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Abstract

Alternative splicing (AS) is a crucial mechanism for regulating gene expression and isoform diversity in eukaryotes. However, the
analysis and visualization of AS events from RNA sequencing data remains challenging. Most tools require a certain level of computer
literacy and the available means of visualizing AS events, such as coverage and sashimi plots, have limitations and can be misleading.
To address these issues, we present SpliceWiz, an R package with an interactive Shiny interface that allows easy and efficient AS analysis
and visualization at scale. A novel normalization algorithm is implemented to aggregate splicing levels within sample groups, thereby
allowing group differences in splicing levels to be accurately visualized. The tool also offers downstream gene ontology enrichment
analysis, highlighting ASEs belonging to functional pathways of interest. SpliceWiz is optimized for speed and efficiency and introduces
a new file format for coverage data storage that is more efficient than BigWig. Alignment files are processed orders of magnitude faster
than other R-based AS analysis tools and on par with command-line tools. Overall, SpliceWiz streamlines AS analysis, enabling reliable
identification of functionally relevant AS events for further characterization. SpliceWiz is a Bioconductor package and is also available
on GitHub (https://github.com/alexchwong/SpliceWiz).
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Introduction affect transcript localization and degradation, leading to altered

expression [7, 8].
Despite the ready availability of RNA sequencing, including

Alternative splicing (AS) is a regulated process whereby alternate
blocks of protein coding information, exons, are selectively

transferred during or after transcription of messenger RNA
from DNA. Introns, sequences interspersed between exons, are
removed by the spliceosome at their donor (5) and acceptor
(3) splice sites. AS arises consequent to enhanced or inhibited
recognition of splice sites [1, 2], leading to selective retention or
removal of extra genetic information during or after transcription.
Although AS can be complex, at its essence, there are seven
basic forms [3], namely inclusion/skipping of cassette exons
(skipped exons, SE), inclusion of mutually exclusive exons (MXE),
alternative 5'/3' splice site usage (A5SS/A3SS), alternative first or
last exons (AFE/ALE) and intron retention (IR) (Figure S1). These
alternative splicing events (ASEs) are defined as a binary choice
between ‘inclusion’ or ‘exclusion’ of the alternate exon, partial
exon or intron. ASEs can be quantified using RNA sequencing
reads aligned across alternate splice sites (hereafter junction
reads) [4], and are visualized using coverage or sashimi plots
[5]. AS allows a single gene to give rise to multiple messenger
RNA transcripts from the same DNA template, which in turn can
translate different proteins [6]. Additionally, retained introns can

a vast volume of publicly available datasets, AS analysis is not
routinely performed. Most tools for AS analysis are command-
line based, hindering their accessibility to those not familiar with
such interfaces. Coverage and sashimi plot visualization is limited
by the lack of methods to normalize coverage at genomic regions
of ASEs. If such methods existed, differential splicing between
conditions could be visualized using mean normalized coverage
of replicates within each condition. Individual samples from each
condition with large differences in coverage can often be found
even in ASEs with no significant differential splicing between
conditions. Thus, the current practice of selecting ‘representative
individual samples’ is flawed and leads to publication bias. Finally,
data interactivity is lacking in current tools, particularly down-
stream to differential splicing analysis. Interactive data explo-
ration tools would facilitate the process of identifying functionally
relevant ASEs for further study.

To address the above limitations, we created SpliceWiz, an AS
analysis and visualization tool. SpliceWiz is implemented as an
R package and provides both graphical and command-line user
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interfaces. Starting from input bulk RNA sequencing alignment
files (BAM files), SpliceWiz quantifies AS using junction reads and
intronic coverage, leveraging novel junction reads to detect cryptic
splice sites and exons. Differential analysis is performed using
established statistical tools available in R, allowing generalized
linear model (GLM) based analysis to accommodate large complex
datasets. We propose a coverage normalization method to
visualize IR ratios, and show that this approach accurately
visualizes differential AS. A variety of interactive visualization
tools are implemented, including gene ontology (GO) enrichment
analysis, to facilitate identification of reliable candidate ASEs
relevant to the observed biological phenomena. Finally, to improve
computational performance we optimized storage and retrieval of
sequencing coverage using a new file format, implemented along-
side multi-threaded parsing of alignment files. Taken together,
SpliceWiz is an accessible, user-friendly and computationally
efficient application that streamlines AS analysis, focussing
on reliably identifying functionally relevant ASEs for further
characterization.

Results
The SpliceWiz pipeline
We implemented SpliceWiz as an R package, with both a
command-line and graphical interface, the latter implemented
via shinyDashboard. We organized the SpliceWiz pipeline in a
modular format, as follows (Figure 1):

REFERENCE—Building the SpliceWiz AS reference from genome
FASTA and gene annotation GTF files:

1) EXPERIMENT—Dataset processing, which includes the fol-
lowing:

a) Processing of alignment files to quantify reads mapped
to splice junctions, intron coverage metrics and produce
coverage files.

b) Collation of the experiment, which unifies the output
data from individual samples, using the splicing anno-
tation as reference, into a self-contained data structure
for downstream analysis.

2) ANALYSIS—Loading the collated dataset into memory,
(optional) reviewing of sample QC parameters and ASE event
filtering, followed by differential analysis using a variety of
downstream statistical tools,

3) DISPLAY—Interactive visualization using volcano, scatter
and heatmap plots, interactive GO analysis of top differential
ASEs, and coverage plots of individual ASEs.

