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Abstract

Objective: Digital interventions show promise to address eating disorder (ED) symp-

toms. However, response rates are variable, and the ability to predict responsiveness

to digital interventions has been poor. We tested whether machine learning

(ML) techniques can enhance outcome predictions from digital interventions for ED

symptoms.

Method: Data were aggregated from three RCTs (n = 826) of self-guided digital

interventions for EDs. Predictive models were developed for four key outcomes:

uptake, adherence, drop-out, and symptom-level change. Seven ML techniques for

classification were tested and compared against the generalized linear model (GLM).

Results: The seven ML methods used to predict outcomes from 36 baseline variables

were poor for the three engagement outcomes (AUCs = 0.48–0.52), but adequate

for symptom-level change (R2 = .15–.40). ML did not offer an added benefit to the

GLM. Incorporating intervention usage pattern data improved ML prediction accu-

racy for drop-out (AUC = 0.75–0.93) and adherence (AUC = 0.92–0.99). Age, moti-

vation, symptom severity, and anxiety emerged as influential outcome predictors.

Conclusion: A limited set of routinely measured baseline variables was not sufficient

to detect a performance benefit of ML over traditional approaches. The benefits of

ML may emerge when numerous usage pattern variables are modeled, although this

validation in larger datasets before stronger conclusions can be made.

K E YWORD S

adherence, digital, eating disorders, e-health, engagement, intervention, machine learning,
prediction, randomized controlled trial, uptake

1 | INTRODUCTION

The enthusiasm for digital interventions to address eating disorders

(ED) is mounting. Digital interventions can alleviate existing help-

seeking barriers (Weissman & Rosselli, 2017). However, response

rates to digital interventions are variable, with symptom remission

occurring in only 20%–50% of cases (Fitzsimmons-Craft et al., 2020).

Using commonly collected baseline and process data to develop

Received: 9 February 2022 Revised: 3 April 2022 Accepted: 1 May 2022

DOI: 10.1002/eat.23733

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. International Journal of Eating Disorders published by Wiley Periodicals LLC.

Int J Eat Disord. 2022;55:845–850. wileyonlinelibrary.com/journal/eat 845

https://orcid.org/0000-0003-4475-7139
mailto:jake.linardon@deakin.edu.au
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/eat
http://crossmark.crossref.org/dialog/?doi=10.1002%2Feat.23733&domain=pdf&date_stamp=2022-05-12


accurate predictive models capable of identifying likelihood of success

is necessary for improving patient outcomes (Chekroud et al., 2021).

Machine learning (ML) may help with developing accurate predic-

tion models. ML involves data-driven techniques that enable com-

puter algorithms to identify and iteratively refine the optimal

parameters to fit complex variable patterns (Jordan & Mitchell, 2015).

ML is suited to situations where there are a large number of predic-

tors to model and the best combination of predictors is uncertain a

priori. ML enables prediction models to be cross-validated by compar-

ing precision and accuracy across training and test subsets of a single

dataset, or with external validation datasets for greater out-of-sample

generalizability (Shalev-Shwartz & Ben-David, 2014).

The value of ML may depend on several factors. When assump-

tions and sample size requirements are satisfied, the number of pre-

dictor variables is small, and nonlinear effects are weak, traditional

techniques produce prediction models as accurate as ML

(Christodoulou et al., 2019). However, when the number of predictors

is large and there are unanticipated nonlinear interactions, the incre-

mental benefits of ML become apparent (Pearson et al., 2019).

ML techniques have been applied in the context of digital inter-

ventions. Accurate ML prediction models for program engagement

have been observed in online mindfulness programs for wellbeing

(Lekkas et al., 2021), internet-based cognitive therapy for depression

(Chien et al., 2020), and web-based behavioral programs for insomnia

(Bremer et al., 2020). In digital interventions for body dysmorphic dis-

order, ML has resulted in superior prediction models to traditional

techniques when predicting symptom-level change from baseline and

process variables (Flygare et al., 2020).

We applied ML to predict outcomes from baseline data collected

in RCTs of digital interventions for ED symptoms. Our exploratory

aims were to: (1) generate accurate ML-based predictive models using

mostly baseline data; (2) determine whether ML enhances prediction

over traditional techniques; and (3) explore influential outcome pre-

dictors that will inform future confirmatory work.

2 | METHOD

2.1 | Study design

We aggregated data from 848 participants enrolled in three RCTs of

self-guided digital interventions for ED symptoms. Details of these RCTs

have been published elsewhere (Linardon, Messer, Shatte, Greenwood,

et al., 2021; Linardon, Messer, Shatte, Skvarc, et al., 2021; Linardon,

Shatte, Rosato, & Fuller-Tyszkiewicz, 2020). There were five participant

groups with pre- and 4-week post digital intervention exposure data.

