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ARTICLE INFO ABSTRACT

Keywords: Marine ecosystems and their fish habitats are becoming increasingly important due to their integral role in
Marine Science providing a valuable food source and conservation outcomes. Due to their remote and difficult to access nature,
Computer Vision marine environments and fish habitats are often monitored using underwater cameras to record videos and

Convolutional Neural Networks
Image and video processing
Machine Learning

Deep Learning

Deep Neural Networks

images for understanding fish life and ecology, as well as for preserve the environment. There are currently
many permanent underwater camera systems deployed at different places around the globe. In addition, there
exists numerous studies that use temporary cameras to survey fish habitats. These cameras generate a massive
volume of digital data, which cannot be efficiently analysed by current manual processing methods, which
involve a human observer. Deep Learning (DL) is a cutting-edge Artificial Intelligence (AI) technology that
has demonstrated unprecedented performance in analysing visual data. Despite its application to a myriad of
domains, its use in underwater fish habitat monitoring remains under explored. In this paper, we provide a
tutorial that covers the key concepts of DL, which help the reader grasp a high-level understanding of how
DL works. The tutorial also explains a step-by-step procedure on how DL algorithms should be developed for
challenging applications such as underwater fish monitoring. In addition, we provide a comprehensive survey
of key deep learning techniques for fish habitat monitoring including classification, counting, localisation, and
segmentation. Furthermore, we survey publicly available underwater fish datasets, and compare various DL
techniques in the underwater fish monitoring domains. We also discuss some challenges and opportunities in
the emerging field of deep learning for fish habitat processing. This paper is written to serve as a tutorial for
marine scientists who would like to grasp a high-level understanding of DL, develop it for their applications by
following our step-by-step tutorial, and see how it is evolving to facilitate their research efforts. At the same
time, it is suitable for computer scientists who would like to survey state-of-the-art DL-based methodologies
for fish habitat monitoring.

1. Introduction has been successfully applied to various challenging computer vision
tasks such as semantic image segmentation (Chuang et al., 2011; Jing
et al., 2020; Laradji, Rodriguez, et al., 2021; Pathak et al., 2015; Qi
et al., 0000), visual object detection (Kim et al., 2016; Pathak et al.,
2018; Villon et al., 2016; Wang et al., 2018), and tracking (Duan &

Deng, 2019; Garcia et al., 2016; Kang et al., 2018; Lumauag & Nava,

Proper understanding of our planet and its ecosystems is not pos-
sible unless suitable tools are developed to explore and learn about
our largest ecosystem, the marine environment. Computer Vision (CV)
technology through deployment of its underwater cameras can help us
better comprehend and manage remote marine fish habitats. However,

due to the sheer volume of their visual data, manual processing is time-
and cost-prohibitive, requiring a new radical shift in data analysis,
through advanced technologies such as Deep Learning (DL).

DL is at the frontier of computer vision. Its deep neural network
architectures are capable of learning complex mappings from high-
dimensional data to interpretable feature representations, hence, DL

2019). These applications have the potential to radically alter the way
we interact with the world through computers. Recently, the applica-
tions of DL and its underlying Deep Neural Networks (DNNs) for un-
derwater visual processing have received significant attention (Chuang
et al., 2016; Laradji, Saleh, et al., 2021; Mandal et al., 2018; Naseer
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et al., 2020; Nilssen et al., 2017; Saleh et al., 2020a; Salman et al.,
2020; Siddiqui et al., 2018; Villon et al., 2018).

The main advantage of deep learning is its ability to learn features
in different data types, such as underwater fish images, through end-
to-end training. Training of DNNs is often thought to be easy. Many
frameworks take delight in providing few lines of code that solve some
CV tasks, providing the misleading impression that all that is needed
is then plug and play, using some general Application Programming
Interfaces (APIs). In these APIs, the developers have lifted the burden
from us and, in doing so, disguised the complexity behind a few lines
of code needed to achieve the task at hand. The framework developers
have achieved the purpose of “providing a few lines of code” but we,
the end-users, have been fooled into believing we need to spend only
a few hours learning the intricacies of the provided APIs.

However, when it comes to training a DL algorithm, things become
more complicated. The task of training a DNN is actually as complicated
as the problem it is intended to solve. In fish monitoring, for example,
the number of input images you use, how you pre-process your images,
how you build your models, how you fine-tune the model (using
dropout or regularisation, for example), how you extract the features,
how you combine them to produce final predictions, what metric you
use to report your model performance, and your choice of which layer
to extract features from to feed to your classifier, are among some of the
many variables to consider when training a DNN. You can include any
number of variations on these factors to further optimise your model
and achieve the best possible accuracy.

Due to the above intricacies, most of the time DNNs are not simply
an “off-the-shelf” technology that works with all kinds of datasets, even
those similar to the one that has been meticulously customised for it.
The fact that training a customised high-performance DNN is rigorous
and challenging is now widely accepted. However, this challenging pro-
cess can be facilitated by being patient, paying attention to details, and
working systematically. Developing customised DNNs with a specific
application, for example, for underwater fish monitoring, should follow
the same systematic steps of developing any other computer vision
applications (e.g. detection of vehicles in traffic). The only difference
lies in the type of data being fed to the DNN.

In this paper, we first present a tutorial that covers the background
of DL to help understand the above-mentioned common DL termi-
nologies. The tutorial also provides a comprehensive overview of the
essential systematic steps to help better develop a supervised DL model,
with a focus on underwater fish habitat monitoring.

In the second part of the paper, we survey state-of-the-art research
and development on the use of DL for fish monitoring. We synthe-
sise the literature into four main categories covering the common
CV tasks of classification, counting, localisation, and segmentation of
fish images. We investigate different deep learning architectures and
their performance. We also survey publicly available underwater fish
image datasets. Finally, we provide a comprehensive overview of the
challenges in applying DL to marine fish monitoring domains. We also
draw a roadmap for future research works.

Although a number of previous relevant review articles (Goodwin
et al.,, 2022; Li & Du, 2021; Li et al.,, 2021; Moniruzzaman et al.,
2017; Saleh, Sheaves, & Rahimi Azghadi, 2022; Yang, Liu, et al.,
2021; Zhao et al., 2021) exist, our paper has a different approach and
motivation that compliments prior surveys. Compared to Goodwin et al.
(2022), which provides a survey of the general domain of ecological
data analysis, covering a wide array of studies on plankton, fish,
marine mammals, pollution, and nutrient cycling, we focus only on fish
monitoring. We also provide a detailed analysis of fish datasets and
comprehensively review the literature on four key tasks in underwater
fish video and image processing. This detailed analysis and review
are not provided in Goodwin et al. (2022), or any of the previous
works, making our paper useful for readers who would like to study
fish monitoring using DL in more detail and depth, while seeing a
comprehensive literature review.
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In addition, Li and Du (2021) provides a review of studies on
fish condition, growth, and behaviour monitoring in aquaculture set-
tings. It briefly covers and reviews various DL architectures and their
aquaculture applications, unlike the present communication that is
focused mainly on Convolutional Neural Network (CNN) and pro-
vides a detailed survey and analysis of the underwater fish monitoring
literature.

The work presented in Zhao et al. (2021) covers the general domain
of Machine Learning, as opposed to the specific domain of DL in our
paper. This is done for aquaculture applications as wide as fish biomass
and behaviour analysis to water quality predictions, while also briefly
covering and reviewing fish classification and detection methods.

A survey of computer vision models for fish detection and behaviour
analysis in digital aquaculture is provided in Yang, Liu, et al. (2021). An
interested reader should study Yang, Liu, et al. (2021) before reading
our paper, due to the background technical details provided on image
acquisition, which are key to developing effective DL datasets and
models, as we discussed in our paper.

Furthermore, the DL-based studies presented in Li et al. (2021),
Moniruzzaman et al. (2017) are mainly around the two specific tasks
of underwater fish tracking, and underwater object detection, respec-
tively. These applications are different to our study. However, since our
underwater fish monitoring task are related to these applications, our
paper can complement these works.

In Saleh, Sheaves, and Rahimi Azghadi (2022), we have provided a
historical survey of fish classification methods between the years 2003—
2021. These methods cover traditional CV techniques and modern DL
methods, only for fish classification in underwater habitats and not for
the general domain of underwater fish habitat monitoring.

This paper covers the use of deep learning in underwater fish
monitoring. Section 2 covers the basics of deep learning, including neu-
ral networks, convolutional neural networks, and supervised learning.
Section 3 provides an overview of the development process of deep
learning models, from training to deployment. Section 4 discusses the
applications of deep learning in underwater fish monitoring, including
classification, counting, localisation, and segmentation. Section 5 dis-
cusses the advantages and disadvantages of the application of DL to
fish habit monitoring. Section 6 explores the challenges of underwater
fish monitoring, such as environmental factors, model generalisation,
and limitations of available datasets. Section 7 presents potential op-
portunities for deep learning in underwater fish monitoring, including
knowledge distillation, merging image data from multiple sources, au-
tomatic fish phenotyping, and visual monitoring of fish behaviour and
movements. Finally, Section 8 summarises the study’s main findings
and provides concluding remarks.

2. Deep learning

This section discusses the basics of deep learning (Saleh, Sheaves,
& Rahimi Azghadi, 2022), a sub-field of machine learning, and its util-
isation of multi-layered neural networks to automatically learn input
features. It also introduces Convolutional Neural Networks (CNNs) and
their efficient learning of deep features for image processing, making
them suitable for underwater fish monitoring (Saleh, Sheaves, & Rahimi
Azghadi, 2022).

2.1. Neural networks

Neural networks are a type of computational model that are inspired
by the structure and function of biological neural systems in animals.
They consist of basic processing units called neurons that take input
signals, apply a function to them, and produce an output. In a neu-
ral network, the neurons are organised into layers, with each layer
performing a specific type of computation. The layers are typically
arranged in a hierarchical fashion, with the input layer receiving raw
data and the output layer producing the final result.
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The activation function of a neuron is the mathematical function
that determines whether or not the neuron “fires” or produces an out-
put signal based on the input signals it receives. One common activation
function is the sigmoid function, which is a non-linear function that
maps the input to a value between 0 and 1. This function is useful for
classification tasks, such as image classification, where the output of
the neuron can be interpreted as a probability.

Bias nodes are another important component in neural networks.
These nodes are like neurons, but they do not receive input signals.
Instead, they have a fixed input value of 1 and a weight associated with
them. The bias value is added to the sum of the input-weight products
to increase the flexibility of the model. In other words, bias nodes allow
the neural network to adjust the output even when all input features
are equal to zero.

Different types of loss functions are used for different types of tasks.
For classification tasks, such as image classification, the cross-entropy
loss is a common choice. This loss function measures the difference
between the predicted probability of the correct class and the actual
probability. Hinge loss is another type of loss function that is commonly
used for classification tasks, where the correct class score should be
higher than the sum of the scores for all other classes by some margin.

Regularisation is a technique used in neural network learning to
prevent overfitting by discouraging complex mapping functions or
models. This technique involves adding a regularisation term to the
general model loss function, which takes into account the loss function
value for all the training dataset examples. The two most common
forms of regularisation are L1 and L2, with L2 being the sum of the
square of the weights, and L1 being the sum of the weights.

