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A B S T R A C T

Introduction: Advances in wearable sensor technology have enabled the collection of biomarkers that may
correlate with levels of elevated stress. While significant research has been done in this domain, specifically in
using machine learning to detect elevated levels of stress, the challenge of producing a machine learning model
capable of generalizing well for use on new, unseen data remain. Acute stress response has both subjective,
psychological and objectively measurable, biological components that can be expressed differently from person
to person, further complicating the development of a generic stress measurement model. Another challenge is
the lack of large, publicly available datasets labeled for stress response that can be used to develop robust
machine learning models. In this paper, we first investigate the generalization ability of models built on
datasets containing a small number of subjects, recorded in single study protocols. Next, we propose and
evaluate methods combining these datasets into a single, large dataset to study the generalization capability
of machine learning models built on larger datasets. Finally, we propose and evaluate the use of ensemble
techniques by combining gradient boosting with an artificial neural network to measure predictive power on
new, unseen data. In favor of reproducible research and to assist the community advance the field, we make all
our experimental data and code publicly available through Github at https://github.com/xalentis/Stress. This
paper’s in-depth study of machine learning model generalization for stress detection provides an important
foundation for the further study of stress response measurement using sensor biomarkers, recorded with
wearable technologies.
Methods: Sensor biomarker data from six public datasets were utilized in this study. Exploratory data analysis
was performed to understand the physiological variance between study subjects, and the complexity it
introduces in building machine learning models capable of detecting elevated levels of stress on new, unseen
data. To test model generalization, we developed a gradient boosting model trained on one dataset (SWELL),
and tested its predictive power on two datasets previously used in other studies (WESAD, NEURO). Next, we
merged four small datasets, i.e. (SWELL, NEURO, WESAD, UBFC-Phys), to provide a combined total of 99
subjects, and applied feature engineering to generate additional features utilizing statistical summaries, with
sliding windows of 25 s. We name this large dataset, StressData. In addition, we utilized random sampling
on StressData combined with another dataset (EXAM) to build a larger training dataset consisting of 200
synthesized subjects, which we name SynthesizedStressData. Finally, we developed an ensemble model that
combines our gradient boosting model with an artificial neural network, and tested it using Leave-One-Subject-
Out (LOSO) validation, and on two additional, unseen publicly available stress biomarker datasets (WESAD
and Toadstool).
Results: Our results show that previous models built on datasets containing a small number (<50) of subjects,
recorded in single study protocols, cannot generalize well to new, unseen datasets. Our presented methodology
for generating a large, synthesized training dataset by utilizing random sampling to construct scenarios
closely aligned with experimental conditions demonstrate significant benefits. When combined with feature-
engineering and ensemble learning, our method delivers a robust stress measurement system capable of
achieving 85% predictive accuracy on new, unseen validation data, achieving a 25% performance improvement
over single models trained on small datasets. The resulting model can be used as both a classification or
regression predictor for estimating the level of perceived stress, when applied on specific sensor biomarkers
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recorded using a wearable device, while further allowing researchers to construct large, varied datasets for
training machine learning models that closely emulate their exact experimental conditions.
Conclusion: Models trained on small, single study protocol datasets do not generalize well for use on new,
unseen data and lack statistical power. Machine learning models trained on a dataset containing a larger
number of varied study subjects capture physiological variance better, resulting in more robust stress detection.
Feature-engineering assists in capturing these physiological variance, and this is further improved by utilizing
ensemble techniques by combining the predictive power of different machine learning models, each capable
of learning unique signals contained within the data. While there is a general lack of large, labeled public
datasets that can be utilized for training machine learning models capable of accurately measuring levels of
acute stress, random sampling techniques can successfully be applied to construct larger, varied datasets from
these smaller sample datasets, for building robust machine learning models.
1. Introduction

Stress can be defined as any type of change that causes physical,
emotional or psychological strain. Such change in the environment
elicits the activation of a cascade of biological responses (stress re-
sponse) in the brain and in the body [1]. The stress response serves an
important evolutionary role of helping the adaptation of the organism
to the dynamically changing external and internal environment. This is
achieved through mobilization of energy and its appropriate redistribu-
tion to organs that most immediately serve the adaptational response.
In this sense the biological stress response is adaptive and beneficial in
the short term. The risk lies with the fact that the biological systems and
molecules sub-serving the stress response exert considerable effects and
bio-energetic demands on the organism. If not properly shut down or
controlled by the body’s feedback mechanisms, the long-term exposure
to stress will have detrimental effects. In humans this may include
an increased risk to develop metabolic, cardiovascular and mental
disorders, resulting in significantly compromised quality of life and
shortened life expectancy [2,3].

Wearable devices for personal health monitoring have increased
significantly in technical sophistication and are capable of measuring a
wide variety of physiological signals. Continuous measurement of these
signals using wearables enable researchers to record and extract useful
information to detect and monitor a variety of potential health-related
events, including stress.

Despite limitations with battery time and number of available sen-
sors in certain models, compared to controlled laboratory measurement
devices, wearables are non-intrusive and easier to use. This ease has fa-
cilitated many experiments using wearables [4–15], and predominantly
utilizing Empatica’s latest E4 device [16], which have yielded a number
of well-studied public datasets [6,17–23]. Table 1 provides a summary
of the datasets which were considered in this study. The table also
shows details about these datasets including their number of subjects,
available biomarkers, their wearable devices, and labeling strategies,
which will be discussed in more details.

Currently, stress-related and personalized questionnaires are mainly
used to measure or score (label) stress in real-life and outside of a
laboratory context. However, this technique does not allow for contin-
uous monitoring, and often suffers from bias such as demand effects,
response and memory biases. Technology offers a solution, by com-
bining the large quantities of sensor-based physiological data recorded
using wearable devices with the use of machine learning techniques,
and specifically for the purpose of measuring stress, supervised machine
learning techniques. In supervised learning, models are trained using
data that is accurately labeled for the response you are predicting for;
in the context of this paper, the labeling would be for elevated levels
of stress with labels as binary yes/no indicators or a numeric scale to
indicate stress level, generally a range between 0 (no perceived stress)
and 1 (maximum perceived stress).

As shown in Table 1, the datasets included in this study were labeled
using one of two methods: (i) periodic [6,17,18,20,22], where specific
time frames during the experiment were either labeled as stressed or
2

non-stressed, while the test subject was placed under that perceived
condition (a stressful test or action, or non-stressed, restful period),
or (ii) scored as experiencing stress or no stress during a particular
period, either by completing a self-scoring evaluation [21,23], or by
an observer [19] who perceived a level of stress by observing the
emotional reaction of the subject during that period.

When applying machine learning to the task of measuring stress on
a biomarker dataset, a robust model should to be able to generalize
well from the input (training) data for any new data from within
the problem domain (validation data). Generalization in this context,
therefore, refers to how well a trained machine learning model can per-
form on unseen data, i.e., data not included when initially training the
model. In order to generate such a model, the training dataset should
be sufficiently large and diverse. Within the context of this paper, this
implies recording data samples under varying experimental conditions,
and across demographics. Variance in the context of machine learning
relates to the variety of predictions made by the model, while Bias
refers to the distance of the predictions from the actual (true) values. A
highly-biased model implies its predicted values are far from the actual,
true values. A generalized model offers the best trade-off between bias
and variance, thereby delivering the best predictive performance.

