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Abstract

Memristive devices being applied in neuromorphic computing are en-
visioned to significantly improve the power consumption and speed of
future computing platforms. The materials used to fabricate such devices
will play a significant role in their viability.Graphene is a promising ma-
terial, with superb electrical properties and the ability to be produced
in large volumes. In this paper, we demonstrate that a graphene-based
memristive device could potentially be used as synapses within Spiking
Neural Networks (SNNs) to realise Spike Timing Dependant Plastic-
ity (STDP) for unsupervised learning in an efficient manner. Specifically,
we verify the operation of two SNN architectures tasked for single-
digit (0-9) classification: (i) a single layer network, where inputs are
presented in 5 × 5 pixel resolution, and (ii) a larger network capa-
ble of classifying the Modified National Institute of Standards and
Technology (MNIST) dataset. Our work presents the first investigation
and large-scale simulation of the use of graphene memristive devices
to perform a complex pattern classification task. In favour of repro-
ducible research, we will make our code and data publicly available∗.

∗https://anonymous.4open.science/r/SNN-GrapheneSynapses-2E0D
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This can pave the way for future research in using graphene devices
with memristive capabilities in neuromorphic computing architectures.

Keywords: Unsupervised Learning, SNN, Graphene, Memristors, Simulation

1 Introduction

There is a plethora of work dedicated to the memristor, ever since its concept
was proposed by Leon Chua in [1]. Specifically, the hysteresis effect observed in
memristive devices allows for in-situ learning and memory, breaking down the
Von-Neumann bottleneck present in traditional computing architectures [2, 3].
The link between a resistive switching device and memristors was first demon-
strated by HP labs in 2008 [4], and ever since many different devices have been
created, with a variety of switching properties observed. Examples include the
formation of conductive filaments [5], Phase Change Memory (PCM) [6], al-
tering magnetic [7] and ferroelectric [8] polarisations, and interfacial switching
[9] devices.

One of the most important aspects of memristor design is choosing its con-
structive material, with different materials such as conventional oxides [10],
and 2D materials like graphene [11], chalcogenides [12] and others [13] be-
ing recent common choices. Of particular interest in this paper is the use of
graphene, not only due to its superior properties, i.e. high conductivity at room
temperature, mechanical robustness and atomically thin size, but also due to
the ability to manufacture graphene sustainably and at a low cost [14]. Since
memristors have been demonstrated to be able to play a significant role in Ar-
tificial Intelligence (AI) hardware [3, 15–19], this can be beneficial in building
large-scale neuromorphic, Machine Learning (ML), and Deep Learning (DL)
systems towards green intelligent machines.

There are many forms of ML and DL architectures including Deep Neural
Networks (DNNs) [20, 21], which are capable of performing many challeng-
ing engineering tasks [22]. These architectures, namely second generation
Artificial Neural Networks (ANNs), usually learn by minimising an error func-
tion through optimising their learning parameters, which may differ from the
learning processes in biological brains. On the other hand, neuromorphic and
bio-inspired computing systems, emulate biophysical processes that occur in
the brain, which are believed to be responsible for biological learning and
memory. SNNs, commonly referred to as the third generation of ANNs, are
the fundamental architecture of neuromorphic systems. They transmit infor-
mation in the form of voltage spikes [23], asynchronously. Consequently, they
are capable of efficient low-power operation [24], because unlike conventional
ANNs that work on a synchronous clock-driven basis, they process data only
when available and are in a low-power state at other times.

Another difference between neuromorphic SNNs and their DNN counter-
parts is the way they learn. Although many SNNs nowadays are capable of
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Table 1: Related work for unsupervised STDP-based MNIST classification.

Paper Synapse Learning Rule
No.

Epochs
Image Pre-Processing Memristive Material

Open-Source

Simulation

[31] Weight Dependant STDP 1,3,7,15 Frequency Proportional Spike Trains N/A ✓

[32] Simulated memristive 1 Frequency Proportional Spike Trains N/A ✕

[33] Fixed STDP 3 Frequency Proportional Spike Trains N/A ✕

[34] Device conductance mapping, STDP 1 Frequency Proportional Spike Trains Carbon nanotube ✕

[35] Device conductance mapping, STDP 3 Frequency Proportional Spike Trains Al/Al2O3/NbxOy/Au ✕

[36] Soft-bound STDP 1 Frequency Proportional Spike Trains TaOy/HfOx ✕

[37] Device conductance mapping, STDP 10 Image thresholding Cu/SiO2/W ✕

[38] Multi-memristive synapse 3 Frequency Proportional Spike Trains Ge2Sb2Te5 ✕

[39] Simulated memristive Not Specified Linearly Scaled Activity Patterns N/A ✕

This Paper Device current mapping, STDP 1,1,2,3,3 Image thresholding Al/C22H14/C140H42O20/SiO2/Si ✔

being trained in similar ways to their DNN counterparts, i.e., by using er-
ror backpropagation and surrogate gradient descent [25–27] algorithms, many
SNNs are trained using biologically inspired learning algorithms. One of the
most widely-used and -studied brain-inspired learning mechanisms that has
been the subject of myriad studies [3, 28, 29] is STDP. STDP governs the
synaptic weight changes in an unsupervised manner, based on the timing of
neuronal activity events [30]. When a pre-synaptic potential precedes a post-
synaptic potential, potentiation occurs. Depression occurs when the opposite
is true.

