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Abstract
Tidal wetlands continue to be threatened by changes in seascape hydrological regime and connectivity resulting from human 
activities (e.g. urbanisation, engineered barriers) and climate change. Reliable and parsimonious models that can be used 
by managers and practitioners to simulation tidal wetland hydroperiod dynamics (duration, depth, and frequency of tidal 
inundation) at high-resolution are limited presumably because these ecosystems have very low elevation across their flood-
ing plain. Here, we developed a two-dimensional hydrodynamic model parameterised using a high-resolution (3 cm) and 
accurate (8-cm RMSE elevation error) digital elevation model (DEM) and land cover map (2-cm resolution) derived from 
unoccupied aerial vehicles (UAVs) structure from motion photogrammetry (SfM) to assist in the understanding of tidal 
wetland hydroperiod and hydrological connectivity of an upper tidal Australian tropical seascape. Ground-based water level 
datasets were used to calibrate and validate the model with higher accuracy (RMSE = 7 cm between maximum observed and 
simulated depth). The high-resolution approach demonstrates how small changes in topography such as vehicle tracks can 
interfere with hydrological connectivity. Centimetre-changes in tidal height resulted in important variations (10 ha) in the 
total area of the wetland being inundated, suggesting that small anthropogenic modifications of tidal inputs (e.g. culverts 
and sea-level rise) might have important implications on tidal wetland inundation patterns. Despite challenges related to 
reconstructing topography in densely vegetated areas and obtaining bathymetric data, the method developed here represents 
an accurate and cost-effective approach to quantify tidal wetland hydroperiod. This approach assists in planning, defining, 
and implementing effective and measurable restoration and protection projects of tidal wetland ecosystems. 

Keywords Tidal marshes · Hydroperiod · Unoccupied aerial vehicle (UAV) · Saltmarsh · Digital elevation models 
(DEMs) · Seascape connectivity

Introduction

Tidal wetlands (saltmarshes, mangroves, mudflats, and 
saltpans) are located at the land-sea boundary and hold 
significant ecological and economic value. For instance, 

they provide critical resources to commercially targeted 
species (e.g. European seabass (Dicentrarchus labrax) and 
sea mullet (Mugil cephalus)) (Deegan et al. 2002; Raoult 
et al. 2018; McCormick et al. 2021), assist with nutrient pro-
cessing (Rivera-Monroy et al. 2011), and are basal carbon 
sources supporting coastal food web production (Abrantes 
and Sheaves 2009; Connolly and Waltham 2015; Jinks et al. 
2020). Tidal wetlands are also incredibly effective in absorb-
ing greenhouse gas emissions (Wang et al. 2021a), thereby 
counteracting anthropogenic carbon emissions and mitigat-
ing climate change.

Despite recognition of their values, tidal wetlands continue 
to be jeopardised by direct ecosystem destruction and deg-
radation (Murray et al. 2022) as a result of urbanisation and 
agriculture (Saintilan and Wilton 2001), including installation 
of engineered barriers (e.g. roads, culverts, and tidal gates) 
and coastal infrastructures (e.g. seawalls and dikes), which 
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alter inundation regimes, leading to modifications in seascape 
connectivity and configuration (e.g. vegetated patch distribu-
tion and structure) (Bishop et al. 2017; Rodríguez et al. 2017). 
Climate change (e.g. sea-level rise, changes in temperature 
and rainfall patterns, and extreme weather events) also modi-
fies seascape connectivity patterns via changes in hydrologi-
cal, morphological, and biological processes (Gilby et al. 
2021; Colombano et al. 2021; Finotello et al. 2022), which 
can be exacerbated by human activities (Gedan et al. 2009). 
An example is the coastal squeeze effect where saltmarshes 
become reduced between urbanisation and mangroves migrat-
ing to higher elevations due to increases in mean sea level 
(Torio and Chmura 2013). Implementation of effective res-
toration projects and urban planning that minimise environ-
mental loss is, therefore, urgently needed. However, this is 
constrained by a poor understanding of the location-specific 
tidal wetland hydroperiod nuisances, which can be influenced 
by a combination of vegetation mosaic and impediment on 
ingress, inundation depth, and frequency of wetland inunda-
tion (Bradley et al. 2020; Karim et al. 2012; Ziegler et al. 
2021; Waltham et al. 2021).

Tidal hydroperiod determines the depth, duration, and 
timing of flooding and, as a result, influences hydro-
logical connectivity and, subsequently, many critical eco- 
hydrological and morphodynamical processes such as the 
movement of biota throughout seascapes (Rozas 1995; 
Minello et al. 2003; Davis et al. 2014), soil-vegetation inter-
actions (Liu et al. 2021), carbon sequestration (Wang et al. 
2021b), and coastal erosion (Finotello et al. 2022). These 
processes ultimately contribute to coastal productivity and 
resilience (Olds et al. 2012); hence, tidal wetland restora-
tion success can be closely linked with hydrological pro-
cesses (Zhao et al. 2016).Tidal wetland hydroperiod is most 
strongly influenced by topography, but also by many hydro-
logical, geomorphic, edaphic, biological, and climatic vari-
ables (Xin et al. 2022). Complex interactions among these 
factors mean, for managers, that hydroperiod is challenging 
to quantify accurately (Passeri et al. 2015).

Over the past decade, advancements have occurred in 
the development of techniques to examine hydroperiod and 
connectivity of these ecosystems within nearby estuaries 
and coasts. Direct measurement approaches have used water 
level loggers (or pressure loggers) deployed at single points 
in space (Peterson and Turner 1994; Davis et al. 2014) or 
along transects (Kumbier et al. 2021). For instance, Minello 
et al. (2012) used tidal gauge data, which was checked using 
point elevation measurements, to more accurately investi-
gate spatial variability in saltmarsh hydroperiod. That study 
enabled comparisons of hydroperiod across multiple loca-
tions, but it still required manual water level measurements, 
which can be prone to measurement error.

There has been growing interest in using complex empiri-
cal and physical numerical models to understand tidal 

wetland hydrodynamics, notably to recognise the relation-
ships between hydrology, saltmarsh evolution, and mor-
phology (Kirwan et al. 2010; Fagherazzi et al. 2013, 2020; 
Xin et al. 2013, 2022; Bouma et al. 2016). These models 
range from zero-dimensional (i.e. process at single points) 
(Allen 1995) to one-dimensional (e.g. channel transects) 
(D'Alpaos et al. 2007; Karim et al. 2014), two-dimensional 
(2D) (e.g. tidal wetland platform) (Temmerman et al. 2007; 
Alizad et al. 2016; Fleri et al. 2019; Finotello et al. 2022), 
and three-dimensional (3D) models that encompass multi-
dimensional variability in hydrology and sediment transport 
(Kirwan and Murray 2007; Xin et al. 2022). There have also 
been attempts to combine these models (Moffett et al. 2012; 
Kumbier et al. 2022). For instance, Alizad et al. (2016) 
investigated saltmarsh response to sea-level rise by com-
bining a 2D hydrodynamic model developed by Bacopoulos 
et al. (2012) that uses tides, wind, pressure, and bathymetric-
topographic datasets to understand saltmarsh hydroperiod, 
with a zero-dimensional model of saltmarsh accretion and 
biomass productivity derived from Morris et al. (2002). 
While these models represent an important advancement in 
our ability to understand saltmarsh functioning, the com-
plexity and high input data requirements may preclude their 
broader application by environmental scientists, ecologists, 
and practitioners, particularly in data-sparse situations.