Power analysis assists researchers in determining the smallest sam-
ple size suitable to detect the effect of a given experiment at a desired
level of significance, as collecting larger samples are likely costlier and
much harder. One of the recurrent questions psychology researchers
ask is: ‘‘What is the minimum number of participants I must test?’’ [24].
The high number of participants required for an 80% powered study
often surprises cognitive psychologists, because in their experience,
replicable research can be done with a smaller number. Given that
an effect size of d = 0.4 is a good first estimate of the smallest effect
size of interest in psychological research [24], over 50 subjects will be
required for a simple comparison of two within-participants conditions
to run a study with 80% power. Of the datasets included in this
study, only UBFC-Phys [21] contains biomarker data for more than 50
subjects.

In this work, we investigate whether models built on datasets with
a small number of study participants (<50) are capable of generalizing
well for use on new, unseen data, thereby showing transferability and
generalizability. We further propose to improve the statistical power
of training datasets by merging a number of small datasets to create
a larger dataset named StressData (with >90 subjects) to improve
machine learning model generalizability to new unseen datasets. We
also propose a new method of synthesizing data from a number of
available small datasets to make a larger balanced dataset. We call this
new dataset SynthesizedStressData and show that it can significantly
improve generalizability of various models to new unseen data. Finally,
we propose to combine the predictive power of two unique machine
learning algorithms using ensemble methods, and investigate whether
our proposed approach offers improved predictive power over singular
models in the literature.

2. Related work

A growing number of studies have been conducted in recent years

with the aim of building robust stress detection and measurement
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Table 1
Summary of public wearable device stress-related datasets used in this study.

Dataset Year Subjects Female Male Duration Biomarkers Devices Labeling/Scoring

SWELL 2014 25 8 17 138 min EDA, HRV, ECG Facial expression, body
postures, Mobi

Periodic: Neutral, Time
Pressure, Interruptions

Neurological Status (NEURO) 2017 20 31 min ACC,EDA, TEMP, HR,
SPO2

Empatica E4 Periodic: Relax, Physical
Stress, Emotional Stress, Relax,
Emotional Stress, Relax

WESAD 2018 15 3 12 120 min ACC, EDA, BVP, IBI,
HR, TEMP, ECG, EMG,
RESP

RespiBAN, Empatica E4 Periodic: Preparation, Baseline,
Amusement, Stress,
Meditation, Recovery

AffectiveROAD 2018 10 5 5 118 min EDA, HR, TEMP Empatica and Zephyr
BioHarness 3.0 chest belt

Scored by observer

Toadstool 2020 10 5 5 50 min ACC, EDA, BVP, IBI,
HR, TEMP

Empatica E4 Periodic: Game play under
time pressure

UBFC-Phys 2021 56 46 10 20 min EDA, BVP Empatica E4 Self-report

A Wearable Exam Stress Dataset
for Predicting Cognitive
Performance in Real-World
Settings

2022 10 2 8 180 min EDA, HR, BVP, TEMP,
IBI, ACC

Empatica E4 Periodic

A multimodal sensor dataset for
continuous stress detection of
nurses in a hospital

2022 15 15 0 Varying EDA, HR, ST, BVP,
ACC, IBI

Empatica E4 Self-report
machine learning models. Few studies have further examined the re-
producibility and generalizability of results previously reported. Mishra
et al. [25] took the first steps towards evaluating the performance of
models built using data from one study, and testing their performance
on data from other studies. Reproducing the results achieved in pre-
vious studies rely on the availability of the stress biomarker data, and
most often this was not the case.

Where experimental data was made available and the studies uti-
lized Electrodermal Activity (EDA) and Heart Rate (HR) biomarkers,
the reported results and associated models and datasets were reviewed
as listed in Table 2. The publicly available WESAD [6] dataset con-
taining sensor biomarker data for 15 subjects was the most commonly
used [6,7,10–14]. The NEURO [18] dataset was utilized in experiments
by Jiménez-Limas et al. [5] and Eskandar et al. [8], while Siirtola
et al. [9] and Ninh et al. [14] utilized the AffectiveROAD dataset con-
taining sensor biomarker data for 9 subjects. Sriramprakash et al. [4]
and Khan [15] utilized the SWELL [17] dataset containing sensor
biomarker data for 25 subjects, while Nkurikiyeyezu et al. [7] utilized
both the WESAD and SWELL datasets.

Accuracy metrics reported ranged between 81.13% [14] and
99.80% [11]. LOSO cross-validation were utilized in three experi-
ments [6,9,15]. Indikawati et al. [10] used a 60/40 train/validation
split for validating their model performance, while Li et al. [11] used
a 70/30 train/validation split. Jiménez-Limas et al. [5] and Eskandar
et al. [8] both used an 80/20 split for their experiments utilizing the
NEURO dataset. The remaining studies utilized n-Fold cross-validation.

Feature-engineering techniques were employed in all the models re-
viewed apart from Indikawati et al. [10], where Accelerometer (ACC),
Electrodermal Activity (EDA), Blood Volume Pulse (BVP) and tem-
perature (TEMP) signals were directly used, and Eskandar et al. [8]
who utilized HR, EDA, TEMP and arterial oxygen levels (SpO2). Iqbal
et al. [12] used a chest-worn RespiBAN device with the Empatica E4
and included biomarker data for RR-interval (RRI) and respiratory rate
(RspR). Four of the models [6,7,9,10] employed tree-based machine
learning models while Iqbal et al. [12] and Jiménez-Limas et al. [5] uti-
lized Logistic Regression and Linear Regression, respectively. Support
Vector Machines (SVM) were utilized in experiments by Sriramprakash
et al. [4], Liapis et al. [13] and Ninh et al. [14]. Artificial neural
network models were utilized in the remaining three studies [8,11,15]
and reported the highest predictive accuracy across all results, followed
by tree-based models. The most common feature-engineering technique
employed consisted of generating new features from statistical sum-
maries of biomarker data, based on grouped sliding windows ranging
between 0.25 s to 60 s. Nkurikiyeyezu et al. [7] and Jiménez-Limas
et al. [5] employed larger sliding windows of 5 min and 10 min,
respectively.
3

In the related works reviewed, experimentation was performed on a
single dataset, most notably WESAD, with a limited number of subject
sensor biomarker data (15 subjects). Only Nkurikiyeyezu et al. [7]
validated their experimentation results by using two unique datasets,
WESAD and SWELL (15 and 25 subjects, respectively). As noted previ-
ously, Brysbaert et al. [24] recommended over 50 subjects to achieve
statistical power of over 80%, which brings into question whether
models built on datasets containing less than 50 subjects produce
results that can be considered statistically significant, and whether
these models generalize well to predict accurately on new, unseen data.