2.1.1. Optimisation
In supervised learning, the learning task can be reduced to an
optimisation problem in the form of

6* = arg mgin 2(0), (9]

where 6 is a parameter vector, at which the loss function g(¢) that
usually represents the average loss for all training examples, reaches
its minimum. g can be represented as

1 n
g(9)=;§L(fg (xi).3) @

where (x;, y;) represents a (input, desired output) training pair.
Similarly, in DL, an optimisation method is used to train the neural
network by minimising the error function E that is defined as

m
EW,b)= Y L(5.) 3
i=1
where W and b are the weights and biases of the network, respectively.
The value of the error function E is thus the sum of the mean squared
loss L between the predicted value ) and true value y, for m training
examples. The value of j is obtained during the forward propagation
step and makes use of the previously-mentioned weights and biases of
the network, which can be initialised in different ways. Optimisation
minimises the value of the error function E by updating the values
of the trainable parameters W and b. The error function E is usually
minimised by using its gradient slopes for the parameters. The most
commonly used optimisation method is Gradient Descent (Sun et al.,
2019), in which the gradient is optimised by calculating a matrix of
partial derivatives (computed using backpropagation, as detailed in the
next subsection). These derivatives provide the slope of g simultane-
ously at each dimension of . Therefore, the gradient-based optimiser
is used to iteratively update the network weights in the direction of
the steepest descent of the loss function, with the aim of reducing
the training loss to as low a value as possible. This is achieved by
subtracting a small quantity from each weight in the direction of the
negative gradient of the loss function. While the ultimate goal is to find
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a good local minimum of the loss function, the non-convexity of the loss
function makes it difficult to search for the global optimum directly.
Instead, the optimiser seeks to improve the network’s performance on
the training data, while also ensuring that the validation loss remains
low, which indicates that the network is generalising well to new data.

2.1.2. Backpropagation

Backpropagation is probably the most important part of learning in
neural networks. It is performed after a forward propagation or pass,
in which a subset of the training dataset (named a batch) {(x;.y)} |
and the current network parameters 6 are used to calculate the final
layer output and the loss. During the forward pass, the data input is
passed to the first layer to process according to its activation function
and their values are passed on to the next layer, hence the term
“forward pass”. After the forward pass and calculating the final layer
loss, backpropagation happens, through which we start to calculate
the loss backwards, layer by layer, and the layer derivatives are then
“chained” by the local gradients to minimise the overall loss, g.

Overall, neural networks are a powerful and flexible tool for a wide
range of machine learning tasks, and their components, including neu-
rons, activation functions, bias nodes, and loss functions, are essential
to their success.

2.2. Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) are a type of Deep Neural
Network that are particularly powerful for computer vision tasks. They
work by applying a convolution (filtering) operation on the input data
through several convolution layers. This extracts useful features from
the input data by sliding convolution filters across the input image
represented to the network as matrices. One of the first and most
successful examples of CNNs in computer vision was AlexNet proposed
in 2012 (Krizhevsky et al., 2012) . Since then, many different varia-
tions of CNNs have been proposed, revolutionising image processing in
different domains.

A typical CNN architecture consists of convolutional layers, pooling
layers, non-linear activation layers, and final output layers, as shown
in Fig. 1. The building blocks and layers of a typical CNN include
Convolutional Layers, Batch Normalisation, Activation Layer, Pooling
Layer, Dropout, and Fully Connected Layers. Convolutional Layers
apply a filtering operation on input matrix data to generate a feature
map. Batch Normalisation is used to normalise the learning of the
network across the current set of training data to improve the speed
of learning and convergence of the deep learning model. Activation
Layers increase the non-linearity of the convolutional layer output to
learn complex data. Pooling Layers reduce the size of the feature map
and improve the efficiency of computation. Dropout is used to avoid
overfitting the training data. Fully Connected Layers contain a small
number of neurons and are the second-last layer of a CNN, before the
output layer.

2.3. Supervised learning

There are two main approaches to learning in general DL. These
include unsupervised and supervised learning. Unsupervised learning is
often used to discover the structure and composition of the input and
output domains without explicit and supervised target domain. This
approach enables generalisation from one input domain to another by
transforming data representations that are not directly related to the
data distribution of target domain.

The supervised learning approach, on the other hand, is designed
to explicitly map data from the input domain to its output domain via
training pairs that exhibit matching representations. These pairs are
carefully crafted by a human (supervisor), hence the name. The training
process of supervised learning can suffer from instability and is less
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Fig. 1. Schematic diagram of a CNN architecture used for the classification of fish images. The architecture consists of five convolutional layers that include the batch norm
operation within them, followed by pooling layers (convl-conv5). In this model, the feature maps from convolutional layers are pooled through pooling layers and then flattened
through two fully connected layers (fc6 and fc7). The classification output is the result of a fully connected layer and a softmax activation layer (fc8+softmax).

effective than the unsupervised learning method, because it learns with
an accurate target distribution without domain-specific knowledge.
Supervised deep learning uses a subtle deep neural network mech-
anism to extract useful features from large amounts of input training
data that are labelled to show their desired output domain. The learn-
ing is done by using the repetitive backpropagation process (Rojas &
Rojas, 1996) explained earlier, to adjust the DL architecture parameters
(such as weights and biases) while keeping fixed its hyperparameters
(such as the shape, number, and size of convolutional, pooling, and
fully connected layers). The goal is to optimise the function f, which
maps the input domain X to the output domain Y. While the archi-
tecture of the network is typically fixed during training, the optimiser
adjusts the internal parameters of the network to achieve the best
possible mapping of the input training data to their desired output.

2.4. Deep learning and fish monitoring

One of the applications of DL is fish monitoring, which is the process
of observing and measuring fish populations and their habitats. Fish
monitoring is important for understanding the ecology and biodiversity
of aquatic ecosystems, as well as for managing fisheries and aqua-
culture. DL can help with fish monitoring by providing accurate and
efficient methods for fish classification, detection, counting, tracking,
behaviour analysis, health assessment, and so on. DL can also handle
complex underwater environments that pose challenges for traditional
image processing techniques, such as low visibility, noise, distortion,
illumination variation, etc.

The data for DL-based fish monitoring can come from various
sources, such as underwater cameras, sonar, drones, satellites, etc. The
data can be collected in different scenarios, such as shallow or deep
water, fresh or marine water, natural or artificial habitats, etc. To
improve the performance and robustness of DL-based fish monitoring
systems, domain knowledge such as fish biology, ecology, and aqua-
culture management can be integrated and other technologies can be
combined with DL algorithms (Li & Du, 2021). These include hard-
ware technologies: such as sensors, communication devices, storage
devices, etc. Software technologies: such as data augmentation, feature
extraction, model optimisation, etc.

The goals and effects of applying DL to fish monitoring are mani-
fold (Yang, Zhang, et al., 2021). Some examples of these goals are:

» Enhancing scientific understanding of aquatic ecosystems and
their dynamics

» Improving fisheries management and conservation by providing
reliable data on fish stocks and their distribution.

+ Increasing aquaculture productivity and profitability by optimis-
ing feeding strategies, reducing disease outbreaks, and preventing
escapes and predation.

» Reducing human intervention and labour costs by automating fish
monitoring tasks.

» Promoting public awareness and education on aquatic biodiver-
sity and sustainability.

In summary, DL is a promising technique for fish monitoring that
can provide automated solutions for various tasks related to fish iden-
tification, measurement, localisation, and segmentation. By combining
DL with other technologies such as sonar or drones, fish monitoring can
be performed more effectively and efficiently in different underwater
environments.

3. Developing deep learning models

A comprehensive overview of the essential systematic steps for
training a DL model is summarised in Fig. 2. Even though these steps
are general in DL training, we included useful tips arising from our
experience in developing DL applications in various domains from
medical imaging to marine science applications. Nevertheless, we put
an emphasis on the development of DL for underwater fish habitat
monitoring.

3.1. Training dataset

The available training data is essential for developing an efficient
DL model. Datasets are becoming increasingly crucial, even more so
than algorithms. Perhaps, the most important factor when considering
a supervised learning dataset is its size. The requirement for a large
training dataset to achieve high accuracy is often a big obstacle. Be-
cause visual algorithms are trained by pairs of images and labels, in a
supervised manner, they can only identify what has already been given
to them. As a result, depending on the project, the number of objects
to identify, and the required performance, training datasets might
contain hundreds to millions of images. However, smaller training
datasets with only a few hundred samples per class may also achieve
good results (Konovalov, Saleh, Bradley, et al., 2019; Konovalov et al.,
2018; Konovalov, Saleh, Efremova, et al., 2019; Saleh et al., 2020Db).
Nevertheless, the larger the training dataset, the greater the recognition
accuracy.

Because of the scarcity of datasets and the difficulty of acquiring
reliable data, approaches for boosting the accuracy rate from small
samples will inevitably become a focus of future studies. The problem
of limited sample data can be also alleviated by transfer learning (Lee
et al., 2018; Mathur et al., 2020; Molchanov et al., 2016). Furthermore,
data augmentation will become increasingly critical. Section 6.3 covers
some challenges of limited data and some approaches to address these
challenges.



A. Saleh et al.

Model Architecture

Design the architecture of
0 1 the deep learning model

This involves selecting the
type of neural network to
use

Data Preparation

Collecting, cleaning, and
organizing data that will be
used to train the deep
learning model. This data is
typically split into training,
validation, and testing sets

02

03

i

Model Training

The model is trained by
feeding the training data
through the network and
adjusting the weights of the
model to minimize the error
between the predicted output
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Model Evaluation

Once the model is trained,
itis evaluated on the
validation and testing sets
to measure its accuracy
and performance

Finally, the trained model is
deployed in the environment,
where it can be used to make
predictions on new data.

04

and the actual output

Fig. 2. A schematic diagram showing the steps and components required for training a deep learning model.

The second factor to consider when preparing a dataset for DL
training is having a balance. This is critical to ensure that each class
to be identified contains a sufficient number of instances to minimise
class imbalance biases. These biases happen when the DL favours one
or more classes due to seeing them more often when being trained.

Also, the training dataset is typically divided into two subsets,
the training subset for efficiently training the model and the vali-
dation/test subset for assessing the trained model’s performance. For
the training subset, a subset of the training dataset is reserved for
training the model. If the training subset is too large, it can prolong
the model training. If, on the other hand, the training subset is too
small, the resulting model may not generalise well to unseen inputs.
The validation/test subset is typically used to avoid overfitting, which
is a common problem in machine learning and happens when the
developed model simply memorises the inputs rather than properly
learning them. Cross-validation is another widely used methodology
for testing a DL model’s training performance, by splitting the training
dataset into multiple mutually exclusive subsets of training and testing
data. One method of cross-validation is called k— fold cross-validation,
in which the training dataset is split into k equally sized subsets. In this
method, k—1 folds are used for training the model, while the remaining
fold is used to test the learning performance. This process is repeated
until all the folds have been used once as a test/validation set.

In addition to the above, it is usually vital to, initially and before
embarking on code development, perform a comprehensive inspection
of the dataset. This will help to clean the dataset, for instance by finding
and removing duplicate data instances. It also helps identify imbalances
and biases, as well as data distribution, trends, or outliers, which will
help in better model design and understanding of possible wrong DNN
predictions.

Fortunately, in the domain of fish habitat monitoring, researchers
currently have access to a variety of datasets. Table 1 lists publicly
available underwater fish datasets, their sources, and where to get
them, in addition to a summary of their features, their labels, and their
sizes. The main point to note about these datasets is that they differ in
both size and number of features. Although the number of these fish
datasets is still small (17), the diversity of aquatic species they cover
is already quite wide. They cover a large number of aquatic species, as
indicated in Fig. 3. Moreover, each dataset features a different number
of images that have varying resolutions. For each image, there is also
a ground truth annotated by a human expert, which make them very
useful. For instance, these datasets can be used by researchers to test
their DL models or to pre-train them, as the first step, for their more
specific fish monitoring tasks.

After preparing the training dataset or utilising alternative ap-
proaches to addressing insufficient data challenge, one can start de-
veloping their DL model using a machine-learning development frame-
work.