Recent advances in remote sensing techniques, coupled 
with freely available modelling software with user-friendly 
graphical user interfaces (GUIs), are opening the door to read-
ily applicable approaches to quantify tidal wetland hydroperiod 
dynamics and connectivity. These new approaches might be 
more easily communicated and integrated into tidal wetland 
studies (e.g. fish habitat uses) and restoration. For example, 
using 2D simulation software such as, but not limited to, MIKE 
21 (Warren and Bach 1992), TELEMAC-2D (Morris et al. 
2013), TUFLOW 2D (Syme 2001), Delft3D (Temmerman  
et al. 2005; Horstman et al. 2015), or HEC-RAS can offer a 
detailed spatial and quantitative understanding of tidal inun-
dation with minimal data input (Symonds et al. 2016; Karim 
et al. 2021; Muñoz et al. 2021). The basic input for hydro-
dynamic models includes bathymetry or topographic datasets 
(digital elevation models (DEMs)), land cover to account for 
surface roughness, and water level or discharge time series. 
Nevertheless, the low-gradient and narrow-width (< 1 m) 
draining channels in coastal areas could be completely missed 
or mis-represented depending on DEM resolution and uncer-
tainty level in data acquisition (Chassereau et al. 2011).

High- or very high-resolution DEMs (< 1 m) are tradi-
tionally developed using ground-based LASER scanners 
(Sampson et al. 2012) or LiDAR instruments (Goodwin and 
Mudd 2019) and recently, by using unoccupied aerial vehicle 
(UAV) technology (Shaad et al. 2016; Pinton et al. 2020; 
Zhu et al. 2019; Li et al. 2021; Annis et al. 2020). Structure-
from-motion with multi-view stereophotogrammetry (SfM) 
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(e.g. Koci et al. 2020) has emerged as a low-cost alterna-
tive to UAV-LiDAR (0.6–40% of LiDAR cost (e.g. Hu et al. 
2021). UAV-SfM produces 3D point clouds and DEMs 
with comparable resolution and accuracy to that of LiDAR 
in most environments (Nouwakpo et al. 2016; Annis et al. 
2020; McNicol et al. 2021). In addition to high-resolution 
topographic models, UAV-SfM generates high-resolution 
orthomosaic maps providing detailed information on sur-
face features (e.g. vegetation, roads, and trails). UAV-SfM 
can thereby fulfil two essential data requirements for 2D 
hydrodynamic modelling (i.e. DEM and land cover) (Annis 
et al. 2020). This approach might be particularly useful in 
tidal wetlands characterised by low-relative gradient with 
yet complex topographies (e.g. tidal channels), where sub-
tle variations in topography cannot be captured with coarse 
DEMs (Chassereau et al. 2011).

This study aimed to test the potential of a UAV-derived 
DEM with a 2D flow model to simulate inundation pat-
terns in a tidal wetland. Specifically, the main purposes 

of this study were (1) to attempt to parameterise a detailed 
hydrodynamic model of the upper region of an intertidal 
tropical seascape using a UAV-SfM–derived DEM, a UAV-
SfM–derived land cover dataset, and tidal data; (2) to try to 
derive information on tidal wetland hydrological connectiv-
ity and quantify tidal wetland inundation extent, depth, and 
duration based on the hydrodynamic model outputs; (3) to 
investigate the importance of high-resolution DEMs in low 
relative relief; and (4) to assess the advantages and weak-
nesses of UAV-SfM to study tidal wetland hydroperiod.

Materials and Methods

Study Site

The study site is in the upper intertidal region of Black-
soil Creek in north Queensland, Australia (− 19.297867, 
147.021333), covering 82.54 ha (Fig. 1). The study site 

Fig. 1  a Study area map showing the location of the study site on the 
Australian East coast and location of tidal gauge: b photo of the cul-
vert at the north-eastern boundary of the study site; c photo of the 
culvert (shown in b) during low tide bordered by Rhizophora stylosa 
and Avicennia marina; d tidal channel draining the upper portion of 
the site surrounded by R. stylosa; e succulent saltmarsh dominated 

by Sarcocornia quinqueflora with encroaching A. marina; f suc-
culent saltmarsh patches dominated by S. quinqueflora; g patches of 
herbaceous saltmarsh dominated by Sporobolus virginicus; and h her-
baceous saltmarsh community at the transition between saltpan/salt-
marsh and fully terrestrial vegetation (Software used: ArcGIS PRO)
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represents a dry tropical estuarine complex consisting of 
mangrove forests dominated by the red mangrove (Rhiz-
ophora stylosa) at the seaward and channel edges transi-
tioning to the grey mangrove (Avicennia marina) and the 
yellow mangrove (Ceriops tagal) in the upper intertidal 
area furthest from the open water channel. In the upper to 
supratidal zone, saltpans and saltmarshes dominate, includ-
ing the bead weed (Sarcocornia quinqueflora) and the salt 
couch (Sporobolus virginicus).

There is no freshwater stream inflow; it only enters via 
groundwater and direct runoff during rain events. The estu-
ary downstream of the study area is semi-diurnal mesotidal, 
with the highest tides occurring during the day in austral 
summer and night in austral winter. The Highest Astronomi-
cal Tide (HAT) is 3.84 m above the Lowest Astronomical 
Tide (LAT) datum (2.150 m above the Australian Height 
Datum (AHD)) (Queensland 2022). The 1991–2021 aver-
age tidal height is 1.72 m (Queensland 2022). The cli-
mate is dry-tropical, with most rainfall (900–1800 mm/
annum) (Bruinsma 2001) occurring during the wet season  
(November–April). There is a road with a multi-pipe culvert 
(10 pipes of 1-m diameter) downstream of the study area 
on the main drainage creek (Fig. 1b). Four small (~ 40 cm 
of diameter) single-pipe culverts are found across the road, 
south of the main culvert.

Modelling Framework and Setup

The free software HEC-RAS 6.1 (Windows) was used to 
develop a 2D hydrodynamic model of the study site using 
the 2D unsteady diffusion-wave equations. HEC-RAS uses 
a high-resolution sub-grid system, allowing water movement 
in each cell to be strongly controlled by the terrain model 
(Shustikova et al. 2019). Although the diffusion wave equa-
tions are not recommended for tidally driven system and the 
shallow water equations should be used instead, the shal-
low water equations did no yield stable simulations. The 
data inputs were (1) UAV-derived DEM, (2) the land cover 
dataset with associated Manning’s roughness coefficient 
values, and (3) tidal data corresponding to periods at which 
pressure loggers were deployed. The model was first built 
by manually delimiting the perimeters around the study site. 
The 2D flow areas were then generated using the “Compu-
tation Points with All Breaklines” tools with computation 
point spacing of 2 × 2 m, which generated an irregular mesh 
of 195,131 cells (mostly of 4 sides and up to 8 sides along 
mesh boundaries). The 3-cm resolution UAV-DEM (see 
below) was used to extract the sub-grid level information. 
To reduce computational time while keeping information 
on the high-resolution terrain, HEC-RAS uses a sub-grid 
bathymetry approach that enables the use of coarser grid 
size on finer terrain model (Brunner 2016; Shustikova et al. 

