuracy 
and power consumption in training the MNIST dataset on 
NADOL, we examined different configurations of the NADOL 
architecture as shown in Fig. 8. In Table IV, we provide the 
training energy overhead (%) between the training and 
inference phases. We can observe that as the number of neurons 
in the NADOL implementation increases, there is an increase in 
training energy overhead (%). However, the training energy 
overhead (%) remains lower than existing AI chips and 
neuromorphic chips [46][47][20][48], while maintaining a high 
learning accuracy based on strong biological plausibility 
learning mechanisms. 

 
TABLE IV 

COMPARISON WITH OTHER DIGITAL NEUROMORPHIC 
APPROACHES 

 
Configuration Training energy overhead (%) 
#200 5.3% 
#400 5.5% 
#500 5.7% 
#600 5.8% 
#800 6.0% 
#1000 6.2% 
#2000 6.2% 
#3000 6.3% 
#4000 6.6% 
All results are synthesized and verified with the same test vectors. 

 
The learning accuracy of the proposed algorithm is further 

explored with different levels of apical dendritic segregation. 
Previous study has shown that the biological pyramidal neurons 
only show an attenuation of distal apical inputs to the soma [43]. 

As shown in Fig. 9(a), different levels of dendritic segregation 
will induce various levels of learning performance. It reveals 
that the strong apical attenuation with ga=0.1 or 0.2 will induce 
a better learning performance in the proposed NADOL 
algorithm than the total attenuation or weak apical attenuation 
such as ga=0.6 or 0.8. It reveals that the electronically 
segregated dendrites is a meaningful approach to realize the 
separation between feed-forward and feedback data low for 
learning to learn. Besides, we try to explore the effects of 
different types of synaptic feedback weights on the learning 
performance. Five types of feedback synapses are considered, 
which are random synaptic feedback, symmetric synaptic 
feedback, synaptic feedback with sinusoidal noise, Gaussian 
noise and square-wave noise. In order to include noise in the 
feedback synapses and investigate their effects on our model 
performance, sinusoidal, Gaussian and square-wave noises, 
which are three critical categories of conventional noise, are 
considered. Sinusoidal noise is the most single frequency 
component. Any complicated signal can be regarded as the 
combination of sinusoidal signals with different frequencies 
and amplitudes. Gaussian noise represents the noise whose 
probability density function obeys Gaussian distribution, i.e., 
normal distribution. The common Gaussian noise induces 
fluctuation noise, cosmic noise, thermal noise and shot noise. 
Square-wave noise contains odd harmonic components. Gibbs 
phenomenon appears by Fourier conversion to represent the 
square wave. It contains fundamental harmonic and third 
harmonic at least. The sinusoidal noise is defined as follows 

  1 sin( )n t=                                       (29) 
where t=0:π/180:28π, and n1 represents the generated 
sinusoidal signal.  

The Gaussian noise in this study is expressed as 
1 22 2 ln(1 ) cos 2n t tπ= σ − − + µ                (30) 

where t1 and t2 are two random independent variables that 
follows the uniform distribution with [0,1]. The variable n2 is 
the generated Gaussian noise signal.  

Besides, the square-wave noise signal is calculated by the 
following equation: 

( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

3 1/ 3* 3* 1/ 5* 5*

     1 / 7* 7* 1/ 9* 9*

     1 /11* 11* 1/13* 13*

     1 /15* 15* 1/17* 17*

     1 /19* 19* 1/ 21* 21*

sin x sin x sin x

sin x sin x

sin x sin x

sin x sin x

sin x i x

n

s n

+ +

+ +

+ +

+ +

+ +

=

        (31) 

where x=0:π/180:28π and n3 represents the generated 
square-wave signal.  

As shown in Fig. 9(b), learning performance using the 
synaptic feedback with the symmetric weights is better than the 
random feedback weights. In addition, the synaptic feedback 
based on the symmetric weights with square-wave noise can 
further improve the learning performance of the proposed 
algorithm.  
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Fig. 9. Performance analysis for the effects of the apical attenuation and 
synaptic feedback weights. (a) The effect of the dendritic segregation on 
learning performance. (b) The effect of the synaptic feedback. 
 

In order to explore the effects of the sparseness of the 
synaptic feedback weight on the learning performance, we use 
different levels of sparseness to test the recognition accuracy. 
As shown in Fig. 10(a), the high-level sparseness of the 
synaptic weight with 5% and 10% sparseness will induce a 
reduction of the learning performance, while the learning 
accuracy of the other sparseness conditions are consistent with 
each other. The network using weight sparseness with 
amplification by the corresponding times is also investigated, 
for example, 10% sparseness with 10-time amplification, 20% 
sparseness with 5-time amplification. Fig. 10(b) reveals that the 
learning performance is also lower in the conditions of 10% 
sparseness and 12.5% sparseness in spite of the amplification. 
The situation of 16.7% sparseness with amplification by 6 
times results in the best learning performance compared to 
other groups, which means that appropriately strong sparseness 
will facilitate the learning of the proposed algorithm. Fig. 10(c) 
shows that the learning performance of the sparseness weight 
with amplification is better than the sparseness processing 
without amplification. It reveals that the compensation for the 
loss of the weight sparseness can improve the learning 
capability of the proposed algorithm, and the sparse feedback 
can provide a information signal that is sufficient for credit 
assignment during learning. 

