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Abstract: Preterm birth is a live birth that occurs before 37 completed weeks of pregnancy. Ap-
proximately 11% of babies are born preterm annually worldwide. Blood pressure (BP) monitoring
is essential for managing the haemodynamic stability of preterm infants and impacts outcomes.
However, current methods have many limitations associated, including invasive measurement, in-
accuracies, and infection risk. In this narrative review, we find that artificial intelligence (AI) is a
promising tool for the continuous measurement of BP in a neonatal cohort, based on data obtained
from non-invasive sensors. Our findings highlight key sensing technologies, AI techniques, and
model assessment metrics for BP sensing in the neonatal cohort. Moreover, our findings show that
non-invasive BP monitoring leveraging AI has shown promise in adult cohorts but has not been
broadly explored for neonatal cohorts. We conclude that there is a significant research opportunity in
developing an innovative approach to provide a non-invasive alternative to existing continuous BP
monitoring methods, which has the potential to improve outcomes for premature babies.

Keywords: artificial intelligence; blood pressure; neonatal medicine

1. Introduction

Worldwide, an estimated 15 million neonates are born preterm each year, account-
ing for nearly 1 million deaths yearly [1]. In Australia, more than 26,000 neonates are
born preterm each year [2]. Whilst the survival for premature neonates has improved
over the years, prematurity is still associated significantly with short-term and long-term
complications [3]. The main cause of morbidity and mortality is organ immaturity. One com-
monly seen problem in the immediate extra uterine life is the difficulty in maintaining blood
pressure (BP), which reflects the immature cardiovascular system. Blood pressure reading
is reported as systolic (SBP) and diastolic blood pressures (DBP). From these measurements,
mean arterial pressure (MAP) is calculated by MAP = DBP + 1

3 (SBP − DBP) [4].
BP monitoring is essential for managing haemodynamic instability in premature and

critically ill neonates [5]. Approximately 20% of premature neonates develop hypotension
in the first 24 h of life [6]. There is a myriad of factors that contribute to low blood pressure in
a premature neonate. Blood loss during birth, increased endothelial permeability, immature
heart with ineffective cardiac output, the presence of a patent ductus arteriosus, exposure
to antenatal steroids, delayed cord clamping, and use mechanical ventilation are among
the factors that influence blood pressure [7]. Hypotension is associated with double the
risk of intraventricular haemorrhage, which can result in severe long-term neurological
consequences in those who survive this complication [8].

The Haemodynamics Working Group of the International Neonatal Committee has
published a review addressing methods of BP measurement in neonates, highlighting the
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key challenges in obtaining reliable BP measurements [5,9]. The primary methods for mea-
suring BP in neonates are cuff-based infant sphygmomanometers and continuous arterial
BP monitoring, as illustrated in Figure 1. Intra-arterial monitoring, either with an umbilical
artery or peripherally inserted arterial line is highly invasive and introduces the risk of
significant complications such as thrombosis and infection in vulnerable neonates [10].
This methods is also limited to clinical settings performed by skilled clinicians, making it
unsuitable for use in low-resource environments [11].
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Meanwhile, the widely accepted method of non-invasive BP measurement is the
sphygmomanometer, an oscillometric method that involves an inflatable cuff generally
placed on the upper arm. The cuff is inflated to a pressure beyond the expected systolic BP
and then slowly reduce. The maximum and minimum cuff pressures at which blood flow
turbulence is audible to inbuilt sensors or via a stethoscope are taken as the systolic and
diastolic BP readings, respectively. While this method is non-invasive, the application of
high pressures can cause discomfort. It is also only capable of measuring BP intermittently,
preventing continuous monitoring. Additionally, issues including low accuracy and user
error [9,12] have previously been identified.