3.2. Development framework

The rapid evolution of DL has led to the creation of a vast number
of development libraries and packages that enable the setting up of
DNNs with insignificant effort. Usability and availability of resources,
architectural support, customisability, and hardware support are all
various benefits of using existing machine-learning frameworks. The
most commonly used frameworks are PyTorch, TensorFlow, MATLAB,
Microsoft Cognitive Toolkit (CNTK) and Apache MXNET. In the context
of DL for marine research, as will be shown later in Tables 3 to 5,
PyTorch and TensorFlow are the dominant frameworks, while Matlab
and Caffe have been used only in a few works. Overall, details such as
the project needs and the programmer and developer preference should
be taken into account, when choosing the development framework.

When the development framework is chosen, the next step is to
find the most suitable network architecture for the task at hand. This
sometimes depends on the framework, as some recent methods may not
immediately be supported by all frameworks.

3.3. Network architecture

Network architecture is the structure of the DL model, which de-
pends on what it intends to achieve and its expected input and output.
Therefore, the type of training dataset and the expected outcome
influence the architecture’s choice and its performance. DL network
architectures can differ in a variety of ways such as the type and
number of layers, their structure, and their order. Before selecting a
network architecture, it is critical to understand the dataset you have
and the task you are going to complete. For example, convolutional
neural networks or CNNs are known to learn higher-order features, such
as colours and shapes, from data within their convolution layers. There-
fore, they are ideally adapted to image-based object recognition. On the
other hand, Recurrent Neural Networks (RNNs) have the capability of
processing temporal information or sequential data, such as the order of
words in a sentence. This feature is ideal for tasks such as handwriting
or speech recognition.

In the context of fish habitat monitoring, if you are working on
a task that requires you to learn temporal information of the input
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Table 1
Summary of some publicly available datasets containing fish for training and testing deep learning models.
Dataset Summary Labels Dataset size Website
A - Deepfish Videos from coastal habitats in fish/no fish 40k classification labels, 3.2k images github.com/alzayats/DeepFish

B - Croatian Fish
Dataset

C - Fish in seagrass
habitats

D - Fish4Knowledge
E - Fish-Pak

F - Labelled Fishes in
the wild

G - OzFish

H - QUT Fish Dataset

I - Whale Shark ID

J - Large Scale Fish
Dataset

K - NCFM

L - Mugil liza sonar

M - MSRB Dataset

N - WildFish
O - SUIM

P - DZPeru fish-datasets

north-eastern and western Australia

12 species of fish found in Croatian
waters

RUV taken in Australian seagrass
habitat of 2 species

Fish detection and tracking dataset,
17 videos at 10 min long, rate of 5
fps.

Image dataset of 6 different fish
species from 3 locations in Pakistan

Rockfish (Sebastes spp.) and other
species (non-fish) near the seabed

Large data set comprising of 507
species of fish.

468 species in varying ex-situ and
in-situ habitats.

543 individual whale sharks
(Rhincodon typus)

9 different seafood types collected
from a supermarket in Izmir, Turkey

Image dataset of 8 different fish
species

Sonar-based underwater videos of
schools of migratory mullets (Mugil
liza)

Real underwater images without
marine snow and synthesised with
marine snow

1,000 fish categories

Image dataset of 8 different
underwater objects

Several species in varying ex-situ and
in-situ habitats.

species names

species

fish/no fish

species
fish/non-fish
species, fish/no
fish

species name

individuals

species name

species name

number of fish

NA

species name

object name

species name

with point-level annotations, 310
segmentation masks

794 classification labels

9k classification labels, bounding boxes
and segmentation masks

3.5k bounding boxes

1k classification labels

1k bounding boxes (fish), 3k (non-fish)

80k labelled cropped images, 45k
bounding box annotations (fish/no fish)

4k classification images

7.8k bounding boxes

For each class, there are 1000
augmented images and their pair-wise
augmented ground truths

~16000 classification images

500 counting images

~6000 images

~54000 classification images

~1500 annotated images semantic
segmentation mask

~17000 annotated images segmentation
mask

~1000 annotated videos

www.inf-cv.uni-
jena.de/fine_grained_recognition.html#datasets

github.com/globalwetlands/luderick-seagrass

groups.inf.ed.ac.uk/f4k/index.html

data.mendeley.com/datasets/n3ydw29sbz/3

swfscdata.nmfs.noaa.gov/labeled-fishes-in-the-
wild/

github.com/open-AIMS/ozfish
www.dropbox.com/s/e2xyal pzr2tm9xr/QUT_
fish_data.zip?dl=0

http://lila.science/datasets/whale-shark-id

www.kaggle.com/crowww/a-large-scale-fish-
dataset

www.kaggle.com/c/the-nature-conservancy-

fisheries-monitoring/data

zenodo.org/record/4751942#.YKzfUKgzayk

github.com/ychtanaka/marine-snow

github.com/PeiqinZhuang/WildFish
github.com/xahidbuffon/SUIM

github.com/DZPeru/fish-datasets

Q - LifeCLEF 10 different fish species species name

www.imageclef.org/

sequence, for example fish image sequence analysis, the DL architecture
you choose can be very important. For example, a CNNs architecture
is more suited for image-based object recognition such as fish classifica-
tion, while the RNN architecture is more suitable for tasks where the
input sequence is temporal in nature such as generating fish habitat
descriptions.

To find a suitable architecture, you first need to define your prob-
lem. This problem is defined by two questions: (1) What features will
you extract? (2) How will you label these features? The features you
extract are defined by your data. In other words, you are interested
in the representation of the data you have. The number of features
you choose to extract is defined by the task you are trying to solve.
As described above, the DL architectures can learn features such as
colours and shapes from image-based object recognition. Before trying
to construct your network, you first need to decide what data type
you will use and how will you encode the information. After you
have defined your task, you should think about what features are
important for the task. You will need to define this in order to construct
your network. For example, if the features you want to extract are
fish shape and fish location, then you could define a convolutional
architecture. The features you choose to define should be a subset of
all the features in the data. For example, for an image-based object
recognition network, you would extract features such as fish species.
However, your extracted features will also need to cover all the data.
For example, you will also need features of the type of water or the type
of background. It is important to take all these features into account

when defining your network. For a complete discussion on different
DL architectures see Khan et al. (2020).

3.4. Network model

When a general network architecture is selected, the next step is
to select, or sometimes develop, a network model of that architecture.
For instance, when you decided to use a CNN, you can use different
varieties of CNN models. The rule of thumb for selecting a CNN is
to choose a model that results in a satisfactory training loss for your
dataset. Creating an exotic and creative model is not recommended
at this stage. It is usually recommended to avoid the temptation and
choose a model big enough to overfit your dataset, and then regularise
it properly to improve the validation loss.

For example, one may pick a well-known CNN model, e.g. ResNet,
which can be used out-of-the-box, if their task is simple, e.g. fish clas-
sification. In later stages, they can customise their model to adequately
capture their dataset. We show in Tables 3 to 5 in the next section that
ResNet is the most commonly used model for fish counting (Table 3),
fish localisation (Table 4), and fish segmentation (Table 5).

3.5. Training the model
After choosing the best model is time to set up a full train/validation

pipeline. The below steps are recommended at this stage of develop-
ment.


https://github.com/alzayats/DeepFish
http://www.inf-cv.uni-jena.de/fine_grained_recognition.html#datasets
http://www.inf-cv.uni-jena.de/fine_grained_recognition.html#datasets
https://github.com/globalwetlands/luderick-seagrass
https://groups.inf.ed.ac.uk/f4k/index.html
https://data.mendeley.com/datasets/n3ydw29sbz/3
https://swfscdata.nmfs.noaa.gov/labeled-fishes-in-the-wild/
https://swfscdata.nmfs.noaa.gov/labeled-fishes-in-the-wild/
https://github.com/open-AIMS/ozfish
https://www.dropbox.com/s/e2xya1pzr2tm9xr/QUT_fish_data.zip?dl=0
https://www.dropbox.com/s/e2xya1pzr2tm9xr/QUT_fish_data.zip?dl=0
http://lila.science/datasets/whale-shark-id
https://www.kaggle.com/crowww/a-large-scale-fish-dataset
https://www.kaggle.com/crowww/a-large-scale-fish-dataset
https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring/data
https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring/data
https://zenodo.org/record/4751942#.YKzfUKgzayk
https://github.com/ychtanaka/marine-snow
https://github.com/PeiqinZhuang/WildFish
https://github.com/xahidbuffon/SUIM
https://github.com/DZPeru/fish-datasets
https://www.imageclef.org/
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Fig. 3. Sample images from publicly available datasets detailed in Table 1.

« Start with a simple model (i.e. a small number of convolutional
layers) that can hardly go wrong and visualise the model per-
formance metrics. Do not use an out-of-the-box large model like
ResNet, just yet. It is recommended to plot training loss to see
how the network is progressing during learning and if the loss is
getting smaller. This also shows the speed of learning.

To better understand the process, it is recommended to use a fixed
random seed (for randomly initialising the network parameters)
to ensure that the same results can be achieved when running the
code twice.

Do not perform any data augmentation at this stage as it may
introduce errors. You can do data augmentation at a later stage

after confirming that your network works properly. You can see
a brief introduction to data augmentation and other methods at
Section 6.2.

Use ADAM algorithm (Kingma & Ba, 2014), which helps the
learning by applying adaptive optimisation to the learning rate
of the network.

The learning rate is an important hyperparameter of a deep
learning model. It is usually the most crucial value during training
and should be configured using trial and error. Depending on
the size of your dataset, a specific learning rate decay may be
needed. The learning rate decay is a technique that allows the
learning rate to fall during successive training epochs until it
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Performance metrics used to compare various surveyed works.
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Performance Metric

Symbol used

Description

Classification Accuracy

CA

The percentage of correct predictions. For multi-class classification, CA is averaged among all the
classes. CA=(TP+TN)/(TP+TN+ FP+FN)

The fraction of true positives (T P), to the sum of TP and false positives (FP). P=TP/(TP+ FP)
The fraction of true positives (TP) to the sum of TP and false negatives (FN). R=TP/(TP + FN)

The harmonic mean of precision and recall. F1=2 X (P X R)/(P + R)

Mean of the square of the errors between predicted and observed values

Is the square root of the mean of the square of all of the errors.

The mean error between predicted and observed values, in percentage

Root of the squares of the sums of the differences between predicted counts and the actual counts

A metric that evaluates how similar the predicted bounding box is to the ground truth bounding

box. by dividing the area of overlap between the predicted and the ground truth boxes, by the
area of their union.

Precision P
Recall R
F1 score F1
Mean Square Error MSE
Root Mean Square Error RMSE
Mean Relative Error MRE
L2 error L2
Intersection over Union IoU
The maximum number MaxN
Mean average precision mAP
are used.
Classification Error CE

MaxN, the maximum number of the target species in any one frame.

Depending on the detection difficulty, the mean AP across all classes and/or total IoU thresholds

Is how often is the classifier incorrect and also known as “Misclassification Rate”.

CE=(FP+FN)/(TP+TN + FP+FN)

converges. A high learning rate at the start prevents the network
from memorising noisy data, whereas decaying the learning rate
improves complex pattern learning.

» Implement early stopping and monitor the learning process by
looking at the training loss plot to prevent overfitting.

» Add complexity to your model gradually, e.g. add more lay-
ers or use off-the-shelf CNN models, and obtain a performance
improvement over time.

3.6. Testing the model

When the model is trained, its accuracy and performance should be
tested using the test subset of the training dataset. A test set can also be
independent of the training dataset to evaluate the model performance.
The main point to remember is that the test set should not have been
used for the training or evaluation of the model, at all.