This design allows users with limited programming experi-
ence to use the graphical interface to run the full pipeline while
enabling those with more bioinformatics experience to automate
processes via the command line. Users can apply successive filters
on the differential ASEs by directly selecting individual or groups
of ASEs from volcano and scatter plots, and/or via gene ontology
analysis. Interactively selected ASEs can then be collectively visu-
alized using heatmaps and individually via SpliceWiz’s coverage
plots.

Differential analysis

We implemented a GLM-based approach to differential ASE
analysis to accommodate large datasets with complex exper-
imental designs, including time series analysis, and account-
ing for batch effects. Many established statistical methods
using GLMs already exist for gene expression analysis, the

Table 1: Performance of SpliceWiz statistical wrapper functions

SpliceWiz wrapper  Run Time (s) AUROC Top-K accuracy (%)
limma 17.8 0.921 32.1
DoubleExpSeq 20.4 0.952 45.0
edgeR 52.8 0.963 56.8
DESeq2 103.0 0.966 58.9

most cited being limma [9], DESeq2 [10] and edgeR [11]. For
GLM-based differential AS analysis, we implemented wrapper
functions in SpliceWiz to utilize each of these statistical tools
(see Methods). We also implemented a wrapper function for
DoubleExpSeq [12], a fast statistical method in R for differential
AS analysis using simple contrasts between two conditions
(see Methods).

To assess the accuracy of these algorithms at identifying differ-
ential ASEs, we simulated reads to emulate transcript expression
and technical parameters derived from a real RNA-seq dataset
(THP-1 monocyte to macrophage differentiation [13]) using RSEM
[14]. We used the percent-spliced-in (PSI) metric to quantify AS,
which is determined based on known transcript expression val-
ues (see Methods). From these PSI values, a set of ground truth
differential events were defined by modelling PSIs using a beta
distribution (see Supplementary Methods). Accuracy was mea-
sured using two parameters: (i) to assess a method’s ability to
accurately detect and appropriately rank the full set of differen-
tial events, the area under the receiver operating characteristic
curve (AUROC) values were calculated for each method. (i) To
assess precision of the top ranked events in the analysis, we
calculated the proportion of ground truth events that overlap with
the top K predicted differential events, where K is the number of
ground truth differential eventsin the simulation (hereafter Top-K
accuracy).

We first compared the performance of each statistical wrapper
implemented in SpliceWiz (Table 1). We found that DESeq2 and
edgeR were the top performers, with DESeq2 marginally better
than edgeR in both AUROC and Top-K accuracy (Figure 2A, B).
Among the remaining methods, DoubleExpSeq performed better
than limma. We also benchmarked the run-time of each method
(in analysing the simulation with an input query of 148 633 ASEs
for two conditions each with three replicates) and found that
limma and DoubleExpSeq were the fastest methods, whereas DESeq2
was the slowest (Figure 2C). From this, we concluded that each
method serves different purposes. The limma wrapper is a useful
screening tool in an initial analysis for hypothesis generation. The
fast compute time of the limma wrapper is especially helpful in
large complex datasets where exploratory analysis is performed
to identify parameters of interest and identify putative batch
factors. The DoubleExpSeq wrapper is a general-purpose fast algo-
rithm for simple contrasts between two conditions in a univariate
setting. For analyses where an accurate set of top differential ASEs
is the highest priority, edgeR or DESeq2 are equivalent options.

Next, we compared SpliceWiz (using the DESeq2 wrapper)
against other differential AS analysis tools, namely rMATS
[15], SUPPA2 [16], MAJIQ [17], SGSeq [18] and SplAdder [19]. We
chose these tools as they also use the PSI metric. As each
method annotates ASEs differently, we calculated AUROC and
top-K accuracy values using ASEs commonly annotated by all
methods (Figures 2D, S2A). This benchmark identified SGSeq as
the best performer followed closely by SpliceWiz. Additionally, we
performed pairwise comparisons using ASEs common to each
pair of methods. In pairwise comparison, SpliceWiz performed
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Figure 1. The SpliceWiz pipeline is organized into four modules. ‘Reference’ creates the SpliceWiz alternative splicing annotations required for processing
alignments. ‘Experiment’ contains functions to process alignment files and collate their outputs into a dataset. ‘Analyse’ imports this dataset, allowing
users to review quality control metrics and perform pre-test filtering of lowly-represented ASEs, and performs differential analysis to generate a table
of results. ‘Display’ provides visualization tools, including volcano and scatter plots, gene ontology enrichment analysis, heatmaps and coverage plots.

marginally better than SGSeq; otherwise the rankings of the
other tools did not change with regard to the above metrics
(Figures 2E, F, S2B).

Taken together, we conclude that our implementation of GLM-
based differential splicing performs well compared with other
tools that perform differential AS analysis based on PSI values.

Coverage plot normalization for intron retention

Current implementations of coverage and sashimi plots are lim-
ited in showing coverage of individual samples, rather than mean

coverage across replicates of each experimental condition. Com-
bining data from replicates requires a normalization parameter.
As replicates differ by both sequencing depth and gene expres-
sion, a sample-specific normalization factor is required for each
gene. Moreover, variations in depth of coverage due to GC-bias
and 3'- (or 5'-) bias mean that, even within the same gene, differ-
ent normalization factors may be required across each genomic
region.

