

This is the author-created version of the following work:

Prentice, Caitlin L.S., Milanese, Steven, Flavell, Carol A., and Massy-Westropp, Nicola (2024) A dose response analysis of exercise prescription variables for lateral abdominal muscle thickness and activation: A systematic review. Journal of Bodywork and Movement Therapies, . (In Press)

Access to this file is available from: https://researchonline.jcu.edu.au/81667/

© 2024 Published by Elsevier Ltd. Accepted Version: © 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Please refer to the original source for the final version of this work: https://doi.org/10.1016/j.jbmt.2024.01.016

A dose response analysis of exercise prescription variables for lateral abdominal muscle thickness and activation: A systematic review

Caitlin L.S. Prentice, Steve Milanese, Carol A. Flavell, Nicola Massy-Westropp

PII: S1360-8592(24)00032-9

DOI: https://doi.org/10.1016/j.jbmt.2024.01.016

Reference: YJBMT 2762

To appear in: Journal of Bodywork & Movement Therapies

Received Date: 30 August 2022

Revised Date: 26 November 2023

Accepted Date: 13 January 2024

Please cite this article as: Prentice, C.L.S., Milanese, S., Flavell, C.A., Massy-Westropp, N., A dose response analysis of exercise prescription variables for lateral abdominal muscle thickness and activation: A systematic review, *Journal of Bodywork & Movement Therapies* (2024), doi: https://doi.org/10.1016/j.jbmt.2024.01.016.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier Ltd.

TITLE PAGE:

A dose response analysis of exercise prescription variables for lateral abdominal muscle

thickness and activation: a systematic review

Funding:

This research did not receive any specific grant from funding agencies in the public,

commercial or not-for-profit sectors.

Declaration of interest:

None

Word count:

Abstract: 244. Text without tables: 3861

Authors:

Caitlin L.S. Prentice (corresponding author)¹, Prof Steve Milanese², Dr Carol A Flavell³, Dr Nicola Massy-Westropp¹

1.C/O Allied Health and Human Performance Level 8 Centenary Building, City East Campus The University of South Australia 108 North Terrace Adelaide 5001 South Australia Australia E: <u>precl004@mymail.unisa.edu.au</u> P: +61 8 8302 2486 2.School of Health Sciences College of Health and Medicine University of Tasmania Tasmania Australia

3.College of Healthcare Sciences Academy Building 043 Exercise and rehabilitation sciences, James Cook University Townsville 4811 Queensland Australia

ABSTRACT

<u>Background:</u> Various exercise programs are used to treat lateral abdominal muscle (LAM) impairments in people with low back pain. Factors comprising these programs include exercise type, session time, frequency, and program duration. However, specific clinical guidance about optimal exercise prescription is lacking.

<u>Objectives</u>: To perform a dose-response analysis on exercise prescription variables for LAM thickness and activation as measured by ultrasound imaging.

Design: Systematic review

<u>Method:</u> Databases were searched from their inception for studies examining the association between exercise interventions and LAM thickness/activation measured by ultrasound imaging in healthy individuals. Risk of bias was assessed using the Joanna Brigg's Institute critical appraisal tools. For each muscle, subgroup analyses were performed to determine the dose response of exercise prescription variables for LAM thickness and activation. Where there was insufficient data for subgroup analyses, data was narratively synthesised.

Results: Fourteen studies comprising 395 participants were included. Statistical and narrative synthesis revealed specific local abdominal exercises, programs from four weeks duration, three sessions per week and sessions of ≥30 minutes were associated with greatest improvements to LAM thickness. Only the variables exercise type, program duration and session frequency showed a significant between groups difference for the subgroup analysis. The main limitation was inability to perform subgroup analyses for all variables across all muscles measured at rest and during contraction, due to non-reporting of data. Conclusion: This review provides preliminary guidance to practitioners on how the LAM respond to different exercise dosages. Future research should trial these findings. Keywords: ultrasound imaging, abdomen, low back pain

<u> TEXT</u>

INTRODUCTION

Lower back pain (LBP) affects a considerable proportion of the global population, (GBD 2021 Low Back Pain Collaborators 2023) with devastating impacts to a patient's quality of life (Dutmer et al. 2019) and the broader economy (Yelin et al. 2016). With the burden of LBP expected to continue rising, (GBD 2021 Low Back Pain Collaborators 2023) pragmatic research on pathophysiology, prevention and treatment of LBP is essential. In some individuals with LBP, lateral abdominal muscles (LAM; inclusive of transversus abdominis [TrA], internal [IO] and external oblique [EO]) have shown altered thickness at rest and during activation, as evidenced by ultrasound imaging (USI) compared to asymptomatic controls (Noormohammadpour et al. 2019; Ota & Kaneoka 2011; Rahmani et al. 2018; Van Dieen et al. 2019). Exercise is prescribed regularly for LBP associated LAM impairment, with significant improvements reported in LAM thickness (Park & Yu 2013) and activation (Selkow et al. 2017), pain (Akbari et al. 2008) and disability rates (Park & Yu 2013). Thus, exercise is considered an effective tool in multidisciplinary LBP management (Oliveira et al. 2018).

Motor control exercise is the main form of exercise prescribed for patients with LAM impairments. However, the literature shows large variations in the exercise dosage variables, such as, session frequency and program duration (Saragiotto et al. 2016). A recent review examined the dose-response relationship of stabilisation exercises (inclusive of motor control exercises) in patients with chronic non-specific LBP. Exercising for 20-30 mins, 3-5 times per week was found to have the greatest effect on pain and disability based on low to moderate quality evidence (Mueller & Niederer 2020). However, to the best of our knowledge, research has yet to examine how the LAM respond to different exercise dosages and types. This may have clinical implications, considering improvements in LAM thickness and activation from

exercise interventions show an association with improved pain and disability (Ferreira et al. 2004; Lariviere et al. 2019).

The presence and nature of LAM changes is variable in patients with persistent LBP (Lariviere et al. 2019; Van Dieen et al. 2019). Therefore, it is difficult to accurately compare the effect of exercise prescriptions across LBP studies when samples may or may not have LAM changes. To justify which exercise prescriptions are associated with greater LAM recruitment, it is necessary to remove this heterogeneity by examining exercise in healthy individuals. This may assist in identifying exercise prescription methods which are appropriate for inclusion in future research to address LAM impairment in LBP.

Previous studies in healthy individuals demonstrated considerable variation in exercise protocols. For example, programs have ranged from two to eight weeks, containing 60-240 minutes per week and the type of exercise has included specific core stabilisation exercise, Pilates or strength training (Critchley et al. 2011; Lee et al. 2018; Niewiadomy et al. 2021b). This heterogeneity creates difficulty in determining the effect of individual exercise variables in interventions. Thus, it remains unclear to clinicians how the LAM may respond to different exercise dosages and activation and whether there is an optimal prescription which may benefit individuals with LAM impairment.

The purpose of this review was to perform a dose-response analysis on exercise (considering the variables of session frequency, session duration, exercise type and program duration) for LAM thickness and activation as measured by USI in healthy asymptomatic individuals.

MATERIALS AND METHODS

PRISMA reporting guidelines were adhered to and this review was registered with PROSPERO (ID CRD42021249183).

Data sources and searches

A list of search terms under the categories of exercise, thickness/ contraction/ activation and the lateral abdominal muscles was developed (search strategy in Appendix A with adaptations to suit requirements of each database). Search terms within categories were combined using the 'OR' Boolean operator, whilst categories were combined using the 'AND' Boolean operator. Studies were limited to English language. Web of Science, SportDiscus, ProQuest Dissertations and Theses Global, PEDro, Medline, Emcare, Embase and the Cochrane Library databases as well as the International Clinical Trials Registry Platform, Australia and New Zealand Clinical Trial Registry and Clinicaltrials.gov were searched from their beginning on the 26th of April 2021. Search alerts were monitored for further papers from the search until submission.

Study selection

All citations were imported into Covidence© software (Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia) for screening. Duplicate citations were removed and title and abstracts and full texts were screened by two reviewers independently using specific inclusion and exclusion criteria (Table 1).

Table 1 here

The reference lists and citations of included full-text articles were examined for additional studies. Selection disagreements were settled via consensus or a third reviewer. The authors

of eligible studies were contacted for clarification when LAM measurements, exercise specifics and statistical results data was not reported or unclear.

Data extraction and critical appraisal

Data was extracted twice by the same reviewer for retained full texts to minimise the risk of transcription error. Data was extracted using a custom data extraction tool developed by the authors (see Supplementary data 1).

Articles were then appraised separately by the two reviewers using the study design specific critical appraisal tool from the Joanna Briggs Institute (JBI) (Joanna Briggs Institute 2020a, b) that is, case series, quasi-experimental, randomised controlled trials and cohort study tools. Questions are scored as 'yes', 'no', 'unclear' or 'not applicable'. A modification made was for questions asking about whether outcomes were measured in a reliable way. This was broken into two separate items, one being whether reliability data was presented for the method and the second being whether the method was considered reproducible. Article quality did not affect inclusion or exclusion of retained full texts. Disagreements on study classification or appraisal scores were settled via consensus or a third reviewer. No pre-appraisal consensus on interpretation of the JBI tools was required.

Data analysis and synthesis

All analyses were conducted using Comprehensive Meta-analysis Software[©] (Biostat Inc, Englewood, USA). The required data was mean and standard deviation of LAM thickness (mm) pre and post intervention, the pre-post correlation and sample size. If studies did not report the pre/post correlation, the reported exact p-value or t-test output was used.

For an exercise prescription variable, such as program duration, all like studies were grouped (e.g. all with a program duration of 4 weeks). The standardised difference in means (SMD) was then calculated for each study, the pooled groups and across all studies using a random effects model. To compare within and between groups (e.g. 3 weeks vs 4 weeks program duration), *p* values were used to assess significance. Significance was set at *p* value (<0.05). To assess heterogeneity I^2 and Cochran's Q were used. This was conducted for TrA at rest, IO at rest, and TrA during contraction (data not available for EO or IO during contraction).