To fully exploit the remarkable benefits of graphene devices in neuromor-
phic computing, in this paper, we investigate the potential use of a graphene
device to implement STDP. To that end, we first generate a STDP learning
mechanism utilising the current-voltage data obtained from sample graphene-
pentacene (Al/C22H14/C140H42O20/SiO2/Si) memristive devices, previously
fabricated by our group [14]. We then use this graphene-based STDP learn-
ing to perform comprehensive simulations of SNNs containing Leaky Integrate
and Fire (LIF) neurons with adaptive voltage thresholds for two classification
tasks; binary pattern classification and hand-written digit classification.

Our specific contributions are as follows:

1. We generate a STDP window using the I-V data of graphene-pentacene
memristive devices for use in the large-scale simulation of SNNs;

2. We evaluate the effectiveness of our graphene-pentacene memristive devices
when used in conjunction with LIF neurons with an adaptive threshold volt-
age using a simple unsupervised pattern classification task by performing
extensive simulations, as a preliminary step prior to large-scale simulations;

3. We demonstrate competitive performance on the unsupervised learning of
MNIST dataset when simulating larger networks, and report state-of-the-
art performance for some network configurations. We provide the code used
to obtain these simulation results1.

It is worth noting that, the utilised graphene-based memristor only presents
a sample device. Our open-source model and simulation framework can be used
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to capture the behaviour of any other memristive devices to use in large-scale
neuromorphic simulations.

The rest of the paper is structured as follows. Section 2 describes related
work. Section 3 discusses how the graphene device that was used in the network
simulations was fabricated and simulated. Section 4 explains the layout and
components of a single layer network used to verify the learning in the graphene
device using a simple binary pattern classification task. Section 5 presents
the network used to perform the MNIST classification task and discusses its
achieved results comparable to literature. Finally, the paper is concluded in
Section 6.

2 Related Work

2.1 Unsupervised STDP-based MNIST Classification

Many works have investigated unsupervised learning in SNNs. In [31], Diehl
and Cook designed a network to perform unsupervised learning of the MNIST
dataset. They achieved a classification accuracy of 95.0% with 6,400 excita-
tory neurons. They also reported simulation accuracies between 80.0% and
90.0% when they tested their network with 100-1600 excitatory neurons. Al-
though 95.0% is one of the highest accuracies using unsupervised STDP
learning reported in the literature, Diehl and Cook utilised a non-memristive
software-based synapse model.

Brivio et al. [32] also performed unsupervised STDP learning of the MNIST
dataset using a SNN. Whilst their reported accuracies tended to saturate
at 85.0%, their aim was to test architectures that could possibly be imple-
mented in hardware using hybrid Complementary Metal-Oxide-Semiconductor
(CMOS)-memristive technologies, unlike [31], which focused on theoretical
architectures and learning rules. In another work, Querlioz et al. [33] per-
formed unsupervised learning with memristive STDP synapses, and achieved
a simulation accuracy of 93.5% with 300 output neurons. Several other works
[34, 40–43] have also tested SNNs, using memristive synapses. Table 1 lists the
related memristive STDP studies, along with their memristive material choices
(where applicable), their customised synaptic learning rule, their image pre-
processing techniques, as well as the number of training epochs they have used.
We have also listed our graphene-based memristive STDP synapse model.

These works are used as a benchmark for the results of this paper. It is
worth noting that, we could not find any previous research that used graphene-
based memristors for learning MNIST by an SNN. At the same time, apart
from [31] that is a non-memristive simulation study, our work presents the
only open-source simulation investigation of the memristive classification of
MNIST using STDP learning.
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2.2 Graphene-based Synapses in SNNs

Graphene has long been researched and studied due to its widely useful electri-
cal and mechanical properties, such as zero bandgap, linear energy dispersion
near the dirac point and a high electron mobility of 15,000 cm2V −1s−1 [44] as
well as high thermal conductivity and mechanical robustness [44, 45]. Further-
more, some studies have demonstrated the viability of commercial fabrication
of graphene. In particular, [14] has demonstrated that graphene can be fab-
ricated in a rather sustainable manner by natural extracts as precursors.
Because of this, graphene is touted to having many potential applications such
as transistors, Transparent Conducting Electrodes (TCE’s), Photovoltaics,
Light-Emitting Diodes (LED’s), among others [44]. Hence, many devices rang-
ing in purpose have been fabricated by utilising graphene, such as graphene
memristive devices.

