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Abstract: Peripheral artery disease (PAD) is caused by blocked arteries due to atherosclerosis and/or
thrombosis which reduce blood flow to the lower limbs. It results in major morbidity, including
ischemic limb, claudication, and amputation, with patients also suffering a heightened risk of heart
attack, stroke, and death. Recent studies suggest women have a higher prevalence of PAD than men,
and with worse outcomes after intervention. In addition to a potential unconscious bias faced by
women with PAD in the health system, with underdiagnosis, and lower rates of guideline-based
therapy, fundamental biological differences between men and women may be important. In this
review, we highlight sexual dimorphisms in endothelial cell functions and how they may impact
PAD pathophysiology in women. Understanding sex-specific mechanisms in PAD is essential for the
development of new therapies and personalized care for patients with PAD.

Keywords: peripheral artery disease; endothelial cell dysfunction; sex differences

1. Introduction

Peripheral artery disease (PAD) is a disease with high human and social impact,
significantly reducing the quality of life. In this condition, an impairment of the blood
supply due to atherosclerosis results in ischemia, most commonly to the lower limbs. More
than 230 million people are affected by PAD globally [1], with the prevalence expected to
increase because of a rise in diabetes mellitus [2]. In severe cases, patients, particularly
those with diabetes, develop gangrene, which necessitates surgical amputation of the limbs.
In the United States alone, 185,000 limbs are amputated every year, and it is estimated that
by 2050, >3.5 million U.S. citizens will live without a limb [3]. Although revascularization
surgery can improve perfusion, the current interventions may be insufficient because
of extensive disease. Furthermore, the underlying atherosclerotic disease remains, and
patients with PAD frequently undergo multiple vascular surgical procedures, each of which
increases the risk of heart attack and stroke [4]. Indeed, patients who have undergone
below- or above-knee amputations are more likely to die within 5 years; a mortality rate
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greater than those of breast, colon, and prostate cancer [5]. PAD, therefore, causes major
trauma and disability, costing the U.S. economy USD 84–380 billion/year [6].

Remarkably, PAD does not affect society equally. Although reports are conflicting [7–9],
the largest systematic review recently conducted highlights our under-recognition of the
disease in women, with PAD more prevalent in women >25 years of age in high-income
countries. Further, a higher proportion of women with PAD remain asymptomatic [10,11],
which is associated with delayed presentation [12] and worse clinical outcomes post inter-
vention [13,14]. We recently highlighted sex-specific disparities in PAD through a social
constructivist perspective [15]; however, the biological differences for the clinical observa-
tions are unclear, revealing a need to understand sex-specific PAD pathophysiology. The
endothelium could be key to explaining some of these differences.

The endothelium is a monolayer of endothelial cells (ECs) which lines the entire
vascular tree, playing a critical role in maintaining cardiovascular homeostasis includ-
ing regulating permeability, blood flow, vessel tone, inflammation, platelet function, and
angiogenesis. Because EC dysfunction occurs early and progresses over the course of
atherosclerosis development in PAD [16], in this review we discuss the sexual dimor-
phisms of EC function(s) that may impact PAD pathophysiology, particularly in women.
This knowledge could have significant implications for sex-dependent therapeutic and
diagnostic approaches for this disease.

2. Sexual Dimorphisms in EC Functions(s) in PAD

A summary of EC function(s) that could impact female PAD pathophysiology de-
scribed by experimental models is shown in Figure 1. Clinical observations that may
reflect differences in EC function(s) in female PAD patients are described in Figure 2. Both
experimental and clinical findings are detailed in the text below.
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Figure 1. Female-specific findings from experimental models. Permeability: cilostazol increases aden-
osine levels, reducing leak in female, but not male, vessels. Vascular tone: female ischemic limbs ex-
press less eNOS (endothelial nitric oxide synthase) and have reduced arterial relaxation and in-
creased arterial constriction compared to male ischemic limbs. Inflammation: female ECs have in-
creased ICAM (intracellular adhesion molecule 1) expression. Females with PAD have increased 
levels of platelets, leukocyte–platelet aggregates, CRP (C-reactive protein), and fibrinogen in their 
circulation. Angiogenesis: female ECs have reduced proliferation and reduced expression of genes 
regulating angiogenesis, with angiogenic sprouting and migration in female cells specifically reliant 
on increased eNOS activity and ·NO (nitric oxide) release. Ischemic limbs in female mice have re-
duced expression of eNOS and VEGF (vascular endothelial growth factor) in tissues, with reduced 
angiogenesis and neovascularization. Created with BioRender.com (accessed on 9 December 2023). 