Due to non-reporting of all data points (e.g. exact *p* value), meta-analyses could not be performed for all exercise prescription variables across TrA and IO. In such instances, narrative synthesis was conducted. Studies with the same characteristic were again grouped and the pre-study muscle thickness was pooled for each group. Muscle thickness confidence intervals for each group were then narratively compared. Groups whose intervals overlapped were considered homogenous at baseline. The post-study muscle thickness was pooled for each group. Confidence intervals were compared and if they overlapped post-intervention, the authors considered there to be no difference between groups. If confidence intervals did not overlap, the group with a greater average muscle thickness was deemed to be superior. Where confidence intervals did not overlap at baseline, no further analysis was undertaken.

RESULTS

Study selection

A total of 8,104 articles were found, 4,195 of which were unique. One hundred and forty-two articles were full text screened with 30 retained. The authors of 18 of these studies were contacted for data clarification, but only one responded with data eligible for inclusion. One article was found through examining citations and reference lists, leaving a total of 14 articles (Cho 2013, 2015; Critchley et al. 2011; Gage 2009; Giacomini et al. 2016; Gong 2015, 2018; Kohiruimaki et al. 2019; Lee et al. 2018; Lee et al. 2015; Niewiadomy et al. 2021a; Niewiadomy et al. 2021b; Yang et al. 2015) (Figure 1).

Figure 1 here

Study Characteristics

Studies were published between 2009 and 2021 ($N_{participants} = 395$). Thirteen studies examined TrA and IO, and 10 examined EO. Eleven studies were randomised controlled trials (RCTs), one was a cohort study, one was a quasi-experimental study, and one was a case series.

Sample characteristics

Sample characteristics can be found in Supplementary data 1.

Risk of bias within studies

Figure 2 shows the quality appraisal results. Reporting quality was considered highest for the cohort study and lowest for the quasi-experimental study. Reporting quality was good for the RCTs (11 studies). The items that most RCTs failed to report on included whether true randomisation was used for assigning participants (two studies reported), blinding of participant allocation (one study reported) and outcome assessors (five studies reported), and describing participants follow up (6 studies reported). Blinding of participants to treatment assignment and blinding of those delivering treatment was not considered possible due to the nature of the intervention. Of the six studies that reported reliability data, all demonstrated between good and excellent intra and/or inter-rater reliability (ICC 0.88-0.99). Results for each study can be found in Appendix B.

Figure 2 here

There was insufficient data for meta-regressions or to perform subgroup analyses for all muscles at rest and during contraction. Results of subgroup analyses can be found in Table 2 (forest plots in Supplementary data 2).

Type of intervention

There was considerable heterogeneity regarding the types of exercises used. For subgroup analyses, there was only sufficient data to compare Pilates with the supine bridge using the abdominal drawing in maneuver for TrA thickness measured at rest and Pilates with the supine bridge using the abdominal drawing in maneuver and resistance training (inclusive of Critchley 2011 'strength training' and Kohiruimaki 2019 'suspended push-ups') for IO thickness measured at rest. There was a significant difference between groups for these analyses. The supine bridge using the abdominal drawing in maneuver showed significant differences

between the pre and post measures for IO and TrA at rest. For TrA at rest, Yang 2015's standard difference in means was larger than results for the other studies. A subsequent sensitively analysis with Yang 2015 removed did not alter the findings.

Narrative comparison of pooled effect sizes (see Supplementary data 3) yielded similar results.

Minutes per week

Subgroup analyses revealed no significant difference between groups of greater than 100 minutes per week of exercise (>100m) and lesser than 100 minutes per week of exercise (<100m), for any muscle measured at rest or during contraction. Results were, TrA measured at rest (Q(df = 1) = 1.634, p = 0.201), TrA during contraction (Q(df = 1) = 3.64, p = 0.056), and IO measured at rest (Q(df = 1) = 0.172, p = 0.678)]. However, there was a significant difference in pre to post thickness data for IO at rest with >100m (p = 0.039). For TrA measured during contraction, both >100m (p = 0.003) and <100m (p = <0.001) showed a significant difference in pre to post thickness data.

When the pooled effect sizes for the pre and post intervention thickness were narratively compared (Supplementary data 3), >100m resulted in greater effect sizes for the IO thickness. In contrast, <100m resulted in greater effect sizes for TrA at rest.

Program duration

Subgroup analyses, found between group significant differences for the variable program duration [TrA at rest (Q(df = 4) = 93134618, p = <0.001), IO at rest (Q(df = 4) = 19.19, p = 0.001)]. Five-week programs showed a significant difference in pre to post thickness data for TrA and IO measured at rest (p = <0.001). Also, a significant difference in pre to post thickness data for IO at rest existed in four-week (p = 0.013) and six-week (p = <0.001) programs. For TrA at rest, Yang 2015's standard difference in means was larger than results for the other studies. A subsequent sensitively analysis with Yang 2015 removed resulted in no significant difference between the groups of different program durations (Q(df = 4) = 7.286, p = 0.122). However,

programs of 5-weeks duration continued to demonstrate a significant difference when comparing the pre and post thickness data (p = 0.02). There was no significant difference for TrA during contraction between groups of different program durations (Q(df = 2) = 5.335, p = 0.069). Both pre to post thickness data was significantly different for five (p = 0.003) and six week (p = <0.001) programs.

Narrative comparison of pooled effect sizes for the pre and post intervention thickness (see Supplementary data 3), indicated that interventions from 4-weeks resulted in greater LAM thickness changes.

Number of sessions per week

Subgroup analyses for TrA at rest (Q(df = 2) = 98287247, p = <0.001) and during contraction (Q(df = 1) = 4.474, p = 0.034) and IO at rest (Q(df = 2) = 8.532, p = 0.014) found a significant difference between groups for the variable number of sessions per week. For those muscles, three sessions per week revealed a significant difference in pre to post thickness data (p = <0.001). However, Yang 2015 displayed considerably larger SMD compared to the other studies for TrA at rest. A later sensitivity analysis removing Yang 2015 from the data set found there was no longer a significant difference between groups for TrA at rest (Q(df = 2) = 5.83, p = 0.054). However, there was a significant difference when just examining the pre and post measures for programs of 3 sessions per week (p = 0.029). TrA measured during contraction also demonstrated a significant difference between the pre and post effect sizes for studies that conducted their exercise sessions four (p = 0.003) times per week.

Narrative comparison of pooled effect sizes (see Supplementary data 3), revealed 3 sessions per week demonstrated the greatest change between the pre and post thickness measures.

Session duration

Subgroup analyses revealed no significant difference between groups when examining the variable session duration [TrA measured at rest (Q(df = 3) = 3.691, p = 0.297), IO measured at rest (Q(df = 3) = 7.676, p = 0.053]. When examining at the pre and post thickness measures, only IO thickness measured at rest showed a significant difference for the protocols that had sessions of 30 mins duration (p = 0.003).

When narratively comparing the pooled effect sizes (see Supplementary data 3), greater changes between the pre and post thickness measures occurred for interventions that had 60-minute sessions.

Johngreich

DISCUSSION

This systematic review of 14 articles of good methodological quality identified that the current body of scientific research did not indicate an optimal exercise prescription for LAM thickness improvement. However, the review did identify evidence to allow broad yet cautious recommendations for exercise prescription.

Type of intervention

The subgroup analyses and narrative examination of pre and post effect sizes indicated that the supine bridge with an abdominal drawing in manoeuvre was superior to Pilates and resistance training for improving LAM thickness. While Critchley et al 2011 utilised the abdominal drawing in manoeuvre (ADIM) prior to commencing each Pilates exercise, the exercises were mainly whole-body focussed. Giacomini et al 2015 did not report using the ADIM in their Pilates intervention. This suggests that greater effectiveness for improving LAM thickness occurs via manoeuvres which focus on LAM recruitment compared more generalised exercises. Previous research in LBP populations has reported that both specific LAM core stabilisation exercises and generalised exercise/ generalised abdominal exercise prescriptions significantly improve LAM thickness.(Akbari et al. 2008; Hlaing et al. 2021) However, between group analyses in both studies found that the specific core stabilising prescription groups showed significantly greater improvements to LAM thickness. Both studies standardised program and session duration and frequency. Improvement to LAM thickness has also been demonstrated in LBP populations when Pilates, (Batibay et al. 2020) and aerobic exercises were combined with the abdominal drawing in manoeuvre (Gong 2016). This literature from LBP populations and the finding from this systematic review in healthy populations is therefore consistent, indicating that various types of exercise are associated with improved LAM thickness, but that superior results will be achieved from specific LAM activation exercises.

Program duration

This review found that programs from four weeks duration are associated with greater improvements to LAM thickness. This finding is consistent with research regarding resistance training adaptations which suggests that adaptations are predominantly neural activation rather than muscle hypertrophy in the initial weeks of a new program (Kenney et al. 2015). The longest intervention analysed in this review was eight weeks. Resistance training literature indicates that from eight weeks, muscle hypertrophy becomes a greater contributor to changes in strength (Kenney et al. 2015). Potentially greater improvements to LAM thickness could be obtained from programs with a minimum of 8-10 weeks in duration. From this review's search, it was observed most interventions in healthy and LBP samples did not exceed this duration. Future research should trial longer programs and examine LAM thickness at various stages of the program to determine the influence of longer durations on LAM thickness.