2019). The approach consists of a pre-processing step that 
calculates hydraulic radius, volume, and cross-sectional area 
from the finer topographic data for each computational grid 
cells (Shustikova et al. 2019). This sub-grid bathymetry 
approach allows the information from the fine scale terrain 
model to be accounted for in the coarser grid through mass 
conservation (Casulli 2009; Brunner 2016). Hence, DEM 
resolution influences model accuracy (Yalcin 2018). For 
instance, Yalcin (2018) demonstrated that a decrease in the 
digital surface model (DSM) resolution (0.25–10 m/pixel) 
with the same grid size (2 m × 2 m) linearly increases depth 
and inundation area inaccuracies compared to the 2 m × 2 m 
grid size with a 0.0432-m DSM. By opposition, no notable 
differences in model accuracy were observed between simu-
lations computed with the 0.0432-m DSM and grid sizes 
of 2 m × 2 m to 10 m × 10 m. An abrupt decrease in model 
performance was only observed with a grid size equal to or 
greater than 15 m × 15 m. Numerical details on the sub-grid 
bathymetry approach used by HEC-RAS can be found in 
Brunner (2016).

The boundary condition (tidal flow data) was imple-
mented using the stage hydrograph with the initial stage 
used. The initial conditions were left blank. Only one bound-
ary condition was used, which was placed manually down-
stream of the culvert in the main channel, outside of the 2D 
flow area, which is presented in the supplementary materials 
(Fig. S2). Note that tides only enter to the study site via the 
culverts found across the road at the eastern boundary of the 
study site (Fig. 1).

Input Data

UAV‑Derived DEM

UAV surveys were conducted over 2 days in September 2021. 
A DJI Phantom 4 RTK (Real-Time Kinematic) (SZ DJI Tech-
nology Co., Ltd.) connected to a DJI RTK Base Station set 
over a known benchmark was flown at 60-m altitude (62-m 
ground sample distance) on a one-grid mission planned to 
use the DJI RTK App (SZ DJI Technology Co., Ltd.). The 
camera model was FC6310R with maximum image size 
of 5472 × 3648, focal length of 8.8 mm, and pixel size of 
2.41 × 2.41 µm. Full specifications of the Phantom 4 RTK 
can be assessed on the official DJI website (https:// ag. dji. 
com/ fr/ phant om-4- rtk/ specs). Images were collected at nadir 
with 85% side and forward image overlap. The UAV was 
flown each day between 9:30 and 15:00, with short inter-
ruptions to change the battery (i.e. each flight was approxi-
mately 20–25 min) totalling to 6488 images. RTK-GPS 
measurements recorded by the UAV ended up not being 
used for data processing due to the difficulties and time 
limitations in finding a workflow leading to high accuracies. 

https://ag.dji.com/fr/phantom-4-rtk/specs
https://ag.dji.com/fr/phantom-4-rtk/specs
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Thirty-three ground control points (GCPs) were evenly dis-
tributed in the corner, along the boundary, and across the 
study site to maximise DEM accuracy (Sanz-Ablanedo 
et al. 2018). The GCPs consisted of rectangular black and 
white checkerboards of 60 cm × 60 cm. To georeference 
the model with centimetre-level accuracy (Koci et al. 2017;  
Taddia et al. 2021), the centre of the GCPs were surveyed 
with Real-Time Kinematic-Global Positioning System (RTK-
GPS) (CHC i80) (Shanghai HuaCe Navigation Technology 
Ltd.) (taking the average of 10 readings) (Fig. 2a). The accu-
racy of the RTK-GPS was calculated using the GCPs (33) 
and validation points (562, see details below), resulting in an 
RTK-GPS mean horizontal error of 0.015 ± 0.000 m (stand-
ard error (SE)) (standard deviation (SD) of 0.005 m) and 
mean vertical error of 0.027 ± 0.000 m (SD of 0.009 m). The 
coordinates were recorded in the GDA2020 MGA zone 55 
reference system and orthometric elevation in the Australian 
Height Datum (AHD). Agisoft Metashape (Agisoft LLC) 
was used to create dense point clouds and orthomosaics from 
UAV-SfM. The DEM was generated following dense point 
cloud classification of ground points. Point cloud density 
(calculated as the total of points divided by the total area 
surveyed) was 4.81 points per  m2. Detailed processing steps 
and parameters are provided in Table 1.

The DEM was exported towards ArcGIS Pro 2.8.6 (Esri) 
for further cleaning of above-ground control points and 
reconstruction of the main channel. Dense vegetation cover 
precluded accurate reconstruction of the channel bathymetry 
using aerial imagery in those areas where mangrove forest 
did not allow the survey of ground points. In addition, the 
RTK-GPS received no to very low signal in the mangrove 
forest. Hence, in these areas, on-ground GPS points (Garmin 
hand-held GPS) were taken along the channel banks, in addi-
tion to five cross-sectional profiles of the channel surveyed 
with RTK-GPS. The low RTK signal in the mangrove for-
est prevented additional cross-sectional profiles. It is noted 
that GPS accuracy is low compared to RTK-GPS (5–15 m 
horizontal error), which added to uncertainties in channel 
delimitation and reconstruction (see Discussion). Chan-
nel bathymetry was reconstructed using Natural Neighbor 
(or Sibson) interpolation (the “Interpolate from the Edge” 
tool in ArcGIS Pro). This interpolation technique cre-
ates a smooth surface using a local and spatially adaptive 
method that retains the original values at the reference points  
(Etherington 2020). This tool was also used to remove man-
grove trees. A conservative terrain filter tool (available in the 
Pixel Editor tools) that detects and removes above ground 
points while conserving natural slopes was used to remove 
remaining vegetation from the DEM surface. The DEM was 
hydrologically corrected (Jarihani et al. 2015) using the 
“Fill” tool. Elevation accuracy was assessed by comparing 
extracted values from the elevation raster to the elevation of 
562 RTK-GPS random validation points (the number was 

not initially set but the aim was to collect the maximum 
number of RTK-GPS validation points across the study site 
during the allocated time). DEM error is expressed as the 
root mean square error (RMSE).

Land Cover

Key land cover attributes, totalling eight main cover classes, 
were identified. These cover classes included vegetation (i.e. 
herbaceous saltmarsh, succulent saltmarsh, Ceriops spp., 
ither mangroves (“Mangroves”), and woodland/grass terres-
trial), main channel, artificial structures, and unvegetated flats 
(mudflat/saltpan). Land cover classes were identified with the 
orthomosaic generated from UAV-SfM to specify Manning’s 
roughness coefficient. Multiple attempts were made to classify 
the orthomosaic using unsupervised and supervised object-
based image classification algorithms in ArcGIS Pro, but the 
results were deemed unreliable. A manual classification was 
performed using the drawing tools in ArcPro and assisted with 
field data (GPS points and photography). To achieve this, the 
entire orthomosaic was zoomed in so that each land cover fea-
ture could be circled around to create polygons of each land 
cover category. The polygons were then merged into individual 
land cover categories. The final land cover shapefile was made 
by assigning the entire study site as a mudflat/saltpan polygon 
(the dominant land cover). Each land cover shapefile was then 
erased to the mudflat/saltpan polygon in their order of over-
lapping in the field and then merged to create the final land 
cover map (Fig. S1). The manual classification did not allow 
the uses of a confusion matrix to provide an accuracy assess-
ment. Nevertheless, the very high-resolution of the UAV-SfM 
imagery together with expert knowledge of the site coupled 
and on-ground imagery allowed confident reliability of the 
classification of land cover (Fig. 3).