Figure 1. Female-specific findings from experimental models. Permeability: cilostazol increases
adenosine levels, reducing leak in female, but not male, vessels. Vascular tone: female ischemic limbs
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express less eNOS (endothelial nitric oxide synthase) and have reduced arterial relaxation and
increased arterial constriction compared to male ischemic limbs. Inflammation: female ECs have
increased ICAM (intracellular adhesion molecule 1) expression. Females with PAD have increased
levels of platelets, leukocyte–platelet aggregates, CRP (C-reactive protein), and fibrinogen in their
circulation. Angiogenesis: female ECs have reduced proliferation and reduced expression of genes
regulating angiogenesis, with angiogenic sprouting and migration in female cells specifically reliant
on increased eNOS activity and ·NO (nitric oxide) release. Ischemic limbs in female mice have
reduced expression of eNOS and VEGF (vascular endothelial growth factor) in tissues, with reduced
angiogenesis and neovascularization. Created with BioRender.com (accessed on 9 December 2023).
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Figure 2. Clinical observations that may reflect differences in endothelial function in female PAD 
patients. Arrows indicate increase or decrease. •NO, nitric oxide; CRP, C-reactive protein; VEGF, 
vascular endothelial growth factor. 
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reported that 66% of large peripheral arteries examined from patients with chronic limb-
threatening ischemia (CLTI), the severe form of PAD, were blocked by thrombus, in the 
absence of significant atherosclerosis [17,18]. Thrombi within smaller vessels were also 
identified [17,18]. Thrombosis may play a role in determining PAD disparities, since 
women have a higher platelet count than males, and female platelets have a higher reac-
tivity than males [19]. Women also have more lesions in smaller vessels and multilevel 
disease [13]. Peripheral arteries from patients present with greater medial calcification and 
calcified nodules [17,18]; these may promote rupture by disrupting the fibrous cap. Inter-
estingly, calcified nodules were present in 8% of coronary plaques from women ≥50 years 
of age vs. 3% of men in the same age bracket [20], and it is tempting to speculate that sex 
differences in calcification in peripheral arteries may exist; however, the authors found no 
differences in relation to sex. Additional studies are needed to understand the impact of 
sex and its role in atherosclerosis and/or thrombosis and in microvascular and multi-level 
disease. 

2.2. Biomechanical Considerations 
Blood vessels from women tend to be smaller in diameter than those of men, includ-

ing blood vessels of the leg such as the common femoral artery [1] and vein [2], even when 
corrected for body weight. EC size may impact the vessel diameter; however, studies are 
conflicting. For example, male lung ECs isolated from mice were smaller than female ECs, 
whereas male ECs isolated from rat aorta were larger than the corresponding ECs from 
female rats [3,4]. Importantly, the smaller vessel size in females may contribute to arterial 
shear stress, which can influence vascular remodeling, restenosis after revascularization, 
and arterial compliance [5–7]. The smaller vessel size in women may also contribute to 
difficulties in revascularization [8], increased complications, and mortality. This is partic-
ularly evident following percutaneous coronary intervention and bypass grafting in 
women with coronary artery disease (CAD) [9,10]. The same may hold true for PAD. 
Women with CLTI have an increased rate of major adverse cardiovascular events and in-
creased mortality after surgical revascularization or amputation [11,12]. Differences in sex 
hormones may also affect arterial compliance, with post-menopausal females having in-
creased arterial stiffness compared to males [13], a finding that is further exaggerated in 
conditions such as metabolic syndrome [14]. Arterial stiffness contributes to the increased 
prevalence of hypertension in women [15], and hypertension is a risk factor for PAD [16]. 

