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ABSTRACT
Knowledge of the microbiome-gut-brain axis has revolutionized the field of psychiatry. It is now well recognized that
the gut bacteriome is associated with, and likely influences, the pathogenesis of mental disorders, including major
depressive disorder and bipolar disorder. However, while substantial advances in the field of microbiome science
have been made, we have likely only scratched the surface in our understanding of how these ecosystems might
contribute to mental disorder pathophysiology. Beyond the gut bacteriome, research into lesser explored compo-
nents of the gut microbiome, including the gut virome, mycobiome, archaeome, and parasitome, is increasingly
suggesting relevance in psychiatry. The contribution of microbiomes beyond the gut, including the oral, lung, and
small intestinal microbiomes, to human health and pathology should not be overlooked. Increasing both our
awareness and understanding of these less traversed fields of research are critical to improving the therapeutic
benefits of treatments targeting the gut microbiome, including fecal microbiome transplantation, postbiotics and
biogenics, and dietary intervention. Interdisciplinary collaborations integrating systems biology approaches are
required to fully elucidate how these different microbial components and distinct microbial niches interact with each
other and their human hosts. Excitingly, we may be at the start of the next microbiome revolution and thus one step
closer to informing the field of precision psychiatry to improve outcomes for those living with mental illness.

https://doi.org/10.1016/j.biopsych.2023.08.020
In a field struggling with stagnation with regard to biomarker and
treatment discovery, the early 21st century has been promising
for the field of psychiatry. The microbiome revolution has pro-
vided evidence that aspects of mental disorder pathophysiology
are correlated (in humans) and causally related (in preclinical
models) to our mutualistic microorganisms (1). While the foun-
dational relationships between microbes and humans are often
difficult to measure within the complex human ecosystem, evi-
dence that microbiome-gut-brain mechanisms observed in ani-
mal models translate to mental health in people is emerging
(2–6). Critical work uncovering the potential mechanistic path-
ways and processes including, but not limited to, inflammation
and the immune system, oxidative stress and mitochondrial
dysfunction, tryptophan-kynurenine metabolism, neuroendo-
crine metabolism, gut and blood-brain barrier integrity, and
neurotransmitter production continues to shed light on these
important relationships (1,7). Novel approaches and improved
analytical tools are now allowing researchers to move beyond
the many case-control studies that have investigated the asso-
ciations between the gut bacteria and major depressive disorder
(MDD) and, to a lesser extent, bipolar disorder (BD) (8,9). As
much of the reviews to date have focused on gut bacteria, this
review aims to shine a light on some of the other microorganisms
and environmental niches that may be contributing to the
microbiome-gut-brain axis and mood disorder pathophysiology.

THINKING BEYOND THE BACTERIOME IN MOOD
DISORDERS

Most gut microbiome research in relation to mood disorders,
and indeed more broadly, has focused on bacteria and
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bacterial genomes (i.e., the gut bacteriome). Recent techno-
logical advances have provided evidence that lesser explored
microorganisms—viruses, fungi, archaea, and parasites—are
crucial in shaping the gut microbiome ecosystem through
their interactions not only with the host, but also with each
other and bacteria through complex inter- and intrakingdom
microbe-microbe interactions (Figure 1) (10). While the study of
other microorganisms is in its infancy, understanding their
presence and mechanisms of action is likely critical for
exploiting the potential of the gut microbiome to advance
health outcomes. The following section will provide a brief
overview of some of these lesser explored organisms and how
they may relate to mood disorders.