Tidal Time Series

Tidal data were sourced from the Cape Ferguson tidal gauge 
(− 19.277208; 147.060908), which is the nearest (3.5 km 
northeast) tidal gauge (Fig. 1a). To convert observed tidal 
heights to orthometric height in Australian Height Datum 
(AHD), the tidal datum for tidal observations at Cape Fer-
guson, which is 1.59 m (Bureau of Meteorology 2021), was 
subtracted from the observed tidal height. Tidal data at 10-min 
intervals was extracted from the 1-min interval dataset over 
a ~ 10-day period in January, June, and August (Table 2).

Validation Data

Water Level by Loggers

Water levels were monitored from November 2020 to 
March 2022 using pressure loggers (HOBO Water Level 



 Estuaries and Coasts

1 3

Fig. 2  a UAV-derived topographic map and DEM showing loggers 
and ground control points position; b validation points colour coded 
according to elevation error on the topographic map; c and on the 

DEM; and d and graph of the distribution of elevation error of valida-
tion points (Software used: ArcGIS PRO)
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Data Logger (30-m U20L Series)) (Onset Compute Corp.) 
deployed over the study site (Fig. 2a). The loggers were 
rotated to new locations based on wetland terrain char-
acteristics every 3 to 4 months due to a low number of 
loggers available at any time (4–8 loggers). This practice 
evaluated model performance across the entire study site 
to maximise spatial and temporal representation of water 
levels (Johnson and Pattiaratchi 2004). A logger was 
placed in a tree in the study area, approximately 1.5 m 
above ground, to log barometric pressure to compensate 
recorded pressure by the loggers (the logger remained in 
the same location for the entire study). The software onset 
HOBOware Pro was used to convert pressure to water 
depth, which is calculated using fluid density (saltwater), 
reference water level (measured at the time of the logger 
deployment), and barometric pressure data.

Inundation by Sentinel‑2

The second validation method consisted of comparing 
satellite imagery to compare observed and simulated 
inundation extent (Reid et al. 2014; González et al. 2023).  
Sentinel-2 imagery was downloaded from Planet Labs 
PBC 2022. As it was not possible to determine whether 

the inundated area occurred by a preceding tide or was 
inundated on the satellite imagery, we opted to compare 
the maximum inundation extent for each simulation period 
to the first satellite imagery available following the high-
est tide of the simulation. In January, satellite imagery 
was taken 4  days after the highest tide (1/13/2021 at 
09:20), with corresponding imagery taken the 21/01/2021 
at 09:54. In June and August, the highest tide occurred 
at night (25/06/2021 at 01:20 and 21/08/2021 at 20:10, 
respectively). Imagery was only available 2 days after the 
highest tide in June (27/06/2021 at 10:00) and 3 days after 
the highest tide in August (23/08/2021 at 09:44).

Model Calibration and Validation

The hydrodynamic model was built and calibrated by simu-
lating tidal dynamics over the ~ 10-day period in January, 
June, and August (Table 2), representing different logger 
positions. A central focus of the analysis was to simulate 
days representing a neap to spring tidal cycle (Table 2), with 
similar starting and ending tidal elevation across the simula-
tions. Although temporal variations in saltmarsh morphody-
namics have been described elsewhere (Sun et al. 2018; Jin 
et al. 2022) (e.g. 0–10 cm increase in soil elevation within 

Table 1  Workflow and parameters used to process the unoccupied aerial vehicle (UAV) imagery in Agisoft Metashape

Process Description

1. Convert geographic coordinates and camera reference setting Convert the coordinate systems and camera reference setting to the coordi-
nate system of the GCPs surveyed with the RTK-GPS (i.e. from WGS84 
to GDA2020/MGA zone 55 and AHD) using the “Convert” tool

2. Align image, generate sparse point cloud, and detect markers Align photos using:
• “High” accuracy
• Select generic preselection and reference preselection
• Set key point limit at 40,000 and tie point limit at 10,000
• Apply masks to none
• Uncheck “Exclude stationary tie points”; guided “Image matching”: and 

“Adaptive camera model fitting”
3. Detect markers Using the “Detect Markers” tool
4. Import GCPs Import GCPs coordinates from CSV file

• Set marker accuracy at 0.002 m
• Adjust markers on image when necessary

5. Uncheck cameras and check all markers Uncheck all cameras to force to optimisation process to use the markers 
surveyed using the RTK-GPS

6. Spare point cloud cleaning and optimisations Using the gradual selection tool to delete the selected points:
• Reckon uncertainty (level 15) and optimise (default parameters: f, cx, cy, 

k1-k3, p1, p2, no adaptative camera model fitting)
•Reprojection error (level 0.4) and optimise
• Reprojection error (level 0.3) and optimise
• Projection accuracy (level 30) and optimise

7. Build dense cloud Build dense point cloud using “High” accuracy and “Mild” depth filtering. 
Density of dense cloud = 4.81 points/m2

8. Build orthomosaic
9. Build DSM
10. Build DEM Use “Classify Ground Control Point” with parameters set at default
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Fig. 3  Land cover class identified in the field for classification and corresponding examples viewed from the orthomosaic map derived from 
UAV-SfM
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6 months following months with higher inundation frequen-
cies in Spartina alterniflora saltmarshes, Jin et al. 2022), it 
was assumed here that the site seasonal variability in mor-
phodynamics was negligible across the simulation period, 
and the same DEM was used for all simulations.

The Manning’s roughness coefficient is the principal cali-
bration target in 2D HEC-RAS (Muñoz et al. 2021). Model-
ling performance was first assessed with an overall Man-
ning’s roughness coefficient of 0.025–0.035, which are the 
values recommended in the 2D HEC-RAS manual for bare 
land with minimal impediment on flow. At that stage, model 
parameters, including the theta implicit weighting factor, 
were adjusted (Table 3). The theta value is a weighting fac-
tor involved in the solving of the shallow water equations 
and is responsible for increasing model stability and output 
accuracy (Hicks and Peacock 2005). The theta value was 
reduced from 1 to 0.6 to improve model stability and bet-
ter represent tidal wave propagation (Pasquier et al. 2019). 
The model was then manually calibrated by adjusting the 

Manning’s roughness coefficient of each land cover class 
(Table 4) starting with initial values suggested in the 2D 
HEC-RAS manual for similar cover classes and rising and 
adjusting the values until the simulated water level visually 
best matched the observed water levels. For instance, the 2D 
HEC-RAS manual recommends range values of 0.023–0.03 
for barren land; 0.03 was used here for the mudflat/saltpan 
category. Similarly, the range of values suggested for emer-
gent herbaceous wetland (0.05–0.085) was used as a basis 
to calibrate the values of herbaceous (S. virginicus) and suc-
culent saltmarsh (S. quinqueflora). The friction values are 
considered in the middle to upper range of the suggested 
values from 2D HEC-RAS manual to compensate DEM 
and bathymetric errors (Mardani et al. 2020). Examples of 
model performance with constant Manning’s and with the 
manual adjustments are found in the supplementary materi-
als (Fig. S3).

