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Abstract: The state of Victoria, Australia, implemented one of the world’s most prolonged cumula-

tive lockdowns in 2020 and 2021. Although lockdowns have proven effective in managing COVID-

19 worldwide, this approach faced challenges in containing the rising infection in Victoria. This 

study evaluates the effects of short-term (less than 60 days) and long-term (more than 60 days) lock-

downs on public mobility and the effectiveness of various social restriction measures within these 

periods. The aim is to understand the complexities of pandemic management by examining various 

measures over different lockdown durations, thereby contributing to more effective COVID-19 con-

tainment methods. Using restriction policy, community mobility, and COVID-19 data, a machine-

learning-based simulation model was proposed, incorporating analysis of correlation, infection 

doubling time, and effective lockdown date. The model result highlights the significant impact of 

public event cancellations in preventing COVID-19 infection during short- and long-term lock-

downs and the importance of international travel controls in long-term lockdowns. The effective-

ness of social restriction was found to decrease significantly with the transition from short to long 

lockdowns, characterised by increased visits to public places and increased use of public transport, 

which may be associated with an increase in the effective reproduction number (Rt) and infected 

cases. 

Keywords: data driven; infection control; epidemiology; healthcare; digital health; social restriction; 

machine learning 

 

1. Introduction 

The global epidemic caused by severe acute respiratory syndrome 2 (SARS-CoV-2) 

has since spread rapidly worldwide. The main mode of transmission of SARS-CoV-2 is 

through respiratory droplets that are produced when an infected person talks or coughs 

and can be transmitted through the air and inhaled by people nearby [1,2]. The virus can 

land on a surface and remain viable for hours to days [3]. 

In an effort to stem the rise in COVID-19 cases worldwide, many countries have im-

plemented lockdowns to restrict social gatherings and minimise contact with infected in-

dividuals. China, Sweden, Australia, and South Korea implemented a series of lockdowns 

in several cities to delay the time of peak infection, highlighting the effectiveness of 
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restrictions in mitigating the ongoing transmission of SARS-CoV-2 by exerting a signifi-

cant influence on public mobility [4–6]. Researchers have presented the effectiveness of 

restrictions in European countries, showing significant reductions in transmission rates 

and a flattening of the infection curve based on data collected from European countries 

[7]. A recent study has shown similar results, finding that restriction policies have signif-

icantly and substantially slowed the growth of COVID-19 infections in China, South Ko-

rea, Italy, Iran, France, and the USA [8]. In addition, a study conducted in England found 

that people consistently reported fewer social contacts during the lockdown period, re-

sulting in a corresponding reduction in COVID-19 infections. However, the magnitude of 

this effect was found to depend on the specific type and nature of the restrictions imple-

mented [9]. In a further case study of the UK and the US, researchers found that multiple 

interventions of quarantine had a significant impact on virus transmission [10]. Taken to-

gether, these findings highlight the critical role of lockdown in limiting the spread of the 

virus by restricting interpersonal interactions and mobility, ultimately contributing to the 

containment of the COVID-19 pandemic. 

The state of Victoria in Australia gained international attention for setting a record as 

the region with the longest cumulative lockdown period in the world [11]. This record 

was achieved as Victoria spent a remarkable cumulative total of 302 days under a series 

of six lockdowns in 2020 and 2021. These lockdowns showed significant variation in their 

duration, ranging from 12 days to 141 days. This extended period of lockdown began on 

19 January 2020, when the state confirmed its first case of COVID-19. However, despite 

the frequency of the lockdown policy in Victoria, the state government’s efforts to slow 

the spread of SARS-CoV-2 were not always effective. According to the data from the Vic-

torian Government [12], the region continued to experience significant waves of COVID-

19 infection during the lockdown period.  

This situation raises two pertinent questions: (1) How effective are Victoria’s lock-

downs in altering public mobility, given their long duration and frequent implementation? 

(2) What is the effectiveness of various social restriction measures, such as face cover pol-

icies, contact tracing and international travel controls, etc., over different durations of lock-

down? This complex dynamic requires a thorough evaluation of the effectiveness of the 

various social restriction measures implemented during the Victoria lockdown periods. It 

also requires an in-depth analysis of the factors contributing to the trends observed in 

COVID-19 cases during these extended lockdowns to ensure a comprehensive under-

standing of pandemic progression and control measures. 

The increasing availability of electronic health data provides a significant oppor-

tunity for the integration of machine learning approaches in health epidemiology [13]. 

Machine learning techniques harness the power of training data to construct simulation 

models, enabling researchers to conduct efficient and accurate analyses of large datasets. 

This approach facilitates the identification of complex patterns and relationships that may 

prove to be difficult to identify using traditional data analysis methods [14–16]. In addi-

tion, the flexibility of machine learning extends to its ability to aggregate data from differ-

ent sources. This ability allows for a more holistic analysis, enriching health epidemiolo-

gists’ understanding of the complex interplay between biological and social factors that 

contribute to the risk of contracting infectious diseases. It improves the understanding of 

transmission pathways and supports the development of robust prevention strategies 

[13,15]. As such, machine learning is emerging as a valuable tool for advancing epidemi-

ological research and public health efforts. Recent research on machine learning applica-

tions in the context of COVID-19 has shown promising progress, with recent studies high-

lighting the role of machine learning in supporting diagnosis, drug and vaccine develop-

ment, and overall pandemic management [17,18]. In addition, a similar study demon-

strates the significant impact of machine learning, such as SVM, on the forecasting and 

epidemiology of COVID-19, highlighting its potential to predict disease spread and aid 

early diagnosis [19]. Taken together, these studies highlight the growing importance of 
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machine learning techniques in managing the COVID-19 crisis and their potential to shape 

future epidemiological research and public health strategies. 