 
Fig. 10. Performance analysis of the effects of the feedback sparseness on the 
learning performance. (a) The effect of the network connection sparseness on 
the learning performance across 10 epochs. (b) Effects of weight magnitudes 
for learning with sparse weights. 
 

The throughput of NADOL at nominal voltage for on-chip 
learning is compared with a high-performance GPU NVIDA 
Titan X as shown in Fig. 11. It shows that the presented 
NADOL architecture can be 6.2× faster computation in 
comparison with GPU training. The real-time computation 
evaluation shows that the presented system converges 4× faster 
than GPU training. 

 
Fig. 11. Throughput of the learning in comparison with a single Titan-X GPU. 
 

In this paper, our main focus is on establishing a 
neurally-inspired online learning architecture using dendritic 
learning mechanisms with strong biological plausibility. We 
aim to demonstrate the training efficiency of relatively 
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small-scale networks. However, to prove the effectiveness of 
NADOL, we further examined its performance on more 
complex datasets. It is important to note that the dendritic 
learning mechanisms currently employed in NADOL cannot be 
applied to convolutional neural networks, resulting in a loss of 
learning accuracy on complex datasets. In the future, we will 
investigate improved NADOL architectures for convolutional 
networks, although this may sacrifice low-power performance 
in pursuit of higher learning accuracy, providing more options 
for neurally-inspired learning architectures. Although these 
results lag far behind state-of-the-art classification models that 
utilize convolutional neural networks and less biologically 
plausible spiking neural networks, they still demonstrate that 
the proposed NADOL architecture can provide sufficient 
classification performance as an alternative to traditional AI 
neural networks and improve the learning performance of 
networks with the same architecture that do not utilize 
multi-compartment models. 

V. DISCUSSIONS 
Guided by brain-inspired "spiking" computational 

frameworks, neuromorphic computing represents a pivotal 
solution for brain-inspired machine intelligence, offering the 
promise of achieving artificial intelligence while substantially 
reducing the energy demands of computing platforms. This 
study introduces an innovative neuromorphic architecture, 
named NADOL, designed to address the critical challenge of 
spike-driven online learning, a bottleneck in the realm of 
neuromorphic computing and embedded artificial intelligence. 
As illustrated in Fig. 1, NADOL leverages dendritic processing 
mechanisms, enabling learning through dendritic nonlinear 
computations. A comprehensive overview of the architecture is 
provided in Fig. 2 to Fig. 5, elucidating the mapping strategy 
from the biological dendritic network to the spiking neuron 
model and ultimately to the neuromorphic architecture. The 
study utilizes the PLA method to further optimize the NADOL 
algorithm, as depicted in Fig. 6. Furthermore, Fig. 7 
underscores NADOL's superiority in terms of training energy 
overhead (%)—a testament to its energy-efficient solution for 
neuromorphic online learning. Fig. 8 delves into the learning 
capacity with varying neuron numbers in the hidden layer, 
emphasizing the importance of a scalable and efficient 
architecture for implementing larger-scale SNN models for 
dendritic learning. The study then delves deeper into NADOL's 
dendritic learning architecture, investigating the impacts of 
dendritic segregation and different synaptic feedback strategies 
on NADOL's learning capability, as exemplified in Fig. 10. 
Hardware resource utilization is meticulously detailed in Table 
III, with a series of cost functions presented to evaluate 
NADOL's hardware performance. Fig. 11 serves as an 
evaluation of NADOL's hardware architecture, marking a 
significant stride toward spike-driven learning in neuromorphic 
engineering. 

The major contributions of NADOL can be distilled into 
three key facets. First and foremost, NADOL offers a 
neuromorphic perspective on brain-inspired intelligence. It 
incorporates a novel semi-supervised learning mechanism that 
exploits spatiotemporal event representations. Secondly, 

NADOL represents a novel neuromorphic architecture 
characterized by high learning capacity and low power 
consumption. SNNs on NADOL leverage timing information, 
bestowing them with the inherent advantages of sparsity and 
efficiency in spiking dynamics. Lastly, NADOL serves as a 
bridge between neuroscience and brain-inspired intelligence, 
employing a neuromorphic approach. The integration of 
dendritic learning, which enhances spike-based learning 
through the addition of dendritic connections as an additional 
hyperparameter, opens intriguing avenues for elevating the 
intelligence level of neuromorphic systems. 