Ethics approval and informed consent were obtained.

2.2 | Study population and recruitment

The population and recruitment method were nearly identical across the

three trials. Participants were recruited via advertisements distributed

throughout the first author's psychoeducational ED platform. This plat-

form consists of an open-access website and social media accounts that

offer educational material related to EDs (for more detail about this plat-

form, see Linardon, Rosato, & Messer, 2020).

There was one difference in study inclusion criteria between trials.

Participants needed to report the presence of at least one objective binge

eating episode in one trial, whereas this criterion was not employed in the

other two. All participants were required to be aged 18 years or over.

The final sample used in this study included 826 individuals who

provided data on all engagement outcomes and baseline predictors.

Three-hundred and fifty-nine participants provided pre- and posttest

data on symptom-level change.

2.3 | Digital interventions

There were two digital intervention programs delivered across the trials,

Break Binge Eating (two groups; 1 trial) and Breaking the Diet Cycle (three

groups; 2 trials). Both programs were structurally the same; that is, they

both contained four learning modules/sessions, were self-guided and

based on CBT principles, offered similar homework exercises and func-

tionality (symptom monitoring, quizzes, progress monitoring, reflection

tasks, etc.), and only slightly differed in program length. There were two

key differences between the programs. The first was that Break Binge Eat-

ingwas delivered solely through a smartphone app, while Breaking the Diet

Cycle was delivered through both a web platform and an app. The second

was that Break Binge Eating targeted multiple maintaining mechanisms

(restriction, body image, and mood dysregulation) while Breaking the Diet

Cycle targeted dietary restriction only. Given the similarities between the

two programs, we deemed it appropriate to amalgamate them in the ana-

lyses. Please refer to Table S1 for a description of these programs.

2.4 | Measures

2.4.1 | Outcomes

Four outcomes were selected for analyses: uptake; adherence, drop-

out, and adherence (see Supporting Information Materials S1 for their

operationalization).

2.4.2 | Baseline predictors

Thirty-six predictors were used, divided into three clusters: demo-

graphic, psychiatric and treatment; and symptom severity. For the list

of baseline variables, see the Supporting Information Materials S1.

2.4.3 | Usage behavior predictors

In one trial (n = 340), 110 usage pattern variables were available for

analysis (Table S2). These were modeled in sensitivity analyses.
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2.4.4 | Data analysis

Predictive models were generated using eight classification approaches:

(1) traditional regression, (2) elastic-net penalized regression, (3) support

vector machine with linear kernel, (4) support vector machine with polyno-

mial kernel, (5) support vector machine with radial basis function kernel,

(6) k-Nearest Neighbor, (7) Classification and Regression Tree (CART), and

(8) random forest. Predictive models were implemented using the caret

package (Kuhn, 2021). Predictors were all centered and standardized.

An iterative process was implemented to examine predictive per-

formance and reduce data biases, whereby the full dataset was split

into 100 different training (67%) and testing (33%) datasets. Each

model was generated in the training data and then validated in the

testing data. Models were trained using fivefold cross-validation to

select the optimal model. To quantify predictive performance from

each validation set, accuracy (total correct predictions divided by all

predictions), area under the curve (AUC), F1 score, true negatives,

false positives, false negatives, and true positives were computed for

binary outcomes (engagement indices), and R2, Root-Mean-Square

Error, and Mean Absolute Error were computed from the continuous

outcome. Each predictive performance index was averaged across all

iterations. Variable importance was extracted by running the most

accurate model on the full dataset.

Sensitivity analyses were conducted using 10 iterations of training–

testing splits. For binary outcomes (engagement indices), models were

repeated using: (1) an artificially oversampled dataset (synthetic minority

over-sampling technique; Chawla et al., 2002) to balance outcomes; and

(2) only those who accessed their digital intervention. For symptom-

level change, models were repeated excluding baseline levels of

modeled outcome (objective binge eating). Additional sensitivity ana-

lyses were conducted using intervention usage pattern data available

from one RCT to see whether predictive accuracy improves.

3 | RESULTS

3.1 | Sample characteristics

Sample characteristics are presented in Table S3. Most participants

were well-educated, White women who were highly symptomatic.

3.2 | Outcomes

Rate of uptake, adherence, and drop-out was 83%, 36%, and 57%,

respectively. Objective binge eating decreased by an average of six

episodes (SD = 14) from pre- to postintervention.

3.3 | Predicting engagement

The mean predictive performance for engagement outcomes across

100 iterations of validation data sets is presented in Table 1.

