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ABSTRACT In designing neuromorphic circuits and systems, developing compact and energy-efficient
neuron and synapse circuits is essential for high-performance on-chip neural architectures. Toward that end,
this work utilizes the advanced low-power and compact 7nm FinFET technology to design leaky integrate-
and-fire (LIF) neuron and spike-timing-dependent plasticity (STDP) circuits. In the proposed STDP circuit,
only six FinFETs and three small capacitors (two 10fF and 20fF) have been utilized to realize STDP learning.
Moreover, 12 transistors and two capacitors (20fF) have been employed for designing the LIF neuron circuit.
The evaluation results demonstrate that besides 60% area saving, the proposed STDP circuit achieves 68%
improvement in total average power consumption and 43% lower energy dissipation compared to previous
works. The proposed LIF neuron circuit demonstrates 34% area saving, 46% power, and 40% energy saving
compared to its counterparts. The neuron can also tune the firing frequency within 5MHz-330MHz using an
external control voltage. These results emphasize the potential of the proposed neuron and STDP learning
circuits for compact and energy-efficient neuromorphic computing systems.

INDEX TERMS Neuromorphic, LIF neuron, synapse, STDP, FinFET.

I. INTRODUCTION
Undoubtedly, computers are among the most important
inventions in modern human life, influencing everything
from industry, military, and agriculture to even human daily
activities. Computers utilize the von Neumann architecture
for data processing. In the von Neumann architecture,
processing and storage are performed separately using the
processor and memory units [1]. Von Neumann computers
have successfully addressed data processing needs over
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the past decades. However, the continuous demand for
miniaturizing computing systems with fast, or even real-
time operation, has led to the establishment of neuromorphic
computing systems [2]. In neuromorphic computing systems,
processing and storage occur simultaneously, providingmuch
faster operation with lower power consumption. Moreover,
by moving the control from data centers to edge devices,
neuromorphic systems are the most promising pathways to
the future of high-performance computers [3].

As a brain-inspired computer, neuromorphic computing
systems are comprised of two cardinal units: neuron
and synapse circuits. The flexibility and extension of
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neuromorphic systems are highly dependent on the
performance functionality of the designed neuron and
synapse circuits [4]. Therefore, representing compact
and energy-efficient neurons and synapses is crucial for
developing high-performance on-chip neural systems. Over
the past decade, numerous synapse and neuron circuits
have been demonstrated in the literature using different
platforms and design scenarios [5], [6], [7], [8]. One method
to realize neurons and synapses is to develop emerging
neural and synaptic devices, such as ferroelectric field-
effect transistors, memristive devices, or magnetic tunnel
junctions [9], [10], [11]. Scientists have demonstrated that
using these emerging devices can remarkably improve the
functionality and performance of neuromorphic systems.
However, since the fabrication technology for these unique
devices is still premature and cannot be used as a commercial
technology, their usage as an industrial platform might be
limited. Another way is to employ the standard manufac-
turing process of complementary metal-oxide-semiconductor
(CMOS) technology. Due to the large-scale integration of
CMOS technology, demonstrating neuromorphic circuits and
systems based on this technology is a more efficient way to
mass production [12].
As the device dimension of integrated circuits and

systems shrinks down to sub-50nm feature size, conventional
planar CMOS transistors cannot preserve their unbeatable
functionality, and replacement or supplement solutions
are required to remove this scaling barrier [13], [14].
One of the potential solutions is to employ non-silicon
emerging nanomaterials such as carbon nanotubes, graphene,
or other contemporary materials [15]. Material scientists
have demonstrated that these non-silicon-based transistors,
such as carbon nanotubes, black phosphorus, and transition
metal dichalcogenides (TMD), can present better electrical
functionality, such as power consumption compared to the
silicon-based counterparts [16], [17], [18]. However, the
application of non-silicon alternatives has totally faded for
real-life applications such as neuromorphic systems and
neural networks due to the inability to fabricate these
transistors at the industrial level. In this regard, despite
providing better energy efficiency (at the simulation level),
non-silicon solutions such as CNTFETs cannot be employed
for real-life practical applications, and therefore, FinFET
technology remains the sole solution for demonstrating
realistic neuromorphic systems [19].