To address this question, in this paper we will test the general-
izability of machine learning models built on one, small dataset by
validating these models on different, unseen datasets. The ability of
machine learning models to generalize well is crucial to providing a
technology solution that can be utilized and applied outside of experi-
mental conditions, thereby providing a step forward towards enabling
health practitioners to better use sensor biomarker data recorded using
wearable devices.

In addition, in order to fill the gap of lack of substantially large
public datasets available for stress research, we propose to merge
four small public stress biomarker datasets into a single larger dataset
(StressData), representing a total of 99 test subjects, thereby providing
statistical power of over 85%. Although we show that the improved
statistical power of a larger number of subjects within a training
dataset leads to improved predictive performance, a challenge with the
merging approach is the resulting class imbalance created due to the
varying experimental protocols utilized during biomarker recording. To
address this challenge, we propose using random sampling of Stress-
Data segments to generate a 200-subject synthetic training dataset,
which we name SynthetizedStressData. Finally, we build two unique
machine learning models utilizing the well-known XGBoost (XGB) gra-
dient boosting algorithm and an artificial neural network (ANN), then
combine their predictive power using ensemble methods to deliver
a robust stress detection system. We show that while our ensemble
model trained on StressData leads to small improvements, utilizing
our SynthesizedStressData dataset results in a predictive performance
improvement of over 25%, compared to another model trained on a
small dataset with low statistical power.

3. Methods

3.1. Datasets

Based on the prior experiments and reviewed literature (Table 2),
publicly available datasets including WESAD [6] and SWELL [17] were
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Table 2
Summary of related works reviewed.

Paper Year Model Dataset Accuracy Subjects Features Cross validation Window

Stress Detection in Working People
[4]

2017 SVM SWELL 92.75% 25 17 10-Fold 60 s

Feature selection for stress level
classification into a physiological
signals set [5]

2018 Linear Regression NEURO 81.38% 20 7 80/20 Split 5 m

Introducing WESAD, a Multimodal
Dataset for Wearable Stress and
Affect Detection [6]

2018 Random Forest, LDA, AdaBoost WESAD 93.00% 15 82 LOSO 0.25 s, 5 s, 60 s

he Effect of Person-Specific
Biometrics in Improving Generic
Stress Predictive Models [7]

2019 Random Forest, ExtraTrees WESAD, SWELL 93.90% 15, 25 94 10-Fold 5 min, 10 min

Using Deep Learning for Assessment
of Workers’ Stress and Overload [8]

2020 Neural Network NEURO 85% 20 4 80/20 Split 20 s

Comparison of Regression and
Classification Models for
User-Independent and Personal
Stress Detection [9]

2020 Bagged tree ensemble AffectiveROAD 82.30% 9 119 LOSO 60 s, 0.5 s overlap

Stress Detection from Multimodal
Wearable Sensor Data [10]

2020 Random Forest WESAD 92.00% 15 4 60/40 Split 0.25 s

Stress detection using deep neural
networks [11]

2020 Neural Network WESAD 99.80% 15 8 70/30 Split 5 s

A Sensitivity Analysis of
Biophysiological Responses of Stress
for Wearable Sensors in Connected
Health [12]

2021 Logistic Regression WESAD 85.71% 14 5 14-Fold 60 s

Advancing Stress Detection
Methodology with Deep Learning
Techniques [13]

2021 SVM WESAD 93.20% 15 36 5-Fold

Analyzing the Performance of Stress
Detection Models on
Consumer-Grade Wearable Devices
[14]

2021 SVM WESAD, AffectiveROAD 87.5%, 81.13% 15, 9 1 60 s, 30 s

Semi-Supervised Generative
Adversarial Network for Stress
Detection Using Partially Labeled
Physiological Data [15]

2022 Neural Network SWELL 90.00% 25 30 LOSO 60 s
utilized in this study. Additionally, since these datasets all included Em-
patica E4 sensor biomarker data, the Toadstool [20], UBFC-Phys [21],
Non-EEG Dataset for Assessment of Neurological Status (NEURO) [18],
Wearable Exam Stress Dataset (EXAM) [22], AffectiveROAD [19] and
Multimodal Sensor Dataset for Continuous Stress Detection of Nurses
in a Hospital [23] public datasets, which also are collected using
Empatica E4, were considered. Table 1 provides a summary of all
datasets considered. The AffectiveROAD dataset was excluded from our
experimentation due to its labeling protocol. In this dataset, subjects
were self- and observer-scored on a scale that limited conversion to
a binary stressed/non-stressed indicator for model training and evalu-
ation purposes. Subjects were scored while driving in inner city and
highway scenarios, and it is not clear which scenario under normal
circumstances would be considered more or less stressful.

Additionally, the Multimodal Sensor Dataset for Continuous Stress
Detection of Nurses in a Hospital [23] was not included in our ex-
perimentation for similar reasons. In this dataset, thirteen potential
scenarios could be marked by the subject as stressful by using the
Empatica E4 event marker button. We found a substantial number of
marked sections that exceeded the expected duration of the event, with
a further number of short events with no potential for a cooling down
period to separate the perceived stressful event from a subject baseline
(non-stressed).

The SWELL, WESAD, NEURO and UBFC-Phys datasets were specif-
ically labeled for stress, either using self-report scoring (UBFC-Phys)
or periodic (SWELL, NEURO, WESAD, EXAM), where stressful situa-
tions were applied during specific time periods of the experiment. The
Toadstool dataset contained sensor biomarker data recorded during
periods of game-play where stress may have been perceived as high,
but was not labeled. However, it was included to validate the XGB,
ANN and ensemble models developed as part of this study. The EXAM
dataset was also included for some of our experiments. This dataset was
recorded during single sessions of 10 students writing mid-term and
final exams, with exam scores provided, but no specific stress-based
scoring included.
4

As stress response is not an instantaneous physiological reaction,
overlap may occur between the labeled periods within the datasets and
the biomarker data, as shown in Fig. 1. This overlap can introduce
mis-labeled biomarker data into a training set when building machine
learning models and will likely further produce onerous predictions in
new datasets during inference. It is therefor important to remove this
overlap by excluding a short timespan prior to the stressor phase, and
likely a longer period when the stressor phase completes to allow for
a cool-down period during model training. Additionally, any periods
labeled not clearly defined as stressed or non-stressed (baseline) should
likely be excluded. In this paper, the following exclusions were applied
to the datasets utilized:

• WESAD - Period marked as Meditation was excluded.
• NEURO - 2 Minute period after stress event was excluded.
• SWELL - 2 Minute period after stress event was excluded.
• UBFC-Phys - 5 Minute introductory period was excluded, 3 min

period after stress event was excluded.
• EXAM - No exclusions made.