Figure 2. Clinical observations that may reflect differences in endothelial function in female PAD
patients. Arrows indicate increase or decrease. •NO, nitric oxide; CRP, C-reactive protein; VEGF,
vascular endothelial growth factor.

2.1. Pathogenesis

PAD is traditionally thought to be caused by atherosclerosis; however, a recent study
reported that 66% of large peripheral arteries examined from patients with chronic limb-
threatening ischemia (CLTI), the severe form of PAD, were blocked by thrombus, in the
absence of significant atherosclerosis [17,18]. Thrombi within smaller vessels were also
identified [17,18]. Thrombosis may play a role in determining PAD disparities, since women
have a higher platelet count than males, and female platelets have a higher reactivity than
males [19]. Women also have more lesions in smaller vessels and multilevel disease [13].
Peripheral arteries from patients present with greater medial calcification and calcified
nodules [17,18]; these may promote rupture by disrupting the fibrous cap. Interestingly,
calcified nodules were present in 8% of coronary plaques from women ≥50 years of age vs.
3% of men in the same age bracket [20], and it is tempting to speculate that sex differences
in calcification in peripheral arteries may exist; however, the authors found no differences
in relation to sex. Additional studies are needed to understand the impact of sex and its
role in atherosclerosis and/or thrombosis and in microvascular and multi-level disease.

2.2. Biomechanical Considerations

Blood vessels from women tend to be smaller in diameter than those of men, including
blood vessels of the leg such as the common femoral artery [1] and vein [2], even when
corrected for body weight. EC size may impact the vessel diameter; however, studies are
conflicting. For example, male lung ECs isolated from mice were smaller than female ECs,
whereas male ECs isolated from rat aorta were larger than the corresponding ECs from
female rats [3,4]. Importantly, the smaller vessel size in females may contribute to arterial
shear stress, which can influence vascular remodeling, restenosis after revascularization,
and arterial compliance [5–7]. The smaller vessel size in women may also contribute to dif-
ficulties in revascularization [8], increased complications, and mortality. This is particularly
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evident following percutaneous coronary intervention and bypass grafting in women with
coronary artery disease (CAD) [9,10]. The same may hold true for PAD. Women with CLTI
have an increased rate of major adverse cardiovascular events and increased mortality
after surgical revascularization or amputation [11,12]. Differences in sex hormones may
also affect arterial compliance, with post-menopausal females having increased arterial
stiffness compared to males [13], a finding that is further exaggerated in conditions such
as metabolic syndrome [14]. Arterial stiffness contributes to the increased prevalence of
hypertension in women [15], and hypertension is a risk factor for PAD [16]. These differ-
ences in the biomechanical properties of arteries may affect the sex-dependent outcomes of
PAD treatment. Whether altered EC functions contribute to differential response and recov-
ery post revascularization or surgery in women with PAD, particularly post-menopause
women, remains unclear.

2.3. Vascular Tone

Sex differences in endothelial-dependent vasodilation are apparent [21], with young
healthy female arteries showing increased arterial dilator responses to flow-mediated dila-
tion (FMD; a surrogate of endothelial function) and chemical stimuli through enhanced
nitric oxide- (·NO), cyclooxygenase- (COX), and/or hyperpolarization-dependent path-
ways [22]. In part, this is attributed to increased levels of estrogen during the menstrual
cycle. Interestingly, female vessels show greater dependence on ·NO-mediated arterial
relaxation, but with aging and loss of estrogen (i.e., menopause), these responses are lost
(extensively reviewed in [23,24]). In Table 1, we summarize sex-dependent mechanisms
mediating vessel tone in multiple vascular beds isolated from wildtype C57Bl6 mice. In
preclinical PAD, in the hindlimb ischemia model, ischemic female limbs had reduced
endothelial nitric oxide synthase (eNOS) protein expression, associating with decreased
arterial relaxation to acetylcholine, greater resistance to flow, and increased arterial con-
striction when compared to male limbs [25]. Ischemic female limbs also had reduced blood
perfusion to the lower limbs [25]. In humans, systemic ·NO synthesis rates were signifi-
cantly lower in PAD patients (stage II–IV) compared to control subjects, but not significantly
different between sexes [26]. Interestingly, nitrate and cyclic guanosine monophosphate
(cGMP) excretion rates were higher in female than in male subjects (with the trend reaching
statistical significance), implying altered ·NO signaling in women with PAD, a finding
not further elaborated upon by the authors [26]. These studies suggest that females may
produce sufficient ·NO but are unable to utilize it for vasodilatory purposes or that the
sensitivity of female vessels to ·NO is reduced.