Predictive performance was poor for the three engagement outcomes

across the nine models based on AUC values.

3.3.1 | Predictor importance

Predictor importance was extracted from the SVM (linear) ML model.

For uptake, these were motivation levels, age, overvaluation, eating

concerns, and a current anxiety disorder. For adherence, these were

age, depressive symptoms, current anxiety disorder, past anxiety dis-

order, and motivation levels. For dropout, these were age, education

status, prior binge-eating disorder diagnosis, objective binge eating,

and driven exercise (Table S4).

3.3.2 | Sensitivity analyses

When we balanced engagement outcomes by deriving an over-

sampled training data using SMOTE technique (Table S5), predictive

performance remained poor. Models on adherence and dropout that

excluded “nonuptake” participants (Table S6) also had poor predictive

performance.

3.4 | Predicting symptom change

Predictive performance based on amount of variance explained in

symptom-level change (Table 2) was acceptable across the eight models.

The elastic-net (R2 = .37), SVM (linear) (R2 = .40), SVM polynomial

(R2 = .37), and random forest models (R2 = .36) explained slightly more

variance in symptom change than the traditional linear model (R2 = .35).

3.4.1 | Predictor importance

The five most important variables predictive of symptom change were

baseline objective binge eating, subjective binge eating, eating con-

cerns, self-induced vomiting, and overvaluation (Table S7). When

removing baseline objective binge eating, predictive performance

decreased. The CART model explained the most amount of variance

in symptom change (R2 = .09), slightly outperforming the traditional

general linear model (R2 = .06).

3.5 | Incorporating usage variables

Analyses were re-computed on two of participant groups for whom usage

data were available. Analyses on this subsample were run with and with-

out the addition of usage variables to enable comparison (Table S8). Incor-

porating usage variables produced strong predictive performance for

adherence (AUC = 0.92–0.99) and dropout (AUC = 0.62–0.93) across all

models except SVM (Radial). Predictive performance did not improve for

symptom-level change.
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TABLE 1 Mean model predictive performance of engagement from baseline variables across 100 iterations of training and testing data splits

Modeling approach Accuracy AUC F1 score

Negatives Positives

True negative False positive False negatives True positives

Intervention uptake

Generalized linear model 0.81 0.50 0.90 1.5% 98.5% 1.7% 98.3%

Elastic-net 0.82 0.50 0.90 0.2% 99.8% 0.3% 99.7%

SVM (Linear) 0.83 0.50 0.90 0.0% 100.0% 0.0% 100.0%

SVM (Polynomial) 0.82 0.50 0.90 0.0% 100.0% 0.0% 100.0%

SVM (Radial) 0.83 0.50 0.90 0.0% 100.0% 0.0% 100.0%

k-Nearest Neighbors 0.82 0.50 0.90 0.9% 99.1% 1.2% 98.8%

Random Forest 0.82 0.50 0.90 1.3% 98.7% 0.9% 99.1%

Classification/Regression Tree 0.79 0.50 0.88 4.6% 95.4% 4.9% 95.1%

Intervention adherence

Generalized linear model 0.59 0.49 0.17 86.3% 13.7% 88.3% 11.7%

Elastic-net 0.63 0.50 0.09 97.7% 2.3% 98.3% 1.7%

SVM (Linear) 0.64 0.50 0.02 99.9% 0.1% 100% 0.0%

SVM (Polynomial) 0.64 0.50 0.03 99.8% 0.3% 99.8% 0.2%

SVM (Radial) 0.64 0.50 0.03 99.8% 0.2% 99.8% 0.2%

k-Nearest Neighbors 0.63 0.50 0.13 96.1% 3.9% 96.1% 3.9%

Random Forest 0.63 0.50 0.10 94.5% 5.5% 93.8% 6.2%

Classification/Regression Tree 0.59 0.50 0.30 80.1% 19.9% 79.8% 20.2%

Study dropout

Generalized linear model 0.55 0.52 0.64 33.8% 66.2% 29.1% 70.9%

Elastic-net 0.57 0.51 0.71 7.1% 92.9% 4.9% 95.1%

SVM (Linear) 0.57 0.51 0.72 4.9% 95.1% 3.1% 96.9%

SVM (Polynomial) 0.57 0.51 0.71 7.2% 92.8% 5.6% 94.4%

SVM (Radial) 0.56 0.50 0.71 4.7% 95.3% 4.5% 95.5%

k-Nearest Neighbors 0.56 0.50 0.71 4.7% 95.3% 4.8% 95.2%

Random Forest 0.55 0.52 0.65 29.5% 70.5% 25.6% 74.4%

Classification/Regression Tree 0.55 0.52 0.66 27.2% 72.8% 22.9% 77.1%

Abbreviations: AUC, area under the curve; SVM, support vector machine.

