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Older adults exposed to enriched environments (EEs) maintain relatively higher levels of cognitive function, even in the face of com-
promised markers of brain health. Response speed (RS) is often used as a simple proxy to measure the preservation of global cogni-
tive function in older adults. However, it is unknown which specific selection, decision, and/or motor processes provide the most
specific indices of neurocognitive health. Here, using a simple decision task with electroencephalography (EEG), we found that the effi-
ciency with which an individual accumulates sensory evidence was a critical determinant of the extent to which RS was preserved in
older adults (63% female, 37% male). Moreover, the mitigating influence of EE on age-related RS declines was most pronounced
when evidence accumulation rates were shallowest. These results suggest that the phenomenon of cognitive reserve, whereby high EE
individuals can better tolerate suboptimal brain health to facilitate the preservation of cognitive function, is not just applicable to neu-
roanatomical indicators of brain aging but can be observed in markers of neurophysiology. Our results suggest that EEG metrics of
evidence accumulation may index neurocognitive vulnerability of the aging brain.
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Significance Statement

Response speed in older adults is closely linked with trajectories of cognitive aging. Here, by recording brain activity while individuals
perform a simple computer task, we identify a neural metric that is a critical determinant of response speed. Older adults exposed to
greater cognitive and social stimulation throughout a lifetime could maintain faster responding, even when this neural metric was
impaired. This work suggests EEG is a useful technique for interrogating how a lifetime of stimulation benefits brain health in aging.

Introduction
Cognitive deficits occurring with healthy or pathologic aging
catalyze a broad range of challenging consequences (Ball et al.,
2010; Barker-Collo and Feigin, 2006; O’Halloran et al., 2013;
Prince et al., 2015; Weaver et al., 2009) and are marked by large
interindividual variability (Habib et al., 2007; Norton et al.,
2014; Rapp and Amaral, 1992). Robust evidence has emerged
over the past three decades demonstrating a powerful positive
influence of enriched environments (EEs), such as education,
leisure, and work activities, on the preservation of cognitive
function (Cabeza et al., 2018, 2019; Opdebeeck et al., 2016;
Stern et al., 1992, 2019, 2020; Valenzuela and Sachdev, 2006). It
has become increasingly apparent that exposure to EE is
associated with high levels of cognitive function in older adults,
despite structural changes indicative of compromised brain
health, a phenomenon commonly referred to as cognitive reserve
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(Chan et al., 2018; Stern et al., 1992; Xu et al., 2019). Whether the
benefits of EE can compensate for suboptimal neural function
revealed by neurophysiological markers remains unexplored.

The speed with which older adults respond to sensory input
(hereafter referred to as response speed) has been accepted as a
robust index of an individual’s vulnerability to cognitive decline
(Bublak et al., 2011; Deary et al., 2010; Gregory et al., 2008;
Kochan et al., 2016; Ritchie et al., 2014; Salthouse, 1996). Yet
response speed is the aggregate outcome of target selection,
decisional, and motoric computations. Thus, it remains unclear
which of these neural processes account for the close associa-
tion between response speed and neurocognitive health in older
adults. Sequential sampling models, including the drift-diffu-
sion model (DDM), have offered several explanatory accounts
of age-related response slowing (McKoon and Ratcliff, 2012;
Ratcliff et al., 2004, 2006a,b; Ratcliff and McKoon, 2015).
However, these models cannot isolate the precise neurophysio-
logical processes driving behavior. Therefore, the neural mecha-
nisms underpinning age-related declines in response speed
remain unclear. To address this question, we have developed
EEG tasks and analysis methods that give insight into the under-
lying selection (early target selection (Loughnane et al., 2016;
Zhou et al., 2021), decisional (sensory evidence accumulation;
Kelly and O’Connell, 2013; O’Connell et al., 2012; Kelly et al.,
2021; Steinemann et al., 2018), and motoric (motor preparatory
activity; Kelly et al., 2021; McGovern et al., 2018; Steinemann et
al., 2018) computations that underpin interindividual differences
in response speed (Brosnan et al., 2020; Newman et al., 2017).

A critical extracranial human EEG signal emerging from
these investigations is the centroparietal positivity (CPP). This
exhibits the key characteristics of evidence-accumulation sig-
nals observed using invasive electrophysiological recordings
in animals (Kelly and O’Connell, 2013; O’Connell et al., 2012)
and conforms to the dynamics predicted by sequential sam-
pling models in two-alternative choice scenarios (Kelly et al.,
2021; Twomey et al., 2015). In younger adults, the CPP has
been repeatedly shown to capture individual variability in
response speed (Brosnan et al., 2020; Murphy et al., 2015;
O’Connell et al., 2012). In older adults, recent work on a per-
ceptual decision-making (choice reaction time) task showed
that CPP build-up rates were shallower than in a younger con-
trol group, indicative of less efficient evidence accumulation
(McGovern et al., 2018). However, the specific potential for
CPP build-up rate to account for individual differences in
response times (RTs) in older adults, over and above sensory
and motoric processes, remains unclear.

The aims of our study were twofold. First, using our EEG
framework we tested the hypothesis that neural markers of sen-
sory evidence accumulation (build-up rates of the CPP) would
best capture individual variations in speeded target detections,
over and above any influence of other neurophysiological proc-
esses contributing to the timing of response. Second, we predicted
that EE would moderate the relationship between our EEG met-
rics of evidence accumulation and behavior. Specifically, that rela-
tively faster response speed would be facilitated by EE, even when
the capacity to accumulate sensory evidence, as measured with
EEG, was compromised.

Materials and Methods
Experimental design and statistical analyses
Seventy-eight healthy volunteers of either sex were recruited for this
study. Two older adults were excluded because of age ranges more
than two SDs from the mean (these participants were originally

recruited as age-matched controls for a parallel stroke study). A fur-
ther four older participants were excluded from analysis for various
reasons; one was ambidextrous, one was experiencing a current
depressive episode, and two had scores of 19 and 21, respectively, on
the Montreal Cognitive Assessment (MoCA (Nasreddine et al.,
2005), suggesting possible cognitive impairment. The final sample
included 31 and 41 older participants (Table 1). All participants
reported being right-handed, had normal or corrected-to-normal
vision, no history of neurologic or psychiatric disorder, and no head
injury resulting in loss of consciousness. Ethical approval was
obtained from the Monash Health and Monash University Human
Research Ethics Committee before the commencement of the study.
The experimental protocol was approved and conducted in accord-
ance with the approved guidelines. All participants were volunteers
naive to the experimental hypothesis being tested and each provided
written informed consent.

Neurophysiological investigation of response speed
EEG was recorded continuously while participants performed a variant
of the random-dot motion perceptual decision-making task (Fig. 1;
Newsome et al., 1989; Kelly and O’Connell, 2013; Loughnane et al.,
2016; Newman et al., 2017) During this task, participants fixated cen-
trally and monitored two patches of 150 moving dots (each dot ¼ 6 �
6 pixels), presented peripherally in each hemifield. During random
motion, these dots were placed randomly throughout the patch on each
frame. During coherent motion, within one hemifield a proportion
(90%) of the dots was randomly selected on each frame to be displaced
in either a downward or upward direction on the following frame, with a
motion speed of 5° per second. Targets were defined by this seamless
transition from random motion to coherent motion (Fig. 1; Figs. 1, 2,
and 3 images are composite images). Participants signaled target detec-
tion with a speeded button press using their right index finger (RT).
Targets were separated by intervals of randommotion of 1.8, 2.8, or 3.8 s
(randomized throughout each block). Targets remained on the screen
for 3 s or until the participant pressed the button indicating their detec-
tion of coherent motion. The 12 possible trial types (each a combination
of one of the three periods of random motion, two target locations, and
two coherent motion directions) occurred in a pseudorandom order
with the constraint that each different trial type arose twice every 24 tri-
als. All younger adults (N ¼ 31) performed eight to nine blocks of the
task. Older adults (N ¼ 22), who were initially recruited for the study,
similarly performed eight to nine blocks, and the remaining older adults
(N ¼ 19), who were later recruited for the study, performed four to five
blocks of the task at 90% coherent motion and a further four to five
blocks of the task at 25% coherent motion, the latter of which was not
analyzed for the current study. Critically, a series of t tests revealed there
were no significant behavioral differences between the older participants
recruited for the longer versus shorter task duration (RT, F(1,0.39) ¼ 1.72,
p ¼ 0.19; accuracy, F(1,39) ¼ 0.02, p ¼ 0.88) or any of the neurophysio-
logical markers (N2c amplitude, F(1,39) ¼ 0.08, p ¼ 0.77; N2c latency,
F(1,39) ¼ �0.10, p ¼ 0.76; CPP onset, F(1,39) ¼ 0.82, p ¼ 0.37; CPP slope,
F(1,39) ¼ 0.67, p ¼ 0.42; CPP amplitude, F(1,39) ¼ 0.11, p ¼ 0.74; Left-
hemisphere beta (LHB) slope, F(1,39) ¼ 0.90, p ¼ 0.35), LHB amplitude,
F(1,39)¼ 0.52, p¼ 0.48), or LHB latency, F(1,39)¼ 0.0, p¼ 0.99). As such,
the data were combined to examine the impact of environmental enrich-
ment on neural and behavioral signatures of response speed. All partici-
pants were given a short break of 30–60 s between each block. An
EyeLink eye tracker (and software version 2.04, SR Research) recorded
eye movements to ensure participants maintained fixation. The center of