Consequently, this research, using advanced machine learning techniques, aims to 

(1) thoroughly investigate the complex interplay between lockdown duration and com-

munity mobility, particularly in terms of their influence on containing COVID-19 infection 

in Victoria, and (2) explore the multiple dimensions of pandemic management by evalu-

ating the effectiveness of various social restriction strategies over different lockdown du-

rations. This methodology is designed to significantly improve our understanding and 

formulation of more effective and resilient COVID-19 response strategies. Our research is 

not limited to mere observation but delves deeply into the effects of lockdown and pro-

vides profound insights into their effectiveness. By bringing together data from these pol-

icies, mobility patterns, and COVID-19-related information, we unravel the complex dy-

namics underlying pandemic control, highlighting the evolving pandemic response situ-

ation and the need for flexible and responsive strategies in our ongoing battles against this 

challenging public health adversary. 

2. Materials and Methods 

2.1. Data Sources 

In this comprehensive study, we have used multiple datasets to explore the complex 

dynamics of the COVID-19 pandemic in Victoria. The dataset includes crucial information 

on Victoria’s COVID-19 cases and vaccination statistics, which have been extracted from 

the Johns Hopkins University COVID-19 data repository, covering the period from March 

2020 to October 2021 [20]. In addition, the Victoria Mobility Dataset, sourced from Google 

Community Mobility, was instrumental in assessing public mobility trends during the 

pandemic [21]. A detailed breakdown of this dataset is provided in Table 1. 

To provide a comprehensive view of the pandemic response, we also aggregated in-

formation on the six lockdowns that occurred in Victoria during 2020 and 2021. These data 

were sourced from the official Victorian Government website, as shown in Table 2 [22]. To 

facilitate analysis, we categorised them into two distinct groups based on their duration: 

short-term lockdowns (lasting less than 60 days) and long-term lockdowns (lasting more 

than 60 days). This categorisation provides valuable insights into the diverse range of 

COVID-19 control measures implemented in the region and highlights the varying lengths 

of these vital interventions. 

In addition, the social restriction policy dataset was obtained from the Oxford 

COVID-19 Government response tracker and Victorian Government website to evaluate 

daily social restriction levels in Victoria [22,23], as shown in Table 3. This will be used to 

evaluate the effectiveness of various social restrictions over different periods of lockdown. 

Overall, the social restriction policy data, Google community mobility data, and lock-

down information will be considered as the explanatory variables that are used in the 

model, while daily COVID-19 cases will be the dependent variables that we use to simu-

late the COVID-19 infection within Victoria.  

Table 1. Mobility data during the lockdown period. 

Mobility Measure 1 Definition 

Retail and recreation visiting 
Visiting level for restaurants, cafés, shopping centres, museums, 

etc. 

Grocery and pharmacy visiting 
Visiting level for supermarkets, food warehouses, pharmacies, 

etc. 

Park visiting Visiting level for national parks, beaches, public gardens, etc. 

Public transport visiting Usage level for buses, trains, trams, etc. 

Workplace visiting Mobility level for places of work 

Residential mobility data Mobility level for places of residence 
1 Each mobility measure presents the daily changing level of each mobility sector based on the 

comparison with the baseline period, which is from 3 January 2020 to 6 February 2020. 
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Table 2. Victorian lockdown information. 

Lockdown Period 2 Lockdown Days Lockdown Categories 

1st: 

30 March 2020–12 May 2020 
43 days Short-term lockdown 

2nd: 

8 June 2020–27 October 2020 
141 days Long-term lockdown 

3rd: 

2 February 2021–17 February 2021 
15 days Short-term lockdown 

4th: 

27 May 2021–10 June 2021 
14 days Short-term lockdown 

5th: 

15 June 2021–27 June 2021 
12 days Short-term lockdown 

6th: 

5 August 2021–17 October 2021 
77 days Long-term lockdown 

2 Six Lockdowns: during the 2020 and 2021 period, a state of emergency was declared six times by 

the Victorian Government to restrict household gatherings, cancel sporting events, and require 

entire economic sectors to work from home. 

Table 3. Policy indicators. 

Policy 

Indicators  
Definition 

Cancel public events 

policy 

Mandated levels of requirements for public events during 

the COVID-19 pandemic 

Restrictions on 

gatherings 
Record limits on the number of people allowed to gather 

School closing policy 
Mandated levels of closure requirements for schools dur-

ing the COVID-19 pandemic 

Workplace closing 

policy 

Mandated levels of closure requirements for workplaces 

during the COVID-19 pandemic 

International travel 

controls 

Record restrictions on international travel for foreign trav-

ellers 

Stay-at-home requirements 
Requirements for people to “shelter in place” and remain 

confined to their homes, except for essential activities 

Close public transport 

policy 

Mandated levels of closure requirements for public 

transport during the COVID-19 pandemic 

Restrictions on 

internal movement 

Measure restricting travel between cities or regions within 

Victoria during the COVID-19 pandemic 

Contact tracking 
Record government policy on contact tracing following 

positive diagnosis 

Testing policy 
Record government policy on contact tracing after a posi-

tive diagnosis 

Facial coverings 

policy 

Record policies on the use of face coverings outside the 

home 

Mandatory 

vaccination requirements 
Mandated levels of vaccination requirements 

Vaccination policy Record vaccine delivery strategies for different groups 

2.2. Data Analysis 

We have developed a machine-learning-based COVID-19 simulation model. Figure 1 

illustrates the flowchart of this simulation model. 
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Figure 1. Machine-learning-based COVID-19 simulation model for the Victoria area. 
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2.2.1. Data Preprocessing and Exploratory Data Analysis 