Number of sessions and minutes per week

This review found that programs using three sessions per week are associated with greater improvements to LAM thickness compared with programs using two or four sessions per week. The American College of Sports Medicine (ACSM) recommends the general population perform aerobic exercise ≥ five days per week and resistance training 2-3 days per week with a minimum of 48 hours rest between training the same muscles (Thompson et al. 2010). As the interventions examined in this study were generally closer to the resistance training category, these recommendations align well with our findings. Potentially three sessions per week were more effective than two due to a higher training volume. However, this logic would imply that four sessions per week would result in greater LAM thickness than three sessions. Perhaps four sessions per week was not as effective, as, this did not allow sufficient time resting between sessions as is recommended. A meta-analysis examining the effects of training

frequency on muscle hypertrophy found higher frequencies were preferrable, but when considering overall training volume, the training frequency did not significantly influence muscle hypertrophy (measured through various modalities including USI) (Schoenfeld et al. 2019b). This suggests that considering the training volume (i.e. sets and repetitions or total number of minutes per week) is more important than session frequency. This review found that >100 mins per week and <100 mins per week are more effective for improving the thickness of the obliques and TrA respectively. This finding for the obliques is consistent with research suggesting that increased training volumes results in greater muscle hypertrophy (Schoenfeld et al. 2019a). However, the result for TrA appears to contradict this notion. This may be related to the ease with which one can contract the obliques compared to TrA. It has been demonstrated that the ability to achieve correct TrA contraction can be quite challenging in people with and without LBP (Richardson et al. 1999). To therefore achieve optimal muscle contraction, it is recommended to perform fewer repetitions with correct technique than to perform more repetitions with incorrect technique (Richardson et al. 1999). Therefore, the authors of this review hypothesise that for improvements in TrA thickness, the focus of interventions should be quality rather than quantity.

Session duration

This review's findings are inconclusive and may suggest that interventions from 30 minutes in duration may be preferred for improving LAM thickness. The inconclusive nature of our findings correspond with the ACSM guidelines, with their synthesis of the literature indicating that the most effective session duration for resistance training has not been identified (Thompson et al. 2010). Potentially the session duration is irrelevant and instead the quality and number of repetitions, sets and resting time which contributes to the session duration are the more important variables. Indeed, considerable research has been conducted into these

variables in relation to the intensity of the exercise (Thompson et al. 2010). Whilst the repetitions and sets of exercise were generally well reported in the included studies, intensity was rarely reported. Future studies should consider reporting the intensity of the prescribed exercises to enable better comparisons.

A final factor to consider is that there may not be one perfect exercise prescription. A common theme amongst publications is the suggestion that exercise prescription should be individualized (Richardson et al. 1999) and prescriptions made through a combination of guidance from research and clinical expertise (McGill 1998). To explore this further, an area for future research is to gain clinician perspectives on optimal exercise prescriptions for the LAM (Richardson et al. 1999).

Limitations

This review was not without limitations. Firstly, subgroup analyses were unable to be performed for all muscles during rest and contraction for all variables. Therefore, a clear set of guidelines regarding exercise prescription for the LAM were unable to be produced. While data was not available to analyse responsiveness of IO and EO during contraction, the validity of interpreting IO and EO thickness changes as muscle activity during ADIM is questionable (ShahAli et al. 2019). Secondly the article was not limited to RCTs only. This would have strengthened the ability to evaluate a possible causation between exercise and LAM thickness. However, due to the few studies meeting the inclusion criteria and the good quality of included studies, the authors decided to include all study designs. As such, only association between exercise characteristics and LAM thickness was examined. Thirdly, some of the articles included were published by journals previously deemed to be 'predatory'. These were included due to meeting eligibility criteria. While article quality remained reasonable, this may

affect the credibility of results. In this article, where SMD appeared to be considerably larger compared to other studies, sensitivity analyses were conducted by removing such studies. Finally, only articles in English were included due to not having access to language translation and only studies with healthy human participants were included. Therefore, the results cannot be generalised to LBP populations. Nevertheless, the review was necessary to provide new evidence on the response of the LAM to various exercise prescriptions in healthy individuals so to provide normative evidence which can be applied in future research for comparison with LBP. There is thus a need to examine such findings in patients with LBP who have LAM impairments. Future research of this nature has potential to determine the clinical utility of specific exercise prescriptions.

CONCLUSION

This review has found that exercise programs of \geq 4 weeks duration, those involving three sessions per week, each session being of \geq 30 minutes duration and those containing specific local abdominal exercises may be associated with improvements to LAM thickness in healthy participants. Such findings may provide preliminary guidance to physiotherapists who are aiming to prescribe exercises for the LAM. Further research should examine these findings and gain clinician perspectives into the optimal exercise prescriptions for the LAM.

Clinical relevance

- Exercise programs of ≥ 4 weeks duration, those involving three sessions per week, each session being of ≥30 minutes duration and those containing specific local abdominal exercises may be associated with improvements to lateral abdominal muscle thickness in healthy participants
- Such findings may provide preliminary guidance to physiotherapists who are aiming to prescribe exercises for the lateral abdominal muscles

ACKNOWLEDGEMENTS:

Nil

Journal Pression

REFERENCES

Akbari A, Khorashadizadeh S, Abdi G 2008 The effect of motor control exercise versus general exercise on lumbar local stabilising muscles thickness: randomised controlled trial of patients with chronic low back pain. Journal of Back and Musculoskeletal Rehabilitation 21, 105-112. Batibay S, Kulcu DG, Kaleoglu O, Mesci N 2020 Effect of Pilates mat exercise and home exercise programs on pain, functional level, and core muscle thickness in women with chronic low back pain. Journal of Orthopaedic Science. 26, 979-985.

Cho M 2013 The effects of modified wall squat exercises on average adults' deep abdominal muscle thickness and lumbar stability. Journal of Physical Therapy Science 25, 689-692. Cho M 2015 The effects of bridge exercise with the abdominal drawing-in maneuver on an unstable surface on the abdominal muscle thickness of healthy adults. Journal of Physical Therapy Science 27, 255-257.

Critchley DJ, Pierson Z, Battersby G 2011 Effect of pilates mat exercises and conventional exercise programmes on transversus abdominis and obliquus internus abdominis activity: pilot randomised trial. Manual Therapy 16, 183 - 189.

Dutmer A, Schiphorst Preuper H, Soer R, Brouwer SB, U, Dijkstra P, Coppes M, Stegeman P, Buskens E, van Asselt A, Wollf A, Reneman M 2019 Personal and societal impact of low back pain: The Groningen Spine Cohort. Spine (Phila Pa 1976) 44, E1443-E1451.

Ferreira PH, Ferreira ML, Hodges PW 2004 Changes in recruitment of the abdominal muscles in people with low back pain: Ultrasound measurement of muscle activity. Spine 29, 2560-2566. Gage MJ 2009 The effects of abdominal training on postural control, lower extremity kinematics, kinetics, and muscle activation. Brigham Young University, Ann Arbor, p. 237. GBD 2021 Low Back Pain Collaborators 2023 Global, regional, and national burden of low back pain, 1990-2020, its attributable risk factors, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatology May 22, e316-e329. Giacomini MB, da Silva AM, Weber LM, Monteiro MB 2016 The Pilates Method increases respiratory muscle strength and performance as well as abdominal muscle thickness. Journal of Bodywork & Movement Therapies 20, 258-264.

Gong W 2015 The effects of dynamic exercise utilizing PNF patterns on abdominal muscle thickness in healthy adults. Journal of Physical Therapy Science 27, 1933-1936.

Gong W 2016 The effects of running in place in a limited area with abdominal drawing-in maneuvers on abdominal muscle thickness in chronic low back pain patients. Journal of Back & Musculoskeletal Rehabilitation 29, 757-762.

Gong W 2018 The effects of the continuous bridge exercise on the thickness of abdominal muscles in normal adults. Journal of Physical Therapy Science 30, 921-925.

Hlaing S, Puntumetakul R, Khine E, Boucaut R 2021 Effects of core stabilization exercise and strengthening exercise on proprioception, balance, muscle thickness and pain related outcomes in patients with subacute nonspecific low back pain: a randomized controlled trial. BMC Musculoskeletal Disorders 22.

Joannna Briggs Institute 2020a JBI CRITICAL APPRAISAL CHECKLIST FOR QUASI-EXPERIMENTAL STUDIES.

Joannna Briggs Institute 2020b JBI CRITICAL APPRAISAL CHECKLIST FOR RANDOMIZED CONTROLLED TRIALS.

Kenney W, Wilmore J, Costil D 2015 Physiology of Sport and Exercise, 6 ed. Human Kinetics, United States of America.

Kohiruimaki R, Maeo S, Kanehisa H 2019 Suspended Push-up Training Augments Size of not only Upper Limb but also Abdominal Muscles. International Journal of Sports Medicine 40, 789-795. Lariviere C, Henry S, Gagnon D, Preuss R, Dumas J 2019 Ultrasound measures of the abdominal wall in patients with low back pain before and after an 8-week lumbar stabilization exercise program, and their association with clinical outcomes. Physical Medicine and Rehabilitation 11, 710-721.

Lee DH, Hong SK, Lee YS, Kim CH, Hwang JM, Lee Z, Kim JM, Park D 2018 Is abdominal hollowing exercise using real-time ultrasound imaging feedback helpful for selective strengthening of the transversus abdominis muscle?: a prospective, randomized, parallel-group, comparative study. Medicine 97, e11369.

Lee JS, Kim TH, Kim DY, Shim JH, Lim JY 2015 Effects of selective exercise for the deep abdominal muscles and lumbar stabilization exercise on the thickness of the transversus abdominis and postural maintenance. Journal of Physical Therapy Science 27, 367-370. McGill S 1998 Low back exercises: evidence for improving exercise regimens. Physical Therapy 78, 754-765.

Mueller J, Niederer D 2020 Dose-response-relationship of stabilisation exercises in patients with chronic non-specific low back pain: a systematic review with meta-regression. Sci Rep 10. Niewiadomy P, Szuscik-Niewiadomy K, Kuszewski M, Kurpas A, Kochan M 2021a The influence of rotational movement exercise on the abdominal muscle thickness and trunk mobility - randomised control trial. Journal of Bodywork & Movement Therapies 27, 464-471. Niewiadomy P, Szuscik-Niewiadomy K, Kuszewski MT, Kochan M, Pawlukiewicz M, Rychlik M, Piatkowska K 2021b Assessment of the influence of global and local exercises on core stabilization mechanisms: randomized controlled trial. Journal of Sports Medicine & Physical Fitness 61, 44-52.

Noormohammadpour P, Mirzaei S, Moghadam N, Mansournia M, Kordi R 2019 Comparision of lateral abdominal muscle thickness in young male soccer players with and without low back pain. International Journal of Sports Physical Therapy 14, 273-281.