Of the biophysical and biochemical markers normally used to mea-
sure stress [12], in this study we opted to focus on Electrodermal
Activity (EDA), and Heart Rate (HR). Previous works have included
Accelerometer (ACC) bio-marker data as a feature, however considering
that at least one of the datasets (Toadstool) involved substantial subject
physical movement as part of their experimental setup, this signal was
excluded. Temperature (TEMP) and Skin Temperature (ST) was further
excluded due to being missing in two additional datasets (SWELL,
UBFC-Phys).

While not all datasets included an HR biomarker, this can be algo-
rithmically derived using Heart Rate Variation (HRV) or Blood Volume
Pulse (BVP), and where required was generated using a Python script
utilizing the BioSPPy library [26].
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Fig. 1. Stress response with binary labeling over time.
Table 3
Statistical summary of included public wearable device stress-related datasets.

Dataset EDA EDA HR HR Non-Stressed Stressed
(Mean) (SD) (Mean) (SD)

NEURO 1.7 2.1 75.4 13.4 29.90% 70.10%
WESAD 2.2 2.7 76.5 10.5 63.60% 36.40%
SWELL 1 0.2 75.8 10.1 71.40% 28.60%
UBFC-Phys 1.4 2 92.2 16 34.20% 65.80%
3.2. Dataset analyses

The statistical programming language R [27] version 4.0.4 was used
for analysis in this study. The Empatica-R library [28] was additionally
utilized to read the raw Empatica E4 wearable device data into an R
data table for processing. Next, sensor signals were converted to the
same sampling frequency, as the Empatica E4 samples the BVP sensor
data at 64 Hz, the EDA sensor data at 4 Hz, and HR sensor data in
spans of 10 s. Stress labels within the datasets were then standardized
to binary indicators with non-stressed set to zero (0) and stressed set
to one (1).

Initial data exploration was performed on only the NEURO, WESAD,
SWELL and UBFC-Phys datasets, considering the WESAD and SWELL
datasets were utilized in prior work as listed in Table 2, and all four
contained at least the EDA and HR biomarker data for a substantial
percentage of the observations available. Not all biomarker sensor data
were available for all subjects within the SWELL and WESAD datasets,
and in these cases the subjects were excluded. This resulted in a total
of 9 subjects from the SWELL dataset being included (of 25) containing
a total of 157,739 observations, and 14 of the 15 subjects from the
WESAD dataset, containing a total of 26,385 observations.

Statistical summaries were produced for each dataset, as detailed
in Table 3, indicating substantial class imbalance across the datasets,
with the NEURO and UBFC-Phys datasets containing 70.1% and 65.8%
labels marked as stressed, respectively. In contrast, WESAD and SWELL
have labels marked as non-stressed in 63.6% and 71.4% of total obser-
vations. The Table also shows the mean and Standard Deviation (SD) of
the biomarkers across the four datasets. Substantial variation is further
noted across each dataset for both the EDA and HR biomarkers.

Histograms (Fig. 2) of each biomarker across the datasets show the
EDA biomarker being significantly right-skewed. It should be noted
that, the SWELL dataset contains on average 4% or more observations
than the NEURO, WESAD or UBFC-Phys datasets, while the UBFC-Phys
dataset contains the largest number of individual subjects, but each
recording segment being significantly shorter compared to the SWELL,
NEURO and WESAD datasets.
5

Box plots highlight this variation further (Figs. 3 and 4), with
significant outliers occurring for the HR biomarker (Fig. 4) of the
UBFC-Phys dataset.

In addition to box plots and statistical summaries, plots were gen-
erated for each of the four datasets to investigate correlation between
the HR and EDA biomarkers and the labeled, binary stress metric
(Fig. 5). Correlation was consistently weak across all the datasets,
with the lowest correlation observed in the UBFC-Phys dataset. Within
the NEURO dataset, we noted higher correlation between the binary
stress label and the HR biomarker, while correlation was low between
the binary stress label and the EDA biomarker. This correlation was
slightly higher for the SWELL and WESAD biomarkers. This difference
in correlation across stress biomarker datasets can affect transferability
of experimental results, and further limit the ability of machine learning
models trained on any of these individual datasets to generalize well for
new, unseen data.

3.3. Machine learning models

One of the most crucial steps in building machine learning models
is the choice of algorithm. A common approach for optimal algorithm
selection involves conducting exhaustive grid-searches using a wide va-
riety of algorithms and approaches, and determining the best potential
algorithm based on the results achieved. By examining the reported
results of previous experiments and their associated algorithms (sum-
marized in Table 2), we find tree-based algorithms including Random
Forest performing well compared to other algorithms, in line with
findings reported by Mishra et al. [29], who noted that Random Forest
is often the optimal model when using EDA, HR and RRI biomarker
data as input features for stress-related machine learning models.

Gradient Boosting algorithms, compared to Random Forest, offer
improved efficiency and predictive performance, at the cost of being
prone to over-fitting. Random Forest builds a number of decision
trees independently, where each decision tree is a simple predictor
with all results aggregated into a single result. The Gradient Boosting
algorithm, however, is an ensemble of weak predictors, usually decision
trees. Additionally, in Random Forest, the results of the decision trees
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Fig. 2. Biomarker histograms for NEURO, SWELL, UBFC-Phys and WESAD datasets.

Fig. 3. EDA biomarker variance across NEURO, SWELL, UBFC-Phys and WESAD dataset subjects.

Fig. 4. HR biomarker variance across NEURO, SWELL, UBFC-Phys and WESAD dataset subjects.
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Fig. 5. Correlation between biomarkers and stress metric of NEURO, SWELL, UBFC-Phys and WESAD datasets.
are aggregated at the end of the process, while Gradient Boosting
instead aggregates the results of each decision tree along the way to
calculate the final result. Popular Gradient Boosting algorithms include
LightGBM [30], CatBoost [31] and XGBoost (XGB) [32].

For this study, XGB was selected as the primary machine learning
algorithm due to its popularity, availability as an R package, and having
been extensively utilized since its original publication in 2016 [32].
XGB provides a highly efficient implementation of the stochastic gradi-
ent boosting algorithm and access to a suite of model hyperparameters,
designed to provide control over the model training process.

3.4. Model generalization

To test the generalizability of machine learning models built on
datasets containing sensor biomarker data of a small number of sub-
jects, two initial experiments were performed, as follows:

1. Train Random Forest, SVM and XGB on SWELL, test on NEURO
and WESAD with no additional feature-engineering, using EDA
and HR biomarkers only.

2. Train Random Forest, SVM and XGB on SWELL, test on NEURO
and WESAD and generate additional features using statistical
summaries.

The SWELL dataset contains the largest number of subjects and ob-
servations, nearly 6 times more than that of either WESAD or NEURO.
Additionally, the SWELL dataset showed the lowest standard deviation
for both HR and EDA biomarkers (Table 3), therefore, it was selected
for training. However, we also conducted experiments where either
of the smaller WESAD or NEURO datasets were used for training. As
expected, these experiments yielded poor results due to the low number
7

of subjects and observations leading to a lack of statistical significance.
These results and their code are made available through the paper’s
public code repository (see Supplement6.R).