One of the most remarkable merits of neuromorphic 
computing is its energy efficiency. NADOL utilizes fewer than 
20kSynOps events, primarily generated between the input and 
hidden layers. The energy consumption of a synaptic operation 
on BiCoSS hovers around 25pJ. In contrast, single spike 
classification on conventional neuromorphic systems consumes 
approximately 500pJ, underscoring the remarkable efficiency 
of NADOL, especially in comparison to GPU-based platforms. 
It is worth noting that in this study, we implemented the 
hardware SNN model using fixed-point representation, which 
yielded slightly lower accuracy when juxtaposed with software 
neural networks employing floating-point number 
representations. Nevertheless, there exists a trade-off between 
accuracy and hardware resource cost. Additionally, our 
proposed system can be scaled up through the utilization of the 
well-established time-multiplexing technique. However, this 
expansion necessitates FPGA chips with augmented memory 
resources to accommodate the proposed SNN on a single chip. 

Another notable advantage of neuromorphic engineering is 
its alignment with the biological mechanisms of the real brain. 
Efficient learning hinges on the ability to assign contributions 
to behaviors for each neuron, a conundrum known as the credit 
assignment problem. In hierarchical networks with multiple 
processing stages, distinguishing credit-related activities from 
non-credit-related activities via synaptic plasticity rules can be 
daunting when credit signals are integrated with other input 
signals. Herein, the spatial layout and nonlinear dynamics of 
the dendrite structure play a pivotal role in disentangling credit 
signals from other inputs. Evidence suggests that top-down 
feedback signals are integrated in the distal apical dendrites in 
cortical pyramidal neurons, profoundly influencing neural 
spiking and synaptic plasticity. This underscores the utility of 
distal apical dendrites in resolving the credit assignment 
problem within the human brain. 

While previous works have explored supervised learning 
with the backpropagation algorithm based on SNN models and 
achieved impressive results in unsupervised learning with 
STDP algorithms, these models lack hardware implementations 
in the existing literature. Therefore, we refrain from direct 
comparisons with NADOL, given the absence of hardware 
implementations for these models to the best of our knowledge. 

It is important to note that the maximum accuracy attained by 
our neuromorphic system with dendritic learning falls below 
the accuracy achieved by supervised deep learning methods 
employing convolutional layers. This discrepancy can be 
attributed to the limitations of the two-layer network 
architecture we employed. Nonetheless, one of the primary 
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goals of neuromorphic hardware is to uncover the operational 
mechanisms of biological neural systems. We opted against 
using a convolutional structure due to its lack of biological 
plausibility. Dendritic learning, on the other hand, aligns with 
biologically plausible learning mechanisms that can occur 
within the brain. 

Real biological neurons are not singular compartments; they 
possess intricate dendrites that integrate various signals at 
different positions through nonlinear processing methods, 
yielding essential functions. One viable solution to the credit 
assignment problem is to segregate credit signals into dendritic 
compartments. This approach ensures that credit signals remain 
distinct from ongoing computations, driving unique spiking 
activities dedicated to transmitting credit information. 
Therefore, dendritic processing emerges as a crucial element in 
resolving the credit assignment problem in a biologically 
plausible manner. 

While assuming that all neurons contain a single 
compartment simplifies mathematical modeling and analysis, it 
diverges from the structure of the biological brain. Deep 
learning models introduce a separate pathway outside the 
trained network, a construct absent in the human brain. Recent 
computational research underscores the potential significance 
of independent compartments and nonlinear dendrites in 
addressing the credit assignment problem within a biologically 
plausible framework. Consequently, it is imperative for the 
neuromorphic computing and brain-inspired intelligence 
communities to continue exploring and harnessing dendritic 
learning within SNNs. 

VI. CONCLUSIONS 
In this study a novel neuromorphic architecture NADOL is 

presented using the biologically plausible learning rules, which 
has the energy efficient on-line learning capability and shows a 
classification performance superior in comparison with other 
neuromorphic approaches. Specifically, the results are achieved 
by optimizing the proposed algorithm, dedicated parallel 
processing on BiCoSS system, and utilizing the sparse 
spike-driven encoding within the SNN framework. A 
comprehensive analysis is performed, considering the effects of 
neuron number in hidden layer, dendritic segregation, feedback 
connective forms, and sparseness methods on the learning 
capability of NADOL. It shows that NADOL outperforms other 
solutions, and has higher learning efficiency compared to GPU 
platform. The presented study can be applied in kinds of fields, 
including autonomous embedded robots, internet of things, 
brain-machine interfaces, and experimental neuroscience 
platforms. It is also a critical approach towards the further 
comprehension of biological mechanisms underlying online 
learning in human brain. 
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