In Phase 2, the spreadability of COVID-19 infection was assessed employing an ef-

fective reproduction number (Rt) estimated based on daily confirmed cases [24]. Rt repre-

sents the average number of people infected with a disease [6]. An Rt of 1 means, on aver-

age, an infected person will only infect one person. We estimated Rt based on a 7-day 

rolling average of confirmed cases. The serial interval distribution (µ = 4.3 days) and re-

porting delay distribution (µ = 10.3 days) were used in the estimation [7].  

Moreover, to ensure comparability, we standardised the 7-day rolling average of con-

firmed COVID-19 cases and vaccination numbers using the min–max scaling method. The 

resulting standardised values range from 0 to 10, with 10 corresponding to the highest 

number of confirmed cases and vaccination numbers and 0 representing the lowest. The 

min–max feature scaling method is defined as 

𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
∗ 10   

where Xmax and Xmin represent the maximum and minimum daily confirmed cases in 

the lockdown period. This standardisation ensures that each variable contributes equally 

to our analysis, a crucial step given the large variation in daily COVID-19 case magni-

tudes. We chose to scale to a range of 0–10, as opposed to the typical 0–1 range, to allow 

for a more nuanced differentiation between values. This approach enhances the interpret-

ability of our data, which is particularly beneficial when analysing the diverse magnitudes 

present in our study. 

Moreover, to identify the effectiveness of the lockdown, the analysis of doubling time 

COVID-19 infection was employed in the data preprocessing section. The doubling time 

at day i is defined as  

𝑑𝑎𝑦(𝑖) =  
ln(2)∗ ln (𝐶𝑢𝑚_𝑐𝑎𝑠𝑒 𝑖−1 )

ln (𝐶𝑢𝑚_𝑐𝑎𝑠𝑒 𝑖 )
   

where 𝐶𝑢𝑚_𝑐𝑎𝑠𝑒 𝑖  and 𝐶𝑢𝑚_𝑐𝑎𝑠𝑒 𝑖−1  represent the cumulative cases on day 𝑖 and 

day 𝑖 − 1 , respectively. Then, the max–min feature scaling method was applied to the 

double time day(i) to avoid the effects of differences in the magnitude of the values within 

the simulation model. The normalised double time will be incorporated as an additional 

feature in the simulation model. 

To determine the relationship strength between social restriction policies and mobil-

ity data, we calculated Pearson’s correlation coefficient (r) between social restriction policy 

indicators and Victoria’s mobility data.  

In addition, the issue of policy time lags becomes critical when analysing the effec-

tiveness of social restriction policies on mobility data in the Victorian region. Previous 

research has shown a strong correlation between mobility and COVID-19 transmission, 

with a lag of about 10 days observed in China [25]. Similar patterns have been observed 

in Spain [26]. Therefore, in this study, we determine the effective lockdown date by mon-

itoring the initial decline in overall mobility data. This allows us to determine when re-

strictions begin to have a significant impact on people’s lives. The analysis of the effective 

lockdown data is carried out by assessing the fluctuations in mobility data during the 

lockdown period. In order to merge the various mobility data, we assign weights to each 

mobility data point in Table 1, which allows us to calculate overall mobility changes, 

which are defined as 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑑𝑎𝑦_𝑖 =  ∑ 𝑊𝑚𝑜𝑏𝑖𝑙𝑖𝑦_𝑗 ∗  𝑀𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦_𝑗
𝑛
𝑗=1    

where 𝑊𝑚𝑜𝑏𝑖𝑙𝑖𝑦_𝑗  represents the weight for mobility attributes 𝑗 in the mobility dataset, 

and 𝑀𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦_𝑗  is the value for mobility attributes 𝑗  on day 𝑖 . In this study, an equal 

weighting is assigned to the combined process. Then, an automated change point detec-

tion technique has been programmed to identify the inflection point in the mobility curve 

that indicates the effective lockdown date. This inflection point corresponds to the time 
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when the overall mobility data begin to decrease. The simulation model will integrate 

multiple datasets from the effective lockdown date to the end of the lockdown period.  

2.2.2. Establishing the Machine Learning Model  

In Phase 3, we have adopted a more comprehensive approach to simulating COVID-

19 infection during the lockdown period by incorporating multiple machine learning al-

gorithms rather than relying on a single model. This will allow us to select the most ap-

propriate algorithm for the simulation, improving the accuracy and effectiveness of the 

process. 