Table 1. Demographic information reported values are Mean (SD)

Age (years) Gender Education (years) MoCA

Experiment 1
Younger adults
(N ¼ 31)

23.65 (2.87) 17 female (54.80%)
14 male (45.20%)

15.90 (2.27) NA

Older adults
(N ¼ 41)

72.41 (5.61) 26 female (63.40%)
15 male (36.60%)

16.49 (3.48) 27.46 (1.75)
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each random-dot motion patch was at a visual angle 10° either side
and 4° below the fixation square; each patch covered 8° visual angle
and consisted of 150 6 � 6 pixel white dots. If a fixation break
occurred during a trial (either a blink or a gaze deviation .4° left or
right of center, detected via EyeLink 1000, SR Research), the task
halted (stationary dots). Once fixation returned to the central fixa-
tion dot, the trial restarted. The fixation dot remained on screen
throughout the entire task; however, the two peripheral patches
were only present when the trial was initiated by the participant’s
fixation on the central point. The task was run using MATLAB
(MathWorks) and Psychophysics Toolbox extensions (Brainard,
1997; Pelli, 1997; Cornelissen et al., 2002).

EEG preprocessing
Continuous EEG was acquired from 64 scalp electrodes using a
BrainAmp DC system (Brain Products), digitized at 500Hz. Data were
processed using a combination of custom scripts and EEGLAB toolbox
(Delorme and Makeig, 2004) routines implemented in MATLAB
(MathWorks). First, noisy channels were identified using visual inspec-
tion of channel variances across the entire recording to be interpolated
at a later stage below. Next, the EEG was detrended, then notch filtered
at 50, 100, and 150Hz to eliminate line noise and its harmonics then
high-pass filtered at 0.1Hz using a Hamming windowed-sinc Finite
Impulse Response (FIR) filter via EEGLAB. Channels with zero or
extreme variance identified from the first inspection were interpolated
via spherical spline. A 35 Hz low-pass filter was then applied to the
data using a Hamming windowed-sinc FIR filter also, and the data
were rereferenced to the average reference. Epochs were extracted from
the continuous data from �200 to 1500ms from target onset. For both
the ERP and stimulus-aligned LHB signals, the epochs were baselined
with respect to �100 to 0ms before target onset. For the response-
aligned beta waveforms, the data were baselined between �450 and
�350 ms preresponse. Using triggers recorded by the EEG, we defined
trials as the period between the beginning of random (i.e., nontarget)
motion and either a valid response, a fixation break, or the onset of the
next period of random motion (i.e., a nonresponse). To minimize the
interaction between overlapping ERP components, the data were sub-
jected to Current Source Density transformation with a spline flexibil-
ity of four (Kayser and Tenke, 2006).

A trial was excluded from the analysis if any of the following condi-
tions applied: (1) if RTs were �150ms (pre-emptive responses) or
�1800ms (responses after coherent motion offset), (2) if the EEG from
any channel exceeded 100mV during the interval from 100ms before tar-
get onset to 100ms after response, or (3) if central fixation was broken
by blinking or eye movement 3° left or right of center during the interval
between 100ms before target onset and 100ms after response. Please
note that EyeLink data were not saved for N ¼ 5 of the N ¼ 41 older
adults because of a technical error, and this final step was therefore not
included for this subset of participants. Nonetheless fixation was moni-
tored in real-time using EyeLink during task performance as described
in the preceding section, so no trials with eye movements.4° from cen-
ter were included.

With the remaining trials for each participant, CPP and N2 wave-
forms were aggregated by averaging the baseline-corrected epochs for
right and left hemifield targets at the relevant electrode sites. The N2c
component was measured contralateral to the target location, respec-
tively, at electrodes P7 and P8 (Brosnan et al., 2020; Loughnane et al.,
2016; Newman et al., 2017), and the CPP was measured centrally at elec-
trode Pz (Kelly and O’Connell, 2013; Loughnane et al., 2016; Newman et
al., 2017; O’Connell et al., 2012; Twomey et al., 2015). Subsequently, N2c
latency was identified on a subject level as the time point with the most
negative amplitude value in the stimulus-locked waveform between 150
and 400ms, whereas N2c amplitude was measured as the mean ampli-
tude inside a 100ms window centered on the stimulus-locked grand av-
erage peak of the N2c collapsed across hemifield (Loughnane et al.,
2016). Onset latency of the CPP was measured by performing running
sample-point-by-sample-point t tests against zero using a 25ms sliding
window across each participant’s stimulus-locked CPP waveforms. CPP
onset was defined as the first point at which the amplitude reached sig-
nificance at the 0.05 level for 90 consecutive points (Foxe and Simpson,
2002; Kelly et al., 2008; Loughnane et al., 2016). CPP build-up rate was
defined as the slope of a straight line fitted to the response-locked
waveform (Brosnan et al., 2020; Loughnane et al., 2016; O’Connell et
al., 2012), with the time window defined individually for each partici-
pant from �150 to 50ms postresponse (Stefanac et al., 2019; Brosnan
et al., 2020). CPP amplitude was measured as the mean CPP amplitude
between �50 and 150ms around the participants’ individual response
(Kelly and O’Connell, 2013; Van Kempen et al., 2019).

Finally, LHB power was calculated using the temporal spectral evo-
lution approach (Thut et al., 2006). All epochs were bandpass filtered
between 20 and 35Hz, converted to absolute values (rectified), and
trimmed by 200ms at each end of the epoch to remove filter warm-up

Figure 1. Depiction of the measures obtained on a trial-by-trial basis during the random-
dot motion detection task. During the random-dot motion detection task, participants fixated
centrally while patches of randomly moving dots were presented peripherally (centered at
10° of visual angle either side and 4° visual angle below the fixation square) in both hemi-
fields. During target trials, 90% of the dots in one hemifield transitioned from random to
coherent motion in either an upward or a downward direction. Targets remained on the
screen for 3 s or until the participant pressed the button signaling the detection of coherent
motion in either direction. If a fixation break occurred during a trial (either a blink or a gaze
deviation.4° left or right of center), the task halted (stationary dots) until fixation returned
to the central fixation dot. Participant response speed was assessed via a right-hand button
press for target detection (coherent motion in either upward or downward direction). The
blue section illustrates the isolated EEG processes, which cannot be obtained from behavioral
estimates of speed alone. Each of these processes are derived at each individual trial and col-
lapsed across trials to give an estimation of individuals’ capacity for each process. ITI,
Intertarget interval.
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artifacts. The data were then smoothed by averaging within a 100 ms
moving window, moving incrementally forward in 50 ms increments.
LHB latency was measured within the left hemisphere motor site (C3)
(corresponding to the right-handed response modality) as the most
negative-going point between 0 and 1000ms. Beta slope was defined as
the slope of a straight line fitted to the response-locked waveform, with
the time window defined individually for each participant between 300
and 50ms preresponse. Beta amplitude was measured as the mean am-
plitude of a 100ms window centered on a participants’ response (i.e.,
�50 to150ms around response).