Oliveira C, Maher C, Pinto R, Traeger A, Lin C, Chenot J, van Tulder M, Koes B 2018 Clinical practice guidelines for the management of non-specific low back pain in primary care: an updated overview. European Spine Journal 27, 2791-2803.

Ota M, Kaneoka K 2011 Differences in abdominal muscle thicknesses between chronic low back pain patients and healthy subjects. Journal of Physical Therapy Science 23, 855-858. Park S, Yu S 2013 The effects of abdominal draw-in maneuver and core exercise on abdominal muscle thickness and oswestry disability index in subjects with chronic low back pain. Journal of Exercise Rehabilitation 9, 286-291.

Rahmani N, Mohseni-Bandpei M, Salavati M, Vameghi R, Abdollahi I 2018 Comparative study of abdominal muscle thickness on ultrasonography in healthy adolescents and patients with low back pain. Journal of Ultrasound in Medicine 37, 905-912.

Richardson C, Jull G, Hodges P, Hides J 1999 Therapeutic Exercise for Spinal Segmental Stabilisation in Low Back Pain: Scientific Basis and Clinical Approach. Churchill Livingstone, Edinburgh.

Saragiotto B, Maher C, Yamato T, Costa L, Menezes Costa L, Ostelo R, Macedo LG 2016 Motor control exercise for chronic non-specific low-back pain. Cochrane Database of Systematic Reviews Jan 8.

Schoenfeld BJ, Contreras B, Krieger J, Grgic J, Delcastillo K, Belliard R, Alto A 2019a Resistance training volume enhances muscle hypertrophy but not strength in trained men. Medicine & Science in Sports & Exercise 51, 94-103.

Schoenfeld BJ, Grgic J, Krieger J 2019b How many times per week should a muscle be trained to maximize muscle hypertrophy? A systematic review and meta-analysis of studies examining the effects of resistance training frequency. Journal of Sports Sciences 37, 1286-1295.

Selkow N, Eck M, Rivas S 2017 Transversus abdominis activation and timing improves following core stability training: a randomised trial. International Journal of Sports Physical Therapy 12, 1048-1056.

ShahAli S, Shanbehzadeh S, ShahAli S, Takamjani I 2019 Application of ultrasonography in the assessment of abdominal and lumbar trunk muscle activity in participants with and without low back pain: a systematic review. Journal of manipulative and physiological therapeutics 42, 541-550.

Thompson W, Gordon N, Pescatello L 2010 ACSM's Guidelines for Exercise Testing and Prescription, 8 ed. Lippincott Williams & Wilkins, Philadelphia, Pennsylvania.

Van Dieen J, Reeves NP, Kawchuk G, Van Dillen L, Hodges P 2019 Motor Control Changes in Low Back Pain: Divergence in Presentations and Mechanisms. Journal of Orthopaedic and Sports Physical Therapy 49, 370-379.

Yang HS, Lee YS, Jin SA 2015 Effect of evidence-based trunk stability exercises on the thickness of the trunk muscles. Journal of Physical Therapy Science 27, 473-475.

Yelin E, Weinstein S, King T 2016 The burden of musculoskeletal diseases in the United States. Seminars in Arthritis and Rheumatism 46, 259-260.

Johngilbreit

TABLES

Table 1: Inclusion/Exclusion criteria

	Inclusion	Exclusion
Population	Healthy adults	Adults with LBP or other
		comorbidities
		Children
		Pregnancy or < 6 months
		postpartum
		Athletes
		Obesity
Intervention	Exercise intervention lasting longer	No exercise intervention
	than one session. Must state what	Exercise intervention duration of
	exercises were prescribed, frequency	one session.
	of sessions over the week and	Insufficient description of
	duration of intervention.	intervention
Outcome	Measurement of resting and/or	Not measure LAM thickness before
	contracting (using abdominal drawing	and after intervention using USI
	in manoeuvre to allow for	
	consistency) LAM thickness using USI	
	before and after the intervention.	
Other	English language	Languages other than English
	Available in full text	No full text available
	Any date	

Note: LAM, lateral abdominal muscles; USI, ultrasound imaging.

Table 2: Meta analysis results

						Standard				Heterogeneit	У		
Exercise I	Prescription	Study	Muscle	Group	Ν	difference	Lower	Upper				р	
Variable					samples	in means	limit	limit	Ρ	Q	df	value	12
	Pilates	Critchley 2011	TrA at rest	Pilates	1	0	X 0	0	0				
	Pilates	Giacomini 2016	TrA at rest	Pilates	1	0.001	0.001	0.001	0				
	Overall Pila	tes	TrA at rest		2	0	0	0.001	0.14	11411.578	1	<0.001	99.929
Fuereice	Supine bridge ADIM	Cho 2013	TrA at rest	Bridge with ADIM		1	1	1	0				
Type	Supine bridge ADIM	Lee 2018 a	TrA at rest	Supine bridge with ADIM	1	0.939	0.195	1.683	0.01				
	Supine bridge ADIM	Yang 2015	TrA at rest	Supine bridge with ADIM	1	10000	9999.8	10000	0				
	Supine bridge ADIM	Cho 2015	TrA at rest	Supine bridge with ADIM	1	1	1	1	0				
	Overall sup ADIM	ine bridge	TrA at rest		4	2534.017	2532.6	2535.4	0	999800008	3	<0.001	100

						Standard				Heterogeneit	y		
Exercise P Variable	rescription	Study	Muscle	Group	N samples	difference in means	Lower limit	Upper limit	Р	Q	df	p value	12
	Overall Pila bridge ADI	ates vs Supine M	TrA at rest			0.001	0	0.001	0				
	Withou	t Yang 2015 Delow				.0	Ĵ,						
	Pilates		TrA at rest		2	0	0	0.001	0.14	11411.578	1	<0.001	99.929
	Supine bric	dge ADIM	TrA at rest		3	1	1	1	0	0.026	2	0.987	0
	Overall Pilates vs Supine												
	bridge ADIM		TrA at rest	<u> </u>		0.999	0.999	0.999	0				
	Pilates	Critchley 2011	IO at rest	Pilates	1	0.034	-0.398	0.466	0.88				
	Pilates	Giacomini 2016	IO at rest	Pilates	1	0.909	0.364	1.454	0				
	Overall Pila	ates	IO at rest		2	0.455	-0.401	1.312	0.3	6.076	1	0.014	83.542
	Supine bridge ADIM	Cho 2013	IO at rest	Bridge with ADIM	1	1	0.42	1.58	0				

						Standard				Heterogene	ity		
Exercise P	rescription	Study	Muscle	Group	N	difference	Lower	Upper		•		р	
variable					samples	in means	limit	limit	Р	Q	ar	value	12
	Supine												
	bridge		IO at	Supine bridge									
	ADIM	Cho 2015	rest	with ADIM	1	0.564	0.054	1.074	0.03				
	Supine												
	bridge		IO at	Supine bridge									
	ADIM	Lee 2018 a	rest	with ADIM	1	0.427	-0.221	1.074	0.2				
	Supine												
	bridge		IO at	Supine bridge									
	ADIM	Yang 2015	rest	with ADIM	1	1	0.29	1.71	0.01				
O A	Overall supi	ine bridge	IO at										
	ADIM .	0	rest		4	0.728	0.429	1.027	0	2.63	7 3	0.451	0
	Resistance	Critchley	IO at										
	training	2011	rest	Strength	1	-0.052	-0.511	0.406	0.82				
	Resistance	Kohiruimaki	IO at	Suspended									
	training	2019	rest	push ups	1	0.378	-0.339	1.096	0.3				
	Overall resis	stance	IO at										
	training		rest		2	0.073	-0.314	0.459	0.71	0.984	1 1	0.321	0
-	Overall - Pil	ates vs Supine											
	Bridge	ADIM vs	IO at										
	Resistan	ce training	rest			0.481	0.253	0.709	0				
			TrA at	Abdominal									
	20	Lee 2018	rest	Hollowing	1	0.419	-0.228	1.065	0.2				

						Standard				Heterogeneit	у			
Exercise F Variable	Prescription	Study	Muscle	Group	N samples	difference in means	Lower limit	Upper limit	Р	Q	df	p value	12	
				Abdominal										
			T . A I	Hollowing										
	20	100 2019	IrA at	With	1	0 161	0.462	0 705	0.61					
	20	Lee 2018	rest	DIDIEEDDACK	1	0.101	-0.462	0.785	0.61					
	Overall 20		TrA at		2	0.296	0 162	0 724	0.21	0.215	1	0 5 7 4		0
	Overall 20				Z	0.200	-0.105	0.754	0.21	0.515	1	0.574		0
	20	Ch - 2012	IrA at	Bridge with		0	1	4	0					
	30	Cho 2013	rest	ADIIVI	1	1	T	T	0					
Session	20	100 2015	IrA at			0	0	0	0					
duration	30	Lee 2015	rest	ADIIVI		0	0	0	0					
(mins)	20	Cha 2012	IrA at		1	0	0	0	0					
	30	Cho 2013	rest	waii Squat	T	0	0	0	0					
				Lumbar										
	20	1 2015	TrA at	stabilisation	4	0	0	0	0					
	30	Lee 2015	rest	exercises	1	0	0	0	0					
	0		TrA at		4	0.25	0 1 0 0	0.000	0.20	400040407	2	-0.001	4	~~
	Overall 30		rest		4	0.25	-0.188	0.688	0.26	409010407	3	<0.001	1	.00
				Rotational										
		Niewiadomy	TrA at	movement										
	45	2021 a	rest	exercise	1	0.261	-0.054	0.576	0.11					
		Critchley	TrA at											
	45	2011	rest	Pilates	1	0	0	0	0					

	version Dressription					Standard				Heterogen	eity		
Exercise P	rescription	Study	Muscle	Group	N	difference	Lower	Upper limit	D	0	qt	p value	12
Valiable			T . A I		samples	III IIIediis	mm	mm	r	ų	ui	value	12
	15	Critchley	TrA at	Strongth	1	0	0	0	0.2				
	45	2011	Tra	Stieligti	I	0	0	0	0.2				
	Overall 45		TrA at		2	0	S 0	0	0 42	101.0	76 2	<0.001	00 021
	Overall 45		Test		3	0		0	0.42	101.0	70 2	<0.001	96.021
		Niowiadomy	TrA at	Clobal muselo									
	60	2021	rest	training	1	0.067	0.067	0.067	0				
	00	2021	1030	training	1	0.007	0.007	0.007	0				
		Niewiadomy	TrA at										
	60	2021	rest	training	1	0	0	0	0				
		Giacomini	TrA at	ci all'ing		0	U	Ū	Ū				
	60	2016	rest	Pilates	1	0.001	0.001	0.001	0				
			TrA at	\sim	,								
	Overall 60		rest		3	0.023	-0.025	0.07	0.35	501254	16 2	<0.001	100
	Overall 20	vs 30 vs 45 vs	TrA at	\mathcal{O}									
	60 GVeran 20	mins	rest			0	0	0	0.42				
			IO at	Abdominal									
	20	Lee 2018	rest	Hollowing	1	0.06	-0.56	0.681	0.85				
				0									
				Abdominal									
				Hollowing									
			IO at	with									
	20	Lee 2018	rest	biofeedback	1	-0.111	-0.733	0.51	0.73				

.