In this study, we embark on a thorough exploration of different modelling ap-

proaches to simulate the number of COVID-19 cases in Victoria. We consider various fac-

tors, including linearity, multilinearity, and the presence of outliers or missing values, to 

ensure a well-rounded evaluation of modelling approaches. Recognising the complexity 

and multifaceted nature of this task, we explore a range of regression techniques and ma-

chine learning algorithms that have gained prominence in epidemiological research. We 

begin our analysis with a linear regression model using independent variables related to 

lockdown policies, community mobility, and COVID-19 infection rates. While linear re-

gression provides a basic understanding, its limitations become apparent, particularly in 

the face of multicollinearity [27]. To address these challenges and improve predictive per-

formance, researchers have turned to advanced regression methods such as ridge and 

lasso regression [28–30]. These techniques have demonstrated superior accuracy and reli-

ability compared to traditional linear regression models. In addition, our investigation 

extends to Bayesian ridge regression, which proves to be a more robust choice for datasets 

characterised by collinearity and relatively small sample sizes [31]. Bayesian ridge regres-

sion excels at dealing with collinearity issues, making it a robust option in situations 

where data resources are limited. In addition, elastic net, a linear regression model trained 

with both L1 and L2 regularization, is effective in variable selection and can deal with 

multicollinearity, which is crucial when dealing with the plethora of factors influencing 

the pandemic. 

In recognition of the nonlinear dynamics inherent in COVID-19 time series data, we 

look at tree-based algorithms. Models such as random forest and XGBoost regression have 

attracted attention for their ability to combat overfitting, excel in the presence of outliers, 

and effectively deal with missing data [32–34]. These algorithms provide flexible solutions 

for capturing complex relationships within data. Our study also incorporates a diverse set 

of machine learning algorithms, including decision trees, kernel ridge regression, and sup-

port vector regression. Kernel ridge regression is effective at capturing nonlinear relation-

ships by mapping the input data into higher-dimensional spaces, making it adept at han-

dling the complex and evolving nature of the COVID-19 distribution [35]. This diverse 

range of methods allows us to make a comprehensive assessment of their suitability for 

modelling the dynamics of COVID-19 cases in Victoria.  

The simulation performance of the machine learning models was assessed using the 

following metrics: mean squared error (MSE), mean absolute error (MAE), and coefficient 

of determination (R2). R2 is widely used to measure the level of fit between the predicted 

and observed values of target variables [36,37]. 

𝑀𝑆𝐸 =  
∑ (𝑌𝑖

𝑛
𝑖=1

−�̂�𝑖)2

𝑛
   

𝑀𝐴𝐸 =
∑ |𝑌𝑖−�̂�𝑖|𝑛

𝑖=1

𝑛
   

𝑅2 = 1 − 
∑ (𝑌𝑖

𝑛
𝑖=1

−�̂�𝑖)2

∑ (𝑌𝑖
𝑛
𝑖=1

−�̅�)2
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where 𝑌𝑖 represents the COVID-19 confirmed cases in day 𝑖, �̅�  is the average value of 

COVID-19 confirmed cases, 𝑌�̂� is the predicted number of COVID-19 cases in day 𝑖, and 

n is the total number of days.  

2.2.3. Social Restriction Policy and Mobility Data Effectiveness Analysis 

In Phase 4, to assess the effectiveness of policies and their impact on mobility data for 

short- and long-term lockdowns, we selected the top five performers based on simulation 

metrics. Then, we randomly shuffle attributes in the X dataset to generate new test data 

Xnew. The original model error and new estimate error were defined as 

𝐸𝑟𝑟𝑜𝑟 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙= 𝐿𝑜𝑠𝑠(𝑦𝑖 , 𝑓(𝑥))   

𝐸𝑟𝑟𝑜𝑟 𝑛𝑒𝑤= 𝐿𝑜𝑠𝑠(𝑦𝑖 , 𝑓(𝑥𝑛𝑒𝑤 ))   

where 𝑦𝑖 is defined as the number of COVID-19 cases in day 𝑖, 𝑥 is the original test data, 

while 𝑥𝑛𝑒𝑤 denotes the new test data after random shuffling. 𝑓(𝑥) is the predicted num-

ber of COVID-19 cases based on the original test data, and 𝑓(𝑥𝑛𝑒𝑤 ) is the predicted num-

ber of COVID-19 cases based on the shuffled test data. To evaluate the effectiveness of our 

model, we utilise the MSE as our loss function. The policy effectiveness score of the attrib-

ute j is defined as 

𝐸_𝑆𝑐𝑜𝑟𝑒𝑗 =  𝐸𝑟𝑟𝑜𝑟 𝑛𝑒𝑤 − 𝐸𝑟𝑟𝑜𝑟 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙   

Subsequently, the 𝐸_𝑆𝑐𝑜𝑟𝑒𝑗   of each machine learning model is calculated. Finally, 

the average 𝐸_𝑆𝑐𝑜𝑟𝑒𝑗   from all models is utilised to compute the normalised feature score. 

This standardisation allows a more direct comparison between variables that originally 

had different scales and distributions. 

3. Results 

3.1. Exploratory Data Analysis 

During the short-term lockdown periods (Lockdowns 1, 3, 4, and 5, Figure 2a,c,d,e), 

the tightened restriction policy led to a significant decrease in retail and leisure visits 

(−37.8% on average) and public transport use (−72.85% on average), which is accompanied 

by a decrease in Rt below 1. Conversely, there was a noticeable increase in residential mo-

bility (+18% on average). However, the reduction in COVID-19 infection was short-lived. 