Many different types of graphene memristive devices have been developed,
such as graphene based transistors [46–48], graphene-oxide based memris-
tors [49–52] as well as other graphene-based memristive devices [14, 53, 54].
Other 2D materials, such as black phosphorous, boron nitrides, dichalco-
genides, and perovskite, have picked up interest in this field as well [11, 55–57].

During the process of device characterisation, it is natural to investigate the
memristive properties for their suitability within neuromorphic applications.
One of the most widely investigated aspects of memristors is their ability to
perform the STDP learning rule. The STDP learning rule is a biologically
derived learning rule which relates the timing of pre- and post-synaptic voltage
spikes to determine changes in synaptic weights [58]. Works such as [59–61]
have developed STDP windows for their devices.

In some of these works, graphene-based devices were implemented into
various types of Neural Networks (NNs). Some works, such as [49, 50], have
implemented their devices into ANNs to perform image recognition, whilst
other works such as [46, 60–62], implemented their devices into SNNs. In [46],
the network was trained using a supervised learning rule. [61] showed a
graphene-based synapse with synaptic plasticity, but did not perform a pat-
tern classification task. However, [62] performed unsupervised learning in a
manner very similar to this paper, as did [60] and [63]. In all cases, alphabetic
characters were classified, making it difficult to benchmark their performance
against other SNNs that have generally been tested on classifying the MNIST
dataset. In fact, Table 1 shows that, to the best of our knowledge, no previous
work has used graphene-based synapses to perform unsupervised classification
of MNIST dataset using the STDP rule, which is performed in this paper.

There have also been studies based on developing memristive models for
implementation in SNNs. Some models, such as the Simmons tunnel bar-
rier model, the ion drift models (linear and non-linear), and Stanford-PKU
model are complex, physics-based models [64, 65]. Other models such as the
Voltage Threshold Adaptive Memristor (VTEAM) model [66], or the Data-
Driven Verilog-A model proposed in [67], are empirical. There has even been
research investigating analytical models for graphene oxide devices [59]. The
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Figure 1: Structure and dimensions of our graphene/pentacene memristive
device.

choice of model used is dependent on the properties and switching character-
istics of the device in question, and it is sometimes necessary to accommodate
for the differences between model and device performance.

3 Graphene Device Implementation

We have previously characterised the memristive behaviour of our graphene-
based device [14] used in this work. The device consists of graphene sandwiched
in between layers of pentacene, aluminium and fused silica, as shown in Fig. 1.
Graphene was fabricated using the Plasma Enhanced Chemical Vapour Depo-
sition (PECVD) method described in [14]. Fig. 2(a) shows the experimental
I-V characteristics of two sample fabricated and characterised devices. These
memristive devices implemented graphene as an electrode, due to its superior
conductivity. The cause of the resistive switching in the device has been previ-
ously studied in [68]. In this work, it is determined, through Charge Modulation
Spectroscopy (CMS) and Electric Field Induced Second Harmonic Generation
(EFISHG), that hole injection from the graphene pentacene contact was the
main contributor to the resistive switching observed within a very similar de-
vice. This particular device was chosen due to the methods used to fabricate
it. Specifically, the graphene in this device was fabricated using natural pre-
cursors [14]. Consequently, the fabrication of the device is considered highly
sustainable.

Initially, the VTEAM model [66] was curve-fitted to the averaged reference
device I-V (Fig. 2(b)), by minimising the error function specified in [66]. How-
ever, it was found that this model could not account for the transitions that
occur within the devices. Long-Term Potentiation (LTP) and Long-Term De-
pression (LTD) dynamics were not used to fit the model, as analog wave-forms
with varying periods are used to elicit changes in synaptic weight. Upon fur-
ther investigation, it was revealed that the I-V data was undergoing significant
conductance changes when the voltage was beyond the positive and negative
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Figure 2: (a) Sample fabricated and characterised graphene memristors used
to construct our device model. (b) The averaged reference device data and
the model output based on this data, showing the different steps of device IV
characteristics.

thresholds, like the VTEAM model, but also when the voltage was reset back
to zero. It was therefore decided that the VTEAM memristor model could
not be used, hence another approach was devised to utilise the memristive be-
haviour of our graphene-based device to implement STDP for our unsupervised
pattern classification task. This method is described in Section 4.2. Thus, we
aimed to implement a new model that, whilst similar to the VTEAM model,
accounts for these extra transitions.