The model’s performance should be measured by computing ap-
propriate metrics suitable to the task at hand. A list of the most
common metrics used in testing fish monitoring models is given in
Table 2. For classification tasks, Classification Accuracy (CA), Precision
and Recall rates are appropriate metrics, while Fl-score, which is a
combination of precision and recall, can provide a better measure of
model performance and is used in fish counting and localisation tasks
as shown in Tables 3 and 4. The Intersection-Over-Union (IoU) is the
appropriate metric for segmentation tasks, while the mean average
precision (mAP) metric suits pixel-wise localisation of fish in images.
Looking at Tables 3 to 5, other metrics such as Mean Square Error
(MSE) and Root MSE (RMSE) have also been used in the marine fish
monitoring literature. These can be considered and used if required.

3.7. Fine tuning the model

The performance and accuracy of the model could be improved if
needed. The amount of this improvement is, though, strongly influ-
enced by its current accuracy. This step may quickly become com-
plicated, since increasing the model accuracy might require several
steps such as adjusting the learning rate, collecting new data, or fully
modifying the model’s architecture. You should keep this fine-tuning
step to a reasonable level. Otherwise, the model might overfit the data.

3.8. Deploying the model

Finally, the model deployment mode should be chosen. This de-
pends on the application and the deployment requirements. The model

can be deployed to run on a local or remote device (on a web server, a
docker container, a virtual private server (VPS), etc.). This will deter-
mine whether the results can be accessed remotely or only within the
local network. It is recommended to use a cross-platform deployment
method to avoid issues such as input/output data format, or the type
of files used for storing data.

The most commonly used cross-platform model deployment method
is Docker (Abdul et al., 2019; Potdar et al., 2020), which is a virtu-
alisation software that allows setting up and running other software
environments on top of a base Linux distribution without the need
to set-up virtual machines. Docker helps build, configure, and run
applications using the same Docker file. Typically, Docker is the rec-
ommended approach for web applications. In this method, you can use
Docker container or Docker host on your development machine. Docker
container may be the easiest option for web applications. You can also
deploy your network to a remote machine via Docker. The advantage
of using a container is that you can share the development environment
and run tests of your model using multiple docker containers. You can
also install the Docker tool on your local machine to manage containers,
so it is convenient.

4. Applications of deep learning in underwater fish monitoring

Deep learning has been widely used in marine environments with
applications spanning from deep-sea mineral exploration (Juliani & Ju-
liani, 2021) to automatic vessel detection (Chen et al., 2019). However,
we confine the scope of this paper to only marine fish image pro-
cessing, which typically includes four tasks of classification, counting,
localisation, and segmentation of underwater fish images, as shown in
Fig. 4.

Here, the goal is to assist the reader in understanding the similarities
and differences across these tasks and their relevant DL models and
techniques. We provide a background of what each task involves, what
previous works have been published towards addressing it using deep
learning, and synthesise the literature on each task.

4.1. Classification

As its name infers, in visual processing, classification is the task
of classifying images into different categories. There can be only two
categories, i.e. a binary classification, in which the images are classified
into two groups, e.g. “fish” and “no fish”, depending on the presence or
absence of fish in an image (e.g. Deepfish dataset described in the first
row of Table 1). The classification can also involve multiple “classes”
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Fig. 4. Illustration of four typical fish monitoring tasks. From left: Fish Classification (i.e. is there a fish in the image, or what type (class) of fish is in the image?); Fish
Detection/Localisation/Counting; Fish Semantic Segmentation, and Fish Instance Segmentation.

or groups. For instance, consider assigning different underwater fish
images into different groups based on the species (e.g. FishPak dataset
in Table 1) present in them.

Consider a manual procedure, in which images in a dataset are
compared and relative ones are classified based on similar features, but
without necessarily knowing what you are searching for in advance.
This is a difficult assignment as there could be thousands of images in
the dataset. Moreover, many image classification tasks involve images
of different objects. It rapidly becomes clear that an automatic system,
such as a DNN, is required to complete this task quickly and efficiently.

Classification is the most widely-used and -studied underwater im-
age processing task using DL. In a previous work, we have covered the
use of DNNs specifically for the task of underwater fish classification.
We refer the reader to Saleh, Sheaves, and Rahimi Azghadi (2022) for
a comprehensive review of prior art on classification.

4.2. Counting

The purpose of the counting task is to predict the number of objects
existing in an image or video. Object counting is a key part of the
workflow in many major CV applications, such as traffic monitor-
ing (Khazukov et al., 2020; Zhang et al.,, 2017). In the context of
marine applications and fish monitoring, counting may be used to map
distinct species and monitor fish populations for effective conservation.
With the use of commercially available underwater cameras, data
gathering can be done more comprehensively. It is, however, difficult
to correctly count fish in underwater habitats. To perform effective
counting, models must understand the diversity of the items in terms of
posture, shape, dimension, and features, which makes them complex.
Meanwhile, manual counting is very time-consuming, costly, and prone
to human error.

DL affords a faster, less expensive, and more accurate alternative
to the manual data processing methods currently employed to monitor
and analyse fish counts. Table 3 lists several of the recent DL techniques
used for fish counting. Saleh et al. (2020a) created a novel large-
scale dataset of fish from 20 underwater habitats. They used Fully
Convolutional Networks (FCNs) for several monitoring tasks including
fish counting and reported a Mean Average Error (MAE) of 0.38%.
DL has the potential to be a more accurate method for assessing fish
abundance than humans, with results that are stable and transferable
between survey locations. Ditria et al. (2021), Ditria, Lopez-Marcano,
et al. (2020), Ditria, Sievers, et al. (2020) compared the accuracy and
speed of DL algorithms for estimating fish population in underwater
pictures and video recordings to human counterparts in order to test
their efficacy and usability. In single image test datasets, a DL method
performed 7.1% better than human marine specialists and 13.4% better
than citizen scientists. For video datasets, DL was better by 1.5% and
7.8% compared to marine and citizen scientists, respectively.

Despite this high potential, DL has not been thoroughly investigated
for counting underwater fish. One possible reason for the lack of
comprehensive research on fish counting is the scarcity of large publicly
available underwater fish datasets. In addition, properly annotating fish
datasets to train robust DL models is time-prohibitive and expensive.
Although underwater fish counting is limited in the literature, several
previous works have advanced the field in this area. For instance,
Tarling et al. (2021) created a novel dataset of sonar video footage of

mullet fish labelled manually with point annotations and developed a
density-based DL model to count fish from sonar images. They counted
fish by using a regression method (Xue et al., 2016) and achieved a
MAE of 0.30%. Other researchers (Liu et al., 2018; Schneider & Zhuang,
2020) used sonar images as well because they present substantially
different visual characteristics compared to natural images. Counting
fish in sonar images, however, is substantially different from counting
fish in underwater video surveillance (Mandal et al., 2018). Unlike
natural images, sonar images present unique visual characteristics and
are in lower resolution due to the specific imaging forming principle.

Using DL, a computer can be taught to identify fish in underwater
images, thus eliminating the subjectivity of humans in counting fish.
However, its use for fish population and count analysis is dependent
on the model performance on a set of well-defined performance met-
rics and parameters, which is in itself a challenge. In Section 3, we
discussed how one can train high-performance DL models, how the use
of the current DL pipeline (and other methodologies) can be improved,
and how future DL models can be designed for better assessing fish
population including their abundance and their location, which is the
subject of the next subsection.

4.3. Localisation

Object localisation is an essential task in CV, where the goal is to
locate all instances of specified objects (e.g. fish, aquatic plants and
coral reef) in images. Marine scientists assess the relative abundance
of fish species in their environments regularly and track population
variations. Various CV-based fish sample methods in underwater videos
have been offered as an alternative to this tedious manual assessment.
Though, there is no perfect method for automated fish localisation. This
is mostly owing to the difficulties that underwater videos bring, such as
illumination fluctuations, fish movements, vibrant backgrounds, shape
deformations, and a variety of fish species.

To address these issues, several research works have been carried
out, which are listed in Table 4. Saleh et al. (2020a) have developed
a fully convolutional neural network that performs localising of fish
in realistic fish-habitat images with high accuracy. Jalal et al. (2020)
introduced a hybrid method based on motion-based feature extraction
that combines optical flow (Beauchemin & Barron, 1995) and Gaus-
sian mixture models (Zivkovic & van der Heijden, 2006) with the
YOLO deep learning technique (Chaudhari et al.,, 2020) to identify
and categorise fish in unconstrained underwater videos using temporal
information. They achieved fish detection F-scores of 95.47% and
91.2% on LifeCLEF 2015 benchmark (Joly et al., 2014) and their own
dataset, respectively. Gaussian mixture is an unsupervised generative
modelling approach that may be used to learn first and second-order
statistical estimates of input data features (Zivkovic & van der Heijden,
2006). Within an overall population, this is used to indicate Normally
Distributed subpopulations. The weakness of Gaussian mixture is when
trained on videos with some fish but no pure background, the fish
are modelled as background as well, resulting in misdetections in
subsequent video frames (Salman et al., 2019). In order to compensate
for the Gaussian mixture’s weakness, optical flow can be used to extract
features that are solely caused by underwater video motion. The pattern
of apparent motion of objects, surfaces, and edges in a visual scene
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Article DL model Framework

Data

Annotation/Pre- Classes and labels

processing/Augmentation

Perf. metric

Metric value

Comparisons with other
methods

A realistic fish-habitat
dataset to evaluate
algorithms for underwater
visual analysis (Saleh

et al., 2020a)

ResNet-50 CNN Pytorch

Annotated Video Footage
for Automated
Identification and Counting
of Fish in Unconstrained

ResNet-50 CNN Pytorch

Authors-created database
containing 39,766 images
for 20 habitats from
remote coastal marine
environments of tropical
Australia and split to
sub-dataset for four
computer vision tasks:
classification, counting,
localisation, and
segmentation.

The dataset consists of
4,281 images and 9,429
annotations (9,304

luderick, 125 bream) at

20 classes of 20
different fish
habitat.

Each image was annotated by MAE
point-level and semantic

segmentation labels

Each image was annotated by 2 classes of fish F1
drawing a bounding box and
segmentation mask

0.38

92%

NA

NA

Seagrass Habitats (Ditria
et al.,, 2021)

the standard high
resolution (1920 x 1080
p)-

Automating the Analysis of Mask R-CNN  Pytorch Authors-created database = Each image was annotated by 1 class of fish F1 Image (95.4%) The computer’s

Fish Abundance Using ResNet50 containing 6,080 fish segmentation mask Video (86.8%) performance in

Object Detection images from 20 habitats determining abundance

Optimising Animal Ecology from Tweed River Estuary was 7.1% better than

With Deep Learning in southeast Queensland human marine experts and

(Ditria, Lopez-Marcano, 13.4% better than citizen

et al., 2020) scientists in single image
test datasets, and 1.5%
and 7.8% higher in video
datasets, respectively.

Deep learning for Mask R-CNN  Pytorch Authors created five Each image was annotated by 1 fish class F1 87%-92% NA

automated analysis of fish ResNet50 datasets, each consisting of drawing a Polygonal

abundance: the benefits of 4700 annotated luderick, segmentation masks around the

training across multiple total of 23500 images region of interest (ROI)

habitats (Ditria, Sievers,

et al., 2020)

Deep learning with ResNet50 CNN Tensorflow Authors created a data set Each image was annotated by 3 classes of fish MAE 0.30% Comparison between

self-supervision and of 500 labelled sonar dot annotation according to DeepFish dataset 0.38%

uncertainty regularisation images from video number of fish and authors’ benchmark

to count fish in sequences result and their model

underwater images (Tarling 0.30%.

et al.,, 2021)

Counting Fish and CNN NA Authors created a data set Each image was annotated by 35 classes for fish MSE Fish 2.11% Comparing four Network

Dolphins in Sonar Images of 143 labelled sonar counting number of fishes and 4 for dolphin Dolphins Architectures,

Using Deep Learning images from the Amazon 0.133% DenseNet201,

(Schneider & Zhuang, River InceptionNetV2, Xception,

2020) and MobileNetV2

Counting Fish in Sonar CNN NA Authors created a dataset Each image was annotated by 1 class of fish RMSE 16.48% Comparison with other

Images (Liu et al., 2018) of 537 labelled sonar dot annotation state-of-the-art approaches

images from video
sequences
Assessing fish abundance Faster R-CNN  Caffe Authors created a dataset Each image was annotated by 50 classes from 50 mAP 82.4% NA

from underwater video
using deep neural networks
(Mandal et al., 2018)

of 4909 labelled images
from video sequences

drawing a bounding box

Different fish
habitat.

generated by the relative motion of an observer and a scene is known
as optic flow (Beauchemin & Barron, 1995).