After trial simulations to calibrate the model by modify-
ing Manning’s roughness coefficient and model parameters, 

Table 2  Information on the three simulations computed to calibrate 
and validate the hydrodynamic model. Simulation starting elevation 
refers to the elevation at which the tidal level was at the beginning of 

the simulation. Associated loggers used for calibration and validation 
are also shown (their position can be cross-checked with Fig. 1b)

Simulation Start time End time Maximum tide 
elevation (m, AHD)

Simulation starting 
elevation

Loggers

January 07/01/2021, 14:00 17/01/2021, 07:10 2.07 0.54 1; 2; 3; 4; 5; 6; 7
June 18/06/2021, 01:20 30/06/2021, 07:30 1.96 0.55 8; 9; 10; 11; 12; 13; 14; 15
August 17/08/2021, 15:00 28/08/2021, 14:50 1.96 0.57 16; 17; 18; 19

Table 3  Parameters used 
for the final calibrated 2D 
hydrodynamic model in HEC-
RAS 6.1

Computation settings (2D flow) Value

Theta 0.6
Theta warm-up 0.6
Water surface tolerance 0.003 (default)
Volume tolerance 0.003 (default)
Maximum iterations 20 (default)
Equation set Diffusion wave
Initial conditions ramp up fraction (Default)
Number of time slices 1 (default)
Computation time step base 1 min
Base output interval 10 min
Hydrograph output interval 10 min
Mapping output interval 10 min
2D flow area
Points spacing (m) 2 × 2 m (smaller cell size did not improved the 

model but significantly increased processing 
times)

Default Manning’s value 0.035
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we observed a consistent offset of 0.3–0.4  m between 
observed and simulated water levels. We attributed that to 
a site-specific offset in datums (likely due the distance to 
tidal gauge used to parameterise the model) and uncertain-
ties in the DEM (including bathymetry, notably in the area 
where the mangrove forest was removed, and the channel 
was reconstructed) (see Discussion for details on DEM 
sources of inaccuracies) and subtracted 0.35 m to observed 
tidal data. Note that the above description of the calibration 
of the Manning coefficients to obtain the final Manning val-
ues was carried out after correction for the offset.

The model was validated by comparing the depth 
recorded by the loggers and the depth simulated by the 
model. Differences between the maximum observed and 
predicted depth are presented for each logger, together 
with RMSE of maximum depth error and R2. RMSE and R2 
between observed and simulated water depths are also pre-
sented. RMSE and R2 of inundation duration were computed 
by calculating the number of 10-min time step being greater 
than 0 m for both the depth recorded by the loggers and the 
depth simulated by the model. The number was then multi-
plied by 10 and converted to hours. The extent of inundation 
was further validated by comparing the inundation boundary 
from satellite imagery (Sentinel-2 at 3-m resolution) to the 
simulated boundary.

Results

DEM Generation and Accuracy Assessment

The UAV-SfM generated a 3-cm resolution DEM (Fig. 2), 
with a RMSE in elevation of 8 cm (Table 5). The distribution 
of elevation error is leptokurtic, with some outliers in veg-
etated areas (Fig. 2d). Elevation tended to be overestimated 
in vegetated areas (Table 5). RMSE in elevation was higher 
in vegetated wetlands (4 cm in mangroves to 12 cm in her-
baceous saltmarsh) compared to unvegetated areas (mudflat/
saltpans RMSE = 5 cm) (Table 5). The lower elevation error 
in the mangroves compared to herbaceous saltmarsh is likely 
because only two successful validation points were surveyed 
with the RTK-GPS in the mangrove forests (Table 5). This 
made it difficult to assess DEM errors for the mangrove 
land cover.

The Hydrodynamic Model

Overall, simulated water levels and timing fitted the 
observed water levels (R2 = 0.51 to 0.71 and RMSE = 0 to 
0.05 m) (Fig. 4a). This gives confidence that the model 
performed well in predicting water level and inundation 
across the study site. Simulated maximum depth at each 
logger point was close to that observed, with an RMSE of 
maximum depth of 0.07 m and a correlation coefficient R2 
of 0.93 (Fig. 4b). RMSE between observed and simulated 
depth ranged from 0 m (loggers 9, 10, 16, 4—in areas that 
remained dry during the study period) to 0.053 m. Corre-
lation coefficients indicate moderate to strong correlation 
(0.506–0.712) between simulated depth and observed depth, 
with the exception at logger 17 where R2 was 0.24 (Fig. 4a). 
Some specific exceptions in model performance in simulat-
ing depth are noticeable, notably at loggers 2, 3, and 14, 
where simulated maximum depth was greater than 9 cm 
of the observed depth. At logger 2, which was positioned 
adjacent to the mangrove channel, the difference between 
maximum simulated and observed depth was 0.19 m—the 

Table 4  Manning’s n roughness coefficient used in the validated 
model based on the range of the recommended values by the HEC-
RAS manual

Land cover Manning’s n

Mudflat/saltpan 0.03
Woodland grass terrestrial 0.04
Herbaceous saltmarsh 0.06
Succulent saltmarsh 0.05
Ceriops spp. 0.08
Other mangroves (Avicennia spp. and Rhizophora 

spp.)
0.08

Manmade (gravel and concrete roads) 0.1
Main channel 0.035

Table 5  Assessment of 
elevation error between RTK-
GPS validation points and 
UAV-DEM elevation. Positive 
mean values indicate elevation 
underestimation, while negative 
mean values indicate elevation 
overestimation

Land cover n RMSE (m) Mean (m) SD (m) SE (m)

Whole DEM 562 0.081  − 0.002 0.081 0.003
Unvegetated Mudflat/saltpan 357 0.054 0.022 0.050 0.003
Vegetated Succulent s 76 0.078  − 0.008 0.078 0.009
Vegetated Herbaceous s 59 0.123  − 0.081 0.096 0.011
Vegetated Ceriops spp. 4 0.080 0.059 0.060 0.031
Vegetated Mangroves 2 0.041  − 0.013 0.055 0.039
Vegetated Grass/wood 46 0.155  − 0.088 0.128 0.019
Water Main channel 5 0.107  − 0.058 0.101 0.045
Manmade Manmade 13 0.064  − 0.011 0.058 0.016
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Fig. 4  a Simulated depth over recorded depth (HOBO water level 
logger) at each logger position with root-mean-square error (RMSE) 
and correlation coefficient (R2); b distribution of maximum observed 

and simulated depth (for all simulations) with R2 and RMSE; c distri-
bution of observed and simulated inundation duration in hours with 
R2 and RMSE (Software used: Rstudio, Word)
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highest recorded. Without this outlier, the RMSE was 0.05 m 
and the correlation coefficient R2 was 0.98. In addition, the 
model simulates a constant water level following inundation 
at logger 17, a logger placed in the isolated channel at the 
southern part of the study site. When pooling all loggers, 
simulated inundation durations were lower than observed 
inundation durations with a R2 of 0.79 and a RMSE of 
24.55 h (Fig. 4c). The large RMSE in inundation duration 
was largely driven by the underestimation of inundation 
duration in the main channel at loggers 1, 6, 15, 18, 19, 
and a small drain at logger 7. Without these six loggers, 
the RMSE dropped considerably, reaching 5.09 h and a R2 
of 0.99. Model performance was also notably reduced as 
simulated arrival time and maximum water level tended to 
be 10–60 min earlier than observed. When adjusting for this 
delay, overall model performance improved in most logger 
emplacements (R2 > 0.789) (Table S1). For instance, if simu-
lated inundation had arrived 60 min later at logger 2, the R2 
would have increased from 0.672 to 0.946 (Table S1).