The main aim of this work is to demonstrate a novel
high-performance and energy-efficient leaky integrate-and-
fire (LIF) neuron and spike timing difference plasticity
(STDP) circuit as the two fundamental blocks for neuromor-
phic systems using 7nm FinFET technology. The proposed
LIF neuron circuit utilizes a Schmitt-trigger-based configura-
tion for firing the output and has an external control voltage
to tune the firing frequency rate. Consequently, the proposed
neuron has been designed using 12 FinFETs and two
capacitors. In designing the STDP circuit, a cardinal block
for weight updating of synapses, both weight potentiation

and depression, is provided in a multi-valued fashion. The
proposed STDP circuit employs 6 FinFETs and 3 capacitors.
The main contributions of this work are highlighted as
follows:

•The proposed LIF neuron and STDP circuits are designed
using the 7nm FinFET technology as a currently available
commercial manufacturing process

• The proposed LIF neuron circuit employed 12 FinFETs,
which provides 34% area saving compared to the state-of-the-
art works.

• The proposed STDP circuit indicates 60% area saving
using 6 FinFETs compared to its counterparts

• The proposed LIF Neuron and STDP circuits demon-
strate 57% power and 41% energy savings compared to their
counterparts

• The proposed LIF neuron has a tunable firing rate
(5MHz-330MHz) using an external control voltage providing
a wide frequency range

• The proposed circuits demonstrate robust and durable
designs against process variations

Following this introductory section, Section II provides the
research preliminaries, including the 7nmFinFET technology
and previous related works. The proposed LIF neuron and
STDP circuit design details are provided in Section III.
Comprehensive simulations are carried out in Section IV, and
the main results are concluded in Section V.

II. RESEARCH BACKGROUND
A. 7NM FINFET TECHNOLOGY
CMOS transistors were the only commercially applicable
technology for many decades. As the technology footprint
shrinks to below 22-nm feature size, several harmful silicon
short channel effects such as leakage current increment,
mobility degradation, reduced drain-to-source on-resistance,
and drain-induced barrier lowering emerged that hinders
further device scaling [20]. In the past years, FinFET
technology is the spotlight of IC designers owing to their
higher ION/IOFF current ratio, improved subthreshold swing,
and ease of batch fabrication using standard manufacturing
processes [21].
A 3D schematic view of a tri-gate FinFET is illustrated

in Fig. 1. In FinFETs, a thick insulator such as SiO2 is
used as the substrate. Then, the fabrication process follows
by developing silicon fins over the substrate through the
lithography and etching process. After the formation of fins,
a high-k dielectric layer such as HfO2 surrounds the fins to
provide a good gate electrostatic controllability. Finally, the
gate metal is deposited over the gate dielectric. More details
regarding the fabrication process of FinFETs can be found
in [22] and [23].

The drain current of a FinFET device can be given by [23]:

ID = βNFIN
2HFIN + TFIN

Lg
(VGS − VTH )α (1)

where VGS is the external gate-source bias voltage, VTH is
the device threshold voltage, TFIN and HFIN are the fins’
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FIGURE 1. The 3D view of a tri-gate FinFET device.

TABLE 1. Some of the fundamental parameters of 7nm FinFET
technology [24], [25].

thickness and height respectively, Lg is the gate length, NFIN
is the number of fins, α is the velocity saturation index, and
β is a fitting constant parameter.
Table 1 shows the fundamental parameters of the utilized

FinFET technology. In this work, 7nm FinFET technology
is used for circuit simulations in the Synopsys HSPICE
environment [24]. More details about the utilized model can
be found in [25].

B. PREVIOUS RELATED WORKS
Based on the design and hardware requirements, various
STDP and LIF neuron circuits have been proposed in the
literature during the past decades [26], [27], [28], [29]. Most
of these works suffer from two cardinal issues: (1) compli-
cated firing and learning behavior of the designed circuits,
and (2) high power, energy dissipation, and area budget that
hampers the practical implementation of neuromorphic chips.
Utilizing nonvolatile emerging materials such as memristors
or ferroelectric FETs can remarkably alleviate the circuit
design complexity and provide more energy savings [30],
[31]. However, fabricating these devices using commercial
fabrication methods is demanding and not efficient for batch
fabrication.