In the long-term, the Rt started to gradually increase after the lowest point (0.41). This 

trend was observed alongside an increase in retail and recreation visits, park visits, work-

place visits, grocery and pharmacy visits, and public transport visits. Furthermore, there 

was a decrease in residential mobility data, all of which were recorded during the second 

lockdown period (Figure 2b). A similar increasing mobility tendency was also found in 

the sixth lockdown (Figure 2f), in which the increasing mobility data may be associated 

with a significant increase in daily cases.  

To determine the effectiveness of the social restriction policies on limiting public mo-

bility, we conducted a correlation analysis. Overall, stay-at-home orders (r = 0.84, p < 

0.001), workplace closures (r = 0.83, p < 0.001), school closures (r = 0.81, p < 0.001), and 

public event cancellations (r = 0.73, p < 0.001) show a robust positive correlation with in-

creases in the residential mobility data, as shown in Figure 3 and Appendix A. This posi-

tive relationship suggests that individuals spent more time in their residences when these 

restrictive measures were implemented, reflecting compliance with the lockdown policy 

and a reduction in movement within communities. Conversely, these policy indicators are 

negatively associated with reduced retail and leisure activities and the reduced use of 

public transport. This negative association highlights the alignment of these policies with 

reduced consumer activity and reduced reliance on public transport. This observation 

highlights the impact of public health policies on the economic and mobility dynamics of 

the Victoria region. 
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Furthermore, our analysis reveals a clear negative association between the incidence 

of COVID-19 cases (r = −0.71, p < 0.001) and restrictions on gathering. This finding suggests 

that the number of COVID-19 cases decreased as restrictions on gatherings increased. It 

underscores the effectiveness of such restrictions in reducing the spread of the virus and 

highlights the importance of public health interventions in containing the pandemic. 

These correlations provide valuable insights into the complex dynamics between policy 

interventions, mobility patterns, and COVID-19 outcomes, offering a nuanced perspective 

on the multifaceted challenges faced during the pandemic. 

 

Figure 2. Normalised Victorian mobility measures, daily COVID-19 cases, and the effective repro-

duction number in the six lockdown periods. The Rt values together with their 95% confidence 
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intervals (CI) are presented in red, and green plots represent the relaxation of social restrictions 

during the sixth lockdown (Figure 2f) due to the increased number of vaccination numbers in the 

Victorian area. 

 

Figure 3. Correlation analysis between policy data and mobility data in the Victorian area (Note: we 

used p = 0.05 to determine statistical significance; the p-value results are attached in Appendix A, 

Table A1). 

To improve the simulation capabilities of the model, we also included doubling time 

as an additional attribute during the data preprocessing phase. In the analysis of the dou-

bling time of COVID-19 infection cases, a red doubling time (see Figure 4) close to the 

shortest normalised doubling time of 0 indicates that the daily COVID-19 case takes a 

shorter time to double in the infection case, while a longer doubling time close to 1, shown 

in green in Figure 4, indicates a longer time to double in the infection case. Overall, the 

study observed notable variations in the effectiveness of lockdowns in curbing the rise of 

COVID-19 infections, attributable to differences in their durations. In particular, there was 

considerable variation in doubling time during the long lockdown period (see Figure 

4b,f). This may be associated with increased visits to retail and recreational areas, parks, 

workplaces, food and pharmacy stores, and public transportation. In contrast, fluctuations 

in doubling time were generally more stable during the short-term lockdown period (see 

Figure 4a,c,d,e) than during the long-term period. 
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Figure 4. Analysis of the normalised doubling time of COVID-19 infection cases. Values that were 

normalised to be closer to 1 are shown in green, indicating a longer doubling time. This indicates 

that the COVID-19 infection rate among people in Victoria has been effectively controlled. Con-

versely, values normalised to be closer to 0 were displayed in red, indicating a shorter doubling 

time, indicating that COVID-19 infection cases were increasing rapidly in the Victorian area. 

Lastly, the overall mobility data show a significant decrease at the beginning of the 

1st, 4th, and 6th lockdowns, followed by a gradual increase (refer to Figure 5). In contrast, 

the 2nd, 3rd, and 5th lockdowns show fluctuations, first mildly increasing and then 
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decreasing. By adjusting the efficient lockdown dates to coincide with the first day of mo-

bility decline, we refined them for use in the machine-learning-based simulation model 

and determined the training and test data periods. 

 

Figure 5. Effective lockdown date analysis for the lockdown period. The effective lockdown date is 

determined by observing a decline in overall mobility data, which typically corresponds to the time 

when the lockdown policy comes into effect, allowing us to identify the point at which the re-

strictions begin to have a tangible impact on people’s lives. Note that the effective lockdown dates 
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(orange vertical line) for the 1st, 4th, and 6th closures are marked from the first closure date, as a 

significant drop in the combined mobility curve was found. 

3.2. Model Evaluation 

Eleven machine learning algorithms were implemented in this study. Overall, based 

on the highest R2 and lowest MSE and MAE, we found gradient boosting regressor, XG 

boost regressor, random forest, decision tree, and support vector regression to have 

achieved the best performance (Table 4). Thus, they were selected to simulate both short- 

and long-term lockdown scenarios. 

Table 4. Simulation accuracy test. 