The UBFC-Phys dataset was excluded as it contained 56 subjects,
substantially larger than WESAD, NEURO or SWELL, which were used
in the previous works that were reviewed. As the stress metric within
the datasets was binary, logistic regression was selected as the XGB
learning objective. Due to the metric imbalance within each dataset,
class balancing was performed by using the scale_pos_weight parameter
provided by XGB, which has the effect of weighing the balance of
positive examples, relative to negative examples, when boosting deci-
sion trees. Random Forest and SVM models were included to create
baseline and compare initial results to those reported in previous
studies (Table 2).

Optimal hyperparameters for the XGB algorithm were identified
using a grid search with 10-Fold cross-validation, and this was repeated
for each experiment, to ensure the most suitable parameters were
utilized prior to model training. The XGB algorithm was run for 5000
rounds with early-stopping set to 3 rounds. This ensures that training
stops when the evaluation metric fails to improve after 3 rounds of
training in order to prevent over-fitting. For the initial two experiments,
training was automatically stopped after 93, and 87 rounds, respec-
tively. For the Random Forest model, the number of trees were set to
200 [33], while a radial kernel was selected for the SVM model with
the cost parameter set to 5, which were found to be optimal based on a
number of trial experiments which were run with varying kernels and
cost parameters ranging from 1 to 10.

Prior to performing experiments where feature-engineering was
applied, we investigated the dominance of biomarkers and found HR
feature as a more important biomarker, relative to EDA, as shown in
Fig. 6.
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Fig. 6. Feature importance for experiment 1, i.e. before biomarker feature engineering.
Fig. 7. Feature importance for experiment 2, i.e. after biomarker feature engineering.
Feature importance was determined using the built-in
xgb.plot.importance function provided by the XGBoost R package. Here,
importance is calculated based on overall gain, where gain implies
the relative contribution of the corresponding feature to the model,
calculated by taking each feature’s contribution for each tree in the
model. A higher value of this metric when compared to another feature
implies it is more important for generating a prediction.

Next, an additional 22 features were generated by calculating sta-
tistical summaries using a tumbling window approach at 25-second
intervals. Intervals between 0.25 s and 60 s are common in the liter-
ature (see Table 2), and 25-second intervals were selected based on
the highest level of correlation observed between the biomarkers and
stress label, after a substantial amount of experimentation. Statistical
summaries including the mean, median, max, min, standard deviation,
variance, skewness and kurtosis of each biomarker were calculated as
new features, with an additional feature for the covariance between
the EDA and HR biomarker. The resulting variable importance after
model training and evaluation is detailed in Fig. 7 (top 10, in order of
importance).

The HR biomarker and its derived features are again observed to be
the dominant features, with EDA-based features serving a secondary
role. These 10 features were utilized in all our experiments requiring
feature engineering. The remaining 12 features were not utilized to pre-
vent potential over-fitting to specific datasets, notably UBFC-Phys, with
8

56 subjects, and substantially shorter recording segments compared to
the NEURO, WESAD and SWELL datasets.

3.5. Merging unique stress biomarker datasets to form StressData

In order to increase the statistical power of the underlying smaller
datasets, all four smaller datasets, i.e. NEURO, WESAD, SWELL and
UBFC-Phys were merged row-wise without randomization, to form the
single larger dataset, StressData. This includes a total of 99 unique
subjects resulting in more than 85% statistical power, constituting a
total of 244,399 observations, as follows:

• All 20 subjects from the NEURO dataset.
• All 56 subjects from the UBFC-Phys dataset.
• 14 of the 15 WESAD dataset subjects contained sufficient

biomarker data for inclusion.
• 9 of the 25 SWELL dataset subjects contained sufficient biomarker

data for inclusion.

Two new experiments, numbered 3–4, were then performed on the
StressData dataset, as follows:

3. Train XGB on StressData using LOSO validation, with no feature-
engineering, using EDA and HR biomarkers only.

4. Train XGB on StressData using LOSO validation, apply feature-
engineering (10 total features), as explained in Section 3.4.
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3.6. An artificial neural network model for stress detection

Of the prior works reviewed, we found three instances of using
Artificial Neural Networks (ANN). Li et al. [11] utilized a Deep Convo-
lutional Network (DCNN) consisting of three hidden layers containing
32 and 16 units, respectively. This was followed by a Sigmoid activa-
tion layer, with max pooling applied at the end of each convolution.
Predictive accuracy using the WESAD dataset was reported as 99.80%.
Khan [15] tested Long-Short Term Memory Network (LTSM), Convo-
lutional Neural Networks (CNN) and Bi-Directional Long-Short Term
Memory networks, using both supervised and semi-supervised methods
and found supervised models to perform better than semi-supervised
models, with accuracy across predictions averaging higher than 90% on
the SWELL dataset. Eskandar et al. [8] utilized a LTSM model fed with
features extracted by using a CNN with a reported accuracy of 85% (F1
Score), noting difficulty on predicting the baseline relaxed state when
using the NEURO dataset.

Based on recommendations from available literature [34] and in
consideration of the different experimental protocols and stressed/non-
stressed period durations contained within the datasets utilized, we
opted for a standard feed-forward architecture as a baseline model,
rather than an LTSM model, which is more suitable for time-series
data. Our proposed network consists of three layers. The input layer
contained 10 neurons to receive the 10 input features. The hidden layer
included 5 neurons (half the input features), connected to a final linear
layer.

Mean Squared Error (MSE) was selected as the loss function, a
frequently used measure of the differences between values predicted
by a model and the expected values:

𝑀𝑆𝐸 =
𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2

where 𝑁 is the number of observations, 𝑦̂ is the predicted value and
y is the expected value. Typically, binary and multi-class problems
including XGBoost would utilize log-loss as a loss function instead:

𝐿𝑜𝑔𝐿𝑜𝑠𝑠 = − 1
𝑁

𝑁
∑

𝑖=1
[𝑦𝑖 ⋅ 𝑙𝑜𝑔𝑒(𝑦𝑖) + (1 − 𝑦𝑖) ⋅ 𝑙𝑜𝑔𝑒(1 − 𝑦𝑖)]

where 𝑁 is the number of observations, log is the natural log, y is the
inary indicator (0 or 1), and 𝑦̂ is the predicted observation. However,
e found MSE to outperform log-loss by a factor of 10% for predictive
ccuracy, and therefor utilized MSE for the neural network model,
hile retaining the default log-loss for XGBoost. The precision, recall
nd F-score metrics were also calculated given the classification nature
f the labeling of the SWELL, WESAD, NEURO and UBFC-Phys datasets.

The Rectified Linear Unit (ReLU) [35] activation function was ap-
lied after both the input and hidden layers. Training was performed
n a dual-GPU system using the Keras and Tensorflow libraries for a
aximum of 200 epochs using a batch size of 512. Early stopping was

mployed to prevent over-fitting if the validation loss stops improving
or a duration of 5 or more epochs.