Knausgard et al. (2021) also implemented YOLO (Chaudhari et al.,
2020) for fish localisation. To overcome their small training samples,
they employed transfer learning (explained in the next Section). The
YOLO technique achieved Mean Average Precision (mAP) of 86.96%
on the Fish4Knowledge dataset (Giordano et al., 2016). YOLO-based
object detection systems have been also used in several other research
to robustly localise and count fish (Jalal et al., 2020; Knausgérd et al.,
2021; Xu & Matzner, 2018). To test how well Yolo could generalise
to new datasets, Xu and Matzner (2018) used it to localise fish in
underwater video using three very different datasets. The model was
trained using examples from only two of the datasets and then tested on
examples from all three datasets. However, the resulting model could
not recognise fish in the dataset that was not part of the training set.

Other CNN models have also been adapted to robustly detect fish
under a variety of benthic background and illumination conditions.
For instance, Villon et al. (2016) and Choi (2015) used GoogLeNet
(Szegedy, Liu, et al., 2015), while Labao and Naval (2019a) used an
ensemble of Region-based Convolutional Neural Networks (Ren et al.,
2015) that are linked in a cascade structure by Long Short-Term

10

Memory networks (Hochreiter & Schmidhuber, 1997). In addition,
Inception (Szegedy, Vanhoucke, et al., 2015) and ResNet-50 (He et al.,
2015) were examined in Zhuang et al. (2017) for fish detection and
recognition based on weakly-labelled images. Furthermore, Han et al.
(2020) and Li et al. (2015) used Fast R-CNN (Region-based Con-
volutional Neural Network) (Ren et al., 2015) to detect and count
fish.

Table 4 demonstrates that state-of-the-art methods (e.g. YOLO and
Fast R-CNN) can achieve high accuracy in localisation tasks. These
methods generally train object detectors from a wide variety of training
images (Felzenszwalb et al., 2010; Girshick et al., 2014) in a fully
supervised manner. The drawback is that these models depend on
instance-level annotations, e.g. tight bounding boxes need to be drawn
around fish in training datasets. This is time-consuming and labour-
intensive and makes the use of DL in marine research very challenging,
if not impossible. In Section 6.3.4 we discuss how this critical issue
can be addressed using weakly supervised localisation of objects, where
only binary image-level labels showing the existence or absence of an
object type are needed for training.

Similar to fish classification, counting, and localisation, fish segmen-
tation, i.e. detecting the entire body of fish in an image is a critical task
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Article DL model Framework Data Annotation/Pre- Classes and labels Perf. metric Metric value Comparisons with
processing/Augmentation other methods
Marine Animal ResNet-10 CNN NA The dataset is made of 73 Each image was annotated by 1 class of fish F1 0.07% NA
Detection and videos from the public drawing a bounding box
Recognition with datasets Fish4Knowledge
Advanced Deep
Learning Models
(Zhuang et al., 2017)
Fish detection and Yolo - CNN TensorFlow The dataset is made of two Each image was annotated by 15 classes of 15 F1 LCF-15 95.47% Comparison with
species classification datasets 93 videos from drawing a bounding box and different fish species. UWA 91.2% other state-of-the-art
in underwater LifeCLEF 2015 fish dataset species name approaches
environments using And an authors-created
deep learning with database containing 4418
temporal information videos
(Jalal et al., 2020)
Automatic fish ResNet-152 CNN  TensorFlow The dataset is made of 110 Each image was annotated by 15 classes of 15 F1 87.44% and NA
detection in videos from two public drawing a bounding box different fish species. 80.02%
underwater videos datasets Fish4Knowledge and respectively
by a deep neural LifeCLEF 2015 fish dataset
network-based hybrid
motion learning
system (Salman
et al,, 2019)
Temperate fish YoloV3 - CNN Pytorch total of 27230 images Each image was annotated by 23 classes of 23 mAP 86.96% NA
detection and catalogued into 23 different drawing a bounding box different fish species.
classification: a deep species from the public
learning based datasets Fish4Knowledge
approach (Knausgard
et al,, 2021)
Underwater Fish YoloV3 - CNN Keras - Authors-created database of Each image was annotated by 3 classes of fish mAP 54.74% NA
Detection Using Deep TensorFlow underwater video sequences drawing a bounding box
Learning for Water for a total of 70000
Power Applications train/test frame
(Xu & Matzner,
2018)
Coral Reef Fish GoogLeNet CNN ~ NA Authors-created database Each image was annotated by 11 classes of 8 F1 98% Compare HOG+SVM
Detection and containing 13000 fish drawing a bounding box different fish species. With Deep Learning
Recognition in thumbnails from videos
Underwater Videos
by Supervised
Machine Learning:
Comparison Between
Deep Learning and
HOG+SVM Methods
(Villon et al., 2016)
Fish identification in ~ GoogLeNet CNN  NA 20 videos from LifeCLEF Each image was annotated by 15 classes of 15 AP 81% NA
underwater video 2015 fish dataset drawing a bounding box different fish species.
with deep
convolutional neural
network (Choi, 2015)
Cascaded deep RNN-LSTM NA Authors-created database Each image was annotated by 1 class of fish F1 67.76% Comparison with
network systems containing 18 underwater drawing a bounding box and R-CNN Baseline
with linked ensemble video sequences for a total species name
components for of 327 train/test frame
underwater fish
detection in the wild
(Labao & Naval,
2019a)
A realistic ResNet-50 CNN Pytorch Authors-created database Each image was annotated by 20 classes of 20 MAE 0.38 NA
fish-habitat dataset containing 39,766 images for  point-level and semantic different fish habitat.
to evaluate 20 habitats from remote segmentation labels
algorithms for coastal marine environments
underwater visual of tropical Australia and split
analysis (Saleh et al., to sub-dataset for
2020a) classification, counting,
localisation, and
segmentation.
Marine Organism VGG16-RCNN NA The dataset is obtained from Each image was annotated by 3 classes of fish mAP 91.2% NA

Detection and
Classification from
Underwater Vision
Based on the Deep
CNN Method (Han
et al.,, 2020)

the video provided by the
Underwater Robot Picking
Contest, test set contains
8800 images.

drawing a bounding box

in marine research and applications. In the next subsection, we discuss
how DL can be used to perform fish segmentation and how it is useful
in marine research.

4.4. Segmentation

Semantic segmentation task is to predict a label from a set of pre-
defined object classes for each pixel in an image (Shelhamer et al.,
2017). In the context of marine research, fish segmentation provides a
visual representation of fish contour, which might be helpful for human
expert visual verification or to estimate fish size and weight. Table 5
lists a number of research addressing the task of fish segmentation.

Saleh et al. (2020a) developed a FCN model that performs fish
Segmentation in realistic fish-habitat images with a high accuracy.
Labao and Naval (2019b) proposed a DL model that can simultaneously
localise fish, estimate bounding boxes around them and segment them
using a unified multi-task CNN in underwater videos. Unlike previous
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approaches (Qian et al., 2016; Wang & Kanwar, 2021) that relied on
motion information to identify fish body, their proposed method pre-
dicts fish object spatial coordinates and per-pixel segmentation using
just video frames independent of motion information. Their suggested
approach is more resilient to camera motions or jitters since it is not
dependent on motion information, making it more suitable for process-
ing underwater videos captured by Autonomous Underwater Vehicles
(AUVs). Region Proposal Networks (RPN) (Ren et al., 2017) have been
also used for fish segmentation in underwater videos (Alshdaifat et al.,
2020). RPN is a FCN that generates boxes around identified objects
and gives them confidence scores of belonging to a specific class,
simultaneously.

Computational efficiency is essential in the autonomy pipeline of
visually-guided underwater robots. For this reason, Islam et al. (2020)
developed SUIM-Net, a fully-convolutional encoder-decoder model that
balances the trade-off between performance and computational ef-
ficiency. On the other hand, for higher performance, Zhang et al.
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Table 5

Summary of recent DL research works performing the task of fish segmentation.
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Article DL model Framework Data Annotation/Pre- Classes and labels Perf. metric Metric value Comparisons with
processing/Augmentation other methods
A realistic ResNet-50 CNN Pytorch Authors-created database Each image was annotated by 20 classes of 20 mloU 0.93% NA
fish-habitat dataset containing 39,766 images point-level and semantic Different fish habitat.
to evaluate from 20 habitats from segmentation labels
algorithms for remote coastal marine
underwater visual environments of tropical
analysis (Saleh et al., Australia and split to
2020a) sub-dataset for classification,
counting and localisation,
and segmentation.
Weakly supervised ResNet-CNN Pytorch Public DeepFish dataset Each image was annotated by 20 classes of 20 mloU 0.749% NA
underwater fish (Saleh et al., 2020b) segmentation labels Different fish habitat
segmentation using
affinity LCFCN
(Laradji, Saleh,
et al.,, 2021)
Simultaneous ResNet-CNN TensorFlow Authors-created dataset Each image was annotated by 1 class of fish AP 93.77% NA
Localisation and containing 1525 images from drawing a bounding box and
Segmentation of Fish ten 10 different sites in segmentation labels
Objects Using central Philippines
Multi-task CNN and
Dense CRF (Labao &
Naval, 2019b)
Semantic VGG16-CNN Keras - Authors-created dataset Each image was annotated by 8 classes of 8 mloU 84.14% NA
Segmentation of TensorFlow containing 1525 images of 8  segmentation labels different object
Underwater Imagery: object categories categories.
Dataset and
Benchmark (Islam
et al., 2020)
DPANet: Dual ResNet-50 CNN Pytorch, Two public datasets DeepFish ~Each image was annotated by 20 classes: 20 mloU 91.08%, 85.39%  Comparison with
Pooling-aggregated (Saleh et al., 2020b) and segmentation labels Different fish habitat. other state-of-the-art
Attention Network SUIM (Islam et al., 2020) approaches
for fish segmentation
(Zhang et al., 2022)
Weakly-Labelled ResNet-FCN TensorFlow Authors-created dataset Each image was annotated with 1 class of fish AP 65.91% NA
semantic containing several underwater weakly-labelled ground truth
segmentation of fish videos from six different sites derived from a motion-based
objects in in Verde Island Passage, background subtraction (BGS)
underwater videos Philippines.
using a deep residual
network (Labao &
Naval, 2017)
Improved deep ResNet-CNN TensorFlow Two datasets extracted from Each image was annotated by 15 classes of 15 AP 95.20% NA

learning framework
for fish segmentation

the Fish4Knowledge to
produce 2000 frames

drawing a bounding box and
segmentation labels

different fish species.

in underwater videos
(Alshdaifat et al.,
2020)

(2022) proposed Dual Pooling-aggregated Attention Network (DPANet)
to adaptively capture long-range dependencies through a computation-
ally friendly manner to enhance feature representation and improve
not only the segmentation performance, but also its computational
resources and time.