Algorithm R2 MSE MAE 

Gradient boosting regressor 0.956 0.069 0.051 

Random forest 0.947 0.076 0.056 

XG boost  

Regression 
0.941 0.080 0.059 

Decision tree 0.893 0.108 0.072 

Support vector  

Regression 
0.821 0.140 0.127 

Kernel ridge 0.807 0.145 0.129 

Elastic net 0.786 0.153 0.140 

Lasso regression 0.769 0.159 0.145 

Ridge regression 0.643 0.197 0.179 

Bayesian ridge 0.620 0.203 0.184 

Linear regression 0.548 0.222 0.200 

3.3. Analyzing the Impact of Mobility Data during Short- and Long-Term Lockdowns 

Analysis of mobility during the short- and long-term lockdowns showed that retail 

and recreation visiting and public transport visiting were the main contributors to reduc-

ing the increase in COVID-19 infection in Vicotria (refer to Table 5). They accounted for 

more than 30% of mobility in short-term lockdowns, while public transport alone ac-

counted for more than 50% in long-term lockdowns, with the remaining measures ac-

counting for less than 15%. It is also worth noting that both retail and recreation visiting 

and workplace visiting showed a significant drop in their effectiveness in curbing COVID-

19 cases when moving from short-term to long-term lockdowns. The remaining mobility 

measures did not exhibit significant changes when the duration of the lockdown period 

changed. 

Table 5. Normalised mobility effectiveness score. 

Mobility 

Measurements 

Short-Term Lockdowns Long-Term Lockdowns Sum 

Effectiveness 

Score 
Normalised Score 

Effectiveness 

Score 
Normalised Score 

Sum Effective-

ness 

Score 

Normalised Score 
1 

Public 

transport visiting 
8.517 32.74% 12.750 54.75% 21.267 43.13% 

Retail and 

recreation visiting 
9.602 36.90% 2.462 10.57% 12.064 24.47% 

Workplace 

visiting 
4.628 17.79% 2.101 9.02% 6.729 13.65% 

Grocery and 

pharmacy visiting 
1.647 6.33% 2.035 8.74% 3.682 7.47% 

Residential 

mobility data 
1.391 5.35% 1.920 8.25% 3.312 6.72% 
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Park visiting 0.234 0.90% 2.018 8.67% 2.252 4.57% 

Total 26.019 100.00% 23.286 100.00% 49.305 100.00% 
1 The mobility measurements have been ordered in a descending fashion based on the normalised 

score. 

3.4. Social Restriction Effectiveness Analysis  

In terms of policy perspectives (refer to Table 6), the top three policies in terms of 

effectiveness scores were the cancelled public events, restrictions on gathering, and school 

closing policy, which each accounted for more than 20% of the total policies. Notably, the 

effectiveness of restrictions on gatherings decreased significantly as the duration of lock-

downs increased, which may indicate that the public’s compliance with these restrictions 

decreased during longer lockdowns. In contrast, only the cancellation of public events 

policy and international travel controls were found to be more effective than other policies 

in the long-term lockdown. 

Table 6. Normalised policy effectiveness score. 

Policy 

Indicators 

Short-Term Lockdowns Long-Term Lockdowns Sum 

Effectiveness Score Normalised Score Effectiveness Score Normalised Score 
Sum Effectiveness 

Score 
Normalised Score 1 

Cancel public events 

policy 
10.530 30.14% 14.027 31.85% 24.556 31.00% 

Restrictions on  

gatherings 
8.228 23.55% 3.755 8.53% 11.982 16.04% 

School closing policy 9.777 27.99% 0.129 0.29% 9.906 14.14% 

Workplace closing 

policy 
2.192 6.28% 4.295 9.75% 6.487 8.01% 

International travel 

controls 
0.292 0.84% 4.711 10.70% 5.003 5.77% 

Stay-at-home re-

quirements 
2.135 6.11% 2.016 4.58% 4.151 5.34% 

Close public 

transport 

policy 

0.292 0.84% 3.382 7.68% 3.674 4.26% 

Restrictions on  

internal movement 
0.292 0.84% 2.026 4.60% 2.318 2.72% 

Contact tracking 0.292 0.84% 2.026 4.60% 2.318 2.72% 

testing policy 0.292 0.84% 2.026 4.60% 2.318 2.72% 

Facial coverings  

policy 
0.321 0.92% 2.026 4.60% 2.347 2.76% 

Mandatory  

vaccination require-

ments 

0.292 0.84% 2.026 4.60% 2.318 2.72% 

Vaccination policy 0.002 0.00% 1.594 3.62% 1.595 1.81% 

Total 34.9356 100% 44.0377 100% 78.973 100% 
1 The policy indicators have been ordered in a descending fashion based on the normalised score. 

4. Discussion 

Using machine-learning-based COVID-19 simulation models has provided interest-

ing insights into the evolving effectiveness of social restriction policies during both short-

term and long-term lockdown scenarios. Of particular interest is the significant decline in 

the contribution of the school closure policy, which reaches its lowest level during the 

transition from short-term to long-term lockdowns. This observation challenges the con-

ventional assumption about the effectiveness of school closures as a preventive measure 

against increasing COVID-19 infection cases. In contrast to other social restrictions, such 

as stay-at-home orders and the cancellation of public events, some recent studies suggest 

that school closures may have a limited impact on reducing the spread of the virus [38,39]. 