However, unlike in DEXSeq [20] where a statistical model is
used to fit every exon, we sought a method to calculate a sin-
gle normalization parameter for each ASE, which may overlap
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Figure 2. Differential AS analysis benchmarks using the Green et al. simulated dataset. (A) Receiver operating characteristic (ROC) curves of various
SpliceWiz statistical wrapper functions for AS analysis. Numbers indicate AUROC values of each method. (B) Top-K accuracy values of various SpliceWiz
statistical wrapper functions. (C) Mean run-times of each SpliceWiz statistical wrapper, as performed on the simulated dataset (~149 k input events, 3
replicates, 2 conditions). Each method was run in triplicates. Error bars indicate standard deviation. (D) ROC curves of SpliceWiz-DESeq2 method and
other AS tools, tested against ASEs common to all methods. Numbers indicate AUROC values of each method. (E, F) Differences in AUROC and Top-K
accuracy, respectively, in pairwise comparisons between methods (comparison minus baseline). Events common to each pair of methods are tested in

each pairwise comparison benchmark.

across multiple exons and introns. After normalization, the mean
coverage across alternate regions should reflect their calculated
PSIs, whereas coverage across constitutive regions (i.e. regions
expressed by both included and excluded isoforms) should be
normalized to unity. Within-group coverage means and variances
can then be visualized as lines and shaded ribbons, respectively.
Differences in normalized coverage can be statistically tested
(Figure 3A).

First, we approached the case of IR and considered the simple
scenario where the expressed isoform either involves splicing or
retention of the intron of interest (i.e. only transcripts [RI, A] are
expressed—see Figure 3B). In this case, coverage normalization
should result in the exon boundaries to be anchored to unity and
the average coverage across the intron should reflect the IR-ratio,
as given by equation (1):

IRratio — Intronic Abundance 0
" Intronic Abundance + Spliced Isoform Abundance

In IRFinder [21], intronic abundance is measured using the
trimmed mean of intronic coverage of sequencing reads (hereafter
IntronDepth), which we adopted in SpliceWiz. For introns flanked
by constitutively spliced exons, the read counts mapping to the

splice junction across the intron of interest (hereafter SpliceEx-
act) approximates spliced isoform abundance. However, in many
cases, at least one exon flanking the intron of interest is also
differentially spliced (e.g. due to expression of transcripts [B, C,
D, E, F]—Figure 3B). To account for this, IRFinder estimates spliced
isoform abundance using the SpliceMax metric [21], which is cal-
culated as follows: junction reads utilizing each of the splice junc-
tions flanking the intron of interest are first calculated; SpliceMax
is then determined as the larger of these two values (Figure 3B).
In the example illustrated in Figure 3(B), the SpliceMax metric
accounts for total splicing where one of the transcripts [A, B, C,
D] is the major isoform.

However, we observed that over-estimation of IR-ratios arises
in cases where neither splice site bounding the intron of interest
is shared with that of the major isoform (e.g. due to expression
of transcripts [E,F] in Figure 3B). We encompassed these cases by
proposing the SpliceOver metric which we define as follows: First,
we use the transcriptome annotations to determine exon groups
which are genomic regions occupied by mutually overlapping
exons. Then, for the intron of interest, we quantified all splice
sites that arise from the two exon groups flanking the intron of
interest, rather than simply utilizing the flanking splice junction
coordinates. SpliceOver is then determined as the larger of these
two values.
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(iif), and group differences in normalized coverage can be measured using two-tailed Student’s t-test, which can be converted into a trace following
negative log-10 transformation (iv). (B) (Top) Example transcript annotation showing various junction read-based spliced transcript estimation metrics
(SpliceExact—junctions must exactly span the intron of interest; SpliceMax—junctions can share either coordinate with the intron of interest; and
SpliceOver—junctions arise from either of the two flanking exon groups). (Bottom) Schematic of theoretical raw coverage attributed to expression
of transcripts as color-coded in the transcript annotation above. Normalization levels based on each transcript estimation metric are represented as
horizontal lines that, after normalization, will be converted into unity (i.e. normalized coverage=1). (C, D) Scatter plots showing estimated versus
ground-truth IR-ratio values based on spliced transcript estimation using SpliceMax and SpliceOver, respectively. (E, F) Coverage-inferred IR-ratio based
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For (C)—(F), diagonal red lines represent 20% PSI error boundaries and nError refers to the number and percentage of events with >20% PSI error.

We hypothesized that transcript abundance (the denomina-
tor value of the IR-ratio) is best estimated using the sum of
SpliceOver + IntronDepth. We compared this method against that
using SpliceMax + IntronDepth which is the denominator value in
calculating IR-ratios in IRFinder [21]. Using the simulated RNA-seq
dataset based on THP-1 differentiation, we determined ground
truth IR-ratios using known transcript abundances (see Supple-
mentary Methods). First, we show we could reproduce SpliceMax-
based IR-ratios in SpliceWiz by comparing these with values pro-
duced by IRFinder-S [22] (Figure S3A). Next, we compared IR-ratios
derived from either SpliceOver or SpliceMax against ground truth.
Using replicate 1 from the THP1-MO macrophage (simulated) sam-
ple as an example, using SpliceOver to estimate spliced isoform
abundance resulted in less events with IR-ratio error (absolute dif-
ference between predicted and actual IR-ratios) is greater than 0.2,
compared with SpliceMax (1.43% versus 3.56%, Figure 3C,D). We
attributed this to the overestimation (IR-ratio error > 0.2) of Splice-
Max in 1.69% of introns compared with SpliceOver (Figure S3B).
Consequently, SpliceOver, as a metric for spliced isoform abun-
dance, more accurately estimates IR-ratios compared to Splice-
Max (IR-ratio accuracy area under the ROC curve (AUC) of 98.73

versus 98.21, Figure S3C). We repeated this analysis on all sam-
ples in the simulation and found similar results (Figure S3D, E).
Moreover, based on the simulated dataset, SpliceWiz’s SpliceOver
metric outperformed S-IRFinder in detecting differential IR events
(Figure S3F).