All previously discussed models use fully-supervised methods that
require a large amount of pixel-wise annotations, which is very time-
consuming and expensive, because a human expert must segment and
label, for example, each fish in an image. To overcome this serious
issue, weakly-supervised semantic segmentation models are used. These
models do not need to be trained with pixel-wise annotation (Ra-
jchl et al.,, 2016). However, due to a lower level of supervision,
training weakly-supervised semantic segmentation models is often a
more challenging task. Applying weakly labelled ground truth derived
from motion-based adaptive Mixture of Gaussians Background Subtrac-
tion, Labao and Naval (2017) managed to get an average precision
of 65.91%, and an average recall of 83.99%. Recently, several other
weakly-supervised methods have been introduced to overcome the cost
of a large amount of pixel-wise annotations. These new methods include
bounding boxes (Dai et al., 2015; Khoreva et al., 2017), scribbles (Lin
et al., 2016), points (Bearman et al., 2016; Laradji, Saleh, et al., 2021),
and even image-level annotation (Ahn & Kwak, 2018; Huang et al.,
2018; Pathak et al., 2015; Wang et al., 2018; Wei et al., 2018). Since
weakly-supervised methods are integral to the success of important
DL-based segmentation tasks, in Section 6.3, we discuss them further.

In the previous subsections, we discussed how DL is useful in a
number of key applications in fish habitat monitoring. In the following
Section, we discuss the many challenges on the way of developing DL
models for such applications.

4.5. Acoustic and sonar data

Acoustic and sonar data are valuable sources of information for
monitoring fish habitats and behaviours. Acoustic methods use sound
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waves to detect, identify, and quantify fish in various aquatic environ-
ments (Mancusi et al., 2022). Sonar systems emit sound pulses and
receive echoes from objects in the water, such as fish. By analysing
the characteristics of the echoes, such as frequency, intensity, and
shape, sonar systems can provide information about fish size, shape,
orientation, density, and movement.

Acoustic methods have several advantages over other techniques for
fish monitoring, such as visual observation or net sampling (Mufioz
et al., 2020). Acoustic methods can cover large areas and depths
quickly and efficiently; they can operate in turbid or dark waters where
visual methods are ineffective; they can provide continuous data over
long periods of time; they can minimise disturbance to fish and their
habitats; and they can be integrated with other sensors or platforms for
multidisciplinary studies.

Acoustic and sonar data can be combined with other technologies
such as GPS and environmental sensors to provide a more complete
picture of fish behaviour and their habitat. For example, the combina-
tion of acoustic and sonar data with GPS allows researchers to track fish
movements and habitat use, while the integration of environmental sen-
sors can provide information on water temperature, salinity, and other
important environmental factors that may influence fish behaviour.

One of the challenges of acoustic methods is to accurately classify
fish species based on their acoustic signatures (Benoit-Bird & Lawson,
2016). Different species may have similar acoustic characteristics due
to their morphology or behaviour. Moreover, environmental factors
such as noise, reverberation, or multipath effects may degrade the
quality of the acoustic data. Therefore, advanced signal processing and
machine learning techniques are needed to improve the performance
of acoustic classification. In addition, the deployment of acoustic and
sonar sensors in natural environments can be challenging and expen-
sive, which may limit the availability of data for the training and
validation of DL models (McCann et al., 2018).
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Acoustic and sonar data combined with DL techniques offer a pow-
erful tool for monitoring fish habitats and behaviours in a non-invasive
and efficient way (Zhou et al., 2022). By using this tool, fisheries
scientists and managers can gain insights into fish ecology, distribu-
tion, abundance, migration patterns etc., which can help them make
informed decisions for sustainable fisheries management.

4.6. Automatic fish phenotyping from underwater images

Automatic fish phenotyping, i.e. extracting their weight, size, and
length, in their natural habitats can provide invaluable information
in better understanding marine ecosystems and fish ecology (Goodwin
et al.,, 2022). Although many studies have addressed fish monitoring
in aquaculture and fish farm settings (Li & Du, 2021; Zhao et al.,
2021), monitoring fish for measurement in natural habitats remain
mostly unexplored, and can be investigated in future research. This
research should address problems such as low visibility and light, fish
occlusion and overlap, which are shared with aquaculture monitoring.
However, other problems unique to natural habitats such as clut-
tered background environments and underwater distance measurement
should be addressed too. One study addresses fish species identification
in an underwater video for marine monitoring applications, using a
hierarchical CNN model that incorporates targeted data augmentation
techniques (Ben Tamou et al., 2022). Automated imaging has also been
used to obtain phenotypic data on growth and body colour (Fu & Yuna,
2022).

4.7. Visual monitoring of fish behaviour and movements

Although some telemetry and satellite tracking devices can be used
in limited settings (Lennox et al.,, 2017), fish monitoring in their
natural habitats over a period of time is not achievable using these
techniques mainly due to the hostile underwater signal communication
medium (Jahanbakht et al., 2021). For instance for tracking fish move-
ments, schooling, and behaviour, new visual monitoring techniques
should be devised. A possible direction for future studies is to devise
a better understanding of fish vision characteristics (Boudhane & Nisiri,
2016) and their implications in the current and next generation of au-
tomated DL-based tracking systems (Li et al., 2021) and marine object
detection (Moniruzzaman et al., 2017). An example of an alternative
tracking method is presented in Zhao et al. (2019), where the image-
based identification and tracking method for fish is designed based on
biological water quality monitoring. To improve the fish tracking task,
some techniques can also be combined with visual image enhancement
algorithms. For instance, when the image enhancement methods are
used, the underwater images can be corrected for distortion and noise,
and the fish tracking task can be easily performed. In Saberioon and
Cisar (2016), the authors studied the potential of underwater fish
monitoring by using visual and underwater sensing methods.

Another challenging research area is developing novel underwater
fish tracking algorithms, using DL or other technologies, with low
power consumption and real-time speed. For this, various hardware
technologies and techniques used in other domains such as biomedical
applications (Azghadi et al., 2020) can be explored. Of course, any
automated vision-based tracking system should be validated through
real-world trials, which is a significant undertaking requiring many
resources, in order to ensure the accurate and real-time tracking of fish.

There have been several recent studies on the visual monitoring of
fish behaviour and movements. For example, some studies surveyed the
application of computer vision technology in analysing fish behaviour
and fish monitoring (Li et al., 2022; Niu et al., 2018; Zhou et al., 2019).
Another study demonstrated an integrated object detection and track-
ing pipeline as a noninvasive and reliable approach to studying fish
behaviour by tracking their movement under field conditions (Lopez
et al., 2021). Another study explores how fish behaviour can be used
as a proxy to measure the physiological states of fish under different
environmental stressors, such as pollutants, temperature changes, and
social interactions (Fu et al., 2022).
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5. Advantages and disadvantages of the application of DL to fish
habit monitoring

Deep learning has been applied to various fields, including fish
habitat monitoring (Saleh, Sheaves, & Rahimi Azghadi, 2022). The
application of DL in fish habitat monitoring has several advantages that
make it an attractive option for researchers and practitioners. One of
the main advantages is its ability to handle complex data. DL models
can learn complex patterns and relationships in the data, making them
ideal for analysing large datasets with numerous variables (Ditria,
Sievers, et al., 2020). This ability is particularly useful in fish habitat
monitoring, where numerous variables such as water temperature,
dissolved oxygen, and water quality can influence the fish’s behaviour
and habitat.

Another advantage of using DL in fish habitat monitoring is the po-
tential to automate the monitoring process. Traditional fish monitoring
methods involve manual data collection and analysis, which can be
time-consuming, labour-intensive, and expensive. With DL, data can be
automatically collected and analysed in real time, allowing for faster
and more efficient monitoring. This automation can also reduce the
likelihood of human error, leading to more accurate and reliable results.

However, the application of DL to fish habitat monitoring also has
some disadvantages. One of the main disadvantages is the need for
large amounts of high-quality data to train the DL models effectively.
The quality of the data can have a significant impact on the perfor-
mance of the model, and the lack of high-quality data can lead to
inaccurate results.

Another disadvantage is the complexity of the DL models them-
selves. DL models are often complex and difficult to interpret, making
it challenging to understand how the model arrived at its conclusions.
This lack of transparency can make it difficult for researchers and
practitioners to verify the accuracy of the model’s results.

In addition, DL models require significant computing power and
storage, which can be expensive and require specialised infrastruc-
ture. This requirement can be a barrier for some researchers and
practitioners who do not have access to the necessary resources.

Overall, while the application of DL to fish habitat monitoring has
several advantages, it also has some drawbacks that need to be consid-
ered. To maximise the benefits of DL in fish habitat monitoring, it is
crucial to address these challenges and develop strategies to overcome
them.

6. Challenges in underwater fish monitoring

Underwater fish monitoring presents a series of challenges for DL,
which have been the focus of many research works. In this section,
we first introduce the major environmental challenges faced when
developing underwater fish monitoring models. We then show that one
of the approaches to properly address these environmental challenges
is to use DL. However, DL training for fish monitoring has its own
challenges, which will be discussed in detail.

6.1. Environmental challenges

In order to work in underwater environments, monitoring models
must be able to recognise objects and scenes in complex, non-trivial
backgrounds. This presents both a challenge in the development and
training of these models and in robustly testing them. The main en-
vironmental challenges in underwater visual fish monitoring can be
categorised as follows:

1. The environment is noisy including very large lighting variation.
An object viewed from a distance is much less bright than a
close-up object. These problems become more acute when the
background is not uniform.
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2. Underwater scenes are highly dynamic, i.e. the scene’s content
and objects change very quickly. The background can change
from being completely occluded to being visible and vice versa.

3. Depth and distance perception can be incorrect due to refraction.
This is more severe for short distances.

4. Images are affected by water turbidity, light scattering, shading,
and multiple scattering.

5. The image data are frequently under-sampled due to
low-resolution cameras and power constraints underwater.

One of the main approaches used in literature to address these
challenges is for the monitoring models to use hand-crafted features
(Chuang et al., 2016; Fouad et al., 2014; Hossain et al., 2016; Hu et al.,
2012; Huang et al., 2014; Islam et al., 2019; Ogunlana et al., 2015;
Rova et al., 2007; Wang et al., 2017). Hand-crafted features are defined
by a human to describe a fish image. For example, a low-level feature
can be the histogram of a texture or a Gabor filter response. As a more
complex and representative feature, a mid-level feature can be a Scale-
Invariant Feature Transform (SIFT) (Lindeberg, 2012), or a Histogram
of Oriented Gradient (HOG) (Dalal & Triggs, 2005). However, human-
defined features cannot be applied to other datasets, and the definition
of a human-defined feature is a time-consuming task, which restricts
real-time detection and requires manual effort. Moreover, hand-crafted
features are limited by human experiences, which may contain noise
and are difficult to design. For example, a SIFT descriptor does not work
well with lighting changes and blur.

Therefore, a fish image is transformed into a feature space that a
computer can understand. The feature space is often based on a combi-
nation of low-level image features (for example, colour distribution and
gradient), and other features in the image such as edges, shapes, and
textures. Models using hand-crafted features, however, do not perform
well under varying environmental conditions, and the feature space
cannot be easily or robustly created. Additionally, the features created
are too low-level and cannot be easily used for processing images from
different sources.

An alternative way to build prediction models capable of working
in the presence of these significant environmental challenges is to use
DNNs. However, training effective DNNs require resolving some other
challenges, which we discuss in the below subsections. We also describe
some of the approaches in literature addressing them. The reviewed
approaches in addressing these common challenges can provide a quick
reference for future researchers developing DL-based fish monitoring
models.

6.2. Model generalisation

Improving the generalisation abilities of DNNs is one of the most
difficult tasks in DL. Generalisation refers to the gap between a model’s
performance on previously observed data (i.e training data) and data
it has never seen before (i.e testing data). This is a fundamental
problem, with implications for any applications using deep neural
networks to process image data, videos, etc. This challenge is even
more pronounced when more difficult tasks such as fish recognition
in underwater environments.