The limitations of oscillometric measurements have led to researchers looking at
alternative methods for BP measurement that can be used continuously. Several recent
studies have sought to utilize artificial intelligence (AI) algorithms to estimate BP from
heart activity waveforms obtained using sensors such as photoplethysmogram (PPG) and
electrocardiogram (ECG) [13–18]. These sensors are routinely used in critical care settings
for cardiorespiratory health monitoring purposes, however, have not yet been validated for
monitoring BP. Several studies have investigated various AI approaches towards measuring
BP from heart activity signals in adult cohorts, showing some promise that has not yet
been translated into successful clinical tools for widespread use. In addition, neonatal
cohorts have not been broadly considered. Thus, there is a significant gap in the literature
pertaining to non-invasive BP measurement in this group that could lead to a significant
change in clinical practice.
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This narrative review contributes to the literature by analysing the state-of-the-art
literature on non-invasive and continuous blood pressure monitoring, with a focus on the
neonatal cohort. We identify that there are very few studies investigating this topic for
neonates; however, a substantial body of literature exists for adult cohorts. We then explore
key technologies, including non-invasive sensors and artificial intelligence, which are
critical to the development of non-invasive BP monitoring tools. Additionally, we introduce
key metrics for assessing the performance of BP monitoring tools. As most identified works
are focused on adult cohorts, we therefore place a lens on the few pioneering works which
have considered the neonatal cohort. We ultimately discover a significant need for further
research in this field, and as such, conclude this paper by highlighting directions that offer
significant opportunity for future researchers.

2. Materials and Methods

Our narrative review was conducted by first searching PubMed, Scopus, and Web of
Science for relevant studies. Our keywords included “non-invasive”, “cuffless”, “wear-
able”, “blood pressure”, “prematur*”, “preterm”, “neonat*”, “baby”, “infant”, “pediatric”,
“paediatric”, “child*”, “artificial intelligence”, “neural network”, “deep learning”, and
“machine learning”. Studies that focused on the non-invasive measurement of blood pres-
sure or the use of AI to predict blood pressure in any age cohort were considered, with
papers focused on the neonatal cohort included by default. Non-English papers were also
excluded. As the field of artificial intelligence is rapidly evolving with ever-improving
computational resources, we focused our search on papers published between 2017 and
2023. Due to the large volume of papers in the adult cohort, we selected only papers
published in reputable journals that utilised technologies which may be suitable for the
neonatal cohort.

The first outcome of this literature search was to identify several non-invasive sensors
that can be used to obtain cardiac activity waveforms on a continuous basis. The second
key outcome was to investigate the suitability of various artificial intelligence tools for
developing a predictive algorithm for estimating blood pressure, using metrics obtained
from non-invasive devices.

3. Results

Our exploratory search revealed that research on non-invasive BP measurement for
neonatal patients, particularly those born very preterm, is limited. However, a larger body
of literature investigates non-invasive BP measurement for paediatric and adult cohorts. In
this section, we explore candidate sensors, artificial intelligence approaches, and assessment
metrics for non-invasive blood pressure monitoring devices. As these findings are primarily
based on research in adult cohorts, we present a short section that outlines the limited
research conducted in neonatal and paediatric cohorts, before summarizing the potential
clinical outcomes that these techniques offer to critical care monitoring for preterm infants.

3.1. Architecture for Non-Invasive Blood Pressure Monitoring

In this subsection, we highlight the key sensor and AI technologies utilized for de-
veloping non-invasive BP monitoring systems in the literature, as illustrated in Figure 2.
Additionally, the key metrics used to assess the performance of these systems are discussed.
Most of the discussed works have focused on an adult cohort; however, similar techniques
could be applied in a neonatal cohort in future works.
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Figure 2. Non-invasive blood pressure monitoring pipeline with examples of possible technologies
and techniques.

3.1.1. Sensors

A range of non-invasive sensors have been explored in the literature for the non-
invasive monitoring of BP parameters in adult cohorts, including photoplethysmogram
(PPG) [13,15–17,19], electrocardiogram (ECG) [13,14,18], bioimpedance sensors [20,21],
pressure sensors [22], remote PPG (rPPG) [16], and ultrasonic transducers [23]. Of these,
only PPG and ECG have been explored for neonatal cohorts directly [24]. Several of
these devices are currently used in clinical practice for the measurement of other health
parameters. For example, PPG is used for monitoring both blood oxygen saturation and
heart rate. However, none of these sensors have been broadly validated or approved for
use in monitoring BP in clinical settings.