						Standard				Hete	rogeneity	/		
Exercise F	Prescription	Study	Muscle	Group	Ν	difference	Lower	Upper					р	
Variable					samples	in means	limit	limit	Ρ	Q		df	value	12
			IO at											
	Overall 20		rest		2	-0.025	-0.464	0.414	0.91		0.147	1	0.702	0
			IO at	Bridge with										
	30	Cho 2013	rest	ADIM	1	1	0.42	1.58	0					
			IO at											
	30	Cho 2013	rest	Wall Squat	1	2	1.18	2.82	0					
			IO at											
	Overall 30		rest		2	1.456	0.48	2.432	0		3.81	1	0.051	73.75
		Critchley	IO at											
	45	2011	rest	Pilates	1	0.034	-0.398	0.466	0.88					
		Critchley	IO at											
	45	2011	rest	Strength	1	-0.052	-0.511	0.406	0.82					
				Rotational										
		Niewiadomy	IO at	movement										
	45	2021 a	rest	exercise	1	0.38	0.059	0.701	0.02					
			IO at											
	Overall 45		rest		3	0.161	-0.116	0.438	0.25		2.92	2	0.232	31.497
		Giacomini	IO at											
	60	2016	rest	Pilates	1	0.909	0.364	1.454	0					
		Niewiadomy	IO at	Global muscle	2									
	60	2021	rest	training	- 1	0 073	-0 217	0 363	0.62					
	00	2021	i CJU	ti anning	T	0.075	0.217	0.505	0.02					
		Nieuriedereur												
	60		io at		1	0 115	0.106	0 426	0 47					
	60	2021	rest	training	1	0.115	-0.196	0.426	0.47					

						Standard				Heterogeneit	y		
Exercise F Variable	Prescription	Study	Muscle	Group	N samples	difference in means	Lower limit	Upper limit	Р	Q	df	p value	12
	Overall 60		IO at rest		3	0.302	-0.107	0.71	0.15	7.523	2	0.023	73.415
	Overall 20 60	vs 30 vs 45 vs mins	IO at rest			0.21	0.011	0.409	0.04				
	2	Critchley 2011 Critchley	TrA at rest	Pilates	1	0	0	0	0				
	2	2011	rest	Strength	1	0	0	0	0.2				
	2	Giacomini 2016	TrA at rest	Pilates	1	0.001	0.001	0.001	0				
C astanting	Overall 2		TrA at rest		3	0	0	0.001	0.2	2390.184	2	<0.001	99.916
Sessions per week	3	Cho 2013	TrA at rest	Bridge with ADIM	1	1	1	1	0				
	3	Lee 2018	rest	Hollowing	1	0.419	-0.228	1.065	0.2				
			TrA at	Abdominal Hollowing with									
	3	Lee 2018	rest TrA at	biofeedback	1	0.161	-0.462	0.785	0.61				
	3	Lee 2018 a	rest	Supine bridge	1	0.12	-0.502	0.742	0.71				

					Standard				Heterogene	ity		
Exercise Prescription Variable	Study	Muscle	Group	N samples	difference in means	Lower limit	Upper limit	Р	Q	df	p value	12
		TrA at	Supine bridge									
3	Lee 2018 a	rest	with ADIM	1	0.939	0.195	1.683	0.01				
		TrA at	Supine bridge									
3	Yang 2015	rest	with ADIM	1	10000	9999.8	10000	0				
			Supine bridge									
		TrA at	with ADIM									
3	Yang 2015	rest	and R leg lift	1	10000	9999.8	10000	0				
		TrA at										
3	Cho 2013	rest	Wall Squat	1	0	0	0	0				
			Quadruped									
		TrA at	arm and leg									
3	Yang 2015	rest	lift with ADIM	1	1	1	1	0				
		TrA at	Side bridge					-				
3	Yang 2015	rest	with ADIM	1	20000	20000	20000	0				
2	Ch. 2015	TrA at	Supine bridge					<u> </u>				
3	Cho 2015	rest	with ADIM	1	1	1	1	0				

						Standard				Heterogeneit	у			
Exercise P Variable	rescription	Study	Muscle	Group	N samples	difference in means	Lower limit	Upper limit	Ρ	Q	df	p value	12	
	3	Cho 2015	TrA at rest	Supine bridge with ADIM unstable	1	0	0	0	0					
	3	Gage 2009	TrA at rest	Abdominal resistance exercises	1	000	0	0	0					
	Overall 3		TrA at rest		13	3108.373	3107.8	3109	0	386931350	12	<0.001	1	100
	4	Lee 2015	TrA at rest	ADIM	1	0	0	0	0					
	4	Niewiadomy 2021	TrA at rest	Global muscle training	1	0.067	0.067	0.067	0					
	4	Niewiadomy 2021	TrA at rest	Local Muscle training	1	0	0	0	0					
	4	Niewiadomy 2021 a	TrA at rest	Rotational movement exercise Lumbar	1	0.261	-0.054	0.576	0.11					
	4	Lee 2015	rest	stabilisation exercises	1	0	0	0	0					

						Standard				Heterogeneit	У		
Exercise P	rescription	Study	Muscle	Group	Ν	difference	Lower	Upper				р	
Variable					samples	in means	limit	limit	Ρ	Q	df	value	12
			TrA at										
	Overall 4		rest		5	0.02	-0.017	0.058	0.29	55734880	4	<0.001	100
							ί.						
	Overall 2 vs	3 vs 4	TrA at										
	sessions pe	r week	rest			0.002	0.001	0.002	0				
	Without Ya	ng 2015	TrA at			N.							
	below	0	rest										
_			TrA at		0								
	2		rest		3	0	0	0.001	0.2	2390.184	2	<0.001	99.916
			TrA at										
	3		rest		9	0.398	0.04	0.756	0.03	714221801	8	<0.001	100
			TrA at										
	4		rest		5	0.02	-0.017	0.058	0.29	55734880	4	<0.001	100
	Overall 2 vs	3 vs 4		<u> </u>									
	sessions per	r week	TrA at										
	without Yar	ng 2015	rest			0	0	0.001	0.2				
		Critchlev	IO at										
	2	2011	rest	Pilates	1	0.034	-0.398	0.466	0.88				
		Critchley	IO at										
	2	, 2011	rest	Strength	1	-0.052	-0.511	0.406	0.82				
		Giacomini	IO at										
	2	2016	rest	Pilates	1	0.909	0.364	1.454	0				

						Standard				Hete	erogeneity	/		
Exercise P	rescription	Study	Muscle	Group	N	difference	Lower	Upper	_	_			р	
Variable					samples	in means	limit	limit	Р	Q		df	value	12
			IO at											
	Overall 2		rest		3	0.277	-0.281	0.834	0.33		8.206	2	0.01/	/5.628
			IO at	Bridge with										
	3	Cho 2013	rest	ADIM	1	1	0.42	1.58	0					
			IO at											
	3	Cho 2013	rest	Wall Squat	1	2	1.18	2.82	0					
			IO at	Supine bridge										
	3	Cho 2015	rest	with ADIM	1	0.564	0.054	1.074	0.03					
				Supipo bridgo										
			IO at											
	2	Cho 2015	roct		1	2	1 10	2 0 2	0					
	5	CH0 2015	Test	unstable	T	Z	1.10	2.02	0					
				Abdominal										
			IO at	resistance										
	3	Gage 2009	rest	exercises	1	0.15	-0.262	0.562	0.48					
		Kohiruimaki	IO at	Suspended										
	3	2019	rest	push ups	1	0.378	-0.339	1.096	0.3					
			IO at	Abdominal										
	3	Lee 2018	rest	Hollowing	1	0.06	-0.56	0.681	0.85					
				Abdominal										
				Hollowing										
			IO at	with										
	3	Lee 2018	rest	biofeedback	1	-0.111	-0.733	0.51	0.73					

					Standard				Hete	rogeneity			
Exercise Prescription	Study	Muscle	Group	Ν	difference	Lower	Upper					р	
Variable				samples	in means	limit	limit	Р	Q		df	value	12
		IO at											
3	Lee 2018 a	rest	Supine bridge	1	0.37	-0.271	1.011	0.26					
		IO at	Supine bridge										
3	Lee 2018 a	rest	with ADIM	1	0.427	-0.221	1.074	0.2					
		IO at	Supine bridge										
3	Yang 2015	rest	with ADIM	1		0.29	1.71	0.01					
	C		Sunine hridge										
		IO at	with ADIM										
3	Yang 2015	rest	and R leg lift	1	1	0.29	1.71	0.01					
	0		Quadrupad										
		IO at	Quadruped										
з	Yang 2015	rest	lift with ADIM	1	1 872	0 91	2 834	0					
5	1011g 2013	i CSC		T	1.072	0.51	2.004	U					
		10 -+											
2	Vang 201E	IU at	Side bridge	1	0 5	1 1 5	1 115	0 1 1					
3	rang 2015	IO at	WILLEADIN	T	0.5	-1.15	1.115	0.11					
Overall 3		rost		14	0 741	0 4 1 4	1 069	0		<i>A</i> 7 111	13	<0.001	72 405
		1030		14	0.741	0.414	1.005	0		47.111	15	\0.001	72.405
4	Niewiadomy	IO at	Global muscle	1	0.072	0.217	0.262	0.02					
4	2021	rest	training	T	0.073	-0.217	0.363	0.62					
	Niewiadomy	IO at	Local Muscle										
4	2021	rest	training	1	0.115	-0.196	0.426	0.47					

