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ABSTRACT
In this series, we outline a strategy for analyzing electrons and muons in gases in crossed electric and magnetic fields using the straightforward
transport equations of momentum-transfer theory, plus empirical arguments. The method, which can be carried through from first principles
to provide numerical estimates of quantities of experimental interest, offers a straightforward, physically transparent alternative to “off-the-
shelf” simulation packages, such as Magboltz and GEANT. In this first article, we show how swarm data for electrons in helium gas subject
to an electric field only can be incorporated into the analysis to generate electron swarm properties in helium gas in crossed electric and
magnetic fields and to estimate the Lorentz angle in particular. The subsequent articles in the series analyze muons in crossed fields using
similar transport theory, though the absence of muon swarm data requires empiricism of quite a different nature.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0172593

I. INTRODUCTION

In this series of three articles, we outline a straightforward strat-
egy for analyzing the behavior of low energy (≲ 20 eV) electron and
muon “swarms” in gases in crossed electric and magnetic fields,
using simple, approximate “fluid” or “momentum-transfer theory”
equations,1–3 supplemented by semi-empirical ideas where appro-
priate. The method can be carried through from first principles
to furnish numerical estimates of all physical quantities of inter-
est and offers a straightforward, physically transparent alternative to
both solution of Boltzmann’s kinetic equation,1–3 which can be both
mathematically and numerically challenging, and to “off the shelf”
packages, such as Magboltz4,5 and GEANT4.6 The user is always in
control and can readily tailor the analysis presented below to their
specific needs. Note that the procedure does not make use of the
“equivalent field concept” described elsewhere.7,8

In the first paper (Paper I), we use the formalism to estimate
the Lorentz angle of electrons in helium gas in crossed E and B fields,
after incorporating E-only swarm experimental data directly into the
equations. In the following articles (Papers II22 and III23), we analyze

muons in gases in crossed electric and magnetic fields. However,
unlike electrons, there is no experimental muon swarm data avail-
able to supplement the calculations: the required information must,
in effect, be assumed, as indeed others9,10 have done, on the basis of
semi-empirical arguments, called “scaling”10,11 or “aliasing.”12 Using
this approach, we establish in Paper II22 experimental conditions
that optimize transverse compression of muon beams, while Paper
III23 looks the question of aliasing for muons in gases in crossed
fields under more general circumstances.

Our philosophy though reflects that of Killingbeck13 in that
“if the main aim is to communicate, the best procedure is to use short
arguments and simple mathematics.”

II. THEORETICAL FRAMEWORK
A. Momentum transfer theory

Momentum transfer theory (MTT) is basically a “fluid”
approach, which has its roots in the “equations of change” of
Maxwell14 in 1867, but incorporates the approximation that the
average of a function of energy is represented by the same function
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of the average energy, which enables it to go beyond Maxwell’s con-
stant collision frequency model. It is now textbook material1–3 and
provides a straightforward means of calculating the transport prop-
erties of charged particles in gases to an accuracy of a few percent or
so, compared with the 1% of better accuracy provided by an accurate
solution of Boltzmann’s equation. While transport processes for var-
ious types of charged particles, including ions, muons, electrons, and
positrons, have been analyzed using MTT and other approximation
methods in electric and magnetic fields, the approach explored here
has an additional semi-empirical dimension, which simplifies the
analysis even further. Thus, we first outline the conventional use of
the MTT equations, which is to calculate the experimentally measur-
able properties of a swarm, before reversing this role, and showing
how they can be used as a vehicle to incorporate experimental swarm
data to make further predictions for use in a different experiment.

B. MTT electrical field only
In the absence of a magnetic field, the drift velocity v is directed

along E,

v = K E, (1)

where, according to MTT, the mobility coefficient is defined by

K ≡ e/[μνm(ε)]. (2)

μ and ε are the reduced mass and mean center-of-mass energy of the
charged particle and neutral atom or molecule, respectively,

νm(ε) = n0

√
2ε
μ

σm(ε) (3)

is the collision frequency for momentum-transfer, σm(ε) is the
momentum-transfer scattering cross section, and n0 is the number
density of the neutral gas.