Comparisons between satellite imagery and simulated 
inundation extent for each of the three simulation periods 
(Fig. 5) support that the model accurately modelled tidal 
inundation. In January, observed inundation extent was 
49.82 ha compared to the simulated extent of 53.02 ha. 
In June, observed and simulated inundation extents were 
respectively 41.13 ha and 43.07 ha, while in August, it was 
43.20 ha (observed) and 42.89 ha (simulated).

Hydroperiod

The model developed here indicated that a tidal height of 
near 2.95 m (1.36-m elevation AHD) is required to start 
inundating the wetland above the mangrove-marsh ecotone 

(i.e. saltmarshes and saltpan) in the study area upstream of 
the culvert. In addition, the higher tides observed in January 
(0.2 m higher compared to June and August) resulted in an 
increased inundation extent of 10 ha of tidal wetland (Fig. 6).

Maximum inundation depth across most of the study site 
and simulation periods remained shallow at < 0.4 m (Fig. 6). 
Specifically, 68.2%, 82.5%, and 83.5% of the total inunda-
tion extent for the January, June, and August, respectively; 
simulations had a maximum depth of less than 0.4 m. Inun-
dation frequency is low across most of the tidal wetland 
(Fig. 6). More specifically, in all simulations (January, June, 
and August), more than 50% of the maximum tidal boundary 
was inundated less than 23.3, 29.4, and 26.4 h, respectively 
(Table 6). Only the defined mangrove channel areas remain 
inundated 80–100% of the simulation period (Fig. 6).

Discussion

Low-lying tidal wetlands are at threat owing to changes in 
tidal inundation due to sea-level rise and anthropogenic dis-
turbances giving rise to the urgent need to develop model-
ling tools for managers to better implement coastal manage-
ment and restoration planning decisions. This study presents 
a workflow that can be used by managers to develop a rela-
tively simple 2D hydrodynamic model, computed using 
freely available software (HEC-RAS) that requires minimal 
data inputs (UAV-SfM–derived DEM and land cover, and 
water level data). The resolution and accuracy presented 
here make this approach particularly useful for managers 
challenged with working in low-relief coastal wetlands 
where centimetre-scale changes in topography are the dif-
ference between water connection and not.

Fig. 5  Comparison of simulated and observed (Sentinel-2 imagery) inundation boundaries for (a) January, (b) June, and (c) August simulations 
(Software used: ArcGIS Pro)
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Fig. 6  Examples outputs for each simulation. Observed tidal height 
for January, June, and August (a, d, g), respectively, recorded at Cape 
Ferguson tidal gauge (− 19.277208; 147.060908), Australia and cor-

responding spatial distribution of maximum depth (b, e, f) and per-
centage of time of inundation (c, f, i) (Software used: ArcGIS Pro; 
RStudio)
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The Importance of High‑Resolution Topographic 
Data in Coastal Studies

The model presented here illustrates how small changes 
in topography (e.g. vehicle tracks) can interfere with sur-
face hydrology in shallow water environment (Fig. 7). For 
instance, a 20-cm increase in tidal height was related to a 
10-ha increase in upper tidal areas being inundated. This 
suggests that even minor alterations in tidal inundation due 
to anthropogenic activities (e.g. culverts and tidal gate; 
Kroon and Phillips 2015) or sea-level rise might affect the 
extent of intertidal wetland (e.g. saltmarshes) inundation.

Vehicle uses on saltmarshes has been shown to cause 
direct saltmarsh degradation and disappearance (Trave and 
Sheaves 2014; Blakely et al. 2022). In this study, vehicle 
tracks through the wetlands were found to influence tidal 
inundation pathways and create unnatural flow paths that 
remain wet. The present observations support the model 
that vehicle uses on saltmarshes might affect tidal wetland 
hydrological connectivity and potentially interfere with 
eco-hydrological processes at the local scale. For instance, 
constant inundation might affect soil properties (e.g. water 
content, salinity, compactness) and in turn vegetation 
distribution and soil suitability to burrowing organisms 
(Trave and Sheaves 2014). In light of these findings and 
in line with several other studies (Hannaford and Resh 
1999; Kelleway 2006), coastal management authorities 
must carefully consider whether these activities should 
occur in such sensitive ecosystems. These observations 
also support the importance of utilising fine resolution 
DEMs (Annis et al. 2020), where employing a coarser 
DEM resolution (e.g. 1 m) would not have detected road 

tracks and small channels that would seemingly influence 
inundation (Fig. 8).

Key Considerations for Hydrodynamic Modelling 
of Tidal Wetlands

Choice of Model

With an RMSE error between maximum observed and simu-
lated depth of 7 cm and similar trends between simulated 
and observed depth, the present model was considered a 
reliable tool to understand tidal wetland hydroperiod. The 
largest difference between the maximum observed and sim-
ulated depth (19 cm) is also lower than reported in other 
coastal flooding studies (e.g. 33 cm in Kumbier et al. 2022). 
Correlation coefficients between observed and simulated 
depths were nevertheless lower than reported in another 
hydrodynamic study of a tidal wetland complex composed of 
similar saltmarshes and mangroves species (R2 = 0.98–0.99, 
Kumbier et al. 2022).

Table 6  Maximum (max.) observed tidal height for each simulation 
and associated maximum simulated tidal extent area (ha). The per-
centage of the area inundated for a given number of hours (expressed 

in brackets) is also shown. The number of hours represents < 10%, 
10–30%, 30–60%, 60–80%, and 80–100% of time of each simulation

January 2021 June 2021 August 2021

Max. tidal height (m) 3.76 3.55 3.55
Max. inundation extent (ha) 52.95 43.01 42.84
Simulation time (hours) 233.17 294.17 264.00
Percentage of area inundated less than 10% of  

simulation time (h)
50.98% (< 23.32 h) 76.15% (< 29.42 h) 68.47%(< 26.40 h)

Percentage of area inundated between 10 and 30% of 
simulation time (h)

36.40% (23.32–46.63 h) 15.29% (29.42–88.25 h) 22.34% (26.40–79.20 h)

Percentage of area inundated between 30 and 60% of 
simulation time (h)

6.47% (69.95–139.90 h) 5.07% (88.25–176.50 h) 2.78% (79.20–158.40 h)

Percentage of area inundated between 60 and 80% of 
simulation time (h)

4.54% (139.90–186.53 h) 2.59% (176.50–235.33 h) 2.45% (158.40–211.20 h)

Percentage of area inundated between 80 and 100% of 
simulation time (h)

1.29% (186.53–233.17 h) 0.38% (235.33–294.17 h) 3.50% (211.20–264.00 h)

Fig. 7  a Orthomosaic map of 0.02-m resolution and b associated 
0.03-m digital elevation model (DEM) (this study) generated from 
UAV-SfM. c–f Examples of the effects of DEM resolution on the rep-
resentation of topographic features are shown. c The same area (black 
rectangle in a and b) is represented by a 5-m DEM derived from 
LiDAR (Geoscience Australia); d 1-m DEM derived from LiDAR 
(QLD Government; and e 0.03 m DEM derived from UAV-SfM (this 
study). f The effects of microtopographic features represented by the 
0.03-m UAV SfM on tidal flow trajectory and depth are shown, where 
tidal inundation simulated by the 2D hydrodynamic model developed 
in this study is overlaid on the orthomosaic map (Software used: Arc-
GIS Pro; RStudio)