Generalisation problem happens usually because during training the
network over-fits to the training data. In other words, the weights
of the network are adapted to produce a response that is best suited
for reproducing the training examples. During testing, the network
produces a response that is a compromise between the different training
examples. This mismatch is a common cause of poor performance
on test data, which is often referred to as a network over-fitting to
the training data, even when the network has been trained for many
epochs. The reason it occurs is that the network ‘“memorises” the
training data during the training. The training data can become quite
large, consisting of hundreds of thousands or millions of examples. This
makes the issue of network over-fitting quite significant. In the last few
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years, there have been significant research efforts towards solving the
problem of over-fitting to improve model generalisation.

Previous works have shown that it is possible to prevent the network
from over-fitting using techniques called regularisation (Kukacka et al.,
2017). There are also some theoretical techniques to make the network
more robust to training data. Below, we provide a brief overview of
some of these techniques and how they have been applied to solve
the problem of deep network over-fitting to training data, to improve
generalisation in DL.

* Regularisation Term: It is hypothesised that neural networks with
fewer weight matrices can result in simpler models with the
same capability as the complete model. A regularisation term
is, therefore, added to the model loss function to remove some
of the weight matrices components. The most popular methods
of regularisation are L1 and L2. For example, Tarling et al.
(2021) showed that incorporating uncertainty regularisation im-
proves performance of their multi-task network with ResNet-
50 (He et al., 2015) backend to count fish in underwater images.
Batch normalisation: Introduced in Section 2.2 as part of the
convolutional layer in CNNs, batch normalisation was first in-
troduced by loffe and Szegedy (2015) to decrease the effect
of internal covariate shift. Internal covariate shift is the shift
in the mean and covariance of inputs and network parameters
across a batch of examples. Internal covariate shift can impede
the training of deep neural networks. Batch normalisation is
used in almost any DL model training, to improve the model
generalisation. In the fish monitoring domain, for instance, Islam
et al. (2020) proposed an optional residual skip block consisting
of three convolutional layers with batch normalisation and ReLU
non-linearity after each convolutional layer to perform effective
semantic segmentation of underwater imagery.

Dropout: Introduced in Section 2.2 as a common operation in
CNNs, dropout reduces the network dependency on a small selec-
tion of neurons and encourages more useful and robust properties
and features of the dataset to be learnt. When working with a
complex neural network structure, dropout is frequently recom-
mended to introduce additional randomisation, which helps with
the generalisation capability of the network. For example, Igbal
et al. (2021) claimed that the inclusion of dropout layer has
enhanced the overall performance of their proposed model for
automatic fish classification.

6.3. Dataset limitation

Preparing training datasets is one of the central and most time-
consuming bottlenecks in developing DL models, which require a large
amount of data, e.g. a variety of underwater fish images in different
environmental conditions, which should also be labelled and analysed
by humans for supervised learning. Due to these requirements, making
a large dataset is most of the time, very challenging, which makes
the datasets limited and small. However, when compared with DL
models trained with a large dataset, the convergence speed and training
accuracy of the models trained with small datasets are much lower.
Generally, increasing the size of training datasets by adding more data
to them is the classic way to accelerate the training and improve the
accuracy of DL models, but it is expensive. Therefore, in recent years,
researchers have tackled the dataset limitation challenge by devising
new ways described below.

6.3.1. Data augmentation

Data augmentation is a technique to increase the number of labelled
examples required for DL training. It artificially enlarges the original
training dataset by introducing various transformations such as trans-
lation, rotation, scaling, and even noise, to the original data instances,
to make new instances. It is particularly relevant to the challenge posed
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when the quantity or quality of labelled data is insufficient to train a
DL model. At the same time, data augmentation can be used to reduce
the probability of overfitting and increase model generalisability. In
contrast to the techniques listed above for improving model general-
isation, data Augmentation addresses overfitting from the source of
the problem (i.e. the original dataset). This is done under the notion
that augmentations can extract additional information from the original
dataset by artificially increasing the size of the training dataset. It is
also critical to consider data augmentation’s “safety” (i.e. the possibility
of misleading the network post-transformation). For example, rotation
and horizontal flipping are typically safe data augmentation techniques
for fish classification tasks (Saleh et al., 2020a; Sarigiil & Avci, 2017)
but not safe on digit classification tasks, due to the similarities between
6 and 9. A data augmentation technique is to use the super-resolution
reconstruction method (Ledig et al., 2017) based on Generative Adver-
sarial Network (GAN) (Goodfellow et al., 2014) to enlarge the dataset
with high-quality images. This has been previously used to improve
small-scale fine-grained fish classification (Qiu et al., 2018), and to
increase the model’s predictive performance (i.e. ability to generalise
to new data) (Konovalov, Saleh, Bradley, et al., 2019) for underwater
fish detection and automatic fish classification (Chen et al., 2018).

Using augmentation techniques such as cropping, flipping, colour
changes, and random erasing together can result in enormously inflated
dataset sizes. For example, Islam et al. (2020) used rotation, width shift,
height shift, shear, zoom and horizontal flip for semantic segmenta-
tion of underwater imagery to significantly increase their dataset size.
Another data augmentation technique used during training DL models
are scale jittering, which has been used in Mandal et al. (2018) for
assessing fish abundance in underwater videos. Gaussian filtering to
blur images and different degrees of rotation for fish recognition in
underwater-drone with a panoramic camera is another augmentation
technique used in the marine monitoring domain (Meng et al., 2018).

However, augmentation is not always favourable, as it might lead
to large overfitting in cases with very few data samples. As a result, it
is critical to determine the best subset of augmentation techniques to
train your DL model using a limited dataset.

6.3.2. Transfer learning

Transfer Learning is preserving information obtained while solving
one problem, and transferring the learned knowledge to another similar
problem. For instance, one may initially train a network on a large
object dataset, such as ImageNet that includes 1000 different object
classes, and then utilise the learned network parameters from that
training as the initial learning parameters in a new classification task,
e.g. fish classification. In most cases, just the weights in convolutional
layers are transferred, rather than the complete network, including fully
connected layers. This is extremely useful since many image datasets
have low-level spatial features and properties that are better learnt
in massive datasets. For example, Zurowietz and Nattkemper (2020)
presented unsupervised knowledge transfer to use their limited amount
of training data in order to avoid time-consuming annotation for object
detection in marine environmental monitoring and exploration.

6.3.3. Hybrid features

DL architectures have demonstrated excellent capabilities in captur-
ing semantic knowledge that is latent in image features. Handcrafted
features, on the other hand, can provide specific physical descriptions
if they are carefully chosen. In addition, attributes of natural images
have been demonstrated to be described differently by CNN features
and hand-crafted features. This means a feature’s discriminative ability
may behave differently on different datasets. Therefore, these two types
of features may complement each other for better learning.

However, increasing feature dimensions by fusing hand-crafted and
DL-generated features can result in increased computational require-
ments. One way to avoid this is to initially utilise DL features for
a particular dataset, and later add hybrid features to enhance the
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performance. As a result, when working with difficult datasets, such as
uncommon and rare marine species, more sophisticated algorithms and
techniques based on hybrid features may be required. In fact, several
research groups have used such strategies to improve the performance
of marine species recognition tasks.

For instance, Mahmood et al. (2016) used texture- and colour-
based hand-crafted features extracted from their CNN training data to
complement generic CNN-extracted features and achieved a classifica-
tion accuracy higher than when using only generic CNN features when
classifying corals. A combination of CNN and hand-designed features
have also been used in Cao et al. (2016) for marine animal classi-
fication, again showing that their method achieves higher accuracy
than applying CNN alone. In another work, Blanchet et al. (2016)
showed that aggregation of multiple features outperforms models using
single feature-extraction techniques, for automated coral annotation in
natural scenes.

6.3.4. Weakly-supervised learning

DL methods (LeCun et al., 2015) have consistently achieved state-
of-the-art results in a variety of applications, specifically in fully super-
vised learning tasks like classification and regression (Li et al., 2009;
Lin et al., 2014). Fully supervised learning methods create predictive
algorithms by learning from a vast amount of training patterns, where
each pattern has a label showing its ground-truth output (Kotsiantis,
2007). Although the current fully supervised methods have been very
successful in certain activities (De Vos et al., 2017; Mader et al., 2018;
Worz & Rohr, 2006), they come with a caveat of requiring a large
portion of the data to be labelled, and it is sometimes difficult or
extremely time-consuming to obtain ground-truth labels for the dataset.
Thus, it is desirable to develop learning algorithms that are able to work
with less labelled data (i.e. weakly supervised) (Oquab et al., 2015;
Zhou, 2018).

Weak supervision in particular can be very useful in underwater
fish monitoring, where the limited dataset size and the time- and cost-
prohibitive nature of labelling limits achieving a useful dataset for
developing effective, smart, and automated habitat monitoring tools
and techniques. A number of works in literature have already used
weak supervision for underwater fish habitat monitoring. For exam-
ple, Laradji et al. (2020) proposed a segmentation model that can
efficiently train on underwater fish images, not manually segmented
for training, but only labelled with simple point-level supervision. This
work demonstrated that in the marine monitoring context, weakly-
supervised learning can effectively improve the accuracy and speed
of model development with limited dataset sizes and limited labelling
budget.
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6.3.5. Active learning

Active learning is a sub-field of Machine Learning (ML) and, more
broadly, of AL In active learning, the proposed algorithm is allowed
to be “inquisitive”, that is, it is allowed to pick the data to learn,
which in theory means the algorithm can do more with less guidance,
similar to weak supervision. Active learning systems are seeking to
solve the constraint of labelling by posing a questionnaire in the context
of unlabelled examples to be labelled by an oracle (e.g. a human
annotator). In this manner, the goal of the active learner is to attain
high precision by using as few labelled examples as possible, thus
minimising the expense of acquiring labelled data; see Fig. 5.

In many cases, the labels come for little or no cost, like the “spam”
label that is used to mark spam emails, or the five-star rating that a
user could post for a movie on a social networking platform. Learning
methods use these labels and scores to help screen your spam email
and recommend movies that you might enjoy. In these cases, certain
labels are given free of charge, but for more sophisticated supervised
learning tasks, such as when you need to segment a fish in an under-
water environment, this is not the case. For example, in Nilssen et al.
(2017) active learning has been used for the classification of species
in underwater images from a fixed observatory. The authors proposed
an active learning method that assigns taxonomic categories to single
patches based on a set of human expert annotations, making use of
cluster structures and relevance scores. This active learning method,
compared to traditional sampling strategies, used significantly fewer
manual labels to train a classifier.

6.3.6. Few-shot learning

The scarcity of rare species images in training datasets is one of the
main limitations when addressing the automatic processing of wildlife
images, especially in fish habitat monitoring. Such limitations lead
researchers to explore few-shot learning.

Few-shot learning is another sub-field of ML. It is closely related to
active learning since it aims to infer relationships between data from
very few data samples. The central concept is how one can learn from
a small number of examples and apply this knowledge to unlabelled
data (Wang et al., 2021; Zhao, Jin, & Wang, 2021). For example,
you want to do animal identification in wildlife camera trap image
datasets. However, since you have only a few labelled examples of
rare species, with only a few images in training datasets, you cannot
train your model to recognise these animals because you only have a
few examples. In this case, few-shot learning can be used to learn how
to use the previously learned classifier to recognise other features of
objects on the image (e.g. shape) that might help you complete the
task. However, training on these new features should be done in a few-
shot manner (Liu et al., 2019; Villon et al., 2022). The idea is to have a
pre-trained model trained on a much larger dataset of different species.
Then, once a new species appears in the dataset of unlabelled images,
you can use this pre-trained model to find similarities between the new
image and those that are already in the dataset and label those that are
similar to the target species.