The new model has the same switching characteristics as the VTEAM
model, however, two points where weight update occurs have been added.
Hence, four transition points have been included, labelled “VSetP”, ”VSetN”,
“VResetP” and “VResetN”. The “Set” transition points are where the con-
ductance of the device is increased when the magnitude of the voltage applied
surpasses these values. Similarly, when the magnitude of the voltage is below
the “Reset” points, the device conductance is decreased. The equations used
for these models are exactly the same as the ones used in the original VTEAM
model, but four equations instead of two are used to account for all of the tran-
sitions. The choice of parameters was optimised using Equation 9 discussed in
[66].

4 Unsupervised Binary Pattern Classification

In this section, we discuss the structure and building blocks of a simple single-
layer network we used in our simulations to perform unsupervised pattern
classification using our graphene-based memristive synapse. This represents a
preliminary step to better understand the memristive learning dynamics, prior
to large-scale simulations.
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4.1 Neuron Model

The LIF neuron was used, as it has previously demonstrated significant per-
formance in many neuromorphic systems [3, 69], and it has a much smaller
hardware footprint comparable to more complex neuron models, such as the
Izhikevich [70] and Hodgkin-Huxley neuron model [71]. The membrane voltage,
V , of a LIF neuron is described as

τ
dV

dt
= (Erest − V ) + IsumR, (1)

where Erest is the resting potential, τ is the membrane time constant, R is
the membrane resistance, and Isum is the sum of the input currents into the
neuron [72]. When the membrane potential exceeds the neurons threshold volt-
age, Vth, the neuron’s membrane potential resets to its resting potential, Erest.
The neuron parameters used in our simulations are as follows: τ = 0.0016s,
R = 500Ω and Erest = 0.0095V .

4.2 Synapse Implementation

To generate the STDP windows, various voltages (which were dependant on
the timings of pre- and post-synaptic signals) were applied to the model of the
device to generate a corresponding current. The values of current for which
the voltage exceed either “Set” points were then integrated with respect to
time to produce a value of integrated current, which corresponded to a value
of ∆T . For the simulations that followed, this value of integrated current was
interpreted as the change in current in response to a timing difference between
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Figure 3: Deriving the STDP waveform. (a) The pre- (blue) and post-synaptic
(orange) action potentials for a ∆T of +10ms, summing to an overall mem-
ristive voltage waveform (green). (b) The current waveform produced by the
pre- and post-synaptic action potentials in (a) which was calculated using the
modified VTEAM model, and its close-up (inset).



Springer Nature 2021 LATEX template

Unsupervised Character Recognition with Graphene Memristive Synapses 9

Figure 4: The STDP window of the graphene memristive device, which shows
the value of the integrated device current in response to the timing difference
between pre- and post-synaptic spikes, i.e., ∆T = Tpost − Tpre.

pre- and post-synaptic signals. The blue shaded area in Fig. 3b was calculated,
by integrating current with respect to time. This change in the memristor
current in response to ∆T is reminiscent of the change in Excitatory Post
Synaptic Current (EPSC) amplitude, which in experimental studies represents
the synaptic weight to induce current to its afferent neurons [30]. This way,
an STDP window, where the synaptic weight is represented by EPSC, was
produced.

In order to produce a viable STDP waveform, the shape of the action
potential was carefully considered. Similarly to previous works [73], an expo-
nential shape was chosen as shown in Fig. 3a. By modifying the parameters
of this action potential, such as the timing constants, widths and peak volt-
ages for both pre- and post-synaptic spikes, as well as the ratio between pre-
and post-synaptic signals, different STDP windows were produced. Next, by
implementing several different windows into our developed SNN, its ability
to perform a binary pattern classification task was evaluated. This eventually
led to the STDP window shown in Fig. 4, which demonstrated the best con-
vergence results for the targeted pattern classification task, using the network
architecture described in Fig. 5.
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4.3 Network Architecture

The network outlined in [74] had been previously used to perform unsupervised
character recognition using the STDP learning rule. As such, a similar network
was developed in order to test the graphene memristive synapses.

The single layer network, shown in Fig. 5, had 10 separate, 5 × 5 binary
images presented to it. These binary images were encoded into Poissonian
spike trains, where “active” or “on” pixels were encoded with a frequency of
200 Hz and “non-active” or “off” pixels were encoded with a frequency of
20 Hz. Poissonian spike trains were used as these have been demonstrated in
previous works such as [31, 33, 36–38] that have performed the same task.
These frequencies were chosen after several trials to determine the frequencies
which would best result in potentiation and depression. The image patterns
were basic, because the purpose of this network was to determine whether or
not any form of unsupervised learning could be performed using the proposed
graphene memristive synapses.

With the pre-synaptic spike trains temporally encoded, they were applied
through excitatory graphene memristive synapses to the output LIF neurons
that generated post-synaptic spike trains. The timing of these post- and pre-
synaptic spikes were then used to calculate the change in the EPSC of the
graphene memristive synapses based on the STDP figure shown in Fig. 4.