Furthermore, it is important to recognise that school closures have potentially negative 

consequences for students’ physical health and general well-being. Research has shown 
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that prolonged closures are associated with an increased risk of obesity and screen addic-

tion among students [40]. There has been a significant decline in physical activity among 

children and adolescents worldwide, accompanied by an increase in sedentary behaviour 

[41]. For instance, a study from Spain revealed a 52% decline in weekly physical activity 

[42]. At the same time, a US microsimulation study projected an 11.1% increase in child-

hood obesity after two months of school closures, underscoring the significant impact of 

these closures on children’s health and well-being [43]. These findings highlight the need 

for a balanced approach to the implementation of school closure policies, taking into ac-

count both their limited effectiveness in reducing COVID-19 transmission and their po-

tential adverse effects on students’ health and development. 

Conversely, the international travel control policy showed a striking shift, jumping 

to the second-highest effectiveness score in the long-term lockdown analysis. This shift is 

particularly noteworthy given its implications for border control measures in the context 

of COVID-19 prevention and transmission containment. Recent research has highlighted 

the critical role of border control measures in preventing the direct entry of COVID-19 

cases and containing the widespread transmission of SARS-CoV-2 [44]. This underscores 

the importance of robust international travel control measures, particularly in extended 

lockdown scenarios where preventing the introduction of new cases becomes increasingly 

important. The remarkable increase in the effectiveness of international travel control pol-

icies during prolonged lockdowns underscores their central role in mitigating the global 

impact of the pandemic and serves as a testament to the effectiveness of strategic border 

control measures in these challenging circumstances. 

With regard to the data on mobility, an interesting pattern was observed when look-

ing at the measures of mobility during both the short and the long periods of lockdown. 

In particular, the mobility curve during the longer lockdowns exhibited a distinct anti-bell 

shape. Initially, there was a significant decrease in mobility measures at the beginning of 

the long-term lockdown, which was in line with expectations. However, what distin-

guishes this observation is the subsequent rebound in mobility that began around the 

middle of the lockdown and continued until its end. This phenomenon is consistent with 

the findings of a previous European study, which also found a notable decrease in com-

pliance with restrictions during the middle and late phases of the lockdown [45]. This 

suggests a possible relaxation of public compliance with social restrictions as the duration 

of the lockdown increased. Consequently, this fluctuation in mobility measures over the 

course of the lockdown had a noticeable impact on the effectiveness of these measures 

within the COVID-19 infection simulation model. This underscores the need to consider 

the dynamic evolution of public behaviour and compliance with restrictions as a key fac-

tor in mitigating the escalating number of COVID-19 cases in the Victorian region. This is 

particularly true in the context of lockdown duration, where a nuanced understanding of 

evolving compliance patterns is critical. 

Overall, the results of our simulation model have important implications for policy 

and practice in pandemic management. The analysis shows that policies such as the can-

cellation of public events and restrictions on gatherings are highly effective in containing 

the spread of SARS-CoV-2, whether the lockdown is short-term or long-term. These find-

ings are consistent with a Japanese study, which indicated that voluntary event cancella-

tions could be an effective strategy for reducing COVID-19 infectiousness [46]. The study 

revealed a decrease in Rt from 2.534 to 1.077 during the restriction period. The cancellation 

of mass gatherings was identified in the previous study as another critical factor in pan-

demic prevention [47]. This effectiveness is further underscored by the observed negative 

correlation between these measures and various aspects of public mobility, such as visits 

to retail and leisure outlets and the use of public transport. Such measures have the po-

tential to significantly reduce the number of COVID-19 cases by reducing mobility and 

limiting opportunities for the virus to spread.  

Furthermore, our research provides critical insights for policymakers and public 

health officials, particularly regarding the diminishing effectiveness of lockdowns over 
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longer periods of time. We observed that as the duration of lockdowns increased, their 

effectiveness in controlling the spread of COVID-19 decreased. This trend highlights the 

importance of understanding the dynamic nature of public behaviour and compliance 

with restrictions. It is a key factor that significantly influences the success of these 

measures in mitigating the escalation of the pandemic. Recognising this pattern is essen-

tial for formulating effective and sustainable public health strategies. In response to these 

findings, we recommend a more adaptive and responsive approach to pandemic manage-

ment. Prolonged lockdowns, while initially effective, can lead to “lockdown fatigue”, re-

ducing public compliance over time. It is therefore essential to complement lockdowns 

with other strategies, including effective communication, community engagement, and 

robust testing and traceability systems. The continuous monitoring and evaluation of the 

public’s response to these measures is essential. By adapting strategies to changing public 

behaviour, health authorities can maintain high levels of compliance and effectiveness, 

striking a balance between controlling the spread of the virus and minimising the socio-

economic impact of prolonged lockdowns. This approach not only improves the immedi-

ate response to the pandemic but also contributes to the development of more resilient 

public health systems for future challenges. 

Lastly, our study’s application of machine learning techniques to analyse the inter-

play between social restriction policies, community mobility, and COVID-19 infection un-

der different lockdown duration scenarios provides a methodological blueprint for future 

epidemiological research, particularly in adapting these methods to other infectious dis-

eases. The findings are critical for data-driven public health policy, helping policymakers 

make informed decisions during health emergencies and tailor interventions to specific 

scenarios. In addition, our findings are helping to improve predictive models in epidemi-

ology, integrating variables such as mobility data and social restriction policies to improve 

the accuracy of predicting disease spread. This interdisciplinary approach, combining ep-

idemiology with data science and public policy, provides new insights for comprehensive 

research on disease dynamics and control. Our research not only provides a detailed anal-

ysis of pandemic management strategies but also lays the groundwork for future research 

in this area to improve public health responses to global health challenges. 