If transcript abundance is used as the normalization parameter
for coverage, then the mean normalized coverage across introns is
equivalent to their IR-ratios. Thus, we compared mean normalized
coverage with their ground truth IR-ratios, using SpliceOver and
SpliceMax as estimates of spliced isoform abundance. We found
that SpliceOver-based normalization outperformed SpliceMax at
normalizing coverages (2.07 and 4.33% of introns where IR-ratios
inferred from mean coverage was outside 0.2 difference with
ground truth (Figure 3E, F), resulting in higher accuracy (IR-ratio
error AUC 98.41 and 97.85, respectively, Figure S3G).

Taken together, we implemented coverage normalization using
a normalization parameter based on transcript depth across the
intron of interest, whereby splicing abundance is measured using
the SpliceOver metric as described above. Using this approach,
normalized coverage across introns accurately reflects their
IR-ratios.
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Differences in coverage across alternately spliced
regions demonstrate differential splicing

Having shown that our normalization approach results in mean
normalized coverage across introns representing IR-ratios, we
examined whether differences in normalized coverage can be
used to demonstrate differential splicing between groups of sam-
ples. To measure differences in normalized coverages between
two groups of replicates, we used a two-tailed Student’s t-test
on normalized coverage (examples in Figure 4AC). After P-values
were computed for each nucleotide, we calculated the mean
of negative log-10 transformed P-values across each alternately
spliced region (excluding five boundary nucleotides at each end).
We performed this assessment for IR, cassette/ SE and alternate
5/3" splice site (A5SS/A3SS) events, whereby the alternatively
spliced regions are the introns, SE and the regions between the
two alternate splice sites, respectively. We excluded MXE, AFE and
ALE events from the analysis as these types of events involve
inclusion of two mutually exclusive exons. We also removed
from the analysis A5SS/A3SS events where the two alternative
splice sites were separated by an intron belonging to an inter-
fering annotated transcript. We evaluated the mean negative
log-10 transformed P-values from the Student’s t-test (hereafter
referred to as the T-score) as a discriminator to detect differential
events.

We first benchmarked this approach using our simulated
dataset, using all ground truth differential ASEs (with APSI
>0.05) and nine times as many randomly chosen non-differential
ASEs, such that there are 10% differential events. We found that
the T-score performed well and was best for IR, followed by
SE and then A5SS/A3SS (Figure 4D). Importantly, we found this
test was superior for events in which the mean PSI was low
(i.e. the alternately spliced region is predominantly excluded
across all samples) than those in which the mean PSI was
high (Figure 4E-G). Interestingly, when we controlled for PSI by
subsetting events using the criterion PSI<0.1 (Figure S4A, B),
there were only negligible differences in accuracy pertaining to
different types of ASE (Figure S4C). This suggests that the PSIis the
major determinant of accuracy when using coverage to visualize
differential splicing.

Next, we benchmarked this approach using two real datasets.
We chose the THP-1 monocyte to MO-macrophage differentiation
by Green et al. ([13], GSE130011) as an example of deep RNA
sequencing (~100 million 150-nt paired end reads per sample) and
the dual TRA2A/TRA2B knockdown in MDA-MB-231 cells by Best
et al. ([23], GSE59335) as an example RNA sequencing dataset of
a more typical depth (~25 million 100-nt paired end reads per
sample). As ground truth differential ASEs cannot be experimen-
tally determined transcriptome-wide, we instead used SpliceWiz
to perform edgeR-based differential AS analysis as comparison.
Events with a false-discovery rate FDR < 0.05 and APSI >0.05 were
considered differential ASEs.

First, we addressed whether SpliceWiz-based reanalysis could
replicate prior findings. The Green et al. dataset is known to
contain many IR events downregulated in monocyte-macrophage
transition [13], whereas the Best et al. dataset shows widespread
SE in dual TRA2A/TRA2B knockdown [23]. Reanalysis of the
Green et al. dataset identified 866 and 129 down-regulated
and upregulated IR events, respectively, during monocyte—
macrophage differentiation. In the Best et al. dataset, 821 and
80 differentially skipped and included exons, respectively, due
to dual TRA2A/TRA2B knockdown were identified. Thus, in both
datasets, SpliceWiz reanalysis confirmed prior findings.