PPG and ECG are particularly prevalent in the literature, likely due to their widespread
use in clinical practice for cardiorespiratory health monitoring purposes. PPG sensors
are routinely used in a small finger-clip device to monitor heart rate and blood oxygen
saturation, while ECGs are regularly used to monitor heart rate and rhythm. As such, a
validated BP monitoring technique for BP monitoring based on one or both sensors would
be straightforward to implement in clinical settings given that the hardware is already
available and would carry the benefit of needing no additional sensors to be applied to
vulnerable neonatal skin.

Data obtained via PPG and ECG sensing has been used in a variety of ways in the
literature. Many early works sought to extract pulse transit time (PTT), typically measured
as the time distance between ECG R-peak and PPG peak, and correlate this with blood
pressure metrics using AI techniques or other approaches [25–27]. While the results of these
early works showed that PTT was a reasonable proxy for BP, the need for the ongoing time
synchronization of two separately measured signals is a substantial challenge in hardware
design that is difficult to overcome without regular calibration.

With increases in computational power and advancements in AI, an increasing body
of work has instead used short segments of PPG or ECG waveforms as inputs to AI
models [13,15–18], with promising results. Several other works have also investigated the
development of more computationally efficient methods, including extracting features that
describe the shape of PPG and ECG waveforms [14,28] and extracting non-linear features
of PPG waveforms [19] as inputs for AI models. The lower computational requirements of
these methods may make them more suitable for wireless battery-powered devices.

Aside from wearable PPG- and ECG-based approaches, there are several alternative
and novel sensing approaches that also carry promise for the neonatal cohort. While PPG
is typically obtained via a wrist- or finger-based wearable device, one recent study [16]
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instead extracted PPG waveforms from RGB camera imagery by analysing changes in skin
tone due to heart activity before using these signals to train a hybrid neural network (NN)
to predict SBP and DBP. The reported error was significant and thus currently unsuitable
for clinical use; however, the approach is interesting given it is entirely non-contact. Further
investigation may be warranted to improve the accuracy of this method.

One work focused on a neonatal cohort used a capacitive pressure sensing array [29]
built into a wearable wrist band. The capacitive sensor array was designed to measure
displacement with high sensitivity. Two electrodes were built into a soft wearable band,
with one electrode designed to sit against the wrist and move with the pulse while the other
electrode remains relatively fixed. The small displacement changes caused by the pulse are
measured as a change in capacitance, which in turn enables pulse waveforms to be derived.
The waveforms obtained using this sensing method were then utilized to train a neural
network to predict BP parameters, showing promising early results on a small cohort based
on standard deviation. As this approach is not optical, it is likely to be unaffected by skin
tone, thus it is likely to work equally well on a broad range of infants; however, this would
need to be validated. A potential disadvantage is that its high sensitivity to displacement
may lead to increased motion artifacts compared to other methods. This sensing method
offers a promising direction for future research.

In another recent work by Si et al. [22], a textile-based pressure sensing approach was
used to measure ballistocardiogram (BCG) signals, which capture vibrations of the body
caused by heart activity. Using nylon as a substrate, they embedded a flexible pressure
sensing array into a flexible chair covering. Through feature importance analysis, they
identified several key features of the BCG waveform that were highly correlated with
diastolic or systolic BP. Thereafter they trained a neural network (NN) to predict BP from
BCG features, achieving promising results. While their study focused on an adult cohort,
this sensing strategy could potentially be suitable for incorporation into bed sheets for
neonatal care units. BCG sensors have also previously been utilised in the neonatal cohort
for other applications, including motion detection [30], and as such, BP sensing could be
combined with other essential monitoring requirements using BCG.

Bio-impedance sensing arrays have also been considered by several recent papers [20,21].
These sensors capture pulsatile activity by measuring electrical impedance across an area
of interest, commonly the wrist. They have primarily been suggested as an alternative to
PPG, largely due to bioimpedance sensors achieving more consistent performance across
diverse skin tones than PPG sensors [21]. Limited results were reported in either paper;
however, the standard deviation values suggest reasonable performance.