						Standard				Hete	rogeneit	y		
Exercise P	rescription	Study	Muscle	Group	N	difference	Lower	Upper	_	_			р	
Variable					samples	in means	limit	limit	Р	Q		df	value	12
				Rotational										
		Niewiadomy	IO at	movement										
	4	2021 a	rest	exercise	1	0.38	0.059	0.701	0.02					
			IO at											
	Overall 4		rest		3	0.181	-0.004	0.366	0.06		2.184	2	0.335	8.446
	Overall 2 vs	3 vs 4	IO at											
	sessions pe	r week	rest			0.313	0.159	0.468	0					<u>-</u>
	Without Ch	o 2013, 2015	IO at											
	and Yang 20	015 below	rest											
			IO at											
	2		rest		3	0.277	-0.281	0.834	0.33		8.206	2	0.017	75.628
			IO at											
	3		rest		6	0.191	-0.046	0.428	0.11		2.189	5	0.822	0
			IO at											
	4		rest		3	0.181	-0.004	0.366	0.06		2.184	2	0.335	8.446
			IO at											
	Overall		rest			0.191	0.05	0.332	0.01					
				Abdominal										
	2	C	IrA Combine et	resistance	4	0 5 4 4	0.040	0.00	0.02					
	3	Gage 2009	Contract	exercises	T	0.514	0.048	0.98	0.03					
			TrA	Prone and										
	3	Gong 2018	Contract	side bridging	1	0.924	0.257	1.591	0.01					
				Proprioceptive										
	2	Care 2015	I rA	neuomuscular	4	0 724	0 105	1 202	0.02					
	3	Gong 2015	Contract	Tacilitation	1	0.734	0.105	1.363	0.02					

						Standard				Hete	erogeneity	/		
Exercise P	Prescription	Study	Muscle	Group	N	difference	Lower	Upper	_	•			р	
Variable					samples	in means	limit	limit	Р	Q		df	value	12
			TrA											
	Overall 3		Contract		3	0.672	0.345	0.998	0		1.025	2	0.599	0
				Lumbar										
			TrA	stabilisation										
	4	Lee 2015	Contract	exercises	1	1.766	0.844	0.2689	0					
			TrA											
	4	Lee 2015	Contract	ADIM	1	3.492	1.956	5.029	0					
			TrA											
	Overall 4		Contract		2	2.516	0.839	4.193	0		3.565	1	0.059	71.947
	Overall 3 vs	4 sessions	TrA											
	per week		Contract			0.739	0.419	1.06	0					
			TrA at	Abdominal										
	2 weeks	Lee 2018	rest	Hollowing	1	0.419	-0.228	1.065	0.2					
				Abdominal										
				Hollowing										
			TrA at	with										
	2 weeks	Lee 2018	rest	biofeedback	1	0.161	-0.462	0.785	0.61					
			TrA at											
	Overall 2 w	eeks	rest		2	0.286	-0.163	0.734	0.21		0.315	1	0.574	0
			TrA at											
Program	4 weeks	Lee 2018 a	rest	Supine bridge	1	0.12	-0.502	0.742	0.71					
duration			TrA at	Supine bridge										
	4 weeks	Lee 2018 a	rest	with ADIM	1	0.939	0.195	1.683	0.01					

						Standard				Heterogeneit	y			
Exercise P Variable	rescription	Study	Muscle	Group	N samples	difference in means	Lower limit	Upper limit	Р	Q	df	p value	12	
		Nicola	TuA at	Clabal musels										
	4 weeks	Niewiadomy 2021	rest	training	1	0.067	0.067	0.067	0					
		-		0			~		_					
		Niewiadomy	TrA at	Local Muscle										
	4 weeks	2021	rest	training	1	0	0	0	0					
				Rotational										
		Niewiadomy	TrA at	movement										
	4 weeks	2021 a	rest	exercise	1	0.261	-0.054	0.576	0.11					
			TrA at											
	Overall 4 w	eeks	rest		5	0.05	-0.014	0.114	0.13	41869498	4	<0.001	10	0
			TrA at											
	5 weeks	Lee 2015	rest		1	0	0	0	0					
	Ewooks	Vang 201E	IrA at	Supine bridge	1	10000	0000 8	10000	0					
	5 WEEKS	Tallg 2015	rest	Sunine bridge	1	10000	9999.0	10000	0					
			TrA at	with ADIM										
	5 weeks	Yang 2015	rest	and R leg lift	1	10000	9999.8	10000	0					
		_		Quadruped										
			TrA at	arm and leg										
	5 weeks	Yang 2015	rest	lift with ADIM	1	1	1	1	0					
			TrA at	Side bridge					_					
	5 weeks	Yang 2015	rest	with ADIM	1	20000	20000	20000	0					
			Tr∆ at	Lumbar										
	5 weeks	Lee 2015	rest	exercises	1	0	0	0	0					
		200 2010		0.000	-	0	0	0	0					

						Standard				Heterogeneit	y		
Exercise P Variable	rescription	Study	Muscle	Group	N samples	difference in means	Lower limit	Upper limit	Р	Q	df	p value	12
	Overall 5 w	ooks	TrA at			6621 746	6620.4	6622.1	0	227256801	E	<0.001	100
		CENS	Tran	Distance the	0	0031.740	0030.4	0055.1	0	327230801	5	<0.001	100
	6 weeks	Cho 2013	rest	ADIM	1	1	1	1	0				
			TrA at										
	6 weeks	Cho 2013	rest	Wall Squat	1	0	0	0	0				
	6 weeks	Cho 2015	TrA at rest	Supine bridge with ADIM Supine bridge	1		1	1	0				
			TrA at	with ADIM									
	6 weeks	Cho 2015	rest	unstable	1	0	0	0	0				
			TrA at		0								
	Overall 6 w	eeks	rest		4	0.5	-0.058	1.058	0.08	599946309	3	<0.001	100
	8 weeks	Critchley 2011	TrA at rest	Pilates	1	0	0	0	0				
		Critchlev	TrA at										
	8 weeks	2011	rest	Strength	1	0	0	0	0.2				
	8 weeks	Gage 2009	TrA at rest	Abdominal resistance exercises	1	0	0	0	0				
		Giacomini	Tr∆ at			-	_	-	-				
	8 weeks	2016	rest	Pilates	1	0.001	0.001	0.001	0				
			TrA at										
	Overall 8 w	eeks	rest		4	0	0	0.001	0.17	2766.273	3	<0.001	99.892

					Standard				Heterogeneit	у		
Exercise P Variable	rescription Study	Muscle	Group	N samples	difference in means	Lower limit	Upper limit	Р	Q	df	p value	12
	Overall 2 vs 4 vs 5 vs 6 vs											
	8 weeks program	TrA at										
	duration	rest			0.001	0	0.001	0				_
	Without Yang 2015											
	below											
		TrA at										
	Overall 2 weeks	rest		2	0.286	-0.163	0.734	0.21	0.315	1	0.574	0
		TrA at										
	Overall 4 weeks	rest		5	0.05	-0.014	0.114	0.13	41869498	4	<0.001	100
		TrA at										
	Overall 5 weeks	rest		2	0	0	0	0.02	43.2	1	<0.001	97.685
		TrA at										
	Overall 6 weeks	rest		4	0.5	-0.058	1.058	0.08	599946309	3	<0.001	100
		TrA at										
	Overall 8 weeks	rest		4	0	0	0.001	0.17	2766.273	3	<0.001	99.892
	Overall 2 vs 4 vs 5 vs 6 vs)									
	8 weeks program											
	duration without Yang	TrA at										
	2015	rest			0	0	0	0.01				
		IO at	Abdominal									
	2 weeks Lee 2018	rest	Hollowing	1	0.06	-0.56	0.681	0.85				

						Standard				Heter	ogeneit	у			
Exercise P Variable	Prescription	Study	Muscle	Group	N samples	difference in means	Lower limit	Upper limit	Р	Q		df	p value	12	
				Abdominal											
				Hollowing											
			IO at	with											
	2 weeks	Lee 2018	rest	biofeedback	1	-0.111	-0.733	0.51	0.73						
	Overall 2		IO at												
	weeks		rest		2	-0.025	-0.464	0.414	0.91		0.147	1	0.702		0
			IO at												
	4 weeks	Lee 2018 a	rest	Supine bridge	1	0.37	-0.271	1.011	0.26						
			IO at	Supine bridge											
	4 weeks	Lee 2018 a	rest	with ADIM	1	0.427	-0.221	1.074	0.2						
		Niewiadomy	IO at	Global muscle											
	4 weeks	2021	rest	training	1	0.073	-0.217	0.363	0.62						
	i weeks	2021	1000	than ing	-	0.070	0.217	0.000	0.02						
		N1:	10 -+												
	4	Niewiadomy	IO at	Local Muscle	1	0 115	0.100	0 420	0 47						
	4 weeks	2021	rest	training	T	0.115	-0.196	0.426	0.47						
				Rotational											
		Niewiadomy	IO at	movement											
	4 weeks	2021 a	rest	exercise	1	0.38	0.059	0.701	0.02						
	Overall 4		IO at												
	weeks		rest		5	0.209	0.044	0.374	0.01		2.964	4	0.564		0