The Gut Virome

The gut virome comprises eukaryotic and prokaryotic viruses,
as well as plant viruses largely derived from dietary intake, that
can infect both human and other microbial cells (11). Viromes
across body sites differ in composition; however, the greatest
abundances of viruses reside within the gastrointestinal tract
(12). These viruses are at least as abundant as bacteria, with
estimates that they may outnumber bacteria up to a factor of
10:1 (11,13). Bacteriophages (i.e., viruses that selectively infect
or target bacteria) are the most abundant, comprising poten-
tially as much as 95% of the human gut virome (14–16). Phage
diversity and richness is greatest at birth and decreases to a
highly individualized, stable, adult-like state by two years of
age; this contrasts with the initial assembly of the gut bacter-
iome, which starts with lower diversity that gradually increases
(16). Viruses have been strongly implicated in the development
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Figure 1. Beyond the bacteriome in mood disorders. Numerous factors, including environmental (i.e., air pollution, green space, and pets) and lifestyle (e.g.,
diet, alcohol consumption, medication use, tobacco use) factors, can contribute to the assembly and compositions of different human microbiomes, including
the oral, lung, and small intestinal microbiomes. These microbiomes consist of different types of microorganisms, including bacteria, archaea, parasites, fungi,
and viruses, which communicate with each other and may impact human health through mechanisms such as metabolite production and influencing the
development and regulation of the human immune system. Understanding the contribution and function of these environmental niches and different micro-
organisms to human health may afford the opportunity to further exploit microbiomes to improve human health, including mood disorders, through novel
therapies such as fecal microbiome transplantation, dietary interventions, postbiotic and biogenic supplementation, and precision medicine.
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and regulation of the human immune system (17), which is a
primary mechanism involved in the pathophysiology of mood
disorders (18). Phages also shape the gut bacteriome and in-
fluence bacterial metabolism (19), which may also contribute to
mood disorder pathophysiology.

In preclinical studies, differences in gut virome composition
have been observed in a chronic restraint stress-induced ro-
dent model of depression, and these differences correlated
with differences in fecal neurotransmitters and metabolites,
particularly those involved in tryptophan metabolism (20). Dif-
ferences in gut virome composition have also been observed in
a nonhuman primate model of depression compared with
control nonhuman primates, which correlated with altered lipid
metabolism in both the brain and periphery (21). In humans,
differential abundances of gut viruses have been observed in
MDD, and combining these viral data with those of bacteria
and metabolites was able to better discriminate MDD from
healthy control individuals (22). To date, there are no studies
that have investigated the gut virome in BD, and the functional
impacts of differences in the virome in individuals with mood
disorders is yet to be considered.

The Gut Mycobiome

The gut mycobiome, which refers to the fungal components of
the gut microbiome, is also receiving increasing attention (23).
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Although fungi comprise only 0.1% of the microbes present in
the gut, they can be up to 100 times larger than bacteria, thus
contributing substantial biomass (24). The gut mycobiome is
colonized with fungal species at birth, with key changes
observed with the transition to solid foods, suggesting that diet
is an important determinant of gut mycobiome composition
(25). Maturation of the gut mycobiome has been associated
with both maternal and early-life factors, including both
maternal and infant body mass index (26), which are factors
that are also important to mental health (27). In adulthood, gut
mycobiomes show high interindividual variability, and poten-
tially a core mycobiome, that continues to be shaped by
environmental factors, especially diet (28,29). Cross-kingdom
analyses provide evidence of intra- and interkingdom
communication between the gut bacteria and fungi, and cor-
relations with fecal metabolites (28). The gut mycobiome ap-
pears to modulate both the human immune system and gut
bacteriome assembly and composition (23) and thus may
plausibly play a role in mood disorder pathogenesis.