Next, we measured the accuracy of SpliceWiz’s coverage plots.
Again, we benchmarked IR, SE, and A5SS/A3SS differential ASEs
and randomly chosen non-differential ASEs such that there are
10% true positive differential events. We observed similar find-
ings, specifically, that the test was more useful for IR than for
other types of ASEs (Figure 4H, 1), and that this approach was
more accurate at low PSI (Figure S4D-H). From this, we concluded
that the difference in the performance of coverage plot-based
differential splicing visualization between types of AS is largely
due to the distribution of PSIs for each type of ASE, (Figure 4], K).
Furthermore, using down-sampling of reads in the THP-1 (Green
et al.) dataset, we showed that lower sequencing depth led to lower
accuracy (Figure S41-K), which could explain the slightly better
accuracy in the Green et al. dataset compared with the Best et al.
dataset.

Taken together, we conclude that group-mean coverage plots
are most accurate at demonstrating differential IR but are also
useful for demonstrating other forms of AS. Importantly, coverage
plots are more accurate at visualizing differential splicing where
alternatively spliced regions are predominantly excluded (i.e. at
low PSI).

Interactive exploration of differential analysis

Without tools to interact with the results of differential analysis,
identifying top functionally relevant candidates for experimental
validation is a manual process that is cumbersome and ineffi-
cient. To streamline exploratory analysis downstream to differen-
tial analysis, we implemented a series of interactive visualization
tools that allow users to identify a set of relevant ASEs following
differential analysis.

As a case study, we use M1 macrophage differentiation from
naive MO macrophages to illustrate the features (Figure S5A).
After differential ASE analysis was performed in contrasting
samples from MO and M1 macrophage differentiation, top
differential events can be visualized using interactive volcano
plots (Figure 5B, C) or by scatter plots (Figure SD). Using the
mouse, users can highlight ASEs on either plot using box or lasso
select tools. In our example, selecting the top eventsin the volcano
plot (Figure 5B) leads to highlighting of the same events in the split
volcano plot (Figure 5C) and scatter plot (Figure 5D). Following
this, highlighted ASEs can be used to perform GO enrichment
analysis (Figure SE), using as background either the entire set
of genes from the annotation, or genes hosting one or more
ASEs. Heatmaps can be generated either from top differential
ASEs by significance, user-selected ASEs, or ASEs from a GO
term (Figure 5F, G). From the heatmap, users can identify ASEs
of interest and visualize these as coverage plots (Figure 5H, I, J).

Thus, interactive data exploration downstream to differential
analysis is a core feature of SpliceWiz, in contrast to currently
available tools. Identifying the top functionally relevant ASEs for
experimental validation and further study is a key crossroad in
any study involving high-throughput AS analysis. Our GUI-based
implementation streamlines this process and helps researchers
pick the best candidate ASEs without requiring external tools or
manual annotation.

Performance optimization in SpliceWiz

Apart from alignment of raw sequencing reads, the process-
ing of alignment BAM files is the most time-consuming step
of AS analysis pipelines. In SpliceWiz, BAM files are parsed to
count reads aligned across splice junctions, calculate coverage
depth across introns, and record coverage for generating coverage
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Figure 4. Differences in normalized coverage visualize differential AS. (A, B, C) SpliceWiz group-mean coverage plots (top track); T-scores (—log10
transformed Student t-test P-values on normalized coverage, middle track), and transcript annotation (bottom track). Areas shaded in grey denote
the genomic region of AS (where mean T-scores are calculated). Events shown are (A) IR in AZU1; (B) exon skipping in GK; and (C) alternative 5'-splice
site usage in CTSA. (D) ROC curve of the T-score that represents the ability of mean normalized coverage plots to visualize splicing, evaluated on the
simulated dataset, stratified by the type of ASE. (E-G) ROC curves of IR, SE and alternative 5'/3’ splice site (Alt'SS) events, respectively, of the T-score on
the simulated dataset. Results are stratified by event mean PSIs, using a threshold of 50% for IR events (as there were few events with high PSIs) and

20/80% for other events. (H, I) ROC curve of T-score evaluated on THP-1 mon

ocyte to macrophage differentiation dataset (Green et al.) and TRA2A/TRA2B

dual knockdown in MDA-MB-231 cells (Best et al.), respectively. SpliceWiz edgeR was used to determine differential events. In all ROC curves, numbers
in the legend represent AUROC values. (J, K) Violin plot of PSI value distribution by type of AS in the THP-1 (Green et al.) and TRA2A/TRA2B knockdown

(Best et al.) datasets, respectively.

plots. Although coverage can be retrieved directly from parsing
of coordinate-sorted BAM files, these files are very large and not
suitable for transfer between collaborators. As such, an extra step
is required to retrieve and compress coverage data as a separate
file (traditionally, as BigWig files). Thus, we identified the parsing
of alignment files and the storage/recall of coverage data as the
two key areas that required performance optimization.

In R, the htslib C library [24] (provided via the Rhtslib package)
is the key developer tool for creating C or C++ —based functions
(callable via R) to parse BAM files. Although multi-threaded BAM
parsing is supported, downstream access of decompressed data
is not thread safe (i.e. reads cannot be processed in a multi-
threaded manner). Thus, computationally intensive downstream
processing of alignments is not thread-scalable. To overcome this,
we developed ompBAM, a novel C++ library (provided by the
ompBAM R package available via Bioconductor). Using this resource,

developers can create Repp-based functions to parse and anal-
yse alignment BAM files using multiple threads. Unlike htslib,
ompBAM decompresses alignments which can be later accessed
in a thread-safe manner. This allows computationally intensive
functions to be thread scalable as downstream processing is no
longer bottlenecked at a single thread. SpliceWiz uses ompBAM for
all functions that require parsing of BAM files.