Drift-diffusion modeling
A drift-diffusion model (DDM) was used to analyze the behavior of all
participants at an individual (per subject) level (Wiecki et al., 2013; de
Gee et al., 2020). The RT distributions for the response and noresponse
choices of each individual were first split into five bins according to the
quantiles 0.1, 0.3, 0.5, 0.7, and 0.9. Together with a single bin containing
the number of missed responses, these six bins (five response bins and
one missed responses bin) were then used to fit a drift-diffusion model

using the G-square method, a variant of the x 2 method. This method
was chosen for its efficiency, the availability of significant trial data for
each individual, its robustness to outliers, and its success in similar previ-
ous experiments (Ratcliff et al., 2016; de Gee et al., 2020; Myers et al.,
2022). The proportion of responses within each bin was determined by
subtracting the cumulative probabilities for each successive quantile
from the next highest quantile. These proportions were then multiplied
by the number of observations to obtain the expected frequencies E 2 R.
Next, the observed proportions, determined from the data (in this case,
0.1, 0.2, 0.2, 0.2, 0.2, and 0.1), were also multiplied by the number of
observations to obtain the observed frequencies O 2 R. G-square was
then calculated as follows:

G2 ¼ 2
X6

i¼1

Oi ln
Oi

Ei

� �
;

where i 2 N represents the quantile number. The drift-diffusion model
parameters a, v, and t were then determined by minimizing the G-square

Figure 2. Response speed measures on the decision task sensitive to both age and EE. A, Healthy aging was associated with markedly slower RTs to perceptual targets, with large interindi-
vidual differences in response speed. During a variant of the random-dot motion task, older participants were in general slower to respond relative to their younger peers, suggesting this mea-
sure was sensitive to age-related deficits in response speed. Each individual dot represents a participant (bottom) and the upper/lower edges of the whiskers represent the upper/lower
quartiles plus/minus 1.5 times the interquartile range. The distribution is captured by a violin plot for the two groups (top). B, A lifetime of EEs, captured by the composite CRIq score (Nucci et
al., 2012) varied according to individual differences in response speed in the older adults. This effect was driven by the Leisure subscale of the assessment, which is visualized here as a function
of RT (Extended Data Figs. 2-1, 2-2, 2-3, 2-4, 2-5).

Figure 3. Individual differences in response speed are captured by sensory evidence accumulation build-up rate. A, Associations between response speed (RT) and the EEG variables. Results from
the final regression model of RT are reported in Table 1. The absolute value of all standardized beta values were plotted for visualization purposes, and nuisance variables entered from the first step
in the model are not visualized here. *p, .05; ***p, .001. B, The relationship between CPP build-up rate and RT for older and younger adults. CPP build-up rate was directly associated with an
individual’s response speed. C, D, Moreover, an individual’s capacity to accumulate sensory evidence has an indirect impact on response speed by influencing CPP amplitude (C) and Beta latency (D),
both of which mediate the association between CPP build-up rate and response speed. Extended Data Figures 3-2, 3-3, 3-4 contain further information and visualization of the neural metrics.
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statistic using the modified Powell method (Powell, 1964). The fitted
drift-diffusion model assumed that the response caution, mean drift rate
across trials, and nondecision time varied with the response bins.
Further details can be found in Ratcliff et al. (2018).

Assessment of environmental enrichment
Participants completed the Cognitive Reserve Index questionnaire
(CRIq; Nucci et al., 2012), a standardized semistructured interview
designed to estimate an individual’s level of lifetime cognitive enrich-
ment through a formal computational model. This model encompasses
an individual’s education, work, and leisure activities across the lifespan
with consideration given to the participant’s age, providing both an
overall age-stratified and standardized CRI and individual standardized
subscale scores for each of the three components. One participant did
not complete the CRIq because of time constraints. We inputted this
participant’s scores on all four CRI measures using the mean from the
rest of the sample.

Participants first reported the number of years in which they had
engaged in formal education and additional vocational training. All
occupations held since the individual was 18 years old were categorized
using the 5-point scale provided by the CRI. These ranged from low-
skilled manual work (e.g., level 1 includes occupations like call center
operator and gardener) to highly responsible or intellectual occupation
(e.g., level 5 includes managing director of a big company or surgeon).
Participants were additionally asked about their involvement in leisure
activities that may be repeated with varying frequencies over the lifetime
including but not limited to reading, volunteering, socializing, managing
accounts, and going on holidays/trips. Activities were grouped into
weekly, monthly, annual, and fixed frequency activities, and then into
whether they were completed never, rarely, often or always, and for
how many years of life. Participant engagement in each of these
domains is summarized in Extended Data Figure 2-2.

Data processing
Outliers were defined in IBM SPSS Statistics software using the interquartile
range (IQR), separately for the younger and older adults. The interquartile
range is the third quartile (75th percentile) minus the first quartile (25th
percentile). A value was identified as an outlier if either of the following con-
ditions were met: if the value was ,25th percentile � 3 * IQR, or if the
value was.75th percentile1 3 * IQR. Using this method, no outliers were
identified on any of the behavioral, EEG, or EE measures used in the analy-
ses below.

Statistical Analysis
The relationship between age, behavior, and EEG. To assess age-

related differences in behavior, two one-way ANOVAs were conducted
on accuracy and RT. Next, to test whether the older and younger adults
differed across N2c, CPP, and LHB dynamics, eight one-way ANOVAs
were conducted with the EEG variables (N2c latency, N2c amplitude,
CPP onset, CPP build-up rate, CPP amplitude, LHB build-up rate, LHB
amplitude, and LHB latency) as dependent variables, and age as a factor.
To assess whether interindividual differences in RT on the perceptual
decision-making paradigm (RT) varied as a function of EEG signals of
perceptual decision-making, the EEG parameters that differed in older
versus younger adults (BF10 .1) were each added sequentially into
regression models in a hierarchical fashion (Newman et al., 2017). Order
of entry was determined by the temporal order in the perceptual deci-
sion-making process, that is, early target selection (N2c latency), evi-
dence accumulation (CPP onset, build-up rate, and amplitude), and
motor preparation (LHB build-up rate, LHB latency, and LHB ampli-
tude). This hierarchical entry method was implemented to assess
whether each of the separate neurophysiological signals improved the
model fit for RT over and above the signals that temporally preceded
them. All neurophysiological signals that improved the model fit for RT
were entered into a separate regression model to obtain accurate param-
eter estimates. Age was entered as the first predictor, centered (i.e., all
raw scores for each participant were subtracted from the mean score of
the variable), to reduce multicollinearity. Please note all statistical tests
were two sided. Effect sizes of regression models were calculated using

Cohen’s F2 using the following formula: [R2 / (1 � R2)]. Behavioral data
were visualized using RainCloudPlots for MATLAB (Allen et al., 2018,
2019). The EEG signals were visualized using gramm for MATLAB
(Morel, 2018).

Moderation models. To elucidate the moderating effects of evidence
accumulation rate, amplitude, and beta latency on the relationship
between EE and response speed, three moderation analyses were per-
formed using the Process computational toolbox (Hayes, 2012, 2014),
Bonferroni corrected for multiple comparisons (alpha 0.05/3 moderation
models).

Confirmatory Bayesian analyses. For the confirmatory Bayesian
modeling, results were compared with the null model, and JASP default
settings were used (for the regression and ANOVA analyses, JZS prior;
Rouder and Morey, 2009); regression analyses, r scale 0.354; ANOVA
analyses, r scale fixed effects 0.5; Cauchy prior of 0.707 for the one-sam-
ple t test). BFinclusion, or BF10 values are reported throughout and can be
interpreted such that values above 1 indicate strength of evidence in
favor of the alternative and values below 1 strength of evidence in favor
of the null hypothesis.

Minimum trial analysis. The minimum trial analyses included all
participants (N ¼ 53) who completed eight or more blocks of the task.
One individual was identified as an outlier (.2 SDs from the mean)
with regard to the number of trials included (N ¼ 109 trials) and was
excluded, therefore resulting in a total of N ¼ 52 participants. All these
52 participants had a minimum of 129 valid response-locked trials,
which we used to investigate remaining questions (mean ¼ 183.06;
SD¼ 19.95; range, 129–207).

We first created new estimates of both RT and CPP build-up rate by
randomly selecting N trials (either 20, 40, 60, 80, 100, or 120) from the
total pool of 129 trials. We repeated this random data sampling using N
trials, 1000 times for each bin size. Accordingly, for each participant, we
derived 1000 estimates of RT and CPP build-up rate for each of the six
trial sizes. We then tested whether the likelihood that the estimates of
RT and CPP build-up rate were more likely to deviate from the true
mean estimates with reduced trial numbers. We addressed this question
using two approaches. First, we calculated the signal-to-noise ratio
(SNR) of the CPP build-up rate and RT (calculated as mean/SD) and ran
two repeated measures ANOVAs (again with trial bin as the repeated
measure). Next, to verify this pattern of results, we ran Kolmogorov–
Smirnov tests on the mean estimates of CPP build-up rate and RT to
assess whether the cumulative distribution function (CDF) increased
with each reduction in trial number.