In 2012, Albrecht et al. demonstrated energy-efficient
neuron and synapse circuits using the 90nm standard

CMOS process. To realize the designed neuron and synapse,
they employed a transconductance amplifier. The designed
neuron and STDP circuits used 20 and 105 transistors with
5 capacitors for a correct operation which leads to 0.4pJ
energy per spike consumption [32].

By using a resistive synapse configuration, Wu et al.
proposed a spiking neuron for brain-inspired neural networks
in 180nmCMOS technology. These designs, which employed
more than 100 transistors, represent 9.3pJ/spike energy
consumption and occupy 0.01mm2 die area [33]. Aamir et
al. used a switched-capacitor structure and demonstrated an
LIF neuron for large-scale neuromorphic systems in 2016.
The designed circuit was implemented in 65nm CMOS
technology and used 20T transconductance amplifier and
large capacitors for operation. This structure consumes
138µW power at a 3pF load capacitor [34].
By leveraging memristor devices and eliminating the

need for transconductance amplifiers, in 2018 Shamsi et al.
designed a CMOS neuron and memristor crossbar arrays
in 90 CMOS technology [35]. This work utilizes a winner-
take-all structure for realizing the LIF neuron circuit and
consumes 4.3pJ/spike energy with 182pW static power
consumption. In 2017, Sahoo et al. employed a sub-1V
ring oscillator as a leaky integrator to design LIF neuron
circuit [36]. This structure operates at a 1MHz firing rate with
more than 50 transistors in the 65nm standard CMOS process.

In 2021, by offering a spike frequency adaptation mech-
anism, Zare et al. proposed an energy-efficient LIF neuron
model using TSMC 130nm CMOS technology [37]. The
firing frequency of the designed LIF neuron circuit could be
calibrated from 0.15MHz up to 0.5MHz with a 22µm2 layout
area.

Akabari et al. designed a 0.3V conductance-based silicon
neuron in 180nm CMOS process. This structure con-
sumes 135fJ/spike energy with an area of 993µm2 [38].
Joo et al. employ a novel design technique to propose an
energy-efficient synapse and LIF neuron circuit using STDP
on-chip learning in 2022 [39]. The proposed STDP and LIF
neuron circuits consume 4.6fJ/spike and 9.5fJ/spike energy in
the 28nm CMOS process. Despite providing 94% and 43%
improvements in energy and area compared to the previous
design, these designs require bias circuits and comparators.

In 2023, Chen et al. demonstrated a power-efficient
synapse and neuron circuit for analog spiking neural network
applications [40]. The designed neural structure was fabri-
cated in TSMC 65nm CMOS technology with 127µm2 and
231µm2 chip area. With a firing rate of 230MHz, the neuron
circuit consumes 4pJ/spike energy.

Some of the previous works employed nonvolatile resistive
memories such as memristors to establish high-performance
neuromorphic systems. Dong, et al. demonstrated a
compact machine learning architecture with a spintronic
memristor-based synapse circuit [41]. The proposed synapse
circuit showed a bimodal behavior because of the threshold
characteristic of the memristor device. By fabricating a
meta-oxide-based memristor, Dong et al. proposed a flexible
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neuromorphic computing system with a hardware-friendly
training approach [42]. The proposed hardware demonstrated
a good trade-off between accuracy and time dissipation.
In 2023, Ji et al. proposed an interactive in-memory
computing system for video sentiment application [43]. The
circuit-level implementation of the proposed system had been
done using budget-efficient carbon-based memristors. More
memristor-based related neuromorphic designs can be found
in [44], [45], [46], and [47].

More synapse and LIF neuron circuits using different
design scenarios can be found in [48], [49], and [50]. In this
work, by proposing a novel design method, we propose a
compact and energy-efficient STDP and LIF neuron circuit
using 7nm FinFET technology. In the following, the design
procedure of the proposed STDP and LIF neuron circuits is
provided in detail.