Overall, a broad range of sensors have been considered for blood pressure monitoring
in adult cohorts, however only PPG and ECG have been considered in neonatal cohorts.
PPG is a particularly appealing approach given that it is already routinely used for con-
tinuous monitoring in neonatal critical care settings, and as such, the development of a
validated BP measurement scheme based on PPG could be rapidly deployed through a
software update. However, approaches discussed in this section offer advantages such
as lower contact (e.g., rPPG) and more consistent performance in diverse cohorts (e.g.,
capacitive sensing); as such, these alternatives warrant further exploration and efforts to
improve affordability.

3.1.2. Artificial Intelligence

Artificial intelligence (AI), or machine learning (ML), has proven critical in calculating
BP parameters, including systolic blood pressure (SBP), diastolic blood pressure (DBP), and
mean arterial pressure (MAP), from the waveforms and other data obtained via non-invasive
monitoring. In the literature, AI approaches have been applied to both raw waveform
data [13,15–18] and hand-picked features extracted from waveform data [14,19,20,22]. AI
methods used in this space are varied; however, most recent works have focused on neural
network (NN) architectures [13–17,22,28].
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Several early works considered various regression methods, including the work by
Chung et al. [24] which used linear regression to link pulse transit time parameters derived
from PPG, ECG, and seismograph (SCG) sensors with systolic BP in a neonatal cohort,
showing promising results on a small dataset (n = 5). Works focused on adult cohorts
also considered a range of regression methods, including linear regression [25], support
vector machine [15,19,25], decision tree [15,25], and random forest [15,25]. However, the
results obtained by these foundational models have been largely outperformed by neu-
ral networks, leading to the most recent literature instead focusing on various neural
network architectures.

Fully connected neural networks (FCNNs) are the most fundamental type of neural
network and have been considered in several recent works. In one work focused on a
neonatal cohort, an FCNN was used to predict BP parameters from PPG data. The standard
deviation (SD) was reported as 6.6 mmHg and 7.9 mmHg, respectively. Mean absolute
error (MAE) results were reported; however, several of the reported values were negative,
indicating that these values are likely mean error (ME). In another work focused on an adult
cohort [22], FCNN was used to predict BP from features of BCG waveforms in an adult
cohort, achieving MAE values of 3.90 mmHg and 4.62 mmHg for DBP and SBP, respectively.
Although FCNN architectures have shown promising results, they are computationally
expensive to train and are prone to overfitting. As such, they are less prevalent in the
literature than other more advanced NN architectures.

Convolutional neural networks (CNNs) and long short-term memory (LSTM) net-
works have been broadly explored for interpreting waveform data. CNN models perform
strongly in identifying the key features of waveforms, while LSTM is highly suited for
identifying relationships between key features, making them especially useful for inter-
preting time-series data. While several studies have considered these models on their
own [16,20,31], most recent works have utilized hybridized CNN-LSTM model architec-
tures to gain the benefits of both model types within a single structure.

One such work [32] utilized CNN and LSTM models in parallel, with the results
then flattened into a single layer for the prediction of systolic and diastolic BP in an adult
cohort. Two CNNs were trained to interpret the morphological and frequency spectrum
characteristics of PPG waveforms, and one LSTM was trained to interpret temporal features
of PPG waveforms, with all waveforms derived from a subset of MIMIC-II. Their results
achieved ”B” and ”A” grades in accordance with the BHS Protocol for SBP and DBP,
respectively. Additionally, MAE ± SD values of 5.59 ± 7.25 mmHg and 3.36 ± 4.48 mmHg
were achieved for SBP and DBP, respectively, with the AAMI Standard thus met for DBP
only. While SBP performance was slightly below industry standards, this approach shows
promise in assessing waveform features in several ways.