Commensal gut fungi have previously been implicated in
disease. Blood antibodies to the fungus Saccharomyces cer-
evisiae, a common gut commensal (30), have been observed in
Crohn’s disease, especially in children (31,32). It is hypothe-
sized that increased inflammation and permeability of the gut
results in translocation of this fungus into systemic circulation;
rg/journal
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however, this idea is controversial (33,34). Increased levels of
Saccharomyces cerevisiae antibodies have also been
observed in the neurological conditions Parkinson’s disease
(35), schizophrenia (36), and BD (37). Higher levels of anti-
bodies to the fungal species Candida albicans have also been
observed in schizophrenia and BD (38). In MDD, reduced alpha
diversity of the gut mycobiome and alterations in composition,
including increased Candida albicans, have been observed
compared with control participants (39). Disruptions in com-
munity networks, including bacteria-fungal interconnections,
were also observed, and combining data on both the gut
bacteriome and mycobiome improved the ability to discrimi-
nate MDD participants from healthy control participants (39).
Disrupted bacteria-fungi networks have also been reported in
schizophrenia (40); however, to date, no studies have explored
gut mycobiome composition and function in BD, nor the
functional consequences of these differences within the
context of mood disorders.

The Gut Archaeome

Archaea are prokaryotic microorganisms with structural and
functional differences to bacteria, thus forming their own
domain (41). Archaea are primarily known for their methane
production and their ability to live in harsh conditions like hot
springs or salt lakes (42,43). Like other components of the gut
microbiome, the archaeome is influenced by environmental
factors including urbanization and diet (44). Methanogens,
such as the genus Methanobrevibacter, are the most pre-
dominant archaea in the gut, and can utilize hydrogen pro-
duced by bacterial fermentation to form methane (45). Methane
has been shown to influence gut transit time and have inhibi-
tory effects on the gut bacteriome, and thus archaea have
been implicated in the pathogenesis of inflammatory bowel
disease and irritable bowel syndrome (46). Some studies in
mental disorders have reported higher levels of methanogens,
as well as enrichment of pathways associated with methano-
genesis and methane metabolism (8). While there are few
studies directly linking archaea to mood disorders, these mi-
croorganisms have been implicated in relevant mechanisms,
such as bile salt metabolism (46) and the metabolism of tri-
methylamine and TMAO (trimethylamine N-oxide) (47). Bile
acids have a potential protective effect in mood disorders,
whereas TMAO can cross the blood-brain barrier, and its
abundance has been positively associated with MDD severity
(48); therefore, gut archaea may be able to influence mood
disorder pathophysiology through disruptions to metabolite
production.

The Gut Parasitome

Humans have commensal parasites that reside in the gut,
including protozoa (e.g., amoebozoa) and eukaryotic para-
sites (e.g., helminths, also known as worms), which have
been proposed to be beneficial for health (49,50). While
counterintuitive, as they are generally associated with dis-
ease, parasites have been shown to be important in the
regulation of the immune system (51). Cross-kingdom in-
teractions suggest that the presence of parasites can influ-
ence bacterial composition (49,50,52), and lower
abundances of parasites in developed nations has been
Biological Psyc
hypothesized to have contributed to the reduced gut bac-
terial diversity observed in these countries (49).

In humans, the prevalence of helminths appears to be
inversely associated with immunological diseases (53,54).
Numerous clinical trials have been conducted or are currently
underway to determine the safety and feasibility of helminth
therapy for conditions such as allergy, inflammatory bowel
diseases, multiple sclerosis, and rheumatoid arthritis (53,54),
and the application of helminth therapy to mental disorders has
been proposed (53). In common with fecal microbiome trans-
plantation, people are self-treating with helminths (55), high-
lighting the imperative for clinical trials of helminth therapy to
better understand safety, potential causal pathways, and effi-
cacy (55). This is particularly important, as parasitic infection—
as opposed to mutualism—has been linked to higher preva-
lence of mental illnesses (56) and may even increase the risk of
psychiatric disorders (57). Further, while the deworming of in-
dividuals in areas endemic with parasitic infections that result
in mortality is considered essential, there are now concerns
that such interventions may contribute to the rise in inflam-
matory and autoimmune conditions in these countries over
time (54). Considering the potential of helminth therapy for
immunological conditions, the contribution of parasites to
human health, including mental health, is an important
research focus.