A limitation of this study is that the community mobility dataset may not fully cap-

ture all mobility changes in Victoria during the period of social restrictions. The dataset 

relies primarily on specific mapping applications and there may be other sources of mo-

bility data, such as other transport apps, which are not accounted for in this analysis. 

These unaccounted sources could introduce potential biases and gaps in our understand-

ing of mobility patterns during lockdowns. It is also important to note that the effective-

ness of policies and their impact on mobility may vary depending on cultural, economic, 

and social factors. This study focuses on Victoria and the findings may not be directly 

generalisable to other regions with different demographics and policy implementation 

strategies. 

5. Conclusions 

In summary, this study highlights a significant reduction in compliance with social 

restrictions during the middle and final stages of long-term lockdown. This trend is evi-

denced by a marked increase in visits to retail and leisure centres, parks, workplaces, gro-

cery stores, and pharmacies, as well as increased use of public transport. Furthermore, the 

proposed machine-learning-based model of COVID-19 stimulation revealed that this fluc-

tuation in mobility measures over the course of the lockdown had a noticeable impact on 

the effectiveness of controlling COVID-19 infection. This underscores the importance of 

maintaining ongoing efforts to contain the spread of the virus. Meanwhile, a strong neg-

ative correlation was also observed between social restriction policies, retail and recreation 

visiting, and public transport visiting mobility. 

In terms of social restriction policies, the proposed model suggests that the cancella-

tion of public events and restrictions on gatherings are the most effective restriction 
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policies to prevent the increase of COVID-19 infection in the Victorian region in terms of 

short-term and long-term lockdowns. The study provides valuable insights for policy-

makers in designing effective lockdown policies that can slow the spread of the virus. 

In conclusion, the application of machine learning techniques in our study to analyse 

the relationship between social restriction policies, community mobility, and COVID-19 

infection across varying lockdown durations provides a valuable framework for future 

epidemiological studies. This approach may be particularly useful for adaptation to other 

infectious diseases. The knowledge gained is crucial for the design of data-driven public 

health policies, enabling policymakers to make informed decisions during health crises 

and tailor interventions to different situations. 
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Appendix A 

Table A1. p values for the correlation analysis. 

P-value cases 

Retail 

and 

recrea-

tion 

visit-

ing 

Gro-

cery 

and 

phar-

macy 

visit-

ing 

Park 

visit-

ing 

Public 

transport 

visiting 

Work-

place 

visit-

ing 

Resi-

den-

tial 

mobil-

ity 

data 

School 

closing 

policy 

Work-

place 

closing 

policy 

Cancel 

public 

events 

policy 

Re-

strictions 

on gath-

erings 

Close 

public 

transport 

policy 

Stay-

at-

home 

re-

quire-

ments 

Re-

strictions 

on inter-

nal move-

ment 

Inter-

na-

tional 

travel 

con-

trols 

cases <0.001 0.001 0.001 0.266 0.001 0.005 0.002 0.002 0.001 <0.001 <0.001 0.001 0.001 <0.001 <0.001 

Retail and 

recreation 

visiting 

0.001 <0.001 <0.001 0.016 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.014 <0.001 <0.001 <0.001 

Grocery 

and phar-

macy vis-

iting 

0.001 <0.001 <0.001 0.024 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.005 <0.001 <0.001 <0.001 

Park visit-

ing 
0.266 0.016 0.024 <0.001 0.038 0.109 0.024 0.018 0.021 0.057 0.091 0.478 0.019 0.086 0.131 
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Public 

transport 

visiting 

0.001 <0.001 <0.001 0.038 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.011 <0.001 <0.001 <0.001 

Work-

place vis-

iting 

0.005 <0.001 <0.001 0.109 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.014 <0.001 <0.001 <0.001 

Residen-

tial mo-

bility data 

0.002 <0.001 <0.001 0.024 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.018 <0.001 <0.001 <0.001 

School 

closing 

policy 

0.002 <0.001 <0.001 0.018 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.023 <0.001 <0.001 <0.001 

Work-

place clos-

ing policy 

0.001 <0.001 <0.001 0.021 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.018 <0.001 <0.001 <0.001 

Cancel 

public 

events 

policy 

<0.001 <0.001 <0.001 0.057 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.005 <0.001 <0.001 <0.001 

Re-

strictions 

on gather-

ings 

<0.001 <0.001 <0.001 0.091 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.003 <0.001 <0.001 <0.001 

Close 

public 

transport 

policy 

0.001 0.014 0.005 0.478 0.011 0.014 0.018 0.023 0.018 0.005 0.003 <0.001 0.019 0.002 0.002 

Stay-at-

home re-

quire-

ments 

0.001 <0.001 <0.001 0.019 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.019 <0.001 <0.001 <0.001 

Re-

strictions 

on inter-

nal move-

ment 

<0.001 <0.001 <0.001 0.086 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 <0.001 <0.001 <0.001 

Interna-

tional 

travel 

controls 

<0.001 <0.001 <0.001 0.131 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 <0.001 <0.001 <0.001 
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