To demonstrate the performance of SpliceWiz, we processed
alignments from the simulated dataset using an incremental
number of threads and showed that runtime decreased with
increasing number of threads indicating thread-scalability
(Figures 6A, S5A), with only modest increase in memory con-
sumption (Figure S5B) thereby improving per-thread memory
consumption (Figure S5C). Next, we benchmarked SpliceWiz
against the BAM-processing step from a range of AS tools. Using
the same number of threads, SpliceWiz outperformed most of
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Figure 5. Case study demonstrating SpliceWiz’s interactive data exploration workflow. (A) Schematic showing the experimental design of the THP-1
monocyte to macrophage differentiation dataset by Green et al. The following workflow performs differential AS between MO and M1 macrophage
samples. (B) Volcano plot of differential ASEs. The user has selected the top events using the box-selection tool using the mouse (as highlighted). (C)
Volcano plot stratified by type of ASE. (D) Scatter plot of mean PSI values between MO and M1 macrophages. Note that events highlighted in the first
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Figure 6. Computational benchmarks of SpliceWiz. (A) Time required for SpliceWiz to process BAM files from the simulated dataset, using increasing
numbers of threads. Error bars indicate standard deviation of three replicate runs. (B) BAM processing time of simulated dataset of various tools, using
six threads (IRFinder-S was multi-threaded using BiocParallel via R). Error bars indicate standard deviation of three replicate runs. (C) Mean file size of
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the other tools tested, except for IRFinder-S (Figure 6B), (noting
that IRFinder-S does not natively support multi-threading and
was parallelized using BiocParallel via R). Importantly, SpliceWiz is
orders of magnitude faster than other AS tools on R/Bioconductor
(namely, ASpli [25], SGSeq [18] and IntEREst [26]).

Next, we needed a fast method to store and recall stranded
coverage data. As BigWig [27] (the current standard for storing
coverage data) only supports storage of a single vector of data,
each sample would require two BigWig files to store stranded
coverage data. Thus, we designed a new COV format, which is a
BGZF-compressed self-indexed format that stores coverage data
for both positive, negative and unstranded data (see Supplemen-
tary Methods). Using two datasets, we demonstrate that the COV
format shows storage efficiency gains over BigWig (Figure 6C).
COV file generation is thread-scalable, and at 4+ threads, it is
faster than megadepth [28], the current fastest tool for generating
BigWig files (Figure 6D). Importantly, in the default workflow for
SpliceWiz, COV files are generated simultaneously with BAM pars-
ing to quantify splice metrics, such that BAM files are processed
only once (Figure S5D). Data recall using COV files is also faster
than equivalent functions that use BigWig files. SpliceWiz retrieves
binned-average coverage faster than R-based tools that utilize
BigWig, namely, megadepth [28] and rtracklayer [29] (Figure 5E). This
increased performance is due to the greatly improved raw data
retrieval time using SpliceWiz’s unique COV format (Figure S5E).

Taken together, we successfully optimized the performance of
SpliceWiz, focusing on alignment file parsing and coverage data
storage and recall times. These improvements make SpliceWiz
suitable for analysing large datasets and generating coverage
plots in real time during interactive exploratory analyses.

Scalability of SpliceWiz to large datasets

The computational optimization in SpliceWiz allows scalability of
R-based differential splicing analysis to large datasets. Addition-
ally, for complex datasets with three or more experimental groups,
users may wish to perform differential analysis multiple times
to test splicing differences between each pair of groups. In both
rMATS and MAJIQ, performing each comparison requires the re-
parsing of intermediate output files for every sample, leading
to redundancies in computation. SpliceWiz addresses this via its
collation step (Figure 1), whereby intermediate output files for
each sample are parsed once, unified into count matrices, and
compressed into output files along with an abridged version of the
splicing reference. Differential analysis is performed by importing
the collated dataset from file, rather than by parsing intermediate
files of every sample. This design allows SpliceWiz datasets to be
portable and easy to share among researchers.

To demonstrate the scalability of SpliceWiz and the utility of
its modular design to reduce the run time of the downstream
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Table 2: Benchmark results using the Leucegene real and simulated datasets

Tool Alignment processing (hours)  Dataset collation (hours)

Differential analysis (hours) AUROC Top-K accuracy

Leucegene (real dataset, n=263)

Leucegene (simulated dataset, n=20)

SpliceWiz 9.03 3.41
MAJIQ 13.7 N/A
TMATS 194 N/A

0.29 0.923 0.42
0.97 0.755 0.30
16.7 0.864 0.32

differential AS analysis, we analysed 263 acute myeloid leukemia
(AML) RNA-seq samples from the Leucegene dataset [30]. For each
of the tools (SpliceWiz, rMATS, MAJIQ), we used a maximum of eight
threads. Additionally, for SpliceWiz and MAJIQ, we restricted the
available memory to 32 gigabytes. We benchmarked run times for
each phase (processing of alignment BAM files, SpliceWiz dataset
collation and differential analysis between two groups) using the
full dataset (263 samples). This benchmark showed that SpliceWiz
is the fastest tool for both processing of alignment files and
subsequent differential analysis (Figure 7A, Table 2). Even when
taking to account the extra step of dataset collation, SpliceWiz
remains the fastest tool.