To introduce competitive Hebbian learning between neurons [75], as shown
in Fig. 5, inhibitory synapses were connected in between all output neurons to
activate lateral inhibition. The weight (current) of these synapses were kept
fixed at -60 µA. This was found to be a larger current compared to the max-
imum excitatory current of ±10 µA for our graphene memristive synapses.
Our experiments showed that, the positive feedback current required by the
inhibitory synapses need to be significantly larger to suppress the sum of the
inputs to specific neurons.

After applying the patterns to the network, the neuronal firing rates as
well as the synaptic receptive field of output neurons were monitored to see
which neurons converged to which input patterns. These were also monitored
to implement homeostasis into the network.

4.4 Homeostatic Plasticity

For certain input patterns, the output neuron associated with that pattern
may have a higher or lower neuronal firing rate than other neurons in the
network. With lateral inhibition in the network, the difference in neuronal ac-
tivity is widened, and can lead to single neurons dominating for multiple input
patterns, whilst other neurons are unable to converge to any pattern [33]. Con-
sequently, there was a need to regulate the neuronal activity of each neuron so
that low-spiking patterns were not overlooked in the training process. Moni-
toring and adjusting the neuronal activity can be done in many ways, so it is
ideal to look for biologically plausible solutions. By searching for biologically
plausible solutions, we aim to implement homeostatic mechanisms that are
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Figure 5: Network architecture used to perform unsupervised character recog-
nition.

more energy efficient, spike-oriented and require less hardware than classical
machine learning mechanisms. Plausible mechanisms include synaptic homeo-
static regulation and intrinsic neuronal homeostatic regulation [76]. Synaptic
homeostatic regulation refers to the strengthening or weakening of synaptic
weights, whereas intrinsic homeostatic plasticity refers to the regulating of the
neuron’s threshold to uphold a certain level of activity [76].

When researching homeostasis in regards to SNNs performing pattern clas-
sification tasks, little was found in regards to synaptic homeostatic regulation,
likely due to the fact that the learning rules associated with these networks
would also modify the synaptic weights. Hence, intrinsic neuronal regulation
was used to implement homeostasis. Many different forms of intrinsic homeo-
static regulation exist, such as those described in [77] and [78]. However, whilst
biologically plausible, these aforementioned models were never used to perform
pattern classification. Here, we employed the homeostatic regulation model
used in [33] and [35], not only due to its biologically plausible nature, but also
because it has demonstrated to significantly improve performance results [33].
This model updates the threshold of the neuron using

dVth

dt
= γ(A− T ), (2)

where Vth is the neuron’s threshold, γ is a moderating constant, A is the
neuronal firing activity (i.e, the number of times a neuron has fired within a
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given time period), and T is the target activity for the given period [33]. For our
single-layer pattern classification network, a target value of 16 and γ = 0.029
were chosen. The maximum and minimum thresholds were set between values
of 0.010V and 0.030V .

4.5 Training and Classification

Training the single-layer network involved presenting each of the 10 inputs
(shuffled in a randomised order) to the network for a 100 ms duration. This
was repeated for 100 training epochs, when the receptive field converged. By
observing the final synaptic weights connecting to each neuron for the patterns
that were presented to the network, the output neuron selective to each of the
10 patterns was identified. The spiking rates of each neuron was monitored and
recorded into a raster plot, clearly showing the spiking activity per pattern.
This was used to determine if each neuron classified a single pattern, and did
not dominate the output response.

4.6 Single-Layer Network Results

In Fig. 6, we depict the excitatory synapse receptive field pre- and post-
learning. Fig. 6(a) shows the initial randomised memristive weights, whilst
Fig. 6(b) shows the final weights after 100 training epochs. As shown, each
of the ten neurons learns to converge to a particular pattern. To visualise the
learning process of the network, Fig. 7 was generated. This figure shows the
spiking raster plots of all the 10 output neurons. Fig. 7(c) confirms that, at
the end of the learning process, each neuron only conforms to one pattern, as
each neuron mostly fires for one 100ms period, barring minor spiking events
for neurons 7, 8 and 10. On occasions, it was rarely observed that neurons
that learned patterns “8” and “6” would have some overlaps in the raster plot.
The reason for this is that the patterns are similar and have many overlapping
pixels. Furthermore, patterns “0”, ”3” and “5” share some major similarities
with “8” and “6” as well, and would also overlap on rare occasions. The results
shown in Fig. 6 and Fig. 7 demonstrate that our proposed synaptic memristive
device is able to effectively perform unsupervised learning.