Sequential CNN-LSTM models were also considered in several works in adult
cohorts [13,14,16], with these models featuring CNN layers that identify key features
feeding into LSTM layers that identify the relationships between those features. In one
recent work [13], the CNN-LSTM model shown in Figure 2 was used to predict systolic
and diastolic BP from PPG and ECG waveforms derived from the adult cohort within
Medical Information Mart for Intensive Care (MIMIC-III) database, achieving an “A” grade
in accordance with the BHS Protocol and a “Pass” grade in accordance with the AAMI
standard. They reported MAE ± SD values of 4.41 ± 6.11 mmHg and 2.91 ± 4.23 mmHg
for SBP and DBP, respectively. Another work [16] utilized a CNN-LSTM model fine-tuned
to individual participants to predict BP parameters in an adult cohort using PPG and
rPPG signals, comparing this model to several deep CNN architectures from the literature.
Using PPG data, they achieved MAE values of 9.0 mmHg and 4.6 mmHg for SBP and DBP,
respectively. Using rPPG data, MAE values of 13.6 mmHg and 10.3 mmHg were reported
for systolic and diastolic BP, respectively. These results were stronger than those of the
other considered CNN models, but do not meet the AAMI Standard. Meanwhile, one
work [14] used a shallow CNN-LSTM model to predict BP parameters based on 12 features
describing the shape of PPG and ECG waveforms from the MIMIC-III database, with the
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results achieving “A” and “Pass” grades for the BHS Protocol and AAMI standard, respec-
tively. The reported MAE ± SD values were 4.53 ± 6.27 mmHg and 3.37 ± 4.84 mmHg for
systolic and diastolic BP, respectively. Additionally, explainable artificial techniques were
used to identify the features most strongly linked with BP. This analysis showed that the
ECG Q-wave and R-wave and PPG trough were most strongly predictive of SBP, while the
PPG peak and trough and ECG R-wave were most strongly predictive of DBP.

Several recent works have also looked to improve on the performance of LSTM struc-
tures using attention mechanisms, which enable the model to learn contextual information
about the input features. One such work [28] developed a simplified LSTM variant known
as a gated recurrent unit model with an attention mechanism to predict diastolic and
systolic BP from non-linear features of PPG waveforms, using a subset of 500 waveforms
from the MIMIC-II database comprised of an adult cohort. Their proposed model achieved
MAE ± SD values of 2.58 ± 3.35 mmHg and 1.26 ± 1.63 mmHg for SBP and DBP, respec-
tively. These results meet the AAMI Standard and are shown to exceed results obtained via
other models, including linear regression and vanilla LSTM.

In another recent work, a novel Transformer architecture was considered for predicting
BP parameters from PPG waveforms in an adult cohort [17]. Transformers are advanced AI
models that have been gaining popularity in the literature due to their ability to capture
global context and identify relationships across long time-series of data. Using 5 s segments
of PPG waveforms from the MIMIC-III adult cohort, the transformer architecture proposed
in [17] was used to develop both general and personalized models. The model trained on
general data achieved MAE values of 4.97 ± 4.72 mmHg and 2.99 ± 2.39 mmHg for systolic
and diastolic BP, respectively, while the model with personalized fine-tuning achieved MAE
values of 2.41 ± 2.72 mmHg and 1.31 ± 1.77 mmHg, respectively. For both the general and
personalized models, the AAMI Standard was satisfied, and the BHS Protocol grade of ‘A’
was achieved in measuring systolic and diastolic BP. These results are promising, showing
great potential for this emerging class of artificial intelligence models.

Overall, a wide range of AI models have been explored for predicting BP parameters
in adult cohorts. Most recent works have utilized neural networks, with advanced methods
such as CNN-LSTM hybrids and transformer models showing particularly strong promise.
In the neonatal cohort, these advanced AI techniques have not been explored. Works to
date have focused on simpler methods, including linear regression and FCNN, with results
showing room for improvement. As a result, there is a significant gap in the literature
in applying advanced AI architectures that have shown promise in adult cohorts to the
prediction of BP parameters in neonatal cohorts.