.7. The proposed ensemble model

Ensembling [36] is a widely-used technique known to improve a
ecision system’s robustness and accuracy. The motivation for using
nsemble models is to reduce the generalization error of predictions,
s long as the base models are diverse and independent [37]. Algo-
ithms such as Gradient Boosting and Random Forest utilize ensemble
ethods to combine the individual results of a large number of in-
ependent decision trees into a single prediction. This approach has
een further extended to combine the predictions of unique, individual
achine learning models via majority voting, weighted-scoring and

ther blending techniques to deliver more powerful and robust models.
To apply ensembling techniques to our own work, we blended the

redictions from our XGB model with those from our ANN model using
imple averaging. This resulted in four new experiments as follow:
9

5. Train the proposed ensemble model (XGB + ANN) on SWELL and
validate on NEURO and WESAD with no feature-engineering,
using EDA and HR biomarkers only.

6. Train the proposed ensemble model (XGB + ANN) on SWELL
and validate on NEURO and WESAD with feature-engineering
(10 total features), as explained in Section 3.4.

7. Train the proposed ensemble model (XGB + ANN) on Stress-
Data using LOSO validation and feature-engineering (10 total
features), as explained in Section 3.4.

8. Train the proposed ensemble model (XGB + ANN) on Stress-
Data (excluding WESAD) and validate on WESAD with feature-
engineering (10 total features), as explained in Section 3.4.

.8. Class balancing

Reviewing the initial results from experiment 7 when using XGB,
NN and their ensemble against the labeled metric for all 99 Stress-
ata subjects, we noted predictions for UBFC-Phys vastly outperformed

hose for WESAD, SWELL and NEURO across both XGB and ANN
odels. This was attributed to two potential factors; i) the substantially

arger subject size of the UBFC-Phys dataset and ii) the substantially
horter recording segment size of UBFC-Phys samples.

We further noted a reduction in predictive accuracy in Experiment
, when the WESAD dataset was excluded from StressData and used as
new, unseen validation dataset. This implies that LOSO validation

lone may not be a good predictor of overall model generalization
bility, likely due to an imbalance across both labeled metric and the
ignificant variance in recording segment sizes across the datasets when
erged into StressData.

To address this imbalance, we combined the EXAM dataset with
tressData, resulting in a total of 129 subjects. Next, we split the
tressed and non-stressed periodic segments of all 129 subjects into two
roups. We noted the shortest segment across all subjects were from the
BFC-Phys dataset, at 201 s. We therefore further split each stressed
nd non-stressed subset across all subjects into smaller sets of 180 s
ach (3 min intervals).

This resulted in a total of 3758 samples of 3-minute segments,
abeled as either stressed (2962 samples) or non-stressed (796 samples).
rom these segments, random sampling can be performed to build a
ubstantially larger balanced training dataset of any number and combi-
ation of segments. We named this new dataset SynthesizedStressData.

In addition to the 8 aforementioned experiments, we performed two
inal experiments:

9. Train the proposed ensemble model (XGB + ANN) on Synthe-
sizedStressData and validate using LOSO. For this experiment,
200 training subjects were generated by using random sampling
from the 3758 segments to simulate two physiological states:
a 6-minute long non-stressed baseline period, followed by a 6-
minute long stressed period. Feature engineering was applied as
explained in Section 3.4.

10. Train the proposed ensemble model (XGB + ANN) on Synthe-
sizedStressData (excluding the WESAD data) and test on the
WESAD dataset for validation. For this experiment, all WE-
SAD samples were first excluded from SynthesizedStressData,
resulting in a smaller total of 115 subjects. To emulate the
WESAD experimental protocol [6], 200 training subjects were
generated using random sampling to emulate two physiological
states: a 12-minute long non-stressed period, followed by a 12-
minute long stressed period. Feature engineering was applied as

explained in Section 3.4.
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Fig. 8. Confusion Matrix for Random Forest, SVM and XGBoost (Experiment 1).
4. Results and discussion

4.1. Generalization study

Experiments 1 to 2 tested two approaches, the first excluding feature
engineering, with the second including feature engineering. These were
performed for measuring generalization of models built on a single
dataset (SWELL) containing a small number of test subjects, but with
large amount of observations. These models were then validated against
two new, unseen datasets (WESAD, NEURO) containing a substantially
smaller amount of observations.

The results indicate low predictive power with the best model
achieving 68% accuracy using a 70/30 Train/Test split during training,
with feature-engineering. More importantly, the results show that a
substantially larger number of observations (from a small number of
test subjects) within the training dataset did not assist in generalization.

Furthermore, all three models (Random Forest, SVM, XGBoost)
reported a large number of false negatives (Type II errors) and failed to
predict the stress state of the test subjects (Fig. 8), with the SVM model
performing slightly better compared to Random Forest and XGBoost.

Experiment 2 repeats Experiment 1 by utilizing feature-engineering.
Accuracy, Precision, Recall and F1-scores improve slightly when pre-
dicting on the unseen WESAD dataset, but reduces for the NEURO
dataset. Additionally, the resulting confusion matrix (Fig. 9) shows all
three models producing a larger number of false negatives (Type II
errors), compared to no feature-engineering as with Experiment 1.

Once the datasets are merged to form the larger StressData dataset
for training a machine learning model, predictive accuracy of 63% is
achieved with no feature engineering (Experiment 3), increasing to
72.36% (Experiment 4) when using feature engineering, both using
LOSO validation. Importantly, Type II errors have been substantially
reduced with the introduction of a larger, merged dataset, with a slight
improvement when using engineered features, as shown in Fig. 10.
As neither Random Forest nor SVM showed a marked increase in
performance over XGBoost, and due to the efficient training speed of
XGBoost, both Random Forest and SVM was excluded for Experiments
10

5 to 10.
4.2. Ensemble model

Repeating Experiments 1 and 2 but using a weighted ensemble
approach (XGB + ANN), predictive accuracy slightly improves to 51%
(NEURO) and 70% (WESAD) for Experiment 5, with no feature engi-
neering, then 58% (NEURO) and 68% (WESAD) for Experiment 6, with
feature engineering applied, when training on only the SWELL dataset.
Experiment 7 combines the benefits of a larger dataset (StressData)
with feature engineering and a weighted ensemble approach, reporting
predictive accuracy of 80.33% when using LOSO validation.

Fig. 11 shows the numerical prediction plot for a randomly selected
subject (S9) from the SWELL dataset (Experiment 7), with red detailing
the stress period and blue indicating the ensemble predictions. The
result shows good correlation with the period labeled as stressed. We
note from 15,600 s onward, the subject is still showing an elevated
level of stress, while the labeled recording period has been marked as
non-stressed, likely not allowing for a cool down stage between stress
and non-stress periods during biomarker recording.

Fig. 12 shows the numerical prediction plot for a randomly selected
subject (here W14) from the WESAD dataset (Experiment 7), with red
detailing the stress period and blue indicating the ensemble predictions.
This result shows the ensemble model reacting well when subjects are
subjected to a period of stress during the experiment.