It is emphasized that in what follows the mobility coefficient is
to be regarded as a function of mean energy, i.e.,

K = K(ε), (4)

rather than a function of electric and magnetic field.
The link between drift velocity and mean energy is provided by

the generalized Wannier relation15–17

ε = 3
2

kT0 + 1
2

m0v
2 −Ω(ε), (5)

where Ω(ε) is a term accounting for inelastic processes, whose
explicit expression in terms of inelastic cross sections σI(ε) can be
found elsewhere.3,16,17 The simultaneous equations (1) and (5) may
be solved, if desired,16,17 to yield v and ε, and hence K and v, as
functions of E/n0, for given cross sections σm(ε) and σI(ε).

This is the conventional approach which, however, we do not
follow in this article. Instead, we adopt a different perspective, in
effect semi-empirical, in which v vs E/n0 data obtained directly
from swarm experiments are used in conjunction with the equa-
tions of MTT to make further predictions for crossed electric and
magnetic fields. Furthermore, in this approach, Eq. (5) is viewed, for
present purposes, as simply establishing that a relationship between

mean energy and average velocity exists, or equivalently, ε = ε(v),
but without the need to establish just what that relationship is.

This leads us to the key point in the strategy: for reasons which
will be made clear, instead of considering mobility to be a function
of mean energy, as in (4), we may choose to consider it as a function
of average velocity, that is,

K = K(v). (6)

To take a simple example, consider electrons undergoing elastic
collisions with the atoms of a cold gas, governed by a cross section
σm which is a constant, independent of energy. Then, if we were pro-
ceeding conventionally, we would use Eqs. (1) and (5), with Ω = 0,
T0 = 0, to find v ∼ E

1
2 , and hence K ∼ E−

1
2 , or equivalently,

K(v) ∼ v−1. (7)

However, the procedure described below employs neither Eq. (5)
nor does it require input of cross sections, elastic or inelastic, model
or real. Rather, it furnishes the required relationship (6) using only
swarm experimental data. In addition, it offers a direct path from
E-only experimental swarm data to allow analysis of the more gen-
eral situation where both E- and B-fields are present. Nevertheless,
model (7) proves useful in illustrating the method.

C. Crossed electric and magnetic fields
As is well known,3,9 application of a magnetic field B at right

angles to E results in the drift velocity v having two components,
along the E and E × B directions, respectively. These two compo-
nents may then be expressed in terms of magnitude v of the drift
velocity, and the Lorentz angle φ between v and E, as given by the
simultaneous solution of the following equations:

v = E
B

sinφ (8)

and

tanφ = K B. (9)

Here, K is the same function of ε as for the E-only case, as defined by
Eq. (2), but ε corresponds to the more general case where both elec-
tric and magnetic fields are present. Moreover, Wannier relation (5)
has the same mathematical form in this more general case. Similarly,
the functional relationships, ε = ε(v) and K = K(v) derived for the
E-only case, also apply the more general case where both E and B
are present. However, the actual value of v corresponds to the drift
velocity in the more general case.

These observations are pivotal in establishing the procedure for
evaluating the Lorentz angle using E-only swarm experimental data.

D. Modified equations
Although it is not the normal practice for electrons, we choose

to follow the convention for analyzing ion swarms (see Papers II22

and III23 of this series) and work with reduced mobility

K = n0

nL
K, (10)
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rather than K, where nL = 2.69 × 1025 m−3 (Loschmidt’s number)
is the number density of an ideal gas under standard conditions of
temperature and pressure. Like K, the reduced mobility is also to be
considered as a function of v, i.e.,

K = K(v). (11)

Then, Eqs. (1) and (9) become, respectively,

v = 2.69 × 104 K (E/n0)Td V/m (12)

and

tanφ = nL

n0
K(v) B, (13)

where (E/n0)Td is the reduced electric field in units of Townsend
(1 Td = 10−21 V m2).

With these formulas in place, we can now outline the procedure
for calculating Lorentz angle and drift velocity for charged particles
in crossed electric and magnetic fields from swarm drift velocity data
for electric fields only.