Next, we wanted to compare the accuracy of differential anal-
ysis in a larger dataset. We assessed accuracy of differential
splicing analysis using a simulated dataset based on a subset of
the Leucegene dataset (10 acute promyelocytic leukemia samples
and 10 randomly chosen AML controls). Accuracy metrics showed
that SpliceWiz outperformed both rMATS and MAJIQ (Figure 7B, C,
Table 2).

Taken together, SpliceWiz scales well to large datasets with
respect to computational performance and accuracy. The mod-
ular design of SpliceWiz facilitates sharing of datasets among
collaborators and increases the efficiency for users wishing to
perform multiple comparisons in datasets with complex exper-
imental designs.

Discussion

We demonstrated SpliceWiz as a versatile R package for AS anal-
ysis. Benchmarks against comparison tools show that SpliceWiz
is accurate and computationally efficient. Furthermore, SpliceWiz
implements a novel AS event-based coverage normalization to
generate group coverage plots to accurately visualize differential
splicing across conditions. Through the SpliceWiz GUI, we have
also implemented an interactive visualization-based pipeline to

enhance the user experience and assist in identifying functionally
relevant ASEs for further study.

There are many approaches to benchmarking AS tools to assess
accuracy. A key aspect is the assumption of how PSI values are
statistically distributed. Our assumption that PSI values are beta
distributed is based on the intuition that during sequencing, reads
are being randomly sampled from cDNA fragments derived from
source RNA that belong to either ‘included’ or ‘excluded’ isoforms.
Hence, our benchmarks naturally favour tools that make similar
statistical assumptions, namely rMATS [15] and SGSeq [18]. In
contrast, benchmarks that showed SUPPA2 and MAJIQ outper-
forming rMATS were performed based on error models applied
to changes in PSI (APSI) as a linear quantity [16, 17]. Accordingly,
SUPPA2 and MAJIQ performed less favourably on our benchmarks.
Importantly, focussing on PSI as a linear difference between two
conditions result in the loss of information about the baseline PSI.
When the baseline PSI is close to zero, changes in PSI (e.g. PSI from
0.01t0 0.03, or from 0.99 to 0.97) results in a higher fold-change in
logit transformed PSI compared to examples where the baseline
PSIisin the center of the [0,1] interval (e.g. PSI 0.49—> 0.51). Thus,
like rMATS and SGSeq, SpliceWiz’s statistical approach is sensitive
in detecting ASEs with baseline PSIs close to 0 or 1, which in
practice encompasses most ASEs in real datasets (Figure 4], K).

Prior studies have attempted to combine sample replicates
into a single plot. ggsashimi [31] combines replicates by stacking
traces of raw coverage, using different levels of transparency to
show multiple histograms. This approach is limited in its ability
to adjust for variances in sequencing depth and gene expres-
sions between replicates, which vary independently of changes in
PSI. Manananggal [32] implemented an exon-based visualization
using a DEXSeq’s exon normalization backend, and more recently
VALERIE [33] implemented an exon-based visualization used a
PSI-based normalization which scales coverage based on sum
included/excluded junction reads. These approaches are limited
in their inability to visualize IR due to their exon-only approach.

€202 1aquiada( 6z uo isanb Aq G89Z05//891Peqa/|/Gz/31911Me/d1q/wod dno oiwapede//:sdly Wwoly papeojumoq



Our benchmarks demonstrate that our proposed SpliceOver
normalization metric estimates local transcript depth to accu-
rately visualize IR. Moreover, group differences in normal-
ized coverage across alternatively spliced regions accurately
visualize differential splicing. Importantly, coverage plots are poor
at identifying differential events at PSI close to 1. We surmise
that this is because coverage plots are asymmetric in their
quantitative representation of included and excluded isoforms.
Included isoforms are represented by coverage, whereas excluded
isoforms are represented only using numbered arcs in sashimi
plots. At a PSI close to one, fold change signals in the isoforms
are represented as loss of coverage and is hidden among the
noise of coverage variances of the included isoform. This finding
uncovers a general weakness of coverage plots, which is unrelated
to our normalization approach. Naturally, as most IR events have
a PSI close to zero whereas other types of ASEs have a bimodal
distribution of PSIs around the 0 and 1 boundaries, coverage plots
most accurately visualize IR. Nevertheless, coverage plots remain
a useful visualization of AS due to its representation of the raw
alignment data underpinning splicing quantitation. As larger RNA
sequencing datasets become more available, the prior approach
of representing a sample group using duplicate/triplicate samples
will be replaced by SpliceWiz’s approach of representing the entire
group via normalized coverage. Thus, normalized coverage plots
will become the new standard for AS visualization.

The SpliceWiz GUI provides an interactive platform allowing
users to explore the results of differential ASE analysis. This
platform is designed to highlight interesting and relevant ASEs for
further investigation. The choice of ASEs to experimentally verify
typically depends on several factors, including the reliability of
the measurements and the relevance of affected genes to the
functional pathways of interest. Measurement reliability can be
visually surveyed using SpliceWiz’s normalized coverage plots.
Moreover, GO enrichment analysis and GO-based heatmaps facil-
itate the identification of functionally relevant ASEs. These tools
represent a considerable improvement over current methods,
which typically provide tabular lists of the top differential results
without companion tools or capabilities for functional annota-
tion. Taken together, the interactivity in exploring the differential
analysis results improves the user experience and the efficacy
in identifying functionally relevant ‘top hits’ for experimental
validation.