In the results reported in the main body of the article, we demon-
strated a large effect size for the relationship between CPP build-up rate
and RT (Pearson’s r ¼ �0.60). Cohen’s (1988) cutoff for a large effect
size is 0.5. As such, we defined the minimum number of trials at which a
reliable CPP estimate can be derived as the number at which we can
observe a strong effect size (i.e., an effect size greater or equal to 0.5) for
the relationship between RT and CPP build-up rate. To investigate this,
we calculated the direct relationship, using Pearson’s correlation,
between CPP build-up rate and RT for each of the 1000 permutations
for each of the 6 bin sizes (20 up until 120 trials) using MATLAB. We
then ran a Bayesian one-sample t test to test whether the estimates of
effect size (r) for each bin size were significantly larger than �0.5 using
JASP. For this minimum trial Bayes factor analyses the alternative hy-
pothesis was set at measure 1=measure 2.

The relationship between DDM parameters and EEG markers of
decision-making. To examine the association between the individual sub-
ject-level DDM parameters derived using computational modeling with the
neurophysiological signals of decision-making derived using EEG, we mod-
eled each DDM parameter (nondecision time t, drift rate v, and response
caution a) as a function of the EEG signals using a between-subject regres-
sion analysis. Specifically, we used three hierarchical linear regression mod-
els to model the three DDM parameters as a function of the neural metrics,
namely early target selection (N2c amplitude, N2c latency), sensory evi-
dence accumulation (CPP onset, CPP build-up rate, CPP amplitude), and
motor preparation (LHB latency). The EEG signals were entered hierarchi-
cally into the regression models based on the temporal order in which they
occur (as per the modeling procedure for response speed described in detail
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above). Age was entered as a nuisance variable at the first stage of each
model (centered to avoid multicollinearity).

The influence of age on the DDM parameters. To explore whether
older adults differed from their younger counterparts on the three DDM
parameters (nondecision time t, drift rate v, and response caution a),
three independent t tests were run using a Bonferroni correction for
three multiple comparisons (alpha-corrected threshold of p, 0.02).

Data availability
Our internally developed EEG pipeline including the preprocessing steps
and isolation of the EEG metrics can be found at https://github.com/
gerontium/big_dots, openly available under a Creative Commons
Attribution-NonCommericial-ShareAlike 3.0 international license.

The code for the analysis exploring the minimum trial numbers
needed to reliably isolate the CPP build-up rate as an EEG marker of
sensory evidence accumulation rate can be found on Open Science
Framework at the following link: https://osf.io/vupa4/files/osfstorage/
640391f8c7472300bb10aeea, openly available under a.CC-By Attribution
4.0 international license The code for the drift-diffusion model of the be-
havioral data can be found at https://github.com/shou-han/DetectionDDM.

Note that our data were collected under a larger, multicenter interna-
tional study using EEG to gain mechanistic insights into perceptual deci-
sion-making deficits occurring poststroke. Our ethics do not permit us
to share data from the project.

Results
Individuated neurophysiological metrics indexing visual
response speed were isolated using a perceptual decision-
making EEG task
Seventy two participants (41 older adults, mean¼ 73years, SD¼ 5,
range, 63–87; and N ¼ 31 younger adults, mean ¼ 24years, SD ¼
3, range, 18–28) performed a variant of the random-dot motion
task (Newsome et al., 1989) while 64-channel EEG was recorded to
isolate neurophysiological processes along the perception to
action continuum. We have developed this formal framework
for parsing discrete EEG metrics (Newman et al., 2017; Brosnan
et al., 2020) to estimate an individuals’ capacity for a given neu-
rophysiological processes (Fig. 1). For instance, we have recently
demonstrated the utility of this framework for linking individual
differences in MR markers of structural and functional connec-
tivity, neurophysiology, and behavior in younger individuals
(Brosnan et al., 2020). In the current study, we use the same
approach to isolate eight distinct and previously validated neural
metrics (Newman et al., 2017; Brosnan et al., 2020), namely, early
target selection (N2c amplitude and latency; Loughnane et al.,
2016), sensory evidence accumulation (CPP starting point;
onset latency), build-up rate (slope), decision bound (ampli-
tude; O’Connell et al., 2012; McGovern et al., 2018; Steinemann
et al., 2018), and motor preparation [left hemisphere beta, (LHB)
build-up rate (slope), timing (stimulus-aligned peak latency),
and threshold (amplitude (O’Connell et al., 2012; McGovern et
al., 2018; Fig. 1].

Response speed measures are sensitive to both age and EE
During the simple random-dot motion detection task, partici-
pants fixated centrally while two patches of randomly moving
dots were presented to the periphery (Fig. 1). A target was
defined as 90% of the dots in one hemifield transitioning from
random to coherent motion, in either an upward or down-
ward direction. Participants were required to respond to any
coherent motion (i.e., in either direction) with a right-handed
button press. Behavioral analyses (Fig. 2A) indicated that this
task was sensitive to age-related deficits in response speed.
The older adults were markedly slower at responding, as

evidenced by significantly slower RTs to the visual targets rel-
ative to those of the younger adults (F(1,70) ¼ 38.34, p , 0.001,
partial h 2 ¼ 0.35, BF10 ¼ 287907.20; older mean ¼ 593.33ms,
SD ¼ 125.40; younger mean ¼ 439.05ms, SD ¼ 67.87; Fig.
2A). Target detection accuracy was high for the overall sample
95.92% (SD ¼ 5.29, range 71–100%), but nonetheless the older
adults were less accurate at detecting coherent motion than
their younger peers (older mean ¼ 94.40%, SD ¼ 6.3%;
younger mean ¼ 97.90, SD ¼ 2.60%; F(1,70) ¼ 8.12, p ¼ 0.006,
partial h 2 ¼ 0.10, BF10 ¼ 7.17). Critically, the age-related
declines in RTs remained significant even after covarying
for differences in accuracy (F(2,69) ¼ 27.16, p , 0.001, par-
tial h 2 ¼ 0.44).

We next sought to verify previously reported associations
between a lifetime of EE and response speed (Lee et al., 2014;
Park et al., 2014). For this, we modeled RT from the random-dot
motion task as a function of environmental enrichment using
the CRIq (Nucci et al., 2012) in the older adult cohort only. The
CRIq is a previously validated semistructured interview that
assays levels of cognitive stimulation through the assessment
of three domains of activity throughout an individual’s life-
time—education, work activities, and leisure activities (see
above, Materials and Methods). As the neuroprotective effects
of EE are posited to accumulate over the course of a lifetime
(Robertson, 2014), we collected this information in the older
cohort only.

As expected, this model was statistically significant, and
EE (the overall model) explained 20.5% of the variance of RT
(R2

adj ¼ 0.21, F(3,36) ¼ 4.36, p ¼ 0.01, partial h 2 ¼ 0.27).
Consistent with previous work (Lee et al., 2014; Park et al.,
2014), this effect was driven by the CRI Leisure subscale,
which accounted for independent variance in the modeling
of RT (standardized b ¼ �0.45, t ¼ �3.13, p ¼ 0.003; 95%
CI, �4.98, �1.06), such that older adults with greater expo-
sure to enriched leisure activities exhibited faster visual
response speeds (Fig. 2B). In contrast, neither CRI Education
(standardized b ¼ 0.06, t ¼ 0.41, p ¼ 0.69; 95% CI, �2.73,
4.10) nor CRI Work (standardized b ¼ 0.31, t ¼ 1.94, p ¼
0.06; 95% CI, �0.09, 3.93]) accounted for independent var-
iance in RT. To obtain accurate parameter estimates for the
relationship between CRI Leisure and RT, not influenced by
the noninformative signals, CRI Leisure was entered into a
separate linear regression model. This model explained 13.2%
of the variance (Cohen’s F2 ¼ 0.18) in RT (Standardized b ¼
�0.39, t ¼ �2.63; F(1,38) ¼ 6.93, p ¼ 0.01; 95% CI, �4.61
�0.60; partial h 2 ¼ 0.15, Fig. 2A).

Bayesian linear regression analyses modeling RT as a function
of each CRI subscale provided additional support for the results
of the frequentist statistics. Any model including CRI Leisure
indicated a Bayes factor at least 2.9 times more in favor of H1

than H0 (Extended Data Fig. 2-1). In contrast, Bayes factors for
both CRI Work and CRI Education (independently and com-
bined) provided anecdotal to very strong evidence for the null
hypothesis (i.e., there was no evidence to suggest that these fac-
tors account for independent variance in RT; all three BF10 ,
0.88 and .0.03). This suggests that an individual’s leisure
engagements help to mitigate age-related declines in visual
response speed. An exploratory analysis conducted to investi-
gate which specific aspects of leisure activities may have
contributed to this effect implicated using modern technology
(t(39) ¼ �4.37, p , 0.001, BF10 ¼ 240.49), engaging in social
activities (t(26.88) ¼ �4.49, p, 0.001, BF10 ¼ 106.02), attending
events such as conferences, exhibitions, and concerts (t(32) ¼
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�3.98, p , 0.001, BF10 ¼ 10658.60), and vacationing (t(24.83) ¼
3.11, p ¼ 0.01, (BF10 ¼ 72.46; Extended Data Figures 2-2, 2-3,
2-4, 2-5).