III. CALCULATING LORENTZ ANGLE
The requirement is to solve the two simultaneous equations (8)

and (13) for v and φ, for (e, He) for specified electric and magnetic
fields E and B, respectively, in this case,

E = 105 V/m, B = 5 tesla, (14)

with gas properties (designated by a subscript “0”) T0 = 12 K and
p0 = 8 mbar. The corresponding gas number density n0 follows from
the ideal gas equation of state

n0

nL
= 0.182. (15)

Note that the reduced electric field corresponding to (14) and
(15) is

E/n0 = 20.4 Td. (16)

Note also that the concept of an effective electric field
Eeff = E cos φ is sometimes considered useful7,8 in making a connec-
tion between an E-only situation and the more general case where
both E and B fields are present. The reduced effective electric field
corresponding to (16) is

(E/n0)eff = 20.4 cosφ Td (17)

but the right-hand side cannot be evaluated since the Lorentz angle
φ is unknown. We shall return to this point subsequently after
calculating φ in the manner outlined below.

First, we illustrate the solution of the problem for a simple case
(effectively, the model discussed in Sec. II B), before tackling the gen-
eral problem. In both cases, the first step is to find the function K(v)
from E-only swarm data.

A. Simplified calculation
Table I of Crompton et al.,18 which shows measured drift veloc-

ities of electrons in helium for E/n0 up to 3.64 Td, may be used along
with Eq. (12) to generate the following dataset shown in Table I.

It is to be emphasized that the value of electric field shown in
this table bears no relation to the value of the electric field in the
E × B experiment. Inspection of the second and third columns
indicates that to a good approximation,

v K ≈ constant = 0.9 m3/V/s2, (18)

or, in other words,

K(v) ≈ 0.9
v

m2/V/ s, (19)

as in the simple model case discussed briefly in Sec. II B.
For the parameters given by Eqs. (14) and (15), Eqs. (13) and

(8) become

tanφ = 27.5 K(v) (20)

and

v = 2 × 104 sinφ, (21)

respectively. Substituting for K(v) from (19) in Eq. (20), and then
eliminating v using Eq. (21), gives

tanφ = 1.24
sinφ

, (22)

the solution of which is

φ ≈ 56○. (23)

TABLE I. The drift velocity of electrons in helium taken from experimental data18 (first
two columns) is converted to reduced mobility K (third column). The fourth column
shows the product v ⋅ K indicating that to a good approximation v ⋅ K ≈ constant.

E/n0 (Td) v (103 m s−1) K (m2V−1s−1) v ⋅ K (m3V−1s−2)
Equation (12)

0.212 2.21 0.387 0.86
0.273 2.52 0.344 0.87
0.364 2.93 0.300 0.88
0.455 3.28 0.268 0.88
0.607 3.78 0.232 0.88
0.759 4.23 0.207 0.88
0.910 4.63 0.189 0.88
1.214 5.33 0.163 0.87
1.517 5.97 0.147 0.87
1.820 6.55 0.134 0.88
2.124 7.07 0.124 0.88
2.43 7.75 0.116 0.88
2.73 8.07 0.110 0.89
3.03 8.57 0.105 0.90
3.64 9.47 0.097 0.92
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TABLE II. The drift velocity of electrons in helium for higher electric fields than Table I, taken from experimental data19–21

(first two columns), is converted to reduced mobility K (3 column), generating Lorentz angle data φ (columns 4 and 5), and
estimates v of drift speed (6 column) for the crossed field experiment under consideration.

E/n0 (Td) v (103 m s−1) K (m2s−1V−1) tan φ φ (deg.) v (103 m s−1)
Equation (12) Equations (13) Equations (8)

or (20) or (21)

4.0 10.0 0.093 2.59 68.9 18.7
5.0 11.5 0.086 2.39 67.3 18.5
6.0 13.1 0.081 2.27 66.2 18.3
7.0 15.0 0.080 2.22 65.8 18.2
8.0 17.5 0.081 2.27 66.2 18.3
10.0 22.0 0.082 2.28 66.3 18.3
15.0 32.6 0.081 2.25 66.1 18.3
20.0 49.2 0.092 2.55 68.6 18.6
25.0 68.1 0.101 2.82 70.5 18.9

Substituting this back into Eq. (21) gives

v ≈ 16.5 × 103 m/ s. (24)

It can be seen that the value of v of Eq. (24) lies well above the
actual data shown in Table I, on which model Eq. (18) is based. That
is, the drift velocity data of Table I have been effectively extrapolated
to obtain (23) and (24). Not surprisingly then, these results have a
rather large discrepancy (about 20%) as compared with an analy-
sis based upon (i.e. unextrapolated) swarm data, which furnishes a
more accurate representation of K(v).