In a pioneering study of using few-shot learning in processing
underwater videos, Villon et al. (2021) used it to discriminate 20 coral
reef fish species with a range of training datasets from 1 image per
class to 30 images per class. Few-shot object detection has been also
used to localise wildlife using a camera trap in Feng and Xiao (2022).
In another study, Feng and Li (2022) proposed a data augmentation
method that applies constraints on the mixture of foreground and
background images based on species distributions. Therefore, after
training a convolutional neural network for species classification, the
model can localise a new image to a species with the help of the species
distribution constraints in the mixture of foreground and background
images. Similar techniques can be used in addressing the scarcity of
sample data for rare marine species in underwater videos.
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6.3.7. Adaptive loss

The cross-entropy loss can be overwhelmed by the large class imbal-
ance between foreground and background classes in the dataset during
the training of dense detectors. This is because it is based on an implicit
assumption of equal class priorities and does not differentiate between
easy or hard examples. Therefore, Lin et al. (2017) proposed to use a
weighted cross-entropy loss, which assigns higher weights to the loss
of hard samples and down-weight easy examples, thus focusing the
training on hard negatives. The adaptive focal loss FL(p,) is derived
from the entropy loss.

FL (Pt) =0 (] _PL)VIOg (1’1)

where a balances the importance of positive and negative examples, p,
is predicted probability, (1 - p,)” is a modulating factor to the cross-
entropy loss, and y is a tunable focusing parameter. It has been shown
in Lin et al. (2017) that adaptive focal loss improves the accuracy
compared to other losses for object detection on COCO test-dev (Lin
et al., 2014).

In marine and fish habitat monitoring applications, it is very likely
that strong class imbalance happens when datasets are being collected.
This is mainly because the collected videos will have more examples
of specific backgrounds such as coral reef, compared to various species
of fish of interest. To address these issues, in addition to techniques
such as adaptive loss mentioned above, other techniques developed for
dealing with the problem of long-tailed distribution of training data
can be explored and adopted. These include techniques such as those
proposed in Cui et al. (2019) where the authors proposed a class-
balanced loss to re-weight loss inversely with the adequate number of
samples per class, or by replacing the standard cross-entropy in Cao
et al. (2019) with label-distribution-aware margin loss.

6.4. Biodiversity challenges

In a recent article, Villon et al. (2022) have discussed some chal-
lenges beyond dataset limitation, focusing on biodiversity and how
it can affect the deep learning-based automatic monitoring of marine
and fish habitats through computer vision. Specifically, they consider
the implications of three major universal rules of biodiversity, i.e. the
distribution of species abundance, species rarity, and ecosystem open-
ness (Villon et al., 2022). The authors discuss how these rules bring
about three main issues affecting the performance of deep learning
algorithms for underwater monitoring. They also discuss promising
solutions to these issues, some of which were already discussed in
Section 6.3. Due to the importance of these issues and the challenges
they pose to fish habitat monitoring, we briefly discuss them here.
However, the reader is encouraged to refer to Villon et al. (2022) for
further details.

The first issue discussed is the imbalance of long-tail datasets,
which is due to the abundance of some species in the collected videos
and datasets, while some other groups may only be represented oc-
casionally. Similarly, the second discussed issue is scarce data due to
species rarity, which is a prominent biodiversity issue. Both the “long-
tail datasets” and the "scarce data" issues, can cause a classifier to
overfit the majority classes and fail to detect or predict the minority
classes (Cui et al., 2019). One way to tackle this issue is by data aug-
mentation (see Section 6.3.1) or Few-shot learning (see Section 6.3.6).
The other way is in the training algorithms itself by modifying the loss
function with respect to dataset imbalances (see Section 6.3.7).

The third challenge discussed is the “open world” issue that deals
with an open ecosystem creatures. This results in the challenge of
always having a new species that the “closed world” application is
not trained on. This leads the model to misclassify the known species
especially when the goal is to detect and predict marine species at
sea. Villon et al. (2022) discuss open-set learning as a way of solving
such a problem. The objective of an open-set recognition model is to
classify all samples belonging to the training dataset correctly while
allowing it to ignore all samples of the novel classes (Bendale & Boult,
2016).
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Fig. 7. Application scenarios for deep learning in underwater fish monitoring, including ecological environment monitoring, aquaculture, and fishing. Deep learning can be used
to classify fish species, track their movement patterns, monitor fish health, optimise feeding schedules, and identify schools of fish for more sustainable fishing practices.

7. Opportunities in applications of DL to underwater fish monitor-
ing

New methodologies and strategies should be developed to advance
DL models for various underwater visual monitoring applications, in-
cluding fish monitoring, and to bring them closer to their terrestrial
monitoring equivalents. In a previous study that was focused on the
task of fish classification (Saleh, Sheaves, & Rahimi Azghadi, 2022),
we have discussed some of the future research opportunities includ-
ing (i) utilising Spatio-temporal data to add space and time domain
information to the current training algorithms that mainly learn fish
images regardless of their spatial and/or temporal correlation; (ii)
Developing efficient and compact DL models that can be deployed
underwater for real-time parsing of the fish images at the collection
edge; (iii) Combining image data from multiple collection platforms
for improved multi-faceted learning; and (iv) Automated fish measure-
ment and monitoring from underwater captured images. Fig. 7 shows
application scenarios for deep learning in underwater fish monitoring,
including ecological environment monitoring, aquaculture, and fishing,
have been identified. Deep learning can be used to classify fish species,
track their movement patterns, monitor fish health, optimise feeding
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schedules, and identify schools of fish for more sustainable fishing
practices. In addition to the opportunities discussed in Saleh, Sheaves,
and Rahimi Azghadi (2022), further research areas could include (i)
Developing DL models that can handle a wider range of image quality
and visibility conditions, such as those encountered in murky or low-
light environments; (ii) Combining visual monitoring with other sensor
modalities such as acoustic sensing to improve detection and tracking
accuracy; and (iii) Developing robust data labelling and annotation
methods for large-scale training datasets, which can be difficult to
obtain in underwater environments.

7.1. Knowledge distillation for underwater embedded and edge processing

DL models used for fish monitoring applications are usually very
large containing millions of parameters and requiring extensive com-
putational power. To deploy these models on resource-limited de-
vices and in resource-constrained environments such as undersea mon-
itoring sites, different hardware-enabled compression techniques such
as quantising and binarising DNN parameters (Lammie et al., 2019)
can be used, as discussed in Saleh, Sheaves, and Rahimi Azghadi
(2022). Another method that has seen a lot of interest and attention
for compressing large-scale DL models is knowledge distillation.
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Knowledge distillation is a technique for training a student (i.e. a
small network) to emulate a teacher (i.e. ensemble of networks), as
shown in Fig. 6. The primary assumption is that in order to achieve
a competitive or even superior performance, the student model should
imitate the teacher model. The main issue is, however, transferring the
knowledge from a large teacher to a smaller student. To that end, Bu-
cila et al. (2006) proposed model compression as a way to transfer
knowledge from a large model into a small model without sacrificing
accuracy. In addition, several other model compression approaches
have been developed, and the community has shown an increasing
interest in knowledge distillation, due to its potentials (Amadori, 2019;
Kushawaha et al., 2021; Rassadin & Savchenko, 2017; Wang et al.,
2020).

A significant research opportunity lies in applying Knowledge dis-
tillation into embedded devices and underwater video processors to
achieve online and more effective surveillance with high accuracy
while using limited resources. This is particularly useful because of the
limitations of transferring data from underwater sensors and cameras,
and due to the challenging underwater communication in the Internet
of Underwater Things (Jahanbakht et al., 2021).

7.2. Merging image data from multiple sources

As discussed in Saleh, Sheaves, and Rahimi Azghadi (2022), to
train more effective DNNs, multiple data collection platforms like
Autonomous Underwater Vehicles (AUVs) or inhabited submarines can
give varied visual data from the same monitoring subject. This can pro-
vide additional monitoring information, such as fish distribution pat-
terns. Although it is straightforward to combine multiple data sources
for training a DL network, several issues should be addressed in future
research. These include possible preprocessing on part of data to make
it compatible with the rest of the training dataset, class-wise weights
(i.e. when you have an imbalanced dataset), and the number of outputs
of a network. In addition, multiple training data sources, in particular,
when using AUVs or submarines, incurs significant data collection and
manual labelling cost, which is not always viable.

For this reason, some researchers have focused on learning from
data with the least amount of human labelling. To reduce human-
labelled data cost, several methods have been proposed to train models
on data that are unlabelled (Shimada et al., 2021) or only have pseudo-
labels (Wu & Prasad, 2018). Future research can advance this further
by developing faster and cheaper annotating tools for underwater fish
images.

7.3. Prospective research

Deep learning has proven to be an effective tool for analysing and
monitoring fish habitats and behaviour. However, there are still several
areas where research is needed to further advance the use of DL in fish
monitoring (Saleh, Sheaves, & Rahimi Azghadi, 2022). In this section,
we discuss some prospective research directions that can increase the
performance and usability of DL-based visual fish monitoring tasks.

1. Spatio-temporal data utilisation: DL models mainly learn fish
images regardless of their spatial and temporal correlation. Util-
ising spatio-temporal data can add space and time domain infor-
mation to the current training algorithms, leading to improved
accuracy and robustness of the models. One potential approach
is to use convolutional neural networks (CNNs) with 3D convolu-
tions to learn both spatial and temporal features from video data.
Another approach is to use recurrent neural networks (RNNs)
to model temporal dependencies in sequential data, such as fish
movement trajectories (Saleh, Sheaves, et al., 2022).
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2. Efficient and compact DL models: To deploy DL models under-
water for real-time parsing of fish images at the collection edge,
compact and efficient models are needed. The current state-
of-the-art DL models are often computationally expensive and
require large amounts of memory. Research can focus on devel-
oping lightweight architectures that can be efficiently deployed
on resource-constrained devices (Jahanbakht et al., 2021). One
approach is to use knowledge distillation techniques to transfer
knowledge from a large pre-trained model to a smaller model
while maintaining performance.

3. Multi-platform data fusion: Combining image data from multiple
collection platforms, such as sonar and acoustic sensors, can
improve the multi-faceted learning of DL models. However,
integrating data from different sources poses several challenges,
including differences in data quality and format. Developing
effective techniques for data fusion, such as transfer learning and
domain adaptation, can help to overcome these challenges and
improve the performance of DL models for fish monitoring (see
Section 4.5).

4. Automated fish measurement and monitoring: Fish size and
behaviour are important indicators of ecosystem health. Manual
measurement and monitoring of fish can be time-consuming
and expensive. DL models can automate this process by ex-
tracting size and behaviour features from underwater captured
images (Saleh, Jones, et al., 2022). Research can focus on de-
veloping DL models that can accurately measure the fish size
and identify behavioural patterns, such as swimming speed and
direction.

In summary, prospective research directions can expand the capabil-
ities and effectiveness of DL-based visual fish monitoring tasks. Utilising
spatio-temporal data, developing efficient and compact models, multi-
platform data fusion, and automated fish measurement and monitoring
are some of the areas that can lead to further advancements in the field.

8. Summary and conclusion

The goal of this article was to provide researchers and practitioners
with a summary of the contemporary applications of DL in underwater
visual monitoring of fish, as well as to make it easier to apply DL to
tackle real challenges in fish-related marine science.

DL has progressed as a technology capable of providing unprece-
dented benefits to various aspects of marine research and fish habitat
monitoring. We envision a future where DL, complemented by many
other advances in monitoring hardware and underwater communica-
tion technologies (Jahanbakht et al., 2021), is widely used in marine
habitat monitoring for (1) data collection and feature extraction to
improve the quality of automatic monitoring tools; and (2) to provide
a reliable means of surveying fish habitats and understanding their
dynamics. We expect that such a future will allow marine ecosystem
researchers and practitioners to increase the efficiency of their moni-
toring efforts. To achieve this, we need concentrated and coordinated
data collection, model development, and model deployment efforts. We
also need transparent and reproducible research data and tools, which
help us reach our target sooner.
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