Challenges in Measuring Other Microorganisms

While reference databases for these other microorganisms are
less developed than for the gut bacteriome, groups are
developing and curating databases specifically focusing on
human gut viruses (16,58,59), fungi (30), and archaea (45);
however, such initiatives for the gut parasitome are still
required (60). Each of these different microorganisms comes
with their own unique characteristics that require different
collection, processing, sequencing, and bioinformatic meth-
odologies (61–63). Recent guidelines for the standardized
reporting of microbiome research are a promising step toward
improving approaches to the science (64). However, the
challenges of trying to also understand the role of the other
microorganisms of the gut microbiome are daunting and will
require substantial interdisciplinary collaboration.

THINKING BEYOND THE LARGE INTESTINE IN MOOD
DISORDERS

To date, most microbiome-related research has focused on
the gut; however, numerous microbiomes have a role to play in
human health. In the following section, we highlight some
advances in research pertaining to the oral, small intestinal,
and lung microbiomes, notwithstanding the myriad other
microbiomes that are likely contributing to health and disease
and whose role in mood disorders may be of relevance.

The Oral Microbiome

The oral microbiome comprises a less diverse microbiome
than the large intestine, with over 700 microbial taxa—mostly
bacteria—in the distinct niches of the tongue, plaque, cheek,
gingiva, and oral mucosa (65). The composition of the oral
microbiome appears to have changed alongside major dietary
shifts in history, particularly with the industrialization of food
hiatry February 15, 2024; 95:319–328 www.sobp.org/journal 321

http://www.sobp.org/journal


Mood Disorders: The Gut Bacteriome and Beyond
Biological
Psychiatry
systems (66). The oral microbiome also appears to be relatively
resilient (67,68); however, it is particularly susceptible to the
intake of highly fermentable carbohydrates (69). Similar to the
gut microbiome, the oral microbiome has been implicated in
mood disorders and other brain conditions. Two small studies
have reported associations between the abundances of taxa in
the saliva of young people with depression and anxiety
symptoms (70,71), with potential mediation via basal C-reac-
tive protein and cortisol levels (70). Differences in oral bacterial
taxa have also been observed in subgingival samples of those
with BD compared with healthy control individuals (72).

Although replication is required and causality remains un-
clear, there are theoretically plausible mechanisms to support
further investigation of the oral microbiome in mood disorders.
These include direct microbial translocation from the oral
cavity into the central nervous system via the facial nerves and
olfactory bulb (73), which has also been implicated as a
mechanism contributing to the pathogenesis of Alzheimer’s
disease (74), and disruption of the oral-gut microbiome axis,
which may contribute to neuroinflammatory processes (75).
Moreover, the immunomodulatory abilities of oral microbiota,
as per gut microbiota, can activate proinflammatory cytokines
and cause systemic inflammation (76).
The Small Intestinal Microbiome

The small intestinal microbiome has received somewhat less
attention, likely due to its relatively inaccessible nature that
limits measurement (77). Although bacterial composition ap-
pears to be less diverse than that of the large intestine (78), the
small intestinal microbiome shows greater and more dynamic
temporal variation, likely due to factors such faster transit
time and the need to rapidly respond to changing dietary
factors (77).

Considering most digestion and nutrient absorption occurs
within the small intestine, the composition of the small intes-
tinal microbiome may be extremely important to human health.
Preclinical studies have suggested that the small intestinal
microbiome is involved in nutrient and bile acid metabolism, as
well as mucosal immunity (79). In humans, samples from par-
ticipants with ileostomy have revealed that the small intestinal
microbiome is enriched with genes related to carbohydrate
metabolism, more so than that of the fecal microbiome (78).
Metagenomic analysis of human duodenal samples has shown
lower levels of genes associated with carbohydrate meta-
bolism, and higher levels of genes associated with lipid
metabolism, in individuals with obesity compared with lean
individuals (80). Moreover, change from a high-fiber diet to a
diet low in fiber and high in simple sugars reduced small in-
testinal microbiome diversity and increased gastrointestinal
symptoms in patients undergoing esophagogastroduodeno-
scopy (81).