B. General procedure
(a) First, we employ v vs (E/n0)Td swarm data based upon

Refs. 18–21 and Eq. (12) to create a table of K vs v as
before. This is effectively the function K(v). Using the highest
possible values of v obviates the need for extrapolation.

(b) Second, use Eq. (13), along with the value of B for the exper-
iment under investigation, to make a table of the values of
tan φ and φ, corresponding to v(K).

(c) Next, use Eq. (8) to make a table of drift velocities v corre-
sponding to various values of φ, using the experimental values
of E and B as given by Eq. (14). The data thus generated for
(e, He) are shown in Table II.

The solution of the simultaneous equations (13) and (8), or in
our specific case Eqs. (20) and (21), respectively, can be found by
plotting v for each of columns two and six, respectively, vs ϕ and
finding the point of intersection, as shown below.

As shown in Fig. 1 and in the enlarged view in Fig. 2, the two
curves intersect at the point

v = 18.3 × 103 m/ s, φ = 66.3○, (25)

which correspond to the drift velocity and Lorentz angle for elec-
trons in helium in the crossed fields specified by (14). Note that the
first three columns of Table II remain the same in all cases, and it is
only columns 4–6 that change when different values of E and B are
required.

FIG. 1. Intersection of the two curves v vs φ according to Table II, columns two
and five, and columns five and six, respectively.

A separate calculation using Magboltz(v7.1)5 gives v = 18.3
× 103 m2/s and φ = 66.0○. Our present results (25) agree with these
values to within the 1% accuracy cited for Magboltz.4

Having found the value of Lorentz angle, we may now return to
Eq. (17) and calculate the reduced effective electric field as

(E/n0)eff = 8.3 Td, (26)

which corresponds (approximately) to the fifth data point in
Table II. This establishes the consistency between the method out-
lined above and the role of the equivalent field as establishing a
conceptual bridge between E-only case and the more general sit-
uation where both E and B are present. Its usefulness as a more
practical tool will be discussed in Paper II22 in connection with
muons in gases.

Finally, we note that while the value of the model discussed in
Sec. III A lies mainly in the fact that it is amenable to an analytical
solution, it may also be used as a benchmark for the above general
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FIG. 2. Enlarged image detail of the intersection point of the two curves v vs φ of
Table II, columns 2 and 5, and columns 5 and 6, respectively.

procedure. Thus, by expanding Table I to the form of Table II, using
appropriately extrapolated drift velocity data, curves similar to those
shown in Fig. 1 can be generated. The values of v and φ obtained
from their intersection agree well with the analytic values shown in
Eqs. (23) and (24), respectively. While the consistency of the two
approaches for the model is thereby established, the model results
themselves have a discrepancy of around 20% as compared with
Eq. (25), which have been derived on the basis of unextrapolated
data.

IV. CONCLUSION
In this article, we have demonstrated how swarm data for elec-

trons in helium from E only experiments can be processed with the
aid of MTT (momentum transfer theory) to obtain drift speed and
Lorentz angle crossed E and B fields. The method is characterized by
both its simplicity and generality and has been benchmarked in two
ways: (a) for internal consistency using a model and (b) for numeri-
cal accuracy against an independent calculation using Magboltz. The
calculations presented here are carried out rigorously from first prin-
ciples using MTT and do not rely on the “equivalent field concept” or
any other assumption. In Paper II, the procedure is modified some-
what and used to provide parameters that optimize compression of a
muon beam in helium in crossed fields. The need for swarm data and
analysis covers a number of fields, ranging from plasma technology
to beam physics. Theory underpins the success of these applica-
tions, and the new procedure presented here offers potential users a
more utilitarian alternative to more conventional approaches, such
as simulation and solution of Boltzmann’s equation.
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