III. PROPOSED DESIGNS
In realizing neuromorphic systems, two cardinal blocks
should be designed for efficient hardware: neurons and
synapses. The performance of spiking neural networks and
their on-chip neuromorphic implementation is highly depen-
dent on the performance of these two blocks. LIF neurons and
STDP-based synapses are the most frequently used structures
for hardware implementation of neuromorphic systems [27],
[28], [29]. During the past decades, numerous synapse and
LIF neuron circuits have been proposed in the literature using
different platforms and design techniques and employing
emerging neural and synaptic devices, like ferroelectric field-
effect transistors, memristive devices, graphene, or magnetic
tunnel junctions [5], [6], [7], [8], [9], [10], [11], [15]. These
devices can improve the functionality and performance of
neuromorphic systems. However, the main research gap
is the inability to fabricate using these particular devices,
because of the fact that they are still premature and cannot
be used as an industrial solution. Due to the large-scale
integration of FinFET technology as the current manufac-
turing platform, demonstrating neuromorphic synapses and
neurons based on this technology is of high interest and can
lead to efficient implementations of real-world neuromorphic
applications [12]. Hence, the main motivation of this work
is to design and demonstrate STDP and LIF neuron circuits
using FinFET technology.

A. THE PROPOSED STDP CIRCUIT
There are numerous methods for updating the weight
of synapses between neurons. Among various candidates,
STDP, a type of Hebbian learning with temporal asymmetry,
is a highly compatible learning method with SNNs [51].
Moreover, it has been demonstrated in the literature that the
human brain utilizes this method for synaptic plasticity [52].
The general illustration of STDP learning is shown in
Fig. 2. According to Fig. 2, the STDP learning is based
on the timing difference between the pre (VPRE) and post
(VPOST) synaptic spikes. When VPRE arrives sooner than the
VPOST the synaptic weight would be increased (potentiation).

FIGURE 2. The weight potentiation and depression illustration of STDP
learning [53], [54].

FIGURE 3. The proposed STDP circuit using FinFET technology.

Otherwise, the VPOST activates before VPRE and reduces
the synaptic weight (depression process). The strength of
the potentiation and depression processes depends on the
timing difference. More details regarding the STDP learning
of SNNs can be found in [53] and [54].

Fig. 3 illustrates the proposed STDP circuit using FinFET
technology. As can be seen in this figure, when VPRE
is activated, the inverted signal (VPREB) turns on the M1
and starts to charge the CPOT capacitor. After the VPRE
becomes 0V, the CPOT capacitors start to gradually discharge
to the ground through the M2 transistor (which acts as a
resistor). Consequently, if VPOST becomes activated during
the discharging period, the remaining voltage will charge
the out-node capacitor (CW). This potentiation process
depends on the timing of the activation of VPOST. If VPOST
activates sooner, the more charging voltage is delivered to
the CW.
The depression process is similar to the potentiation.When

the VPOST turns on before VPRE, the M6 transistor starts to
conduct and reduce the voltage of VDEP node to the ground.
Meanwhile, if VPRE is activated after VPOST, the voltage of
the out-node capacitor (CW) decays to the VDEP voltage.
The depression process also depends on the timing difference
(1T) between the VPOST and VPRE. Lower 1T leads to more
discharging of the VW voltage.
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FIGURE 4. The proposed LIF neuron circuit in FinFET technology.

B. THE PROPOSED LIF NEURON CIRCUIT
In designing SNNs, LIF neurons are the most highly appli-
cable models for implementing compact and energy-efficient
neuromorphic hardware. During the past years, various LIF
neuron circuits using different design methods have been
proposed in the literature. Most of these works suffer from
high design complexity, a significant number of transistors
(due to using transconductance amplifiers), and high energy
and area budget [33], [34], [35], [36]. In this section,
we demonstrate a compact structure LIF neuron circuit in
FinFET technology.