3.1.3. Assessment Metrics

There are several approaches used in the literature to assess the performance of tools
for BP monitoring. The first is straightforward error metrics, including mean absolute
error (MAE), standard deviation (SD), and root-mean-square error (RMSE). MAE and SD
provide insight into the magnitude and range of errors, while RMSE more heavily penalises
high-range errors and thus helps to reveal whether the errors being made are significant or
not. Several works in the literature report mean error (ME); however, this method does not
adequately illustrate model performance due to negative and positive errors effectively
cancelling either other out. While ME could be used as a first check that the model is not
significantly underperforming, an ME close to zero does not provide any evidence that a
model is performing well.

In addition to numeric error metrics, tools including Bland–Altman plots and error
histograms are broadly used. Bland–Altman plots show the level of agreement between a
novel measurement technique and an existing gold-standard [33]. Most papers utilizing
Bland–Altman plots compare their proposed technique with intra-arterial monitoring [13];
however, some compare to sphygmomanometer-based oscillometric measurement [22]. Er-
ror histograms can also be used to visualize the distribution of errors by splitting errors into
small bins and plotting the frequency of errors in those bins. This has been used in several
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works [14,34]; however, it is less prevalent than Bland–Altman analysis. Nonetheless, error
histograms are highly useful for understanding whether errors are evenly distributed be-
tween underestimation and overestimation error, as well as whether significant high-range
errors are occurring in either direction.

Lastly, industry-based benchmarks are regularly used to assess tool performance,
including the British Hypertension Society Protocol for the Evaluation of Blood Pressure
Measuring Devices [35] (hereafter called the BHS Protocol) and the Association for the
Advancement of Medical Instrumentation’s American National Standard for electronic
or automated sphygmomanometers [36] (hereafter called the AAMI Standard). The BHS
Protocol assigns a grade to blood pressure measurement devices based on the quantity of
measurements meeting different error thresholds, as outlined in Table 1 below. Meanwhile,
the AAMI Standard assigns “pass” grades to any device that achieves mean absolute
error ≤ 5 mmHg and standard deviation ≤ 8 mmHg, while all others are awarded “fail”.

Table 1. Grading criteria for the BHS Protocol.

Blood Pressure
Monitor Grade

% Measurements with Mean Absolute Error of:
≤5 mmHg ≤10 mmHg ≤15 mmHg

A 60% 85% 95%

B 50% 75% 90%

C 40% 65% 80%

D Worse than C

3.2. Non-Invasive Blood Pressure Monitoring in Neonatal Cohorts

Few works in the literature have investigated non-invasive blood pressure monitoring
in neonatal cohorts. This subsection highlights the pioneering works in this domain,
highlighting the need for further research in order to develop a clinically suitable method
for non-invasive blood pressure monitoring in vulnerable neonatal cohorts.

One recent work by Chung et al. [24] developed a wireless wearable adhesive device
containing ECG, PPG, seismocardiogram (SCG), and accelerometer sensors for use in a
neonatal cohort. Their work first extracted a pulse arrival time (PAT) metric, measured as
the time distance between ECG R-peaks and PPG troughs, as well as a pulse transit time
(PTT) metric, measured as the time distance between ECG R-peaks and SCG troughs. Linear
regression was then used to determine a relationship between systolic BP and PAT, as well
as systolic BP and PTT. They reported SD values of 7.99 mmHg and 7.86 mmHg for PAT-
and PTT-derived SBP values, respectively; however, MAE was not reported. Significant
outliers were seen on their Bland–Altman plots; however, the authors report that this
corresponded with significant movement detected on the accelerometer, suggesting that
motion artifact led to errors in this period. Overall, initial results were promising; however,
the cohort was small (n = 5), and several key statistics were not reported. As such, further
validation of the proposed method is required. Additionally, diastolic BP and mean arterial
pressure are not considered despite these parameters being of clinical significance. Finally,
their proposed method depends on accurate time synchronization between the ECG and
PPG waveforms. While steps were taken in their design process to ensure that this time
synchronization is maintained, it is reported that some clock drift was seen over time; thus,
the accuracy of the system is likely to decline without regular calibration.