Changes in oxidative stress may also contribute to vessel tone. Uric acid is an end-
product of purine metabolism and the most plentiful antioxidant in plasma. High levels of
uric acid are associated with cardiovascular diseases including PAD [27,28] and with en-
dothelial dysfunction, in part, by reducing ·NO bioavailability [28,29]. Taher and colleagues
performed a retrospective cross-sectional analysis on peripheral microvascular dysfunction
(reactive hyperemia peripheral arterial tonometry via Endo-PAT) and serum uric acid
levels ≥5 mg/dL in cardiovascular disease patients. The authors identified a significant
positive association between the two, and specifically, the association was only observed
in women [30]. Whether this is a possible mechanism for impaired ·NO bioavailability in
women with PAD remains to be demonstrated.
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Table 1. Sex differences in the mechanisms of relaxation in C57Bl6 mice.

Stimulus Age Gender Artery Mechanism of Relaxation Ref.

Ach

8 Weeks Male Mesenteric
(150 µm)

~60% ·NO-/COX-dependent
~20% IKca-/SKca-dependant
~20% Unknown

[31]

8 Weeks Female Mesenteric
(150 µm)

~40% ·NO-/COX-dependent
~40% IKca-/SKca-dependant
~20% Undetermined

[31]

6–8 Weeks Male Superior
mesenteric

~70% ·NO-/COX-dependent
~30% Undetermined [32]

Any Female * Superior
mesenteric No data

6–8 Weeks Male Thoracic aorta 100% ·NO-dependent [32]

8 Weeks Female Thoracic aorta 100% ·NO-dependent [33]

Not specified Male Carotid ~50% ·NO-/COX-dependent
~50% Undetermined [34]

19–23 weeks Female Carotid 100% ·NO-dependent [35]

Not specified Male Femoral ~60% ·NO-/COX-dependent
~40% Undetermined [34]

19–23 weeks Female Femoral ~75% ·NO
~25% BKca/IKca/SKca

[35]

Flow

10–14 weeks Male Cerebral ~50% ·NO-dependent
~50% H2O2-dependent [36]

Any Female * Cerebral No Data

5–6 months Male Mesenteric
(200 µm)

~50% ·NO-dependent
~50% Undetermined [37]

Any Female * Mesenteric No data

26 months Male Femoral ~100% ·NO-dependent [38]

Any Male * Femoral No data
Ach, acetylcholine; ·NO, nitric oxide; COX, cyclooxygenase; IKca, intermediate-conductance calcium-activated
potassium channel; SKca, small-conductance calcium-activated potassium channel; BKca, big-conductance calcium-
activated potassium channel. * No data found in the literature assessing relaxation in these arteries.

2.4. Barrier Function and Permeability

The evidence that barrier function differs in males and females with PAD is weak.
However, there are two strands of evidence that point to altered features depending on
sex. A recent study examined male and female CAD patients; both sexes had significantly
impaired perfusion in their microvasculature, measured as a percentage of microvascular
vessels occupied by red blood cells [39]. Females had deeper penetration of red blood cells
into the sublingual glycocalyx, indicating greater impairment in barrier function when
compared to males [39]. Whether a similar disfunction is observed in women with PAD is
yet to be established.