						Standard				Heterogene	eity		
Exercise P	rescription	Study	Muscle	Group	Ν	difference	Lower	Upper				р	
Variable					samples	in means	limit	limit	Ρ	Q	df	value	12
			IO at	Supine bridge									
	5 weeks	Yang 2015	rest	with ADIM	1	1	0.29	1.71	0.01				
		0											
				Supine bridge									
			IO at	with ADIM			0.00	4 74	0.04				
	5 weeks	Yang 2015	rest	and R leg lift	1		0.29	1./1	0.01				
				Quadruped									
			IO at	arm and leg									
	5 weeks	Yang 2015	rest	lift with ADIM	1	1.872	0.91	2.834	0				
			IO at	Side bridge									
	5 weeks	Yang 2015	rest	with ADIM	1	0.5	-0.115	1.15	0.11				
	Overall 5	0	IO at	3					-				
	weeks		rest		4	1.009	0.506	1.512	0	5.62	53	0.131	46.663
			IO at	Bridge with									
	6 weeks	Cho 2013	rest	ADIM	1	1	0.42	1.58	0				
			IO at						÷				
	6 weeks	Cho 2013	rest	Wall Squat	1	2	1.18	2.82	0				
			-				-		-				
			IO at	Sunine bridge									
	6 weeks	Cho 2015	rest	with ADIM	1	0.564	0.054	1.074	0.03				

						Standard				Heterogeneit	y		
Exercise P	rescription	Study	Muscle	Group	N samnles	difference	Lower limit	Upper limit	D	0	df	p value	12
Variable					Samples	mmeans		iiiiit	•	4	ui	Value	12
				Sunine hridge									
			IO at	with ADIM									
	6 weeks	Cho 2015	rest	unstable	1	2	1.18	2.82	0				
	Overall 6		IO at				9						
	weeks		rest		4	1.332	0.626	2.038	0	13.58	3	0.004	77.909
		Critchley	IO at										
	8 weeks	2011	rest	Pilates	1	0.034	-0.398	0.466	0.88				
		Critchley	IO at										
	8 weeks	2011	rest	Strength	1	-0.052	-0.511	0.406	0.82				
				Abdominal									
			IO at	resistance									
	8 weeks	Gage 2009	rest	exercises	1	0.15	-0.262	0.562	0.48				
		Giacomini	IO at										
	8 weeks	2016	rest	Pilates	1	0.909	0.364	1.454	0				
		Kohiruimaki	IO at	Suspended									
	8 weeks	2019	rest	push ups	1	0.378	-0.339	1.096	0.3				
	Overall 8		IO at										
	weeks		rest		5	0.25	-0.074	0.573	0.13	8.503	4	0.075	52.959
	Overall 2 v	s 4 vs 5 vs 6 vs											
	8 week	s program	IO at			0 200	0 157	0 421	0				
		ration	rest			0.289	0.157	0.421	0				
				Lumbar									
	E woolko		I rA Contract	stabilisation	1	1 700	0.044	2 600	0				
	5 weeks	Lee 2012	Contract	exercises	1	1./66	0.844	2.689	U				

						Standard				Het	erogeneity	/		
Exercise P	rescription	Study	Muscle	Group	Ν	difference	Lower	Upper					р	
Variable					samples	in means	limit	limit	Р	Q		df	value	12
			TrA											
	5 weeks	Lee 2015	Contract	ADIM	1	3.492	1.956	5.029	0					
	Overall 5		TrA											
	weeks		contract		2	2.516	0.839	4.193	0		3.565	1	0.059	71.947
			TrA	Prone and										
	6 weeks	Gong 2018	Contract	side bridging	1	0.924	0.257	1.591	0.01					
				Proprioceptive										
			TrA	neuomuscular										
	6 weeks	Gong 2015	Contract	facilitation	1	0.734	0.105	1.363	0.02					
	Overall 6		TrA											
	weeks		Contract		2	0.823	0.366	1.281	0		0.164	1	0.686	0
	Overall 5													
	vs 6													
	weeks													
	program		TrA											
	duration		Contract			0.739	0.419	1.06	0					
Minutes			TrA at	Bridge with										
per	<100	Cho 2013	rest	ADIM	1	1	1	1	0					
week			TrA at	Abdominal										
	<100	Lee 2018	rest	Hollowing	1	0.419	-0.228	1.065	0.2					

-						Standard				Heterogeneity	y		
Exercise Pr Variable	escription	Study	Muscle	Group	N samples	difference in means	Lower limit	Upper limit	Р	Q	df	p value	12
_			TrA at	Abdominal Hollowing with			X						
	<100	Lee 2018	rest	biofeedback	1	0.161	-0.462	0.785	0.61				
	<100	Cho 2013	TrA at rest	Wall Squat	1	0	0	0	0				
	<100	Critchley 2011	TrA at rest	Pilates	1	0	0	0	0				
	<100	Critchley 2011	TrA at rest	Strength	1	0	0	0	0.2				
-	Overall <100 mins		TrA at		0	0.050	0.110	0.604	0.47	445004554	_	0.004	100
-	per week		rest		6	0.259	-0.112	0.631	0.17	415204551	5	<0.001	100
	>100	Lee 2015	TrA at rest	ADIM	1	0	0	0	0				
	>100	Niewiadomy 2021	TrA at rest	Global muscle training	1	0.067	0.067	0.067	0				
	>100	Niewiadomy 2021	TrA at rest	Local Muscle training	1	0	0	0	0				
	>100	Niewiadomy 2021 a	TrA at rest	Rotational movement exercise	1	0.261	-0.054	0.576	0.11				

						Standard				Heterogeneit	y			
Exercise P	rescription	Study	Muscle	Group	Ν	difference	Lower	Upper				р		
Variable					samples	in means	limit	limit	Ρ	Q	df	value	12	
		Giacomini	TrA at											
	>100	2016	rest	Pilates	1	0.001	0.001	0.001	0					
				Lumbar										
			TrA at	stabilisation										
	>100	Lee 2015	rest	exercises	1	0	0	0	0					
	Overall													
	>100 mins		TrA at											
	per week		rest		6	0.016	-0.015	0.048	0.32	60108230	5	<0.001		100
	Overall													
	<100 vs													
	>100 mins		TrA at											
	per week		rest		2	0.018	-0.014	0.049	0.27					
			IO at	Bridge with										
	<100	Cho 2013	rest	ADIM	1	1	0.42	1.58	0					
			IO at											
	<100	Cho 2013	rest	Wall Squat	1	2	1.18	2.82	0					
		Critchley	IO at											
	<100	2011	rest	Pilates	1	0.034	-0.398	0.466	0.88					
		Critchley	IO at											
	<100	2011	rest	Strength	1	-0.052	-0.511	0.406	0.82					
			IO at	Abdominal										
	<100	Lee 2018	rest	Hollowing	1	0.06	-0.56	0.681	0.85					
	<100	ree 2019	rest	nollowing	T	0.06	-0.56	0.681	0.85					

						Standard				Heteroge	neity	/		
Exercise P	rescription	Study	Muscle	Group	Ν	difference	Lower	Upper					р	
Variable					samples	in means	limit	limit	Р	Q		df	value	12
				Abdominal										
				Hollowing										
			IO at	with										
	<100	Lee 2018	rest	biofeedback	1	-0.111	-0.733	0.51	0.73					
	Overall													
	<100 mins		IO at											
	per week		rest		6	0.439	-0.109	0.987	0.12	28.0)84	5	< 0.001	82.196
		Giacomini	IO at											
	>100	2016	rest	Pilates	1	0.909	0.364	1.454	0					
		Niewiadomy	IO at	Global muscle										
	>100	2021	rest	training	1	0.073	-0.217	0.363	0.62					
		Niewiadomy	IO at	Local Muscle										
	>100	2021	rest	training	1	0.115	-0.196	0.426	0.47					
				Rotational										
		Niewiadomy	IO at	movement										
	>100	, 2021 a	rest	exercise	1	0.38	0.059	0.701	0.02					
	Overall													
	>100 mins		IO at											
	per week		rest		4	0.308	0.015	0.6	0.04		8.4	3	0.038	64.288
	Overall		IO at											
	<100 vs		rest			0.337	0.079	0.595	0.01					

						Standard				Hete	erogeneity	/		
Exercise P Variable	Prescription	Study	Muscle	Group	N samples	difference in means	Lower limit	Upper limit	Р	0		df	p value	12
	>100 mins per week				<u> </u>				-					
			TrA	Prone and			\$							
	<100	Gong 2018	Contract	side bridging	1	0.924	0.257	1.591	0.01					
			T . A	Proprioceptive										
	<100	Gong 2015	TrA Contract	neuomuscular facilitation	1	0.734	0.105	1.363	0.02					
	Overall	0			$\overline{\mathbf{x}}$									
	<100 mins		TrA											
	per week		contract		2	0.823	0.366	1.281	0		0.164	1	0.686	0
				Lumbar										
			TrA	stabilisation		4 766		2 6 9 9	•					
	>100	Lee 2015	contract	exercises	1	1.766	0.844	2.689	0					
	>100	Lee 2015	TrA contract	ADIM	1	3.492	1.956	5.029	0					
	Overall					0		0.010						
	>100 mins		TrA											
	per week		contract		2	2.516	0.839	4.193	0		3.565	1	0.059	71.947
	Overall													
	<100 vs													
	>100 mins		TrA						_					
	per week		contract			0.941	0.499	1.382	0					

CAPTIONS TO ILLUSTRATIONS

Figure 1: PRISMA diagram

Figure 2 Risk of bias across different study designs

Journal Prevention

Appendix A – Full Search strategy for each database

Logic Grid for MEDLINE and The Cochrane Library (note Cochrane uses near/n for adj)