In another work by Rao et al. [29], pulse waveforms were obtained using a capacitive
sensor array proposed in an earlier work [37] that is capable of detecting the changing
displacement of the ankle or wrist in response to the pulse. Their work then utilized neural
networks in two stages of their design approach. Firstly, they trained a CNN to automati-
cally assess the quality of the pulse waveform signals obtained from the device. This was
then used to determine whether a signal was suitable for use in developing a blood pres-
sure prediction model, with signals showing low-quality data excluded from the training
and testing datasets. Thereafter, an FCNN was trained and tested for prediction of sys-
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tolic, diastolic, and mean arterial BP. They reported ME ± SD values of −0.1 ± 7.9 mmHg,
0.1 ± 6.6 mmHg, and −0.1 ± 6.4 mmHg for systolic, diastolic, and mean arterial BP, respec-
tively. While the ME values do not provide useful information as to the performance of
the model or the distribution of errors, the SD values show some promise. Additionally, r2

regression scores of 0.64, 0.35, and 0.53 are reported for systolic, diastolic, and mean arterial
BP, respectively. These results indicate that the FCNN model is not achieving a strong fit to
the data, and as such, further research is certainly needed to improve upon these results. It
is likely that more advanced AI models could achieve stronger results, such as CNN-LSTM
and transformer architectures, which have performed well on adult cohorts.

Aside from the works by Chung et al. [24] and Rao and Quan et al. [29,37], there is
relatively little research regarding the use of non-invasive sensing to monitor blood pressure
in neonatal ICUs. Two further works by Revathi et al. [38] and Kapur et al. [39] considered
blood pressure measurement in a broader paediatric cohort, including infants. The work
by Revathi et al. [38] captured pulse activity in infants using a finger clip PPG sensor.
They assessed the performance of several AI algorithms in measuring a range of vital sign
parameters, reporting that support vector machine and random forest approaches showed
the highest accuracy. However, specific results for BP measurement are not reported,
so no conclusions can be drawn about the efficacy of these modes for BP monitoring
specifically. In the work by Kapur et al. [39], an acoustic sensor was used to monitor heart
sounds non-invasively in a paediatric cohort comprised of 25 patients aged 0–18 years.
They reported RMSE values of 7.305 mmHg and 5.081 mmHg as well as ME ± SD values
of 0.623 ± 7 mmHg and −0.051 ± 5 mmHg for systolic and diastolic BP, respectively.
Additionally, the Pearson’s coefficient of correlation achieved were 0.964 and 0.935. Taken
together, these results show promise for this method; however, it would require validation
on a larger cohort and the analysis of relevant metrics such as MAE. Additionally, neonates
have different normal ranges of blood pressure to older children, and thus, a model trained
specifically for neonates is preferable in neonatal intensive care settings.

Overall, minimal research has been conducted on non-invasive and continuous blood
pressure monitoring in the neonatal cohort. The studies that have been conducted in this
space show promising initial results; however, they suffer from limitations, including small
cohorts and falling short of metrics set by industry standards for BP measurement devices.
There remains significant opportunity for future research in this space.

3.3. Limitations

This work presents a comprehensive narrative review of non-invasive and continuous
blood pressure monitoring methods in the neonatal cohort. Every effort has been made
to include all papers focused on this topic. Due to the relatively small body of work in
this domain, our narrative review was expanded to include papers focused on the adult
cohort which utilized technologies that are likely to be candidates for use in the neonatal
cohort. The key limitation of this paper is that the review is narrative, not systematic,
and thus, there may be additional papers in the adult cohort which are not included here
despite being relevant to the topic. However, there are many reviews focusing on non-
invasive blood pressure monitoring in other cohorts, for example, the recent works by
Maqsood et al. [40] and Zhao et al. [41].