5 Handwritten Digit Classification

After confirming that our graphene-based memristive synapse can realise
STDP and perform unsupervised pattern classification, we investigated its abil-
ity to carry out a more complex classification task. In most of the literature,
one of the common benchmarks used to evaluate the performance of neuro-
morphic systems is the classification of handwritten digits using the MNIST
dataset. To truly compare our graphene memristive device to related works
in literature, it was decided that another larger network had to be created in
order to test our device’s synaptic performance in a SNN. This network was
similar to our single-layer network created previously, as the neuron model and
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Figure 6: (a) Initial randomised memristive synaptic weights for the single-
layer network. (b) Memristive synaptic weights after 100 training epochs.

STDP window used were kept the same. However, due to the larger number
of pixels of the MNIST images, we increased the number of output spiking
neurons in order to ensure unsupervised learning occurred.

5.1 Neuron Parameter Modification

The first modification included some parameter adjustments of the LIF neuron
model used previously. This was to accommodate for the larger sum of current
being presented to the network. The parameter changes are summarised in
Table 2.

5.2 Input Encoding

The training and test input images were derived from the MNIST dataset,
which consists of 60,000 training examples and 10,000 test examples. Each
image (example) consists of 28× 28 pixels encoded in grayscale between 0 and
255. We investigated different ways to encode the input image grayscale pixel
values. These included the mapping of the pixel value to the average frequency
of a Poissonian spike train, as well as using a binary mapping scheme. In
this scheme, if the pixel value is above/below a predetermined threshold, a
Poissonian spike train with a high/low average frequency, represents that pixel.
Our experimentation showed that the binary encoding works well and could
result in a bi-modal STDP weight convergence during training, similar to the
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Table 2: Summary of neuron parameters used in the binary and MNIST
classification tasks.

Parameter Binary MNIST

τ 0.0015 s 3 s
R 500 Ω 1000 Ω
ERest 0.0095 V 0 V
Vthmin

0.010 V 0.25 V
Vthmax 0.030 V 30 V
T 16 Post-Synaptic Spikes 1 Post-Synaptic Spike
γ 0.029 V/s 1 × 10−6

IInhibitory -6×10−5A -6.02 ×10−3A

outcome seen in Fig. 6(b). Consequently, through experimentation, we chose
a threshold value of 50 to encode all MNIST images to a series of Poissonian
spike trains.
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Figure 7: Various raster plots of single layer network. (a) Raster plot during
initial epoch. (b) Raster plot during the 10th epoch. (c) Raster plot during the
last epoch.
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Figure 8: Receptive field after training the MNIST classification network.

5.3 Training and Classification

The training phase adopted was similar to the one used to train our single-
layer network. However, each image was presented for 50 ms (as opposed to
100 ms) to allow for weight and threshold updates. Images were also presented
in a random order to eliminate any form of bias, and were only selected from
the MNIST training set, i.e., no image from the MNIST test set was used to
train the network. In order to label the network output neurons, each neuron
was assigned a class. This assigning procedure was done by monitoring each
neuron’s spiking activity in response to every class presented. For a given
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Figure 9: (a) Classification accuracy plotted against the number of output
neurons for a single training epoch. (b) Running accuracy during the training
phase for a network with 100 output neurons. (c) Confusion matrix after the
evaluation phase of MNIST classification for a network with 100 output neu-
rons.



Springer Nature 2021 LATEX template

16 Unsupervised Character Recognition with Graphene Memristive Synapses

neuron, the class with the highest spiking activity during the training phase
was assigned to that neuron.

To evaluate the network after training, we used a similar method to that
used in [32], which proposed a classification accuracy where the output neuron
with the highest spiking activity was said to classify the input pattern being
presented. If the class assigned to the neuron matches the class presented to
the network, then the pattern was deemed to be successfully classified. Thus
the accuracy could be measured by dividing the total number of correctly
classified digits with the total number of digits presented.

5.4 Parameter Optimisation

Prior to training and evaluating our MNIST classification network architecture
with various number of output neurons, we performed preliminary investi-
gations to determine optimal network hyper-parameters for each of these
networks. After an initial exploratory analysis, empirically, it was found that
the γ and τ parameters had the largest influence on network performance. Con-
sequently, Bayesian Optimisation was used to optimise γ and τ to maximise
the classification accuracy. For all network configurations, other neuron param-
eters were kept fixed, as shown in Table 2. To confine the search space, when
performing Bayesian Optimisation, γ and τ were confined between 0.05–0.15,
and 0.0001–0.01, respectively.

To perform hyper-parameter optimisation, separate training and valida-
tion subsets were constructed from the original MNIST training set using
sklearn.model selection.train test split with an initial random state
of 1, and with shuffling enabled. Both subsets adhered to the same class dis-
tribution as the MNIST test set, and were sampled from the pseudo-randomly
shuffled original MNIST training set. The training subset contained 50,000
images, and the validation subset contained 10,000 images. A total of 250
Bayesian trials were executed for each network configuration, sampling γ and
τ parameters in log-space. Trial pruning was used to predicatively prune
unsuccessful trials to speed up optimisation using the optuna [79] Python
library.