TABLE 2 Mean model predictive performance for objective binge eating change from baseline variables across 100 iterations of training and
testing data splits

Binge eating change (including baseline binge eating) Binge eating change (excluding baseline binge eating)

Modeling approach R2 RMSE MAE R2 RMSE MAE

Generalized linear model .35 11.64 8.31 .06 14.94 10.40

Elastic-net .37 11.37 8.04 .06 14.64 10.10

SVM (Linear) .40 11.21 7.63 .06 14.06 9.38

SVM (Polynomial) .37 11.51 7.80 .05 14.16 9.22

SVM (Radial) .29 12.24 8.22 .06 14.09 9.28

k-Nearest Neighbors .15 13.35 8.92 .05 14.14 9.15

Random Forest .36 11.51 7.88 .06 13.96 9.13

Classification and Regression Tree .33 11.91 7.86 .09 13.97 9.21

Abbreviations: MAE, mean absolute error; RMSE, root-mean-square error; SVM, support vector machine.
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4 | DISCUSSION

ML-based predictive performance from 36 baseline variables for

engagement outcomes was poor and not superior to traditional logis-

tic regression. ML models also explained less than 5% more variance

than traditional generalized linear models on symptom-level change.

Although some influential yet unanticipated predictors emerged, these

are difficult to interpret given the poor model performance. Thus, a

limited set of baseline predictors was not sufficient to detect a perfor-

mance benefit of ML over traditional approaches, or that possible lin-

ear associations between modeled variables prevented interactive

terms from enhancing predictive performance. Preliminary findings

suggest that ML appears to not confer benefit to prediction modeling

when the predictors chosen for analyses are small, unrelated or

weakly related to outcomes. This finding is consistent with studies in

depression (Lee et al., 2018), schizophrenia (Hettige et al., 2017), and

anxiety (Wallert et al., 2018) reporting small to no incremental bene-

fits of ML when restricting analyses to routinely collected baseline

data, suggesting that the utility of ML may only emerge when multiple

sources of data (sensor, neuroimaging, etc.) are modeled.

Study limitations must be considered. First, model validation was

based on a subset of participants rather than an entirely new sample,

which may contribute to overfitting concerns. While this has the advan-

tage of holding methodological effects constant, testing on a new sam-

ple would enable stronger inferences. Moreover, model overfitting may

be exasperated when small sample sizes are used in conjunction with a

large number of predictors. Despite this, predictive performance was

comparable across all ML models, including the elastic-net approach,

which is useful even when the number of predictors is greater than the

number of participants (Friedman et al., 2010). Second, model perfor-

mance is dependent on the predictors analyzed. Our choice of baseline

variables was guided mostly by pragmatic choices (to characterize the

sample, those used as key outcome measures, etc.). Fluctuations in

these or other variables closer to the point at which a person disengages

may yield more precise prediction models, potentially explaining why

prediction improved when incorporating usage variables in supplemen-

tary analyses. Third, our sample was mostly educated, White women

and that the inclusion of predictors related to race, gender, and age may

contribute to ongoing concerns about algorithmic bias within ML

(Hooker, 2021). Future work utilizing ML in diverse samples is

necessary.

This exploratory work offers avenues for future research. As it

appears that our chosen predictors and timing of assessment are not

decisive outcome determinants, future research should consider

modeling the predictive performance of other sources of data that

can be easily collected during digital intervention trials. Information

on design choices, user experience, perceived usability, and reasons

for disengagement may prove useful for generating accurate predic-

tive models. Furthermore, assessing predictors repeatedly throughout

the intervention phase may help to determine whether poor predic-

tion is a function of measuring these constructs in a static manner and

at an inappropriate time. Heterogeneity of treatment efficacy is well

known (Linardon, Shatte, Messer, et al., 2020), such that two

individuals with similar baseline scores may have markedly different

symptom trajectories across different time intervals. Thus, it should

not be surprising to find that earlier measurements of these con-

structs offer poor predictive value. Overall, findings will ideally

encourage researchers to consider assessing these factors in future

trials so that treatment outcome predictions can be optimized.

4.1 | Public significance statement

Being able to accurately predict patient outcomes is needed to accel-

erate the delivery of personalized eating disorder treatments. We

sought to generate accurate predictive models from routinely col-

lected baseline data from digital interventions using data-driven

machine learning techniques. Our findings highlight the pitfalls of rely-

ing solely on baseline information for predicting success from digital

interventions, instead suggesting that other sources of big data may

prove more useful.
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