Phosphodiesterases (PDEs) play an important role in barrier function, as they in-
activate the cyclic nucleotide messengers cyclic adenosine monophosphate (cAMP) and
cGMP. ECs are known to express five PDEs, namely, PDE1, PDE2, PDE3, PDE4, and PDE5.
Cilostazol is a PDE3 inhibitor, and an anti-platelet medication used to relieve PAD pa-
tients with symptoms of intermittent claudication. Cilostazol treatment was shown to
improve walking distance [40], in part, via its ability to act as a vasodilator. It can also
increase adenosine concentrations in patients with acute coronary syndromes [41] and
reduce permeability [42], and, particularly relevant to this review, it reduced permeability
in female, but not in male, microvascular ECs [43]. Interestingly, female microvascular
ECs express more Pde3b mRNA than male ECs [43], implying that cilostazol may have
sex-dependent actions.
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2.5. Leukocyte Trafficking and Inflammation

How inflammatory cells and molecules relate to sex differences in the presence of
PAD is unclear. Sex differences in immune responses have been described [44] and are
influenced by the environment, genetic mediators, and hormones. With regard to the
latter, the presence of estrogens, particularly, 17β-estradiol in premenopausal women, is
thought to be protective [45]. Indeed, premenopausal women have a reduced prevalence
of CAD, hypertension, myocardial infarction, and stroke compared to men; however, the
prevalence of these conditions in women after menopause surpasses that of men [46]. This
protection is in part due to the anti-inflammatory and antioxidant properties of female sex
hormones (i.e., estrogens), which are lost after menopause [23]. However, the benefit of
estrogen therapy in post-menopausal women is conflicting and reflects the fact that the
contribution of sex hormones to inflammation, oxidation, and atherosclerosis is complex
and influenced by the effects of the sex chromosomes [47] and age- and sex-dependent
differences in specific organs and tissues [23]. What is known is that women with PAD have
~1.4 times higher levels of CRP than men, associating with greater PAD prevalence [48].
Women also have higher levels of CRP and fibrinogen and are more likely to present with
CLTI following autogenous vein lower extremity bypass, which is associated with graft
failure, with the authors proposing an impaired healing response in women to account for
this [49].

Sex differences also appear to impact EC inflammatory marker expression. For ex-
ample, female skeletal ECs show greater expression of intercellular adhesion molecule-1
(ICAM-1) than male skeletal ECs under basal conditions, whereas vascular cell adhesion
molecule (VCAM-1) is expressed in male ECs to a greater extent [50]. This is somewhat
supported by other studies; women with PAD of African American descent had elevated
levels of ICAM-1, whereas Caucasian women had increased levels of MMP-9 and VCAM-1
when compared to men with PAD from each race [51]. Furthermore, ECs exposed to sera
from African American women showed significantly increased intracellular oxidative stress
compared to ECs exposed to sera from male African Americans [51]. Importantly, the same
authors found that women may have a weakness in their ability to increase capillary blood
volume following exercise treatment, since their time to reach minimal calf muscle oxygen
saturation levels—an important measure of microcirculatory function—was significantly
shorter than men [52]. These findings suggest that anti-inflammatories and medications
that improve EC function may be beneficial in women with PAD.

In inflammatory and thrombotic conditions, platelet–leukocyte aggregates can form,
enhancing platelet activation. A small study identified that the levels of stimulated platelet–
neutrophil aggregates were significantly increased in diabetic women with and without
cardiovascular disease in comparison to men with the same condition [53]. Increased
suppressor of cytokine signaling 3 (SOCS3) expression was also associated with increased
circulating monocyte–platelet aggregates in women that had a myocardial infarction [54].
These observations support the notion that increased platelet number and activity, as
well as their increased interaction with leukocytes, is linked to increased adhesivity to
the endothelium and to increased aggregability. Coagulation factors such as tissue factor
can also promote inflammatory responses by activating protease-activated receptors [55];
however, sex-dependent effects are unclear. The crosstalk between inflammation and
coagulation factors contributing to PAD pathogenesis, recently reviewed elsewhere [56],
highlights the complexity of this system. More studies are needed to fully appreciate the
impact of sex-dependent EC thrombo-inflammatory processes in PAD.