◂
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Spatial variability in model performance was observed, 
notably near the mangrove channel, where simulated depths 
were higher than recorded depth (notably at loggers 2, 3, and 
14). Previous studies have attributed spatial variability in 
hydrodynamic model performance to model configuration 
and uncertainty in inputs data (e.g. DEM, mesh structure, 
grid size, spatial variability in roughness, boundary condi-
tion, and processing parameters) (Ganju et al. 2016; Anees 
et al. 2017). For instance, it is possible that a combination 
of DEM inaccuracies and the fact that the tidal gauge was 
placed outside of the study area could have resulted in the 
observed difference of 0.3–0.4 m in water depth during cali-
brations and resulted in the need to subtract 0.35 m to the 
tidal data. The use of the unsteady flow equation (UFE) 
instead of the shallow water equation (SWE) that considers 
local and advection acceleration might also have decreased 
water depth accuracy (Yilmaz et al. 2023) and led to the need 
to correct the 0.3–0.4 m offset. Solving the UFE instead of 
the SWE might also have led to the shortened arrival time as 
the UFE tends to simulate higher flow velocities (Marangoz 
and Anilan 2022), although slower propagation has also been 
described with UFE (Martins et al. 2017). DEM (including 
bathymetry) inaccuracies could also have led to the higher 

simulated depths and shorter simulated inundation compared 
to the loggers placed in the mangrove channel as well as the 
overall earlier simulated arrival times. Manning’s n values 
are the only parameter that needs to be adjusted in HEC-
RAS and seemed not to importantly influence arrival time 
in the present study (Fig. S3). Hence, it is more likely that 
other choices (DEM and boundary condition) leaded to the 
lower performance in the model near the mangrove channel 
and in arrival times. A detailed sensitivity analysis and cali-
brations of the model are essential to understand the effects 
of model configuration and/or uncertainty in input data on 
model performance (Hall et al. 2009). Detailed sensitivity 
analyses were not conducted in the present study but might 
have improved the assessment and calibration of the model 
(Pan et al. 2011).

Eco-hydrological processes such as variability in soil 
characteristics (e.g. stratigraphy and chemistry), groundwa-
ter dynamics (e.g. Wilson and Morris 2012), or macropores 
(Xin et al. 2009) can also influence surface and sub-water 
flow interactions, and thereby the spatio-temporal variabil-
ity of tidal wetland inundation. Monthly variability in tidal 
inundation frequency and sediment availability can also lead 
to seasonal changes in soil elevation (Jin et al. 2022). For 

Fig. 8  Comparisons between the hydrodynamic modelling outputs based on the DEM derived from UAV-SfM resampled at 1-m resolution (a, c) 
and the 0.03-m UAV-SfM (b, d) showing depth overlaid on the orthomosaic map (Software used: ArcGIS Pro)
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instance, a 0–10 cm increase in soil elevation was reported 
in S. alterinflora saltmarshes (Jin et al. 2022). The increase 
occurred over a 6-month period following months with 
higher inundation frequencies. These processes might have 
caused some of the differences between observed and simu-
lated water depth, notably near draining channels and veg-
etated areas as bare flats are less prone to seasonal changes 
in soil elevation (Jin et al. 2022).

Dynamic mechanistic numerical models (e.g. ecogeo-
morphic models) that take into account hydrology and soil 
morphology (e.g. Marois and Stecher 2020) and feedback 
processes between ecology and hydrogeomorphology (e.g. 
Alizad et al. 2016) may better represent small-scale pro-
cesses that influence tidal wetland hydrology.

Similarly, adding rainfall, barometric, evapotranspiration, 
and wind data to the present 2D hydrodynamic model could 
enhance model applicability in wider meteorological con-
texts (Karim et al. 2021). For instance, evapotranspiration 
is important in dry areas (Wallace et al. 2015) particularly 
when the model is ran for longer periods such as months or 
years. In our case, there will be negligible evapotranspiration 
in a 10-day model run. However, evapotranspiration might 
have caused the different pattern in observed and simulated 
depth at logger 17, which was placed in a depression. Simu-
lated depth remains constant following inundation, while 
observed depth decreased over time. Adding evapotranspira-
tion data could therefore increase model accuracy in those 
areas characterised by more complex topography.

The selected model must represent the dominant pro-
cesses of the study site, which means that end-users of these 
approaches must, therefore, be careful and understand the 
selected model’s limitations, such as error and uncertainty 
(Wechsler 2007), and is within an acceptable limit to answer 
ecological questions. Based on the objectives of the simula-
tion, different models are selected, and processes need to be 
added or deleted from the model. For example, groundwater/
surface water interaction cannot be modelled in all 2D mod-
els. We believe that the approach presented provides a way 
forward in understanding tidal wetland inundation where 
there is limited starting data.

UAV‑Derived DEM

The approach to UAV data collection, image processing, and 
post-processing implemented in this study derived DEMs 
with a resolution of 3 cm and high accuracy (8-cm elevation 
error) suitable for small-scale and detailed hydrodynamic 
modelling tidal wetlands. The DEM accuracy assessment 
results are similar to that of studies that have used SfM to 
derive DEMs, where DEM RMSE range from 3 to 8 cm (e.g. 
Gonçalves and Henriques 2015; Koci et al. 2017; Taddia 
et al. 2021).

Although studies have developed high resolution UAV-
SfM–derived DEMs and highlighted their potential uses 
in water management (Kalacska et al. 2017; Taddia et al. 
2021), only a few studies have used UAV-SfM–derived 
DEMs to parametrise 2D hydrodynamic models (Tamminga  
et al. 2015; Yalcin 2018; Annis et al. 2020; Li et al. 2021). 
To the best of our knowledge, the present study is the first to 
use a UAV-SfM–derived DEM to parametrise a 2D hydro-
dynamic model of a tidal wetland. Although, UAV-SfM 
presents advantages to create DEM for the management of 
tidal wetlands (Table 7), the key limitations encountered 
in the present study remain the same as that of floodplain 
and rivers, which are attaining ground points in vegetated 
areas (e.g. Hashemi-Beni et al. 2018), obtaining bathymetric 
data (Tamminga et al. 2015), and limitations due to GCPs 
requirements and computing demand.

The elevation errors computed in this study are less, 
near, or higher than those of similar tidal wetland stud-
ied with UAV- or LiDAR-DEM. For instance, the UAV-
DEM–derived by Taddia et al. (2021) (which was not further 
cleaned after Agisoft Metashape ground-point classifica-
tion) obtained a RMSE of elevation of 1.5 cm for mudflats 
from UAV-DEMs, which is coarser to the 5 cm obtained 
in this study. Their RMSE for saltmarshes (dominated by 
Spartina alterniflora) was 20 cm (compared to 8–12 cm 
in the present study), which was considered too coarse by 
the authors to investigate geomorphological changes. Hladik 
and Alber (2012) obtained a RMSE of 5 cm for Salicornia 
virginica (corrected Lidar-DEM), similar to the RMSE of 
8 cm obtained here for succulent saltmarshes dominated 
by S. quinquefolia. Herbaceous saltmarsh elevation errors 
(dominated by S. virginicus, with C. dactylon and Juncus 
spp.) were also comparable, although higher (12 cm), to 
the RMSE of low and medium S. alterniflora (5–7 cm) 
(Fernandez-Nunez et al. 2017) and Juncus roemarianus 
(10 cm) (Hladik and Alber 2012) derived from corrected 
Lidar-DEMs.