Comparing the results to those from Experiments 1 to 4, we note
slightly better results for the ensemble (using LOSO validation) when
both a larger, more varied training dataset is utilized in combination
with feature engineering. Various combinations of weighting were
tested and utilized in order to achieve the highest accuracy rates, with
the XGB model generally outperforming the ANN in most experiments:

• Experiment 5%–60% (XGB) and 40% (ANN).
• Experiment 6%–80% (XGB) and 20% (ANN).
• Experiment 7%–40% (XGB) and 60% (ANN) when predicting

on biomarker segments exceeding 16 min in duration, and 70%
(XGB) and 30% (ANN) for biomarker segments shorter than
16 min in duration.

• Experiment 8%–30% (XGB) and 70% (ANN).

However, when training StressData with the WESAD dataset ex-
cluded (Experiment 8), predictive accuracy reduced to 59% when
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Fig. 9. Confusion Matrix for Random Forest, SVM and XGBoost with engineered features (Experiment 2).
Fig. 10. Confusion Matrix for Experiment 3 and 4.
testing on WESAD as an unseen validation set. Various class balanc-
ing methods were applied to StressData including over, under and
both-sampling across the labeled stress metric, with both-sampling
producing the highest score of 59%, compared to over and under-
sampling. This lower accuracy result implies that LOSO validation
alone (Experiment 7) is not a good measure of model generalization,
as the training process includes the full StressData dataset, apart from
the single subject being left out per training and scoring iteration. This
result further implies that training on disparate datasets merged with-
out extensive class and feature balancing across both labeled metric as
well as the recording segment size of biomarkers, may not result in a
well-generalized model.

4.3. Ensemble model with synthetic data generation

Next, in Experiment 9, the EXAM dataset was included into Stress-
Data, constituting a total of 129 unique subjects, forming Synthesized-
StressData. Random sampling was then utilized for class balancing as
11
described in Section 3.8 to construct 200 training subjects consisting
of two physiological states: 6 min of a non-stressed baseline, and
6 min of a stressed period, sampled from the pool of 3758 3-minute
StressData segments (2962 stressed and 796 non-stressed). Validation
was performed using LOSO, achieving a mean accuracy of 89% on this
instance of SynthesizedStressData.

Precision, Recall and F1 score metrics are higher compared to ex-
periments 1 through 8. Recall represents the model’s ability to correctly
predict the positives (stressed) out of actual positives (stressed), while
Precision measures the number of predictions made that are actually
positive (stressed), out of all positive predictions (stressed). In both
cases, a higher score is desired. The F1 score is a good measure to use
when seeking a balance between Precision and Recall. The prediction
plot of subject X188 (from the SynthesizedStressData) is shown in
Fig. 13, with a near-perfect match when predicting for both baseline
and stressed periods.
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Fig. 11. Ensemble model predictions (blue) on subject S9 from the SWELL dataset (Experiment 7). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Fig. 12. Ensemble model predictions (blue) on subject W14 from the WESAD dataset (Experiment 7). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Adjusting ensemble weighting based on varying biomarker segment
sizes (Experiment 7) during the prediction phase, is not an ideal ap-
proach. Therefore, this method was not utilized in Experiment 9, where
a fixed weighting of 60% (XGB) and 40% (ANN) (similar to Experiment
5) was applied, given the strength of the XGB model over the ANN
model in prior experiments.
12
Finally, for Experiment 10, the ensemble model trained on Synthe-
sizedStressData was applied to the WESAD dataset to compare pre-
dictive power to those from Experiments 1, 2, 5, 6, and specifically
Experiment 8. For this experiment, all WESAD data in StressData
was removed and used as a validation set (similar to Experiment 8),
resulting in a smaller total of 115 subjects used for training. Random
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Fig. 13. Predictions on subject X188 from Experiment 9.
Table 4
Summary of accuracy scores for 10 trials of Experiment 10.

Iteration XGB ANN Ensemble Precision Recall F1

1 0.83 0.77 0.81 0.84 0.72 0.81
2 0.83 0.84 0.83 0.89 0.70 0.74
3 0.81 0.83 0.85 0.94 0.72 0.77
4 0.82 0.88 0.82 0.90 0.69 0.73
5 0.84 0.84 0.85 0.92 0.75 0.78
6 0.84 0.89 0.86 0.95 0.77 0.82
7 0.85 0.93 0.89 0.93 0.86 0.88
8 0.81 0.83 0.84 0.89 0.74 0.78
9 0.83 0.87 0.87 0.92 0.80 0.85
10 0.80 0.82 0.80 0.83 0.61 0.66

MEAN 0.82 0.82 0.85 0.90 0.74 0.78
SD 0.015 0.045 0.029 0.041 0.065 0.062
sampling was again utilized to build a new instance of the Synthesized-
StressData dataset as described in Section 3.8, to construct 200 training
subjects consisting of two physiological states: 12 min of a non-stressed
baseline, and 12 min of a stressed period, sampled from the pool of
3600 3-minute segments (2917 stressed and 683 non-stressed).

A 12-minute interval was used to closely emulate the experimen-
tal protocol used when building the WESAD dataset, specifically the
stressed period (approx. 10 min of stress [6]). The random sampling,
training and validation process was repeated for 10 iterations, with
accuracy scores averaged across the 10 iterations. The results of these
iterations are detailed in Table 4.

The ensemble method outperformed both the XGB and ANN models,
with a mean accuracy rate of 85%, and a very low standard devi-
ation (0.029) across all 10 trials. A fixed weighting of 45% (XGB)
and 55% (ANN) was used, showing more stability, and closer to an
ideal balanced 50%/50% weighting. This result, compared to those
from Experiment 8, shows a well generalized machine learning model
capable of predicting accurately on new, unseen data (WESAD).

Fig. 14 shows a prediction plot of subject W15 from the WESAD
dataset. We note a slight stress over-prediction during the baseline
condition, with high correlation between prediction and label across
the 24 min experimental period.

Revisiting the findings from Experiment 1 through Experiment 4, we
find a significant reduction in Type II errors as shown in the confusion
13
matrix of all three models when plotted for test subjects W4 and W14
from the unseen WESAD dataset (Fig. 15). While both XGBoost and
Ensemble models perform equally well for test subject W14, we note
the Ensemble model outperforming both XGBoost and Artificial Neural
Network models for test subject W4.

To emulate a real-world scenario where a new, unseen dataset is
provided with a potentially stressful experimental scenario, we trained
and applied the full SynthesizedStressData (3758 samples, 129 subjects)
ensemble model to the Toadstool dataset, using a balanced 50% (XGB)
and 50% (ANN) weighting.

This dataset contains sensor biomarker data recorded during periods
of game-play where levels of subject stress may have been perceived
as high. No labeling is provided for this dataset to compare predictive
accuracy. Fig. 16 shows a plot of the ensemble predictions for subject
T2. We note elevated levels of stress when game-play starts, with a
period of stabilization, prior to an increase as game-play reaches the
end stage. While no definitive conclusions can be made from this test,
it does show correlation between predictions and perceived levels of
stress in this particular experimental scenario.