2.6. Platelets and Coagulation

The endothelium provides a surface for the assembly of platelets and coagulation
factors and for the development of thrombosis, which is a common complication of PAD.
Females have an overall higher platelet count compared to males, and as mentioned earlier,
they have a higher baseline reactivity [19]. Female platelets show consistently higher
aggregation in response to agonists, such as arachidonic acid, collagen, and adenosine
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diphosphate (ADP) [57]. In contrast, platelets from healthy female subjects show less base-
line platelet adhesion to the endothelium compared to male platelets [58]. This difference
in platelet reactivity may be due to sex hormones. Both female and male platelets express
receptors for 17β-estradiol as well as androgen and progesterone receptors; however, their
effect on platelet function is somewhat controversial [59,60]. Platelet receptors can also
regulate platelet reactivity in a sex-dependent manner. Platelet adhesion and thrombus
formation is dependent on platelet glycoprotein receptors including glycoprotein IIb/IIIa
(fibrinogen receptor), Iba (von Willebrand factor receptor), and VI and a2b1 (collagen
receptors). Platelet activation and aggregation is mediated through the G-protein receptors
PAR1 (protease activated receptor 1) and PAR4 (thrombin receptors), P2Y12 receptors
(ADP receptors), and the thromboxane A2 receptor, amongst others [61]. While there is no
difference in the expression of glycoprotein IIb/IIIa between sexes, women show higher
receptor reactivity [59]. Moreover, healthy women and female mice have higher reactivity
to PAR1 and PAR4 agonists [62], suggesting sex-dependent expression or activation of
these receptors.

Circulating coagulation factors are influenced by hormonal differences in females vs.
males. The most outstanding example of this is pregnancy, where multiple coagulation
factors are upregulated, presumably as an evolutionary mechanism to prevent maternal
death from post-partum hemorrhage. Women have higher average levels of von Willebrand
factor and factor VIII [63], with further increases in von Willebrand factor and fibrinogen
concentrations developing during pregnancy. In contrast, pre-menopausal women have
lower levels of the antithrombotic proteins, protein S and protein C, and conversely, lower
levels of factor X, an enzyme of the coagulation cascade [64]. Not surprisingly, elevated
von Willebrand factor and fibrinogen levels are independently associated with the risk of
development of PAD [65]. Fibrinolytic activity is also a feature of PAD with poor outcomes.
Women with CAD have high levels of PAI-1 [66], which may indicate impaired fibrinolysis.
The increase in PAI-1 was further exaggerated in females with type-2 diabetes [67]. These
studies indicate that females with cardiovascular disease, including PAD, have altered
platelet function, coagulation, and fibrinolysis, which may contribute to worse outcomes.

In terms of current therapies, females display higher baseline platelet reactivity, which
contradicts the anti-aggregatory effect of aspirin [19]. In a study of low-dose aspirin therapy
in unaffected individuals from families with premature coronary disease, women had
consistently more reactive platelets compared with men, to multiple agonists at baseline,
which persisted after aspirin therapy [19]. It must be noted that despite sex differences being
statistically significant, the magnitude of the differences was small. Another study with
low-dose aspirin, showed that daily aspirin exposure resulted in a paradoxical attenuation
of platelet inhibition in response to epinephrine and ADP over time in women but not
in men [57]. The second most common anti-platelet agent, clopidogrel, also showed a
differential effect in females versus males. Women on clopidogrel, evaluated prior to cardiac
surgery, had higher reactivity to ADP compared with men [68]. Inadequate antiplatelet
responses to fixed doses in women may support the rationale of sex-tailored agent selection
or dosage. In terms of the side effects of anti-platelet treatments, there is some evidence
for sex differences; a multivariate analysis confirmed that newer antiplatelet agents are an
independent risk factor for bleeding only in women [69]. How these findings relate to EC
sex-dependent differences in patients with PAD require further elucidation.