The performance of in-built ground point filtering algo-
rithms (e.g. geometric algorithms such as the progressive 
morphological filter (PMF)) available in photogrammet-
ric software remains poor in highly vegetated areas such 
as herbaceous saltmarsh (Štroner et al. 2021). Studies have 
attempted to address this by developing more specific algo-
rithms to remove non-ground points such as in mangrove 
forests (e.g. Navarro et al. 2020; Mohamad et al. 2021). 
However, trade-offs between study site size (Navarro et al. 
2020) and resolution (Mohamad et al. 2021) remains due to 
the high computing/processing demand when using those 
techniques. Those difficulties are overcome with Lidar-UAV 
(Pinton et al. 2020, 2021; Cao et al. 2021).

Here, the relatively simple approach used to create a DEM 
from a DSM (digital surface model) might not have been 
suitable if the site was a mangrove-dominated system with 
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dense vegetation. Indeed, this technique (Agisoft Metashape 
algorithm to remove non-ground points followed by manual 
cleaning of the mangrove forest using ArcGIS Pro) led to 
artefacts and uncertainties in the DEM in vegetated areas 
and below water (elevation error increases from − 1 to 8 to 
8–20 cm in some vegetated areas near the mangrove forest 
after DEM cleaning). This represents a weakness in the pre-
sent approach as this area is a critical part of the study site 
where the system is flooded and drained. Yet uncertainties in 
the DEM in this area could not be explicitly addressed as the 
RTK-GPS did not work in the mangrove forest, and acces-
sibility and safety due to crocodiles were impeded along and 
in the channel. This workflow would also not be suitable for 
terrain under low-tide level (e.g. seagrasses). In addition, 
manual classification of land cover makes this technique 
inappropriate for larger sites. The uses of multi-spectral 
UAVs for high-resolution mapping of vegetation with simi-
lar RGB colour would have helped in the classification of 
land cover here (Yeo et al. 2020; Nardin et al. 2021)—where 
complex overlaps of vegetation with similar characteristics 
(e.g. herbaceous saltmarsh and terrestrial grass; mudflat 
and succulent saltmarsh) rendered autonomous classifica-
tion unreliable.

Model Validation

The limited availability or difficulty in acquiring accurate 
validation data is a recognised cause of uncertainty in 
hydrodynamic modelling studies (Molinari et al. 2017). We 
advise using water level loggers for validating hydrodynamic 
modelling results. Our water level loggers identified the need 
to offset the calculated simulated model depths from the 
observed water depths. Solely comparing simulated inundation 
extent to inundation extent extracted from Sentinel-2 imagery 
reinforced that the model was efficient at modelling tidal 
inundation extent, but would not be able to quantify this offset. 
Additionally, the satellite imagery resolution (3 m) was also 
markedly coarser than the resolution of UAV-SfM–derived 
DEM (0.03 m), making it challenging to distinguish the 
inundation boundary on the satellite imagery. Remotely 
sensed data from satellites are increasingly used to validate 
large-scale hydrodynamic modelling (Teng et  al. 2017). 
We suggest, however, that in the context of high-resolution, 
small-scale hydrodynamic modelling such as presented here, 
on-ground data (e.g. water level loggers) should be collected 
when possible and used in conjunction with other validation 
methods (e.g. remotely sensed data, Reid et al. (2014)).

Applications, Hydroperiod, and Future Studies

The model quantitatively shows what has been described non-
empirically in the literature concerning that saltpan and salt-
marsh inundation is infrequent (< 10% of simulation time) and 

shallow (< 0.3 m) in Australia (Thomas and Connolly 2001). 
However, the model also highlights that maximum depth and 
duration of inundation can vary at small spatial (i.e. few cen-
timetres) and temporal (e.g. minutes to lunar month) scales. 
Accounting for this will be essential for the management and 
restoration of coastal ecosystems (Sheaves et al. 2021). By 
showing that micro-topographic differences result in locally 
changing hydroperiod, the model highlights that these eco-
systems are complex, with site-specific nuisances suggest-
ing that even small human interventions such as vehicle uses 
could have the potential to modify their function as produc-
tive coastal habitat. For instance, waterlogged soil resulting 
from faults in soil elevation caused by vehicle uses promote A. 
marina growth, algal mats formation, and mosquito breeding 
sites, while considerably reducing saltmarsh habitability to 
invertebrate populations (Kelleway 2006).

The workflow presented here is particularly meaningful 
given increasing interest in restoring blue carbon ecosystems 
above low tide levels (Macreadie et al. 2021; Lovelock et al. 
2022). Financial resources for the restoration and conserva-
tion of ecosystems are highly competitive and request measur-
able outcomes (Vanderklift et al. 2019; Waltham et al. 2021). 
Concurrently, the lack of quantitative understanding of tidal 
wetland functioning and hence of potential measurement of 
restoration success increases dubiety in investing in coastal 
restoration (Waltham et al. 2020). Achieving a spatial and 
quantitative understanding of tidal hydrological connectivity, 
such as provided by the simple workflow presented here, will 
provide cost–benefit solutions for investors and stakehold-
ers to assist in predicting and measuring restoration and pro-
tection outcomes. Indeed, this workflow has many potential 
applications in tidal ecosystem management (Table 7). For 
instance, it can be used to quantify tidal hydrological con-
nectivity, which can then be associated with information on 
elevation, tidal vegetation distribution and survival, accre-
tion rates, and carbon storage capacity and how this might 
change with sea-level rise or reduction of tidal inundation. 
Such understanding is paramount in identifying, implement-
ing, and evaluating the success of restoration and protection 
of blue carbon ecosystems. Repetitions of the same workflow 
overtime can also provide information on morphological evo-
lution of tidal wetlands (Taddia et al. 2021).

Conclusion

New advances in remote sensing techniques and hydrody-
namic modelling software are opening new horizons to under-
standing tidal wetland hydrodynamic at high spatio-temporal 
resolution. In this study, we present a case for using UAV-
SfM to derive DEMs with a high resolution and accuracy 
suitable to parametrise small-scale hydrodynamic models of 
tidal wetlands. With some exceptions in model performance 
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in the mangrove channel, tidal inundation depth and duration 
were represented with acceptable accuracy between simu-
lated maximum observed and simulated depth and duration of 
inundation. The DEM derived from UAV-SfM was accurate 
(7-cm RMSE) but still represented challenges in obtaining 
ground points in the mangrove forest and in the main chan-
nel, which likely caused lower model performance (higher 
depth and duration inundation error) in those areas. Overall, 
representation of tidal wetland inundation patterns was impor-
tantly improved by using the high-resolution 3–cm UAV-SfM 
DEM. The approach shows that small changes in elevation 
such as due to vehicles tracks and water level modify tidal 
wetland inundation patterns and hydrological connectivity at 
small temporal and spatial scales. These methods will assist 
in planning, defining, and implementing practical and meas-
urable restoration and protection projects that consider tidal 
flooding dynamics and implications in areas with very low 
elevation. Calibrated hydrodynamic model also can be used 
to predict future inundation and hydrodynamic levels due to 
projected climate change scenarios.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12237- 023- 01288-6.
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