4. Opportunities for Translational Research

The field of non-invasive and continuous blood pressure monitoring for neonates
remains in its infancy, with very few studies conducted in this domain. Given the impor-
tance of monitoring BP parameters in neonatal critical care and the limitations of existing
techniques, there remains a significant need to develop a reliable and accurate tool for this
task. This technology, if established, could be useful in neonatal intensive care settings or
for neonates born outside a tertiary perinatal centre and subsequently requiring specialized
aeromedical retrieval to a tertiary neonatal unit. Mortality rates remain higher for outborn
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(neonates born outside a tertiary perinatal centre) extremely premature neonates compared
with their inborn peers [42], and this technology could help narrow the survival gap.

Research focused on the neonatal cohort have so far only considered limited data
types, including PTT and PAT derived from PPG, ECG, and SCG signals [24], and pulse
waveforms obtained from capacitive pressure sensing [29,37]. However, in the adult cohort,
it has been shown that improved results can be obtained by using complete segments of
raw PPG or ECG waveforms, indicating that alternative methods of data preprocessing can
improve model performance. As PPG is affordable, broadly available, non-invasive, and
routinely used in medical settings, we suggest that future studies should investigate the
improved use of data obtained from this sensor. A validated approach using PPG sensors
could be rapidly deployed in neonatal critical care units and would be suitable for use in
low-resource settings. There also remains value in investigating novel sensor, including
textile-embedded pressure sensing arrays and non-contact rPPG. These sensor types offer
benefits to the neonatal cohort in terms of minimizing skin contact but have not yet been
considered for BP monitoring in neonatal cohorts.

Advanced AI models have also not been broadly explored in neonatal cohorts, with
studies to date using early models such as linear regression [24] and FCNN [29]. Given the
strong performance of CNN-LSTM and transformer architectures in works investigating
BP monitoring for adult cohorts, it is likely that these models would also perform well in
neonatal cohorts. There remains significant research opportunity in applying advanced AI
approaches to data from non-invasive sensors for the neonatal cohort.

Explainable artificial intelligence techniques have not been considered in the litera-
ture for neonatal BP monitoring. These techniques can help to reveal biomarkers that are
strongly linked with BP parameters, which in turn can guide future research into treat-
ments and medications to control BP levels. This biomarker identification approach has
been considered for an adult cohort [14]; however, it remains an open challenge for the
neonatal cohort.

Overall, this field remains open for significant future research, with challenges remain-
ing across sensor technologies, data preprocessing techniques, artificial intelligence, and
biomarker detection. This is an exciting field of research offering much opportunity to
future researchers.

5. Conclusions

The use of artificial intelligence to predict blood pressure in premature neonates from
non-invasive and continuous data has significant potential to improve clinical practice.
Existing methods for BP measurement suffer from a myriad of issues, with gold-standard
intra-arterial blood pressure monitoring being highly invasive and thus carrying various
risks, while sphygmomanometers suffer from inaccuracies and an inability to be continu-
ously used.

In this work, we have conducted a scoping narrative review of the state-of-the-art
literature in the domain of non-invasive and continuous BP monitoring with a focus
on neonatal cohorts. We found that very few studies considered neonatal or paediatric
cohorts, despite an active body of literature focused on an adult cohort. The neonatal
cohort studies identified featured small patient cohorts and utilized foundational machine
learning techniques. While results reported by these studies indicated that their proposed
methods were not yet suitable for clinical use, they showed evidence that heart activity
data obtained via non-invasive sensors can be linked to blood pressure.

Meanwhile, studies focused on adult cohorts showed that strong linkages can be made
between heart activity signals and BP where entire waveform segments are used to train
advanced AI models, including CNN-LSTM and transformer architectures. Additionally, it
has been shown that explainable artificial intelligence techniques can help to reveal key
waveform features predictive of BP in the adult cohort.

Taken together, the findings of our review indicate that there is significant research op-
portunity in applying novel data preprocessing techniques, advanced artificial intelligence
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architectures, and explainable artificial intelligence tools to BP monitoring for the neonatal
cohort. Research in this area could ultimately result in a significant change to clinical prac-
tice in terms of reducing risk to the patient, minimizing parental anxiety, and improving
the utilization of resources, all without increasing the time burden on neonatal clinicians.
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