Fig. 4 portrays the proposed LIF neuron circuit. Based
on Fig. 4, the input synaptic current (IIN) delivers to the
membrane capacitor through the current mirror (M1 andM2).
The Cmem and M7 act as a leaky integrator. The M8-M10
constructs a Schmitt trigger to fire the output spike. When the
Cmem rises beyond the upper threshold point of the Schmitt
trigger, the out node (VSPIKE) fires. Afterward, the M12
transistors become activated and increase the gate voltage of
M3 and M4. Consequently, by charging the Cref capacitor,
the M6 transistor turns on the discharge the Cmem capacitor.
Therefore, the output voltage becomes zero again, and this
process will continue to generate the next spike. It is worth
poting out that by changing the VC voltage, the refractory
time can be harnessed, and therefore tunable firing rate is
achievable. It can be concluded that the LIF neuron has
been implemented by using 12 FinFETs and two capacitors
without using any transconductance amplifier.

It is worth noting that the proposed LIF neuron and
STDP circuit are based on FinFET technology, and no
nonvolatile emerging components have been used (such as
memristors and ferroelectric capacitors). Moreover, since
the utilized capacitors have sub-50fF values, they can
be easily scaled using MOS-CAP structures in different
technologies. Therefore, the proposed structure can be scaled
with large-scale multi-layer neural networks without facing
any performance failure. In neuromorphic circuits, long-term
stability is a pivotal concern that needs to be investigated
at the weight storage synapses. This issue becomes critical
when nonvolatile components such as memristors and
ferroelectric transistors (FeFETs) are employed for weight
backup and restore operation (where the set-reset resistance

FIGURE 5. The variation of the weight voltage (1W) using the proposed
STDP circuit.

in memristors and FeFETs should be considered for
long-term stability) [18]. However, in silicon-based neuro-
morphic circuits, the weight storage is performed statically
without using any nonvolatile elements and no stability
concerns would raise at weight storage and retention
stages [39]. In this regard, FinFET-based neural networks
and neuromorphic systems are stable structures during the
operation over period of use.

IV. PERFORMANCE EVALUATION OF THE PROPOSED
DESIGNS
The weight-updating simulation results of the proposed
STDP circuit are shown in Fig. 5. In the obtained results,
the timing difference between the post- and pre-synaptic
spikes is considered as 1t=tPOST - tPRE and 1W is the
variation of the synaptic weight. After interpreting the results,
it can be inferred that the proposed STDP circuit can
update the synaptic weight in an applicable wide range
(37.5% maximum weight variations for VDD=800mV). It is
worth pointing out that the slope of the potentiation and
depression in the obtained STDP curve can be calibrated by
changing the VB1 and VB2 bias voltages.

The transient response of the proposed STDP circuit for
weight potentiation and depression is shown in Fig. 6a. When
VPRE comes sooner than VPOST the out node capacitor starts
to charge based on the VPOT voltage (Fig. 6). If VPOST
activates before VPRE (Fig. 6b), the CW capacitor discharge
to the related VDEP voltage. As indicated, the proposed STDP
circuit provides a wide range of weight potentiation and
depression using only 6 FinFETs and 3 capacitors. Therefore,
it can be leveraged for on-chip learning of SNNs.

Fig. 7 illustrates the transient response of the proposed LIF
neuron circuit. It can be seen that the out-node voltage starts
to leaky charge through the membrane capacitor. After the
input voltage of the membrane capacitor transcends the upper
threshold point, the LIF neuron starts firing and produces
the related output spike. It is noteworthy that the firing rate
and refractory period can be controlled by the VC and Cref
capacitor.

To obtain the firing frequency range of the proposed LIF
neuron circuit, both VC and VB (Fig. 4) have changed and
represents the simulation results in a 3D plot. Fig. 8 shows the
3D plot of the firing frequency of the proposed LIF neuron
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FIGURE 6. The transient response of the proposed STDP circuit. (a) the
weight potentiation and (b) depression process.

FIGURE 7. The transient response of the proposed LIF neuron circuit.

circuit. It can be seen that VC voltage has a major impact
on the firing rate of the LIF neuron circuit. By changing the
control voltage within 0.2V<VC<0.4V, the firing frequency
can be calibrated from 5MHz to 330MHz.