Computational performance is a key aspect to the user experi-
ence of any bioinformatics tool. We optimized SpliceWiz to process
BAM files orders of magnitude faster than other Bioconductor
tools for AS analysis, and on par with command-line tools. More-
over, coverage data stored in SpliceWiz’s COV format is more
efficient than BigWig, which facilitates data transfer between
collaborators. These optimizations encourage researchers to anal-
yse AS alongside gene expression, and provide biologists and
bicinformaticians with the same platform, thereby enhancing
collaboration and communication.

AS databases, whereby AS quantitation has been performed
on large RNA-seq datasets in advance, are in growing demand.
Recently, numerous AS databases have been published, covering
various biological systems including diverse human and murine
tissues [34, 35], cancers [36-38] and COVID-19 [39]. SpliceWiz pro-
vides an ideal platform to create AS databases due to its abil-
ity to uniformly analyse and package data from large datasets.
SpliceWiz-generated AS databases are superior in that it can be
used in conjunction with coverage data (via COV files) to visu-
alize differential AS between customizable sample groups. This
feature would add to the level of granularity that is required to
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identify the most meaningful AS events and examine them in
the appropriate context. We anticipate that SpliceWiz will become
the preferred platform for publishing AS database resources going
forward.

Although SpliceWiz is primarily designed for bulk RNA-seq
datasets, alignments from individual or clusters of single cell
RNA sequencing (scRNA-seq) can theoretically be analysed using
SpliceWiz. However, like most AS tools designed for bulk RNA-
seq, their use in parsing scRNA-seq is limited by their reliance on
full-transcriptome protocols. As most scRNA-seq datasets use 3'-
based sequencing, most AS events cannot be properly analysed
or visualized. Another limitation of SpliceWiz is its inability to
correct for technical confounders of sequencing coverage (such
as GC and 5'/3 bias) in its coverage visualization, as SpliceWiz
only uses a single normalization factor per sample for each ASE.
Although batch-correction is a feature implemented in SpliceWiz
via its GLM-based differential analysis, batch correction cannot be
factored into its coverage normalization algorithm.

In summary, SpliceWiz is a fast, accessible and user-friendly
interactive tool for AS analysis, and sets a new standard in splicing
visualization via group normalized coverage plots.

Methods
Quantifying percent-spliced-in
ASEs, including annotated IR events, are quantified in SpliceWiz
using PSI, which is calculated using equation (2). ASE isoforms are
designated by the size of the alternately spliced region, which is
defined to be larger in the included isoform compared with the
excluded isoform. For events where alternatively spliced regions
are mutually exclusive (namely MXE, AFE and ALE), the included
isoform is defined as that which contains the shorter first intron.
For details on annotation of ASEs, see Supplementary Methods
and Figure S1:
_ Included )
Included + Excluded

Included and excluded isoform abundances are estimated
based on counts of junction reads, noting that such reads do
not require length normalization unlike expression estimation
using reads aligned to exon bodies. The exception is the included
isoform in IR events (i.e. the retained intron), whereby we followed
the approach of IRFinder [21] in using the (30% trimmed) mean
depth of coverage across the measured intron. For isoforms that
encompass two (tandem) splice junctions (i.e. included cassette
exons or mutually exclusive exons), isoform abundances were
estimated using mean counts of the two junctions.

Differential ASE analysis using established
statistical tools in R

Functions for performing GLM-based differential ASE analysis
were implemented using wrapper functions to established statis-
tical methods limma [9], DESeq2 [10] and edgeR [11]. These were
implemented as follows: At the data collation step, two matrices
are compiled, each containing estimated included and excluded
isoform abundances. Columns in these matrices represent sam-
ples whereas rows represent ASEs. During differential expression
analysis, two separate analyses are performed. First, differential
analysis is performed separately on each of library-normalized
included and excluded counts. Assuming a contrasting condition
‘Treatment’ and a batch factor condition ‘Batch’, the model is
described in equation (3), where the last term is the contrasting
term. This step provides information on whether the change in
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AS is due to changes in either included or excluded isoform
abundances, or both:

design ~ 0 + Batch + Treatment (3)

Subsequently, the two matrices (of raw counts) are concate-
nated column-wise, and an extra ‘ASE’ condition is added to
the column (sample) annotations which specifies whether each
column represents included or excluded isoforms. Differential
ASE analysis is performed using a GLM model as described in
equation (4), where again the last term is the contrasting term.
This step assesses changes in the ratios of included and excluded
counts:

design ~ 0 + Batch + Treatment + Treatment : ASE (4)

We also implemented a wrapper using DoubleExpSeq [12], which
supports contrasts between two conditions (note that GLM-based
models are not supported for the DoubleExpSeq wrapper). In Dou-
bleExpSeq, the matrices m and Y are defined as follows:

m = Included; Y = Included + Excluded

Key Points

e SpliceWiz incorporates a  performance-optimized
pipeline with a graphical user interface to provide
a user-friendly pipeline for alternative splicing analysis
in large, complex datasets.

e A novel normalization technique allows accurate visu-
alization of differential splicing between groups of sam-
ples.

e Interactive data exploration aids hypothesis generation
by allowing researchers to easily identify functionally
relevant candidate alternative splicing events for further
study.

Supplementary Data

Supplementary data are available online at https://academic.oup.
com/bib.
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