Individual differences in response speed are captured by
neural metrics of sensory evidence accumulation rate
The analyses thus far have confirmed age-related differen-
ces in behavioral markers of response speed—a validated
behavioral measure of cognitive resilience. We next sought
to understand how each neural metric related to individual
differences in response speed using a hierarchical regression
model to isolate the contribution of each neural metric, over
and above those that temporally preceded it.

To determine the explanatory power of the neurophysiologi-
cal signals for predicting behavior, age was entered as a nuisance
variable (centered to avoid multicollinearity) in the first step of
the model. Unsurprisingly, this offered a significant improve-
ment in model fit, as compared with the intercept-only model
(R2adj ¼ 0.36, p, 0.0005; Fig. 3). Neither the marker of early tar-
get selection (N2c latency, R2adj ¼ 0.37, p¼ 0.21; N2c amplitude,
R2adj ¼ 0.37, p ¼ 0.22) nor the starting point of the evidence
accumulation process (CPP onset, R2adj ¼ 0.37, p ¼ 0.58) offered
any additional improvement in model fit (Fig. 3A).

Evidence accumulation build-up rate, indexed via the CPP
build-up rate, significantly improved the model performance,
accounting for an additional 17% of the variance (R2adj ¼ 0.54,
R2change ¼ 0.17, p , 0.0005; Fig. 3A; Table 2), such that steeper
CPP slopes, indicative of a faster build-up rate of sensory evi-
dence, were associated with faster response speeds (Fig. 3B).
Adding CPP amplitude offered a further significant improve-
ment in the model, such that individuals with lower CPP ampli-
tudes showed faster RTs (R2adj ¼ 0.61, R2change ¼ 0.07, p ¼
0.001).

Although the build-up rate of motor preparation (LHB slope)
explained no additional variance in RT (R2adj ¼ 0.59, R2change ¼
0, p ¼ 0.94), stimulus-aligned LHB peak latency significantly
improved the fit, such that an earlier peak latency of this motor
preparatory marker was associated with faster RT (R2adj ¼ 0.65,
R2change ¼ 0.05, p ¼ 0.003). Finally, adding LHB amplitude
offered no significant improvement in the model (R2adj ¼ 0.65,
R2change ¼ 01, p ¼ 0.17). A post hoc power analysis indicated that
with 72 participants, eight tested predictors (eight neural met-
rics), age as a control variable, and an effect size Cohen’s f2 ¼
0.29 (based on final regression model), 88.86% power was
achieved G*Power 3.1).

To isolate the variables explaining independent variance in
RT over and above that explained by other noninformative sig-
nals, age, CPP build-up rate, CPP amplitude, and LHB peak la-
tency were entered into a single separate linear regression model.
When these four independent variables were included in the final

model, they accounted for 65.6% of the variation in RT (F(4,66) ¼
34.43, p, 0.0005; Table 2).

Next, to further establish the utility of these signals as specifi-
cally sensitive to individual differences in aging, we repeated this
linear regression model (with CPP build-up rate, CPP amplitude,
and LHB peak latency), just for the older cohort. This model
accounted for 48.7% of the variation in RT (F(3,37) ¼ 13.66, p ,
0.0005), and CPP build-up rate (standardized b ¼ �0.66, p ,
0.0005), CPP amplitude (standardized b ¼ 0.27, p ¼ 0.05) and
LHB latency (standardized b ¼ �0.31, p ¼ 0.013) all accounted
for independent variance in response speed.

Finally, to validate these results, we ran some confirmatory
Bayesian analyses. In keeping with the frequentist analyses, the
Bayesian regression model for RT indicated strong support for
the alternative hypothesis for age (BF10 ¼ 1028.52), CPP slope
(BF10 ¼ 4732.19), CPP amplitude (BF10 ¼ 17.67), and LHB la-
tency (BF10¼ 31.74). There was no statistical evidence to suggest
that N2c amplitude (BF10 ¼ 0.72), N2c latency (BF10 ¼ 0.62),
CPP onset (BF10 ¼ 0.55), LHB build-up rate (BF10 ¼ 0.68), or
LHB amplitude (BF10 ¼ 0.75) influenced RT. (Extended Data
Fig. 3-1 contains more detailed results from this Bayesian linear
model.)

Together the findings above indicate that CPP build-up rate,
CPP amplitude, and LHB latency exerted direct and partially in-
dependent influences over RT. On the basis of previous work, we
assume that the impact of both CPP amplitude and LHB latency
on RT is, at least in part, determined by accumulated sensory evi-
dence, reflected in the temporally preceding CPP build-up rate
(O’Connell et al., 2012; Kelly and O’Connell, 2013; Steinemann
et al., 2018; Brosnan et al., 2020). We tested this here by assessing
whether the influence of CPP amplitude and LHB latency on RT
was mediated by CPP build-up rate. In both cases, bootstrapped
mediation analyses (5000 samples) indicated that this was the
case (CPP build-up rate!CPP amplitude!RT indirect effect
281.98, bootstrapped SE 168.06; CI, 18.00, 669.46; CPP build-up
rate!LHB latency!RT indirect effect �220.68, bootstrapped
SE 102.48; CI, �459.99, �58.22; Fig. 3C,D). This demonstrates
that variability in age-related deficits in RT captured by CPP am-
plitude and LHB latency are dependent, at least partly, on indi-
vidual differences in the rate at which sensory evidence can be
accumulated. These results suggest that the CPP build-up rate
constitutes a critical contributor to interindividual differences in
response speed.

Neural metrics of evidence accumulation build-up rate
moderate the relationship between environmental
enrichment and response speed
The results thus far demonstrate that both levels of environmen-
tal enrichment and task-related neural metrics (particularly the
build-up rate of evidence accumulation) are strong determinants
of age-related individual declines in behavior (response speed) at
an interindividual level. This raises the possibility that the rela-
tionship between EE and response speed might differ according
to individual differences in evidence accumulation build-up rate.
It is well established within the (neuro)cognitive reserve litera-
ture that high EE individuals can preserve relatively high levels
of cognitive function, despite suboptimal structural markers of
brain health (e.g., gray matter atrophy).

Signals displaying evidence accumulation dynamics are not
specific to a single cortical area but rather have been found in
a number of regions throughout the brain (Ratcliff et al., 2003;
Cisek and Kalaska, 2005; Huk and Shadlen, 2005; Ding and
Gold, 2010; Pape and Siegel, 2016) and therefore may represent a

Table 2. Parameter estimates from the final linear regression model for
response time (RT) as a function of the neurophysiological signals

Signal Stand. b t p 95% CI

Age 0.44 5.645 ,0.0005 [1.48, 3.09]
CPP build-up rate �0.53 �5.67 ,0.0005 [�1300.90, �623.08]
CPP amplitude 0.29 3.30 0.002 [1.18, 4.79]
LHB Latency 0.26 3.35 0.001 [0.10, 0.39]

Stand, Standard. Age * RT, age, evidence accumulation (CPP) build-up rate, CPP amplitude, and LHB latency
exerted partially independent influences on RT, together accounting for 71.4% of the variation (adjusted
R2 value) in RT. The absolute value of standardized b represents the importance of each predictor, inde-
pendent of the unit of measurement. CI denotes confidence interval for b . Extended Data Table 2-1 shows
a comparison of the older and younger adults on each of the eight neural metrics, and Extended Data Table
2-2 contains the full output of the regression model.
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global, widespread neurophysiological process. Previous work
investigating cognitive reserve using similarly widespread, global
measures of brain structure (e.g., gray matter atrophy; Chan et al.,
2018), and neuropathology (e.g., amyloid plaques and tangles in
Alzheimer’s patients; Xu et al., 2019) has demonstrated that higher
EE individuals can maintain better cognitive performance despite
these compromised markers of brain health. Here, we hypothe-
sized that this same phenomenon would be observed using a
neurophysiological marker of aging brain health, that is, neural
metrics of sensory evidence accumulation rate. Specifically,
having established evidence accumulation build-up rates as the
critical neural marker indicative of the maintenance of response
speed, we tested the hypothesis that high EE individuals would
show relatively preserved response speeds, even when this core
neurophysiological process was impaired.