A healthy dietary pattern has consistently been shown to
associate with reduced risk for depression (82,83), and dietary
interventions have been shown to improve depressive symp-
toms (84), even in moderate-to-severe MDD (85,86). Epidemi-
ological evidence suggests that those with BD have poorer
dietary patterns than healthy control individuals (87), and there
is evidence of improvements in BD symptoms with dietary
intake or supplementation of unsaturated fatty acids (88).
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Interventions of whole diet and dietary components have also
been shown to change fecal microbiome composition and
function (89,90), and thus the gut microbiome is hypothesized
to be a mediating factor in the diet-mental health relationship
(91). As we continue to unravel the diet-microbiome-mental
health interactions, it is possible that the small intestinal
microbiome will emerge as a key player; however, technolog-
ical advances are required to further understand its role in
health, including mental health.

The Aerobiome

The air we breathe contains its own microbiome—termed the
aerobiome—comprising microorganisms from our surrounding
environments arising from natural sources and human activities
(92). The average human adult breathes in approximately 11,000
L of air per day, and an estimated 108 bacterial genomes (93),
which can modulate the composition of human bodily micro-
biomes, particularly the lung microbiome. Research has also
linked the aerobiome to the pathophysiology of mental disorders
and, indeed, there is increasing interest in what is termed the
lung-brain axis (94). For example, rodents exposed to dust from
a more biodiverse soil had an increased abundance of a soil-
derived butyrate-producing gut bacterium, which negatively
correlated with anxiety-like symptoms (95).

The lung and other respiratory system microbiomes have
been implicated in neurological diseases (96). In preclinical
models, exposure to air pollutants has been shown to influence
neuroinflammation and microglial activation (97) and increase
amyloid-b plaque load in mice, a hallmark of Alzheimer’s dis-
ease (98). In humans, exposure to air pollution has been
associated with an increased risk of cognitive decline and
neurodegenerative disease, increases in depression and anx-
iety symptoms, and changes in brain structure and function
(99,100). However, to what extent these effects are mediated
by microbes is unclear. There is also evidence demonstrating a
role for the lung microbiome in modulating brain autoimmunity
in humans (101). Moreover, interactions between the gut and
the lungs—termed the gut-lung axis—and their respective
microbiomes have also been implicated in disease, particularly
through immune-mediated mechanisms (102). Finally,
increased exposure to nature-rich urban spaces (e.g., parks),
forests, or seascapes—commonly referred to as green and
blue spaces—have been associated with reduced depression
symptoms in observational studies, as well as with improve-
ments in mood in intervention studies (103,104). Again,
whether these associations or outcomes involve the aero-
biome is, as yet, uncertain, and several other causal explana-
tions have been demonstrated including physical activity,
reduced stress, and natural light (104). Future research in this
area may facilitate important information linking the environ-
ment and human mental health and explore therapeutic pos-
sibilities that harness the aerobiome.

THINKING BEYOND CURRENT TREATMENT
OPTIONS

Fecal Microbiome Transplantation

The process of therapeutic fecal microbiome transplantation
(FMT) involves transfer of the fecal microbiome, including all
rg/journal
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aspects of microorganisms and metabolites, of a healthy
person into an unwell recipient; this process is commonly used
and highly efficacious for Clostridioides difficile gut infection
(105). Seminal studies in rodent models have shown that FMT
from those with MDD into rodents can result in a depressive
phenotype (106–110). In humans, FMT has been shown to
improve depression symptoms in those with irritable bowel
syndrome; however, understanding whether this effect is
mediated by improvements in bowel symptoms requires
further exploration (111). More recently, FMT in those with
moderate-to-severe MDD has been shown to be feasible and
safe, with improvements in gastrointestinal symptoms and
quality of life observed, setting the scene for large randomized
controlled trials (112,113). Case studies of FMT in BD have
reported substantial improvements in symptoms (114,115).
However, fully powered randomized controlled trials are
required; promisingly, there is a large trial of FMT for BD
depression currently underway (116).