After performing hyper-parameter optimisation, the classification accuracy
was reported for each network configuration by training each network us-
ing the original MNIST training set, and evaluating each network using the
MNIST test set. In Table 3, we report the best validation accuracy achieved
and the optimised network parameters for network configurations with dif-
ferent numbers of output neurons. We believe that the validation accuracies
achieved were generally higher than the test set accuracies due to the inability
of our constructed validation set to generalise, i.e., to be completely repre-
sentative of, to the MNIST test set. While cross validation could be used to
improve the efficacy of our hyper-parameter optimisation procedure, it is com-
putationally demanding, and would exponentially increase required run-times.
Consequently, we leave further hyper-parameter optimisation investigations to
future work. Note that, except for the 10 and 30 output neuron cases, which
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Table 3: Optimised network parameters and the best validation accuracy
achieved in 250 optimisation trials.

N. Output Neurons Validation Accuracy (%) γ τ

10 44.48 4.80 2.66×10−5

30 66.46 2.69 3.25 ×10−8

100 80.87 2.84 5.95×10−8

300 85.66 2.56 2.18×10−8

500 85.64 2.29 1.80×10−8

use the parameters in Table 2, the results reported in Section 5.5 were ob-
tained using the parameters that achieved the best results when classifying
the MNIST test set.

5.5 Results

After performing parameter optimisation, the classification accuracy was in-
vestigated for each network configuration by training the network using the
original 60,000 images in the MNIST training set, and testing it using the
10,000 images in the MNIST test set. In addition to the optimised γ and τ
parameter sets reported in Table 3, the classification accuracy was determined
for other γ and τ parameter sets, which achieved significant performance on
the validation set. In this section, we report our best results, i.e., those that
obtained the highest classification accuracy on the MNIST test set, as op-
posed to the validation set constructed during the optimisations. As such, not
all of the parameters from Table 3 were used, as we believe our constructed
validation set failed to generalise to (i.e. to be completely representative of)
the MNIST test set. It is believed that testing on the validation set as op-
posed to the actual test set contributed to these reductions in performance.
Furthermore, it is also possible that the randomised variations between each
training and testing evaluation is another likely contributor to this effect. All
parameters used to train networks whose evaluation results are presented in
this section are provided1.

Fig. 8 illustrates the synaptic receptive field after a sample training phase of
the network. The receptive field clearly shows learning of the handwritten dig-
its. This is reflected in the high average test-set classification accuracies shown
in Fig. 9(a), where the values are calculated over 10 trials for networks with
different number of output neurons. For each trial, the network was trained
from scratch starting with random initial weights to learn the MNIST training
set, and after training was completed, it was tested using the MNIST test set.
The figure also shows the standard deviation across these 10 trials. It is worth
noting that, these classification accuracies are reported for a single training
epoch, which shows the efficiency of our network in reaching a great perfor-
mance while being trained only for one epoch. As shown, an increase in the
number of neurons has resulted in more neurons learning more variations of
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Figure 10: The effect of device and cycle variations on MNIST test set clas-
sification accuracy, for when 100 output neurons were trained for one epoch.

each pattern. This gives a wider representation of all of the possible handwrit-
ten digits, resulting in a higher accuracy. It was also found that the standard
deviation of the results obtained generally decreased with the increase in the
number of neurons except for the 500 case. It is believed that one epoch may
be too short to train all 500 neurons accurately, thus leading to this result.

Fig. 9(b) demonstrates the classification accuracy plotted against the num-
ber of images presented to the network in a training epoch. Naturally, it was
expected that increasing the number of training images increased the accu-
racy, due to the more thorough learning. The leveling off of the accuracy was
also expected, and is in keeping with other networks in literature that have
attempted this [31].

Finally, analysing the confusion matrix in Fig. 9(c) shows which digits were
more accurately classified than others. The most accurately classified digits
were “0” and “1”, whilst the most inaccurately classified digits were “3”,“4”
and “9”. The patterns “4” and “9” were often misclassified with each other.
This observation is in agreement with literature [31]. In addition, the pattern
“3” was often misclassified with “5” and “8”, although in much lesser amounts
than “4” and “9”. This result has also been observed in other literature such
as [36], further re-enforcing the results that have been obtained.

As the learning was unsupervised, the number of output neurons being
assigned to a class could not be controlled. One common observation in the
results was an over-representation of the class “1” being present in the final
receptive field. Naturally, this meant that this pattern was the most accurately
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classified pattern, as shown in the confusion matrix in Fig. 9(c). It was also
noted that the pattern “0” was consistently under-represented, although its
accuracy remained relatively high. A possible explanation could be that within
the approximately 6,000 MNIST training images of the pattern “1”, there ex-
ists a wider variety of ways in which to represent “1” than any other character.
Thus, more output neurons converge to this pattern to better reflect this.