To address this, we tested whether each of the three neural
markers significantly moderated the relationship between
CRI Leisure and RT using three separate moderation models,
Bonferroni corrected for multiple comparisons (alpha 0.05/3
moderation models � alpha-corrected threshold ¼ 0.016).
These results revealed a specific moderating influence of CPP
build-up rate on the association between EE (CRI Leisure) and
RT, as evidenced by a CRI Leisure by CPP build-up rate inter-
action (coefficient ¼ 32.00, SE ¼ 10.55, t ¼ 3.03, p ¼ 0.005; CI,
10.61, 53.39), which remained significant when covarying for
age (coefficient ¼ 31.45, SE ¼ 10.81, t ¼ 2.91, p ¼ 0.006; CI,
9.51, 53.38; Table 3; Fig. 4). In contrast, no moderating influ-
ence was observed for CPP amplitude (coefficient ¼ 0.14, SE ¼
09.71, t ¼ 1.39, p ¼ 0.17; CI, �0.06 0.33) or LHB latency (coef-
ficient ¼ �0.02, SE ¼ 0.006, t ¼ �2.48, p ¼ 0.02; CI, �0.03, 0).
Follow-up analyses exploring the conditional effects of the pre-
dictor at values of the moderator revealed that the relationship
between EE and RT was strongest in the older adults with shal-
lower evidence accumulation build-up rates (Fig 5; CPP slope
0.0034, coefficient ¼ �4.23, SE ¼ 1.17, t ¼ �3.61, p ¼ 0.0009;
95% CI, �6.60, �1.86; CPP slope 0.0724, coefficient ¼ �2.02,
SE ¼ 0.80, t ¼ �2.52, p ¼ 0.02; 95% CI, �3.65, �0.39; CPP

slope 0.1405, coefficient ¼ 0.16, SE ¼ 0.98, t ¼ 0.16, p ¼ 0.87;
95% CI, �1.84, 2.16; Fig. 4). A post hoc power analysis for the
moderation model highlighted that power in excess of 99% was
achieved (effect size Cohen’s F2 ¼ 1.13, G*Power 3.1).

These results suggest that the phenomenon of cognitive reserve,
whereby high EE individuals are less reliant on typical markers of
brain health to facilitate the preservation of cognitive function, is
not just applicable to structural markers of brain health but can be
observed for neurophysiological markers. This provides a platform
for future work to harness the millisecond temporal resolution of
Magneto- (MEG) and electroencephalography (EEG) to explore the
neurophysiological basis of how this reserve is facilitated. As such,
these findings further suggest that the CPP build-up rate captures
meaningful information relating to the neurophysiological health of
the aging brain.

Table 3. Results from a regression analysis examining the moderation of the
relationship between RT and exposure to environmental enrichment in older
adults by neural metrics of evidence accumulation rate

Variable Coeff SE t p 95% CI

Intercept i1 1259.45 163.17 7.0.72 ,0.0005 [928.53, 1590.38]
CPP build-up rate (X) b1 �5420.91 1493.02 �3.63 0.0009 [�8448.95, �2392.88]
EE (M) b2 �4.34 1.20 �3.62 0.0009 [�6.76, �1.91]
CPP build-up rate �
EE (XM)

b3 32.00 10.55 3.03 0.0045 [10.61, 53.39]

R2 ¼ 0.53; mean squared error (MSE), 8102.33; F(3,36) ¼ 13.55, p , 0.0005. Coeff, Coefficient. SE, Standard
Error.

Figure 5. Reliable estimates of the relationship between RT and evidence accumulation
build-up rate can be obtained with reduced trial numbers. A, B, For each participant we ran-
domly selected 1000 estimates of RT (A) and CPP build-up rate (slope; B) for each of the six
trial bin sizes (legend, top right in A). Reducing the number of trials reduced the signal-to-noise
ratio and increased the likelihood that estimates of both RT and CPP build-up rate deviated
from the true mean estimates. C, Critically, strong effect sizes (.0.55) for the relationship
between CPP build-up rate and RT were observed with as few as 40 trials suggesting that this
neurophysiological marker of sensory evidence accumulation may be developed as a translat-
able assessment of brain health for older adults (Extended Data Fig. 5-2).

Figure 4. Moderation model demonstrating the relationship between EE and RT as mod-
erated by CPP build-up rate. All analyses were conducted using continuous variables but are
shown here with three bins of equal size for CPP build-up rate.
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Feasibility of EEG markers of evidence accumulation
build-up rate as a scalable proxy for neurocognitive health
Our findings provide evidence that the CPP build-up rate is
mechanistically linked to an extensively validated marker of neu-
rocognitive health—response speed—in older adults. This invites
the possibility that this neural marker may be used by large-scale
studies as an objective, cost-effective neurophysiological marker
of aging brain health. Both our results presented here, and a large
body of previous research (Newman et al., 2017; McGovern et
al., 2018; Steinemann et al., 2018; Brosnan et al., 2020), have
measured the CPP using a single electrode (most typically, elec-
trode Pz). This offers clear benefits for reliably assessing this sig-
nal using low-density electrode arrays with either in-lab or
portable EEG systems. Determining the minimum number of
trials that permits a reliable measurement of CPP parameters,
such as the CPP build-up rate, is therefore crucial for facilitating
eventual clinical translation.

To determine this, we performed an analysis with a subset of
participants who completed at least 8 task blocks, all of whom
had a minimum of 129 valid response-locked ERP trials (see
above, Materials and Methods). For each participant, we derived
1000 estimates of RT and CPP build-up rate for each of the six
trial sizes (Fig. 5A,B) and tested whether the likelihood that the
estimates of RT and CPP build-up rate were more likely to devi-
ate from the true mean estimates with reduced trial numbers.
Repeated measures ANOVAS using trial bin size as the factor
and signal-to-noise ratio as the dependent measure (see above,
Materials and Methods) revealed a significant main effect of bin
size for both RT (F(5,4995) ¼ 3820.14, p , 0.0005, partial h 2 ¼
79; Fig. 5A) and CPP build-up rate (F(5,4995) ¼ 298.13, p ,
0.0005, partial h 2 ¼ 0.23; Fig. 5B). In both cases the data were
best explained by a linear fit (RT, F(1999) ¼ 10900.12, p, 0.0005,
partial h 2 ¼ 0.92, CPP build-up rate: F(1999) ¼ 859.60, p �
0.0005, partial h 2 ¼ 0.46), indicating that increasing the number
of trials significantly improved the signal-to-noise ratio.

To verify this pattern of results, we ran Kolmogorov–Smirnov
tests on the mean estimates of CPP build-up rate and RT to
assess whether the CDF increased with each reduction in trial
number. These results demonstrated that when the number of
trials was reduced by 20 trials, the width of the distribution
(CDF) changed, as can be observed in Figure 5, A and B, and
Extended Data Figure 5-1. This pattern of results demonstrates
the expected effect that by reducing the number of trials, we
increase the likelihood that estimates of both RT and CPP build-
up rate deviate from the true mean estimates. Our critical ques-
tion here, however, is at what level of SNR do we obtain reliable
and behaviorally meaningful estimates of the relationship be-
tween RT and evidence accumulation build-up rate?

In the results reported in the main body of this article, we
demonstrated a large effect size for the relationship between CPP
build-up rate and RT (Pearson’s r ¼ �0.60). Cohen’s (1988) cut-
off for a large effect size is 0.5. As such, we defined the minimum
number of trials at which a reliable CPP estimate can be derived
as the number at which we can observe a strong effect size (i.e.,
an effect size .0.55) for the relationship between RT and CPP
build-up rate. To investigate this, we calculated the direct rela-
tionship, using Pearson’s correlation, between CPP build-up rate
and RT for each of the 1000 permutations for each of the six bin
sizes (20 up until 120 trials; Fig. 5C). We then ran a Bayesian
one-sample t test to test whether the estimates of effect size (r)
for each bin size were significantly larger than�0.55.

We found infinite support for the alternative hypothesis that
the effect sizes for the relationship between RT and CPP build-

up rate with 120, 100, 80, 60, and 40 trials were larger than 0.5
(all BF10 values . 2.314 � 10 1 63; Table 4). However, this was
not the case for the estimates derived using 20 trials. Here, Bayes
factor analyses revealed strong support for the null hypothesis
(BF10 ¼ 0.002), that is, that the estimates of effect size were not
greater than�0.55 (Fig. 5C; Table 4; Extended Data Fig. 5-2). As
such, these results indicate that 40 response-locked trials are the
minimum number of trials that will allow for a reliable estima-
tion of the CPP build-up rate/RT relationship. With current par-
adigm timings (allowing for both variability in behavioral
performance and quality of the EEG data), 40 trials could be
obtained in ,8min (Extended Data Fig. 5-2), highlighting the
potential for isolating reliable EEG metrics of evidence accumu-
lation over relatively short time scales.