The contributions of the virome and mycobiome have also
been linked to the success of FMT. Indeed, sterile fecal filtrate
(including the viruses, metabolites, and other bioactive mole-
cules, but not bacteria) is showing some success for treating
conditions such as C. difficile infection, obesity, type 2 dia-
betes mellitus, and necrotizing enterocolitis (117). How these
other microorganisms influence FMT, or if this fecal filtrate is a
sufficient alternative to FMT, is yet to be determined. More
randomized controlled trials are required to answer these
questions in order to fully leverage the capacity of FMT as a
treatment strategy for mood disorders.
Postbiotics and Biogenic Metabolites

A postbiotic is a “preparation of inanimate microorganisms
and/or their components that confers a health benefit on the
host” (118). This definition differs from that of a probiotic, in
which the microorganisms must be viable. These nonviable
microbes and their cell components are proposed to influence
health through modulation of resident gut microorganisms,
enhancing gut barrier integrity and function, modulation of
local and systemic immune responses, modulation of systemic
metabolic responses, and systemic signaling via the nervous
system (118).

Postbiotics have been shown to improve sociability and
have a potential anxiolytic effect in healthy mice, with only
modest changes in gut microbiota composition (119). In rodent
models, the use of postbiotics has been shown to prevent
(120) and improve (121–123) depression- and anxiety-like be-
haviors. In humans, two randomized controlled trials of post-
biotic supplementation have been conducted in medical
school students during periods of stress (124,125), and im-
provements in general health, sleep, and gastrointestinal
symptoms, but not anxiety and depression symptoms, were
reported.

Closely related to the concept of postbiotics are bioactive
metabolites, sometimes referred to as biogenics, which are
produced by bacteria during fermentation processes. These
metabolites contribute to the functional activity of foods such
as sauerkraut, kombucha, kefir, and yogurt. These fermenta-
tion products include, but are not limited to, vitamins (such as
B vitamins), bioactive peptides (such as lactotripeptides),
Biological Psyc
bacteriocins (which aid with bacterial survival), short-chain
fatty acids (such as butyric acid), and neurotransmitters
(such as GABA [gamma-aminobutyric acid] and serotonin)
(126). These metabolites are thought to have numerous direct
health effects, including having neuroactive potential (127),
that are not always mediated through the gut microbiome
(128). The possibility that fermented foods can be used as
therapeutics in mood and anxiety disorders is generating
research interest, with trials investigating the impact of fer-
mented foods on brain structure and function currently un-
derway (ACTRN12622000622707).
Dietary Interventions

There is a consistent and growing body of evidence that diet
matters to the risk of depressive disorders (82) and across the
life course (129). Indeed, dietary interventions are showing
promise as efficacious adjunctive treatment options for clinical
MDD (85,86). Mechanistic pathways that are postulated to
mediate the diet-mental health relationship include the immune
system, brain plasticity, neurotransmitters, stress response
systems, gene expression, mitochondrial function, and gut
microbiota (91). Many of these mechanistic processes are
influenced by the microbiome-gut-brain axis. However, at
present there are no studies that have examined these
mechanisms within the context of a dietary intervention trial for
MDD, and it is still unknown just how much of the apparent
positive impact of dietary improvement on depressive symp-
toms are due to changes in gut microbiome composition and/
or function. Incorporating measures of both gut microbiome
composition and—critically—function and microbiome-diet–
related metabolites in intervention studies is needed.
Precision Medicine and Treatment Response