In these simulations, we also tested our network’s stability when device-
to-device and cycle-to-cycle variations are considered. Although insufficient
device data was available to perform device specific modelling, it is still pos-
sible to consider the effects of device variations by sampling values of device
current through normal distributions with different widths similar to [80].
Modelling the device-to-device variations was done by sampling each device
current value from a normal distribution around the averaged device current
shown in Fig. 10, where the standard deviation of the normal distribution was
varied from 0% to 50%. This is equivalent to having a different STDP win-
dow for each of the network devices. Cycle-to-cycle variations were modelled
by further sampling each value from the STDP window (which is now device
specific due to the device-to-device variation) from a normal distribution. The
results shown in Fig. 10 clearly illustrate the drop in performance when the
variations are increased. Note that the same standard deviation values for both
cycle-to-cycle and device-to-device variations were used.

5.6 Comparison

Fig. 11 shows the comparison between our best results and state-of-the-art
literature on MNIST classification using unsupervised learning in SNNs. Our
results show the average test set classification accuracy of 10 learning tri-
als. As shown, when a low number of output neurons are used, our network
shows a low accuracy with a high variation reflected in its high standard de-
viation. This can be attributed to our input encoding scheme, as well as the
homeostatic mechanism we have employed. In addition, we have only used one
training epoch. Note that, [33] has used a similar homeostatic neuronal spiking
regulation, which resulted in a slightly better accuracy for 10 output neurons.
This slight improvement is most likely due to its more complex input encoding
scheme, and higher number of training epoch.

Furthermore, most of the STDP-based MNIST classification studies in lit-
erature [34–38] have used up to 100 neurons, which has resulted in classification
accuracies lower than 80%, which is not significant. Previous studies [31–33]
have shown that this problem can be addressed by including more output
neurons to improve the classification accuracy.

Compared to state-of-the-art, our network demonstrates on-par perfor-
mance for the case where 100 output neurons. In addition, it is better than or
comparable with other works that reported accuracies for 300 and 500 neuron
cases. Although the 300 neuron case did not demonstrate the above 90% accu-
racy reported by [33], the network still performed quite well for the cases where
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a larger number of output neurons were used and was on par with the software-
based work of Diehl and Cook [31], while showing a better performance than
[32] for 500 neurons.

The lower classification accuracy compared to [33] can be due to our simple
input image binary encoding scheme, which may result in losing some infor-
mation contained within the images. The benefit, however, is a much simpler
encoding scenario, which requires less complex spike encoding circuitry. When
the 100, 300 and 500 neuron cases were trained for only 1 epoch (shown in
Fig. 9(a)), the network achieved comparable accuracies to most of the works
in literature that were trained for more epochs as shown in Table 1. This sug-
gests a very swift convergence rate, and that the network is being trained in
an efficient manner.

It is important to note that whilst these results show decent performance
for MNIST classification, there are several limitations to this study. One limi-
tation is the device itself, with its extra transitions close to the origin. These
additional transitions means the device is volatile, and can only operate with
a memory of approximately 500 ms. This limits the synapse implementation
and needs additional memory circuits for long term storage. Furthermore, the
device shows a high degree of variability, which can result in inefficient learn-
ing. However, this variability has been addressed in previous literature in many
ways [81–83], and these methods could be adapted, but this comes at the
expense of increased complexity.

6 Conclusion

In this paper, we investigated the potential of graphene-based memristive de-
vices in neuromorphic SNNs for unsupervised learning. We demonstrated that
the device’s I-V characteristics can be used to mimic biology in producing
the excitatory post synaptic current response to the differential voltage ap-
plied to the memristive synapse, as pre- and post-synaptic potentials. Using
this, we developed an STDP window and performed two different pattern clas-
sification tasks. We showed that a homeostatic neuronal activity regulation
could help the STDP-based unsupervised learning to perform MNIST clas-
sification efficiently, even when a simple binary pattern encoding scheme is
used. Our results demonstrated improvement in classification accuracies com-
pared to other memristive SNNs in literature when a higher number of output
neurons are used to reach significant classification performance. We believe
that this work will serve as a foundation and benchmark for future neuro-
morphic architectures utilising graphene memristive devices. However, further
investigations could be provided into the challenges of utilising graphene in
memristive devices, such as solving the issue of the fairly large current draw in
the on-state using current limiters/selectors, or investigating potential second
order mechanisms to model graphene-based devices.
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Figure 11: Comparison of SNNs that have performed unsupervised MNIST
classification using memristive synapses. [31] is the only software-based net-
work reported in this figure. For our work, one training epoch was used for
when the number of output neurons was equal to 10 and 30, 2 training epochs
were used when the number of output neurons was equal to 100, and 3 epochs
were used when the number of output neurons was equal to either 300 or 500.
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