<u>Exercise</u>	Thickness or activation	Abdominal muscles
MESH	MESH	MESH
Exercise		Abdominal muscles
OR	Ultrasonography	Abdominal oblique muscles
Physical conditioning, human		
OR		
Exercise therapy		
OR		
Exercise movement		
techniques		<u>C</u>
OR		
Athletic performance		
Keywords	Keywords	Keywords
(exercis* or (physical adj1	(morphology or "cross section"	(abdominis or (abdominal adj1
activit*) or (muscle adj1	or "cross sectional" or size or	musc*) or "internal oblique" or
stretch*) or run* or walk* or	dimension* or thickness or	"external oblique" or "obliquus
(physical adj1 condition*) or	hypertrop* or contract* or	externus" or "obliquus
(physical adj1 train*) or	ultrasound or ultrasonography	Internus").tw,kt.
endurance or "nigh intensity	or sonography or DUSI or RUSI	
Interval training of Hill of	or activation).tw,kr.	
piyometric." Or resist." Or		
pliates of dalic ⁺ of tal chill of		
or fitness or (athlatic adi1		
or functional adi1		
train*) or concentric or		
eccentric or isokinetic or		
isometric or weight or		
flexibility or balance or "motor		
control" or (abdominal adi3		
man*) or ADIM or (abdominal		
adi1 hollow*)).tw.kf		
,,,		

Logic Grid for Embase

<u>Exercise</u>	Morphology	Abdominal muscles
MESH	MESH	MESH
Exercise	Muscle thickness	Abdominal muscles
OR	OR	OR
Physical conditioning, human	Muscle hypertrophy	Abdominal oblique muscles
OR	OR	OR
Exercise therapy	Echography	Abdominal wall musculature
OR		
Exercise movement		
techniques		
OR		
Athletic performance		6.
OR		X
Muscle exercise		
Keywords	Keywords	Keywords
(exercis* or (physical adj1	(morphology or "cross section"	(abdominis or (abdominal adj1
activit*) or (muscle adj1	or "cross sectional" or size or	musc*) or "internal oblique" or
stretch*) or run* or walk* or	dimension* or thickness or	"external oblique" or "obliquus
(physical adj1 condition*) or	hypertrop* or contraction	externus" or "obliquus
(physical adj1 train*) or	ultrasound or ultrasonography	internus").tw,kf.
endurance or "high intensity	or sonography or DUSI or RUSI	
interval training" or HIIT or	or activation).tw,kf.	
plyometric* or resist* or		
pilates or danc* or "tai chi" or		
yoga or strength* or cardio* 🛛 🖉		
or fitness or (athletic adj1		
train*) or (functional adj1		
train*) or concentric or		
eccentric or isokinetic or		
isometric or weight or		
flexibility or balance or "motor		
control" or (abdominal adj3		
man*) or ADIM or (abdominal		
adj1 hollow*)).tw,kf		

Logic Grid for Web of science (nil MESH terms)

Exercise	Morphology	Abdominal muscles
(AB=(exercis* or (physical	(AB=(morphology or "cross	(AB=(abdominis or (abdominal
near/1 activit*) or (muscle	section" or "cross sectional" or	near/1 musc*) or "internal
near/1 stretch*) or run* or	size or dimension* or thickness	oblique" or "external oblique"
walk* or (physical near/1	or hypertrop* or contraction	or "obliquus externus" or
condition*) or (physical near/1	ultrasound or ultrasonography	"obliquus internus")
train*) or endurance or "high	or sonography or DUSI or RUSI	
intensity interval training" or	or activation)	
HIIT or plyometric* or resist*		
or pilates or danc* or "tai chi"		
or yoga or strength* or		
cardio* or fitness or (athletic		6.
near/1 train*) or (functional		
near/1 train*) or concentric or		
eccentric or isokinetic or		
isometric or weight or		
flexibility or balance or "motor		
control" or (abdominal near/3	Q	~
man*) or ADIM or (abdominal		
near/1 hollow*))		

Logic Grid for Sportdiscus

Exercise	Morphology	Abdominal muscles
MESH terms	MESH terms	MESH terms
DE "EXERCISE" OR DE	(DE "MUSCULAR hypertrophy"	(DE "ABDOMINAL muscles")
"EXERCISE therapy" OR DE	OR DE "MORPHOLOGY" OR DE	
"ABDOMINAL exercises"	"ULTRASONIC imaging")	
Keywords	Keywords	Keywords
exercis* or (physical n1	morphology or "cross section"	abdominis or (abdominal n1
activit*) or (muscle n1	or "cross sectional" or size or	musc*) or "internal oblique" or
stretch*) or run* or walk* or	dimension* or thickness or	"external oblique" or "obliquus
(physical n1 condition*) or	hypertrop* or contraction	externus" or "obliquus
(physical n1 train*) or	ultrasound or ultrasonography	internus"
endurance or "high intensity	or sonography or DUSI or RUSI	
interval training" or HIIT or	or activation	
plyometric* or resist* or		
pilates or danc* or "tai chi" or		
yoga or strength* or cardio*		
or fitness or (athletic n1		
train*) or (functional n1		
train*) or concentric or		
eccentric or isokinetic or		
isometric or weight or		
flexibility or balance or "motor		
control" or (abdominal n3		

man*) or ADIM or (abdominal	

Logic Grid for Emcare

<u>Exercise</u>	Morphology	Abdominal muscles
MESH	MESH	MESH
Exercise	Muscle thickness	Abdominal muscles
OR	OR	OR
Muscle exercise	Muscle hypertrophy	Oblique abdominal muscle
OR	OR	OR
Kinesiotherapy	Echography	Abdominal wall musculature
OR		S S
Exercise movement		
techniques		
OR		
Athletic performance		
Keywords	Keywords	Keywords
(exercis* or (physical adj1	(morphology or "cross section"	(abdominis or (abdominal adj1
activit*) or (muscle adj1	or "cross sectional" or size or	musc*) or "internal oblique" or
stretch*) or run* or walk* or	dimension* or thickness or	"external oblique" or "obliquus
(physical adj1 condition*) or	hypertrop* or contraction	externus" or "obliquus
(physical adj1 train*) or	ultrasound or ultrasonography	internus").ab,ti,kw.
endurance or "high intensity	or sonography or DUSI or RUSI	
interval training" or HIIT or	or activation).ab,ti,kw.	
plyometric* or resist* or		
pilates or danc* or "tai chi" or		
yoga or strength* or cardio*	· · · · · · · · · · · · · · · · · · ·	
or fitness or (athletic adj1		
train*) or (functional adj1		
train*) or concentric or		
eccentric or isokinetic or		
isometric or weight or		
flexibility or balance or "motor		
control" or (abdominal adj3		
man*) or ADIM or (abdominal		
adj1 hollow*)).ab,ti,kw		

PEDro – only able to search abdomin* oblique (OR is selected at bottom of search)

Proquest dissertations and theses global

(limited to abstracts only, no subject headings used).

Exercise	Morphology	Abdominal muscles
exercis* OR "physical activit*"	morphology or "cross section"	abdominis OR "abdominal
OR "muscle stretch*" OR run*	or "cross sectional" or size or	musc*" OR "internal oblique"
OR walk* OR "physical	dimension* or thickness or	OR "external oblique" OR
condition*" OR "physical	hypertrop* or contraction	"obliquus externus" OR
train*" OR endurance OR "high	ultrasound or ultrasonography	"obliquus internus"
intensity interval training" OR	or sonography or DUSI or RUSI	
HIIT OR plyometric* OR resist*	or activation	
OR pilates OR danc* OR "tai		
chi" OR yoga OR strength* OR		
cardio* OR fitness OR "athletic		S.
train*" OR "functional train*"		
OR concentric OR eccentric OR		
isokinetic OR isometric OR		
weight OR flexibility OR		
balance OR "motor control"		
OR "abdominal man*" OR		
ADIM OR "abdominal hollow*"		

Trial registries - searched for only those with results

- ICTRP
 - Abdom and exercise
- Clinical trials.gov
 - Exercise and muscle, adults
- ANZCTR
 - Intervention/exposure: Exercise
 - o Recruitment status: completed
 - Condition category: physical medicine/rehabilitation
 - Condition code: physiotherapy
 - Age group: 18 years and over

Limited to English language for all databases

Appendix B: Quality Appraisal results for each included study

Randomised Controlled Trials

	Cho 2013	Cho 2015	Critchley 2011	Gong 2018	Gong 2015	Lee 2018	Lee 2018 a	Lee 2015	Niewiadomy 2021	Niewiadomy 2021 a	Yang 2015
1. Was true randomisation used for assignment of participants to treatment groups?	U	U	Y	U	U	U	Y	U	U	U	U
2. Was allocation to treatment groups concealed?	U	U	Y	U	U	U	U	U	U	U	U
3. Were treatment groups similar at baseline?	Y	Y	Y	Y	Y	U	Y	Υ	Y	Υ	Y
4. Were participants blind to treatment assignment?	Ν	Ν	Ν	N	NO	N	Ν	Ν	Ν	Ν	Ν
5. Were those delivering treatment blind to treatment assignment?	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν
6. Were outcomes assessors blind to treatment assignment?	U	U	Y	Y	Y	U	U	U	Y	Υ	U
7. Were treatment groups treated identically other than the intervention of interest?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Υ	Y
8. Was follow up complete and if not were differences between groups in terms of their follow up adequately described and analysed?	U	U	U	U	U	Y	Y	Y	Y	Y	Y
9. Were participants analysed in the groups to which they were analysed?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Υ	Y
10. Were outcomes measured in the same way for treatment groups?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
11. Were outcomes measured in a reliable way (was reliability data present for the method?)?	Ν	Ν	Y	Ν	Ν	Y	Ν	Y	Y	Y	Ν
12. Were outcomes measured in a reliable way (was the method reproducible?)?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
13. Was appropriate statistical analysis used?	Y	Y	Y	Y	Y	Y	Y	Υ	Y	Υ	Y
14. Was the trial design appropriate and any deviations from the standard RCT design	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

Appendix B: Quality Appraisal results for each included study

accounted for in the conduct and analysis of the trial?

Individual results for Kohiruimaki (case series study), Giacomini (quasi-experimental study) and Gage (cohort study) are presented in the manuscript.

Journal Pre-proof

■Yes ■No □N/A □Unclear

Figure 2 Risk of bias across different study designs

Figure 2 Risk of bias across different study designs

Conflict of Interest Statement

The authors have no conflicts of interest to disclose.

Journal Proproof