2.7. Angiogenesis

Angiogenesis is a critical physiological process in which new blood vessels grow
from a pre-existing vessel bed. These neovessels are the cornerstones of nutrient diffusion,
essential in tissue development and wound repair. Increasing evidence suggests sex
differences in angiogenic responses in ECs. For example, female microvascular ECs isolated
from skeletal muscle appeared to grow more slowly than male cells [50]. In a rat cornea
model, neovascularization was significantly reduced in females compared to males, across
a range of rat strains [70], and this was an androgen-independent response [70]. Rather, the
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expression of cyclooxygenase-2 (Cox-2), vascular endothelial growth factor-A (VEGF-A),
and vascular endothelial growth factor-receptor 2 (VEGF-R2) was higher in male than in
female ECs, suggesting enhanced angiogenic priming in male ECs. In porcine valvular
ECs, male cells exhibited higher proliferation rates vs. female cells, which was associated
with increased secretion of pro-angiogenic VEGF-A, platelet derived growth factor (PDGF),
and endothelin-1 from neighboring male interstitial cells, whereas female interstitial cells
secreted greater levels of anti-angiogenic factors [71]. In contrast, other studies either
reported no differences in angiogenic processes or showed increased angiogenic capacity in
female ECs compared to male ECs in vitro, associated with increased platelet endothelial
cell adhesion molecule-1 (PECAM-1) or eNOS expression [72–74]. Interestingly, female (but
not male) EC angiogenic sprouting and migration were found to be reliant on increased
eNOS activity and ·NO release [75,76].

Angiogenesis is considered a key protective mechanism against symptomatic
PAD—including against the susceptibility to claudication, ischemic ulcers, and limb ampu-
tation. Sex-dependent changes in angiogenesis have been described in mouse models of
PAD, where reduced angiogenesis and capillary density were associated with impaired
blood perfusion in female vs. male C57Bl6 ischemic hindlimbs [25]. The authors found that
the basal VEGF and eNOS protein expression was greater in female limb tissues, whereas
7 days post-ischemia, male tissues displayed greater VEGF and eNOS expression [25]. Sex
hormones also play a role, since estrogen-related receptor-α expression is induced in the
ischemic hindlimb of male mice, which is associated with increased vascularization and
non-leaky blood vessel formation [77]. Further, oophorectomized mice showed reduced
neovascularization and eNOS protein expression after hindlimb ischemia when compared
to female control mice [78]. A clinical study assessing 234 patients (145 males, 89 females)
with PAD and 50 healthy controls reported higher levels of plasma VEGF in female vs.
male PAD patients [79]. Given that VEGF is increased in ischemia and high levels of VEGF
predict PAD progression and severity [80], disease may indeed be far worse in females.

3. Lessons from OMIC Studies

Multi-omic approaches could be a powerful tool in deciphering mechanisms of patho-
genesis and in identifying potential therapeutic targets for sex-specific medicine in PAD
patients. Interestingly, 14–25% of the EC transcriptome is reported to be sex-specific [81].
Recently, single-cell RNA sequencing data from the Tabula Muris Consortium interrogated
EC transcriptomes from 12 organs including the limb [82]. Lars2, encoding the enzyme
leucyl-tRNA synthetase 2, important in mitochondrial protein synthesis, was identified
by two independent studies to be expressed in male ECs, with low expression in female
cells [82,83]. These findings highlight possible sex differences in the function of EC mito-
chondria. Indeed, male microvascular ECs have ~1.7 times greater basal mitochondrial
respiration and higher adenosine triphosphate (ATP) production when compared to female
cells, suggesting that male microvascular ECs may have more functional mitochondria [84].
When challenged with hypoxia (2% O2) or in response to antimycin A (a specific inhibitor
of complex III in the mitochondrial electron transport chain), female ECs died more rapidly
than the male cells [84]. However, these data were not reported for macrovascular human
umbilical vein ECs isolated from dizygotic twins, where no differences in cellular energy
production (glycolysis versus mitochondrial respiration), intracellular ATP, or metabo-
lite levels were identified [85], revealing not only sex-dependent, but also microvascular-
vs.-macrovascular EC differences. These observations highlight that EC behavior is gov-
erned by their microenvironment and the organs/tissues that they reside in. Nevertheless,
these data provide mechanistic insight into EC function and that female microvascular
ECs respond differently to mitochondrial stress. Mitochondrial dysfunction is apparent
in the skeletal muscle of patients presenting with intermittent claudication [86] and in
mouse models of PAD [87]. In-depth transcriptomic and proteomic analyses were recently
conducted in muscle biopsies from people with and without PAD, identifying an accu-
mulation of mitochondrial proteins in PAD tissue, reduced levels of glycolytic enzymes,
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and increased levels of proteins necessary for stress-induced protein translation [88]. Sex
differences were not described here. Whether EC mitochondrial function plays a role in sex
differences in PAD patients requires further study.