In designing nanoscale integrated circuits and systems,
physical parameters variation of the utilized technology
might have a major impact on the performance functionality.
In FinFET-based circuits and systems, variations in fin
thickness (tFIN), height (HFIN), oxide thickness (tox) are the
main source of variations that can degrade the performance

FIGURE 8. The firing rate variations of the proposed LIF neuron circuit.

FIGURE 9. The impact of process variations on the energy and power
consumption of the proposed (a) STDP and (b) LIF neuron circuit.

of the designed circuits and systems after fabrication [55].
In this regard, 5000 runs of Monte Carlo simulations have
been conducted to assess the impact of process variations.
Moreover, ±10% variations in the FinFET parameters with
a Gaussian distribution have been considered at the 3 sigma
level.

The Monte Carlo simulation results of the proposed STDP
and LIF neuron circuits are presented in Fig. 9. As depicted,
despite experiencing significant physical parameter varia-
tions, the proposed STDP and LIF neuron circuits are robust
and have not shown more than 3% variations.

A performance comparison between the electrical metrics
of the proposed STDP and LIF neuron circuits is shown in
Table. 2 and Table. 3. All the compared works have been
redesigned based on the utilized 7nm FinFET technology to
provide a meaningful comparison. Based on the comparison
results between different STDP circuits (Table. 2), it can be
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TABLE 2. A performance comparison between the electrical metrics of the proposed STDP circuit and some of the previous related designs.

TABLE 3. A performance comparison between the proposed LIF neuron circuit and previous related designs.

FIGURE 10. The impact of corner variations on the STDP of the proposed
FinFET-based weight updating circuit.

observed that using a more compact structure provides 68%,
43%, and 60% total average improvements in power, energy,
and area compared to the previous related designs. In Table. 3,
the proposed LIF neuron circuit shows 46% improvements in
power, 40% improvements in energy, and 34% improvements
in the area compared to the other counterparts. Moreover, the
proposed design can harness the firing frequency within a
wide applicable range.

In designing neuromorphic circuits and systems, noise
can usually affect the threshold voltage of the transistors
and change the stored weight and weight updating (STDP)
circuit [59], [60]. In order to assess the impact of noise
on the obtained STDP curve, corner analysis is performed,
considering five corner processes: (1) typical n-type typical
p-type (TT), (2) fast n-type fast p-type (FF), (3) slow n-type
slow p-type (SS), (4) slow n-type fast p-type (SF), and
(5) fast n-type slow p-type (FS). Fig. 10 illustrates the
corner simulation results for the proposed STDP curve. Based
on the results, it can be seen that no failure has occurred
under the five corner processes. Therefore, the proposed

FinFET-based circuit is completely immune to unwanted
noises and variations.

Based on the results, it can be emphasized that the
proposed STDP and LIF neuron circuits are high-potential
candidates to realize compact and energy-efficient on-chip
neuromorphic computing systems.

V. CONCLUSION
In this work, a compact and energy-efficient LIF neuron and
STDP circuit have been proposed based on 7nm FinFET
technology. The proposed LIF neuron has been designed
in a particular way that can calibrate the firing frequency
using an external control voltage. Moreover, by offering
a simple and compact structure, the multi-valued weight
potentiation and depression have been performed in a wide
applicable range. The simulation results demonstrate that
the proposed STDP and LIF neuron circuits have shown
60% and 34% improvement in the area, respectively. Under
similar conditions, the proposed STDP circuit indicates a
68% improvement in total average power consumption and
a 43% improvement in energy saving compared to the other
counterpart. For the proposed LIF neuron circuit, these values
change to 46% for power and 40% for energy dissipation.
By changing the external control voltage, the proposed LIF
neuron circuit is able to tune the firing frequency in a wide
range (5MHz-330MHz).

The proposed results accentuate the promising applications
of the proposed STDP and LIF neuron circuit for commercial-
ized on-chip neuromorphic computing circuits and systems
without using any non-silicon emerging technology, which is
not cost-effective for batch fabrication.
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