Leveraging the gut microbiome to inform and strengthen pre-
cision medicine strategies is an exciting area of research and
holds much promise for the field of psychiatry. Mood disorders
are consistently associated with differences in gut microbiome
composition compared with healthy control individuals (8,9). A
large population study reported an association between the
gut microbiome and quality of life and depression (130). Higher
relative abundances of Faecalibacterium and Coprococcus
were associated with higher quality of life, and lower abun-
dances of Coprococcus and Dialister were linked to depres-
sion, an observation that was validated in a second cohort
(130). Similar associations have also been observed in a recent
clinical study of female MDD individuals compared with
healthy volunteers; this study used random forest models to
identify bacterial genera that were enriched in healthy in-
dividuals compared with people with MDD that included Fae-
calibacterium and Coprococcus (131). This study also
identified bacterial genera enriched in MDD including Escher-
ichia-Shigella and Alistipes, taxa that are associated with
increased inflammation (131), implicating microbiota-immune-
brain signaling in MDD. These associations were also sup-
ported by findings from a large systematic review of gut
microbiome composition in psychiatric disorders, which
included 24 studies in MDD and 7 studies in BD (8). This
review reported consistently lower Coprococcus and
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Faecalibacterium in both disorders and higher Escherichia-
Shigella and Alistipes in MDD (8).

While the observation of some overlapping taxa observed
across studies is promising, there are no taxa whose differ-
ential abundance in mood disorders is ubiquitously observed
across all studies (8). Further, to date, most studies investi-
gating differences in gut microbiome composition between
those with and without mood disorders have only measured
genus-level differences; species and strains within a genus can
exert different functions (132), which makes the biological
relevance of differences at the genus level difficult to interpret.
Mood disorders have high clinical heterogeneity, and their
causes are likely multifactorial and differ widely across in-
dividuals. As such, it is highly probable that there is no singular
biological cure for these conditions, and individuals will benefit
from different treatment approaches specifically tailored to
them, as is the case within the spectrum of evidence-based
psychotherapeutic approaches (133). Thus, while the use of
specific signatures as a diagnostic tool for mood disorders
may be premature, gut microbiome profiles may be used to
identify individual risk, inform treatments, and predict treat-
ment responses, affording the development of personalized
recommendations.

Relatedly, it is becoming increasingly apparent that an in-
dividual’s gut microbiome composition influences their
response to treatments, for example, cancer therapies and
antibiotics (131,132). Differences in baseline gut microbiome
composition have been observed in responders and non-
responders to antidepressant treatment in MDD (133), and
changes in gut bacteriome composition have also been re-
ported after commencing psychotropic medication in both
MDD and BD (8). There also appear to be reciprocal in-
teractions between psychiatric medications and the gut
microbiome; the gut bacteriome has been implicated as influ-
encing the bioavailability of drugs and influencing drug meta-
bolism (134), including psychiatric medications (135–137),
while psychiatric medications have been shown to have anti-
microbial effects (138). Indeed, medication use has been
identified as one of the greatest confounders of gut micro-
biome composition (139–142). Medication use thus poses a
significant challenge in clinical trials of microbiome-modulating
therapies within psychiatry. However, understanding how
these medications may influence adjunctive treatments tar-
geting the microbiome, such as biotics or FMT, may provide
critical insights enhancing therapeutic success. Moreover, an
understanding of the role of gut microbes in mediating indi-
vidual variability in drug metabolism will be valuable in
informing personalized dosage recommendations.
CONCLUSIONS

The microbiome revolution has been a welcomed addition to
the field of psychiatry. Research conducted to date has been
critical in developing our understanding of the microbiome-
gut-brain axis and its contribution to mood disorder patho-
physiology. New frontiers in microbiome science, including the
contribution of other organisms, as well as the biological
relevance of other microbial niches, are avenues of research
that hold promise to further reveal how these mutualistic mi-
croorganisms influence mental disorders. We believe that
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harnessing this knowledge to inform future therapies and
precision psychiatry holds huge promise, although interdisci-
plinary collaboration and the use of systems biology will be
essential in bringing this vision to fruition.
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