The relationship between DDM parameters and EEG
markers of decision-making
Nondecision time(t)
None of the EEG signals significantly improved the model fit for
the nondecision time (t) derived using the DDM (Extended Data
Fig. 6-1). Thus, no evidence was found for a clear relationship
between the neural metrics of decision-making isolated using
EEG and the t parameter of the DDM.

Drift rate (�)
In contrast, the model fit for drift rate (�) was significantly
improved when both age (adjusted R2 ¼ 0.06, F change ¼ 5.74,
p ¼ 0.01) and the build-up rate of sensory evidence accumula-
tion (CPP build-up rate; adjusted R2 ¼ 0.08, F change ¼ 4.76,
p ¼ 0.03) were added to the model. (Extended Data Fig. 6-2
shows the full results from the hierarchical modeling procedure.)
To obtain accurate parameter estimates for the association
between drift rate (�) and CPP build-up rate, not influenced by
other noninformative signals, age and CPP build-up rate were
entered into a separate linear regression model of drift rate (�).
This model explained 12% of the variance in drift rate (F(2,68) ¼
5.78, p , 0.005; parameter estimates for CPP build-up rate,
standardized b ¼ 0.28, t ¼ 2.34, p ¼ 0.022; age, standardized
b ¼�0.2, t¼ �1.57, p¼ 0.12; Extended Data Fig. 6-3; Fig. 6A).

Response caution (a)
The model fit for response caution (a) was significantly im-
proved by the inclusion of both CPP amplitude (adjusted R2 ¼
0.14, F change ¼ 6.74, p ¼ 0.01) and LHB Latency (adjusted
R2 ¼ 0.22, F change ¼ 7.39, p ¼ 0.0008; Extended Data Fig. 6-4).
To obtain accurate parameter estimates for the association
between response caution (a), CPP amplitude, and LHB latency,
not influenced by other noninformative signals, age, CPP ampli-
tude, and LHB latency were entered into a separate linear regres-
sion model of response caution (a; Extended Data Fig. 6-5. This
model explained 21.7% of the variance of response caution, and

Table 4. Effect sizes for the relationship between RT and CPP build-up rates
for six different trial sizes

r CPP build-up rate-CPP Mean SD BF10

20 trials �0.530 0.051 0.002
40 trials �0.567 0.035 1.014 � 10145

60 trials �0.584 0.025 2.829 � 101221

80 trials �0.591 0.019 1
100 trials �0.596 0.014 1
120 trials �0.599 0.007 1
Only at 20 trials did Bayes factor analyses reveal strong support for the null hypothesis that estimates of
effect size were not .0.5.
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only age and LHB latency (Fig. 6B) accounted for independent
variation in response caution (a; F(3,67)¼ 7.46, p, 0.001; param-
eter estimates, age, standardized b ¼ 0.24, t ¼ 2.09, p ¼ 0.04;
CPP amplitude, standardized b ¼ 0.20, t ¼ 1.83, p ¼ 0.07; LHB
latency, standardized b ¼ 0.38, t¼ 3.35, p¼ 0.001; Fig. 6B).

The influence of age on the DDM parameters
Older adults had lower drift rates (� parameter; t(70) ¼ �2.35,
p ¼ 0.02; 95% CI, �2.06, �0.18; older adults mean¼ 7.38, SD¼
2.05; younger adults mean ¼ 8.49, SD ¼ 1.99), higher response
caution (a parameter; t(70) ¼ 2.56, p ¼ 0.01; 95% CI, 0.17, 1.40;
older adults mean ¼ 2.77, SD ¼ 1.54; younger adults mean ¼
1.98, SD ¼ 0.88), and did not differ in nondecision time (t pa-
rameter; t(70) ¼ 0.87, p ¼ 0.39; older adults mean ¼ 0.11, SD ¼
0.06; younger adults mean¼ 0.10, SD¼ 0.03).

Discussion
Here, we provide direct support for the hypothesis that build-up
rates of sensory evidence accumulation are a critical neurophys-
iological mechanism underpinning the preservation of response
speed in older adults. First, sensory evidence accumulation was
not only directly related to response speed in older adults but
also had an indirect impact on performance by modulating sub-
sequent neurophysiological processes, namely, the decision crite-
rion and the timing of the motor response. Second, consistent
with the concept of neurocognitive reserve, a lifetime of EE offset
age-related deficits in response speed. Critically, CPP slope mod-
erated this association, such that the mitigating influence of EE
on age-related declines in response times was most pronounced
for individuals with relatively less efficient evidence accumula-
tion (shallower build-up rates of CPP). This suggests that evi-
dence accumulation build-up rates may offer rich information
about which older individuals may benefit most from engaging
with enriched environments.

In the current study, we saw concordance between the EEG
and DDM approaches for estimating sensory evidence accumu-
lation such that higher drift rates (five) were associated with
steeper CPP build-up rates. In addition, older adults presented
with both lower drift rates and shallower EEG evidence accumu-
lation build-up rates compared with their younger peers, further
indicating that the rate of decision formation is disrupted with
age. These results accord with previous work showing that the

CPP closely conforms to the dynamics predicted by sequential
sampling models (Twomey et al., 2015; Kelly et al., 2021), includ-
ing in older populations (McGovern et al., 2018).

Deriving drift rate from the DDM holds distinct practical
clinical advantages over isolating the CPP using EEG, given that
this parameter can be isolated from behavioral data alone. An
interesting question for future longitudinal work will be to assess
the utility of drift rate (�) as an index of cognitive decline. In par-
ticular, it will be important to address whether this parameter
provides more sensitivity as a clinical indicator of cognitive diffi-
culties than behavioral assays of response speed alone or markers
of evidence accumulation rate isolated with EEG. In accordance
with our findings, previous work has shown age-related differen-
ces in drift rate during random-dot motion task (McGovern et
al., 2018). Yet, McGovern et al. (2018) observed no differences in
drift rate on a contrast change task in the same cohort of older
adults. As such, an important avenue for future work will be to
determine the extent to which drift rate (�) is a general index of
response speed in aging as opposed to a metric that is specific to
particular cognitive scenarios and tasks (for review, see Dully et
al., 2018).

A key insight from decision modeling work with older adults
has been that slowed RTs may not relate purely to sluggish infor-
mation processing but might actually reflect a strategic prefer-
ence for greater caution reflected in higher decision bounds
(Ratcliff et al., 2004, 2006a,b). These previous modeling studies
have interpreted age-related increases in response caution (a),
derived using drift-diffusion modeling, as a more conservative
decision threshold (and greater strategic preference for caution).
In line with previous findings, older adults did show greater
response caution (a) compared with younger adults on the
DDM. However, our combined EEG modeling results here sug-
gest that independent variation in a is captured by the timing of
the motor response (LHB latency) and not a higher decision
threshold (CPP amplitude). In addition, older adults showed
a lower CPP amplitude suggestive of a lower decision thresh-
old. As such, our results show at least under the current task
demands, age-related changes in response caution arise not
from a rise in the decision threshold but rather from slower
preparation of the motor response. Although neural metrics
of both the decision bound and the timing of motor prepara-
tion accounted for independent variation in response speeds,
these relationships were contingent on the build-up rate of

Figure 6. A, Scatter plot of the association between CPP build-up rate, measured using EEG and drift rate (�) isolated using a DDM. B, Scatter plot of the association between LHB latency,
measured using EEG and response caution (a) isolated using a DDM.
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the CPP, such that slower build-up rates of sensory evidence
corresponded to lower decision bounds and longer response
preparation speeds. Together these findings further indicate
that response speed deficits obtained on an easy detection
task in older adults result from a core deficit in the formation
of perceptual decisions as opposed to a more cautious approach
to the decision-making process.

Although the collection and analysis of EEG data can be rela-
tively time consuming, the data confer several distinct advantages
that cannot be gleaned from behavioral analysis or modeling
alone.Through measuring brain activity with EEG, it is possible to
distinguish the evidence accumulation process from other neuro-
physiological processes such as earlier sensory selection and later
motor preparation processes, thereby offering unique insight into
the neurobiology of age-related response speed slowing. In clinical
cohorts, the same behavioral deficit (i.e., slowed response speed)
can arise from a multitude of disrupted neural processes. By using
EEG, one can disentangle various processes in the brain and begin
to identify the precise locus of dysfunction in clinical disorders
such as stroke, Parkinson’s disease, and multiple sclerosis. This in-
formation about the brain systems and markers can then be used
to assess deficits and develop novel interventions. Moreover, this
is the first study to our knowledge to demonstrate the phenom-
enon of cognitive reserve outside of the imaging modalities,
thereby providing a means to investigate the precise mechanisms
by which EE alters brain function (as opposed to structure) in
future neurophysiological research.