4. Risk Factors and microRNAs

Smoking and diabetes negatively impact the endothelium [89,90] and are considered
two of the most significant risk factors in the pathogenesis of PAD. A systemic review in
2018 identified that half of all PAD cases were attributed to smoking [91]. Remarkably,
passive smokers and ex-smokers also had increased risk of PAD [92,93]. Overall, men with
PAD are more likely to smoke [94], but in a study of U.K. biobank participants, female
smokers were found to have a greater risk of PAD when compared to male smokers [95].
A recent study investigating the effect of smoking on microRNA (miRNA) expression
showed that miR-27b was downregulated in active smokers, associating with the presence
and severity of PAD [96,97]. Interestingly, miR-27b was found to improve endothelial
health by attenuating oxidative stress and inflammation [98]. miRNAs are small, single-
stranded, non-coding RNA molecules that act as negative regulators of gene expression.
That miR-27b is regulated by estrogen [99] suggests sexual dimorphism; however, its role in
sex-dependent EC function(s) is PAD patients is yet to be elucidated.

Impaired glucose tolerance and diabetes increase the risk of developing PAD, increas-
ing PAD severity and the need for amputation [100,101]. Even after controlling for major
risk factors, diabetes was associated with a higher number of occlusive vascular deaths
in women compared to men [102]. Several miRNAs were recently highlighted for their
association with arterial occlusive disease, with miR-134-5p identified as a useful prognostic
marker for patients with diabetes [103]. miR-134-5p is known to inhibit angiogenesis [104]
and contribute to glucose-induced EC dysfunction [105]. Whether miR-134-5p impacts sex
differences in EC functions in PAD patients remains to be determined.

5. Outstanding Questions and Future Perspectives

The global burden of PAD in women has been underappreciated. Our understanding
of sex-dependent presentation, diagnosis, and treatment of PAD and our comprehension
of disease pathophysiology are limited, and outstanding questions remain (Table 2). Fur-
ther research efforts into PAD pathogenesis, particularly, sex-dependent differences, are
essential, as this will dictate how we manage, support, and treat patients for optimum ther-
apeutic benefit. Overall, the evidence points towards increased levels of immune molecules,
immune cells, and platelets in women with PAD, and this, in combination with differences
in EC function and oxidative stress, may contribute to the higher female prevalence and
altered pathogenesis of the disease. Women, overall, have higher resistance to antiplatelet
agents (aspirin and clopidogrel). They also have higher values of coagulation parameters.
There is a pressing clinical need to investigate if the recently introduced combinations of
anti-Xa anticoagulants and antiplatelet agents [106] are more effective in women compared
to men and to establish their optimal doses. Based on the heightened response of female
platelets and inflammatory cells to immune triggers, it would be important to investigate
if female patients with PAD would benefit from the combination of anti-inflammatory
treatments with traditional treatments. Sex differences in EC function(s) in PAD patients
exist, revealing an area with unexplored diagnostic and therapeutic potential.
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Table 2. Outstanding questions on sex differences in PAD pathophysiology.
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