The results from the ten aforementioned experiments are detailed
in Table 5. When examining the difference between experiment 4
and 7, we noted higher precision, indicating the ensemble model is
better capable of predicting the stress state when subjects are in fact,
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Fig. 14. Predictions on subject W15 from the WESAD dataset (Experiment 10).
Fig. 15. Confusion Matrix for subjects W4 and W14 (Experiment 10).
under stress, while the improved recall indicates a better measure of
identifying true positives (stressed condition). For experiments 2 and
6, there is a reduction in precision and recall for the WESAD dataset
(better for the NEURO dataset), indicating that the ANN model, when
part of the ensemble, fared worse for this dataset, reducing the overall
precision and recall compared to singular models used for experiment
2. These differences when predicting on new, unseen data steered us
towards merging the datasets and ultimately generating a synthetic
dataset to address these shortcomings of training on small datasets.

We also conducted an experiment where the large SWELL dataset
was excluded from the SynthesizedStressData for training. As expected,
this experiment yielded poor results due to the low number of subjects
and observations leading to a lack of statistical significance. The result
14
and the code for this supplementary experiment are available through
the paper’s public code repository (see Supplement10.R).

5. Conclusions and discussion

In this work, we evaluated the generalization ability of machine
learning models trained on datasets containing stress biomarker data
for a small number of study subjects. We found these models per-
formed poorly, and proposed a methodology to engineer merging sev-
eral small datasets into a single larger dataset which, when com-
bined with feature-engineering, delivered a more robust stress detection
model with significantly improved performance. This study was lim-
ited to utilizing the EDA and HR biomarkers generally available from
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Fig. 16. Predictions on subject T2 from the Toadstool dataset.
Table 5
Summary of experimental results.

Experiment Model Train data Validation data F/E Accuracy Precision Recall F1

1 XGB SWELL NEURO, WESAD 50%, 66% 0.59, 0.27 0.36, 0.29 0.45, 0.28
1 SVM SWELL NEURO, WESAD 47%, 50% 0.52, 0.31 0.43, 0.54 0.47, 0.40
1 Random Forest SWELL NEURO, WESAD 49%, 63% 0.55, 0.37 0.34, 0.30 0.42, 0.33

2 XGB SWELL NEURO, WESAD ∙ 50%, 68% 0.53, 0.36 0.24, 0.59 0.33, 0.45
2 SVM SWELL NEURO, WESAD ∙ 41%, 63% 0.34, 0.35 0.07, 0.25 0.12, 0.30
2 Random Forest SWELL NEURO, WESAD ∙ 46%, 62% 0.52, 0.33 0.24, 0.22 0.33, 0.26

3 XGB StressData LOSO 63.00% 0.44 0.68 0.50

4 XGB StressData LOSO ∙ 72.36% 0.47 0.66 0.47

5 Ensemble SWELL NEURO, WESAD 51%, 70% 0.67, 0.55 0.30, 0.44 0.38, 0.56

6 Ensemble SWELL NEURO, WESAD ∙ 50%, 69% 0.81, 0.31 0.34, 0.56 0.43, 0.34

7 Ensemble StressData LOSO ∙ 80.33% 0.56 0.75 0.47

8 Ensemble StressData (excl. WESAD) WESAD ∙ 59.00% 0.33 0.22 0.24

9 Ensemble SynthesizedStressData LOSO ∙ 89.00% 0.90 0.88 0.89

10 Ensemble SynthesizedStressData (excl. WESAD) WESAD ∙ 85.00% 0.90 0.74 0.78
medical-grade wearable devices such as the Empatica E4, for which
a number of datasets are publicly available and specifically labeled
for stress. While several commercially available devices are capable of
measuring and recording additional sensor data including skin tempera-
ture, blood-volume-pulse and data from an accelerometer, these signals
were excluded for this study as both accelerometer and temperature
data are likely to be influenced by the study setting and experimental
environment.

We found the recommendations by Brysbaert et al. [24], with
regards to number of study subjects required to achieve sufficient sta-
tistical power (>85%) to correlate with our own findings, and showed
model generalization to occur with more test subjects, compared to
low generalization for a smaller number of subjects, as typically found
in publicly available stress datasets. This finding has important impli-
cations for machine learning researchers who would normally expect
generalization to occur given a sufficient number of observations,
regardless of the number of individual test subjects that contributed
to those observations. However, when the problem domain relates
to behavioral science or a dependency on physiological biomarker
data, a varied dataset consisting of biomarker data recorded from a
sufficiently varied number of test subjects is equally important as, or
more important than, dataset size and observation count alone.

While prior studies [7] suggested that generalization is only possible
with personalized models built for individual subjects, we found that
we could reproduce our results on new, unseen data. Stress is not a
binary condition, and the approach developed in this study delivers
a methodology for predicting both a binary condition, as well as a
level of stress experienced via regression, with accuracy levels >85%.
A substantial challenge in using public datasets for training machine
learning models to predict physiological responses, such as acute stress,
15
are the varied experimental protocols used during recording, combined
with large variance in recorded biomarker segment size. This can lead
to class imbalance which is hard to overcome using traditional methods
such as over and/or under-sampling of observations used for training.

Finally, we demonstrated the use of ensemble methods to combine
the individual predictive power of unique machine learning algorithms,
into a more powerful and robust stress detection model. By utilizing
non-complex feature-engineering techniques with a tumbling window
of 25 s, we presented a methodology that can deliver near real-time
stress prediction from wearable sensor biomarker data. We further
utilized random sampling of very small segments of either baseline or
stressed periods, to build a balanced training dataset that performed
well when using both LOSO validation, or when predicting on a new,
unseen dataset (WESAD).

While the methods presented is not a substitute for large, validated
and well-labeled datasets, the current lack of public data available
for stress-related machine learning research limits the ability for re-
searchers to reproduce prior findings [38], and towards that end the
full source code and feature-engineered StressData and Synthesized-
StressData datasets used in this study are made available for future
research use via the code-sharing platform GitHub at https://github.
com/xalentis/Stress. We believe that the results and data presented
herein can help advance the emerging field of machine learning for
stress measurement from wearable devices.

The provided source code helps future studies implement the pro-
posed random sampling methodology by integrating their Empatica E4
dataset into our new synthesized dataset, or alternatively using the
provided code as a guide when implementing the same approach for
other devices and biomarkers.

The process of expanding the training dataset using our provided
source code can lead to continual learning [39], which will further

https://github.com/xalentis/Stress
https://github.com/xalentis/Stress
https://github.com/xalentis/Stress
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enhance dataset variability and help avoid future model drift. In the
case of our study, techniques similar to domain-incremental learning
can be utilized for incorporating additional datasets into the main
SynthesizedStressData dataset, treating each as a different domain, be-
fore generating random synthetic samples for model re-training. Future
studies could investigate the performance of popular continual learning
techniques such as Elastic Weight Consolidation (EWC) and Gradient
Episodic Memory (GEM) [40] against our proposed ensemble learning
technique.
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