Future work may shed further light on the relationship
between the formation of perceptual decisions and the motor
response by incorporating measurements with equivalent milli-
second precision. For example, subthreshold changes in the
effector might be measured using continuous response meas-
ures such as voltage changes in hand-held force-sensing resis-
tors (McBride et al., 2018) or changes in muscle activation with
electromyography (Steinemann et al., 2018).

The results presented here are in keeping with the concept of
cognitive reserve as defined by previous work (Stern et al., 2020;
but see Cabeza et al., 2018, 2019; Stern et al., 2019), whereby the
proxy of reserve (here EE captured by the CRIq) exerts a moderat-
ing influence on the relationship between markers of brain health
and cognitive function (Stern et al., 2020). Our findings show that
when evidence accumulation build-up rates are relatively shal-
lower, individuals with relatively higher EE can nonetheless main-
tain faster response speeds than those with lower EE. One of the
predominant principles of cognitive reserve is that high EE indi-
viduals are less reliant on established markers of brain health for
facilitating behavior. Our findings accord with a large body of
work that has demonstrated the phenomenon of cognitive reserve
with structural [e.g., gray matter atrophy in healthy individuals
(Chan et al., 2018)] and neuropathological [e.g., amyloid plaques
and tangles in Alzheimer’s patients (Xu et al., 2019)] markers of
compromised brain health. Here, we show that cognitive reserve
can also be observed using neurophysiological markers of aging.

Although our results provide evidence that cognitive reserve can
be indexed using EEG, the mechanisms supporting cognitive resil-
ience in high EE individuals is an avenue for future work (Cabeza
et al., 2018, 2019; Stern et al., 2019, 2020). An important direction
will be to capitalize on the current findings and harness neurophys-
iological techniques to understand the neurobiological substrates of
cognitive reserve that may contribute to preserved RT in higher EE
individuals, even when they experience compromised markers of
brain health. Converging evidence from structural MRI, resting
state MRI, transcranial electrical stimulation, and postmortem

histology in healthy older adults, patients with mild cognitive
impairment, and individuals with Alzheimer’s disease points to a
critical role for the frontal lobes, particularly the prefrontal cortex
(PFC), in supporting resilience (Valenzuela and Sachdev, 2006;
Brosnan and Wiegand, 2017; Franzmeier et al., 2017a,b; Brosnan et
al., 2018, 2022; Shalev et al., 2020). The PFC (specifically the dorso-
lateral PFC) is the largest functional component of a domain-gen-
eral multiple demands system of frontoparietal and insular brain
areas (Duncan, 2001, 2013), which is activated during a wide range
of cognitive operations (Fedorenko et al., 2013). This system exerts
a top-down modulatory influence over many brain areas and cog-
nitive processes (Cristescu et al., 2006; Summerfield et al., 2006;
Voytek et al., 2010; Nelissen et al., 2013; Brosnan et al., 2018). It is
possible that the multiple cognitive demands necessitated by
enriched environments such as educational settings, complex
occupational environments, and social and leisure activities con-
tinuously require recruitment of this network, which, over time,
may benefit cognition. Accordingly, a number of studies have shown
that connectivity within the frontoparietal networks (FPN) accounts
for substantial interindividual variability in neurocognitive resilience
in older adults (Franzmeier et al., 2017a,b; Veldsman et al., 2020;
Brosnan et al., 2022).

In younger adults, we have previously shown that neural met-
rics of evidence accumulation rate vary according to individual
differences in connectivity within the dorsal FPN (white matter
macrostructural organization of the superior longitudinal fasci-
culus and resting-state functional connectivity within the dorsal
FPN; Brosnan et al., 2020). The results of the current study pro-
vide an unprecedented framework for exploring whether higher
EE individuals should show differences in structure and/or func-
tion in frontoparietal regions to allow them to maintain preserved
response speeds despite suboptimal evidence accumulation capaci-
ties in future work. Using EEG in combination with techniques
that allow examination of the FPN with more precise spatial speci-
ficity (diffusion MRI, functional MRI, and MEG) will be particu-
larly useful for asking how higher EE individuals might preserve
fast responses despite compromised evidence accumulation build-
up rates. This would help disentangle the interacting influences of
EE, frontoparietal regions, and distinct stages of information proc-
essing and perceptual decision formation to cognition.

A question of pressing societal relevance is to identify enriched
cognitive, social, and leisure environments with which older adults
could engage in later in life to optimize resilience to cognitive
decline. Several lines of evidence suggest the association between
EE and cognition is causal. For example, monozygotic twin pairs
exposed to greater levels of enrichment throughout life show rela-
tively faster response speed in later years (Lee et al., 2014).
Similarly, a 3 month intervention of learning new skills in healthy
older adults improves response speed (Park et al., 2014). Finally,
emerging results from a large (N¼ 2832) multicenter longitudinal
clinical trial using computerized speed-based cognitive train-
ing in older adults shows that training may causally improve
neurocognitive health in older adults (Ball et al., 2002;
Wolinsky et al., 2009; Rebok et al., 2014; Edwards et al.,
2017). In our data, the association between EE and behavior
was driven exclusively by the leisure, and not education and
occupation subscales, of the CRIq. These findings accord
with growing evidence that leisure and social activities are
critical for supporting brain health in aging (Lee et al.,
2014; Xu et al., 2019). This is of relevance to public health
interventions, given the accessible and potentially modifi-
able nature of leisure and social activities, particularly in
later years of life. Further work using the CRIq in larger sample
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sizes to run item-level analyses would help understand precisely
which type of leisure activities would optimally facilitate resilience.
This in turn would pave the way toward developing scalable,
affordable public health interventions to induce lasting, posi-
tive changes in aging brain function and resilience to cogni-
tive decline. A limitation of the current design is that we did
not measure socioeconomic status (SES), which is known to
independently contribute to brain health and neurocognitive
resilience (Jones et al., 2011). As such, it is not possible for us
to disentangle the extent to which the association between
EE with our neurocognitive markers is mediated by socioeco-
nomic factors. It is important for future studies, using larger
cohorts, to investigate this and identify facets of brain health
that are modifiable, regardless of SES, to increase resilience to
cognitive decline.

There has been a focus on the motivational processes that
govern how resources are allocated to effortful tasks (Chong,
2018; Westbrook and Frank, 2018; McGuigan et al., 2019;
Westbrook et al., 2020). This idea is particularly relevant to
our study, given that older adults have been shown to outper-
form their younger counterparts on cognitively effortful tasks
(Mather and Carstensen, 2005; Ennis et al., 2013). For exam-
ple, older adults demonstrate a positivity bias resulting from
enhanced cognitive control over positive emotions (Mather
and Carstensen, 2005). In our study, the CRI data suggest that
high EE individuals tended to engage in activities associated
with higher levels of motivation relative to their low EE peers
(e.g., social activities, attending conferences, exhibitions, and
concerts, and using modern technology). Future work with
larger cohorts could directly test whether motivation in older
adults, and especially those with high EE, can overcome evi-
dence accumulation deficits to facilitate fast responses.

Finally, identifying the precise stage of information proc-
essing driving slowed response speed with aging might hold
valuable prognostic information and could provide a sensitive
addition to future large-scale epidemiological and transla-
tional studies. In addition, our framework outlines a means to
investigate the mechanisms by which high EE individuals may
compensate for deficits in evidence accumulation to maintain
fast responding. Future work should expand our targeted and
comprehensive EEG analysis to explore the role of motivation
and cognitive control in this regard. We present further evi-
dence here that we can obtain reliable (large effect sizes) and
meaningful (strongly predictive of response speed) measure-
ments of the CPP build-up rate with as few as 40 trials.
Together, our work suggests that measuring the CPP via low
density and potentially portable EEG might have significant
value for exploring the mechanisms by which EE positively
benefits brain function.

These findings suggest that neural metrics of evidence accu-
mulation build-up rate index an important facet of neurocogni-
tive vulnerability in the aging brain. Moreover, they suggest that
CPP build-up rate holds promise as an EEG marker indexing a
critical facet of neurophysiological vulnerability of the aging
brain that could be incorporated into large-scale epidemiological
studies. It will be important for future work to replicate these
effects and interrogate mechanisms supporting the maintenance
of fast response speed in higher EE individuals.
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