JCU ePrints

This file is part of the following reference:

Kent, Geoffrey A (2003) Increasing the capacity of Australian raw sugar factory milling units. PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/8071

Increasing the capacity of Australian raw sugar factory milling units

Thesis submitted by

Geoffrey Alan KENT

BE (Mech Hons) UQ MIEAust CPEng RPEQ

in September 2003

for the degree of Doctor of Philosophy in the School of Engineering (Mechanical Engineering) James Cook University

Statement of access

I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and;

I wish the following restrictions to be placed on this work:

- I wish this work to be embargoed until 30 April 2006.
- I wish access to this work to be restricted until 30 April 2009. During this time, the thesis may be made available for use within the University Library but not for use elsewhere.

Signature

Date

Electronic copy

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library is an accurate copy of the print thesis submitted, within the limits of the technology available.

Signature

Date

Statement of sources

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Signature

Date

Increasing the capacity of Australian raw sugar factory milling units

Acknowledgements

Firstly, the author wishes to thank the late Dr Rod Murry and Dr Vic Mason and Dr Ray Scott, both formerly of the Sugar Research Institute, for their encouragement to commence this investigation. The author also thanks Dr Terry Dixon and Dr Graeme Bullock of the Sugar Research Institute for their ongoing support throughout the investigation.

Secondly, Mr Rod Cullen, formerly of Bundaberg Sugar Limited, is acknowledged for suggesting the topic for this investigation.

Thirdly, the author sincerely thanks the Sugar Research and Development Corporation and the member mills of the Sugar Research Institute; in particular, CSR Limited, Mackay Sugar Co-operative Association Limited, Mulgrave Central Mill Company Limited, Tully Sugar Limited, Proserpine Co-operative Sugar Milling Association Limited, Maryborough Sugar Factory Limited, NSW Sugar Milling Co-operative Limited, Mossman Central Mill Company Limited and Isis Central Mill Company Limited; for their financial support of this project.

Fourthly, the author wishes to thank those who assisted in the experimental investigations that formed part of this investigation. Mr Neil McKenzie of the Sugar Research Institute, Dr Con Doolan, Mrs Linda Dixon-Kelso and Miss Lyn Forsell, formerly of the Sugar Research Institute and the staff of Mulgrave, South Johnstone, Invicta, Inkerman, Plane Creek and Isis factories are acknowledged for their assistance in the factory effectiveness survey. Mr Neil McKenzie, Mr John Williams and the late Mr Allan Connor of the Sugar Research Institute are acknowledged for their assistance in the permeability investigation. Mr Neil McKenzie and Mr John Williams of the Sugar Research Institute, Miss Kristine Strohfeldt and Mr Andrew Zammit formerly of the Sugar Research Institute and Mr Dave Kauppila and Mr Arasu Kannapiran of James Cook University are acknowledged for their assistance with the two-roll mill experiment. Mr Neil McKenzie of the Sugar Research Institute, Miss Letitia Langens formerly of the Sugar Research Institute and Mr Kevin Wardrop, Mr Bob Watters, Mr Jeff King Koi and the staff of Mulgrave Central Mill Company Limited for their assistance with the factory mill experiment.

Fifthly, the author thanks his supervisors A/Prof Jeff Loughran of James Cook University and Dr Vic Mason formerly of the Sugar Research Institute, along with Dr Mac Kirby of CSIRO, Dr Floren Plaza and Dr Matt Schembri of the Sugar Research Institute, Dr Chris Downing formerly of the Sugar Research Institute, Dr Clayton Adam formerly of Queensland University of Technology and Mr Tom Davis, Mr John Sawyer and Mr John Li of Worley FEA for the fruitful discussions and advice received throughout this investigation.

Lastly, the author thanks his wife Karen and children Natasha and Christopher for their support and encouragement throughout this long investigation.

Abstract

This thesis reports on an investigation to identify methods to increase the capacity or throughput of the six-roll roller mills used in Australia to extract sugar from sugarcane. The approach taken was to gain an understanding of the factors affecting mill throughput through the application of the computational milling model, developed in recent years at James Cook University. The computational milling model is based on general equations of force equilibrium and continuity and a general description of sugarcane material behaviour.

The development of the throughput model was conducted in stages. Firstly, an experiment was conducted on a laboratory two-roll mill to gain an understanding of the factors affecting throughput on this simple milling geometry. A two-roll computational model was constructed to predict the observed behaviour, accounting for all mechanisms identified from the experimental results. Secondly, a three-roll computational model was constructed which was sufficient to describe the throughput behaviour of the factory six-roll mill. An experiment was conducted on a factory six-roll mill to provide data to validate the model. The three-roll computational model was tested across the range of geometries and operating conditions known to exist in Australian factories and its throughput predictions were tested against throughput measurements.

The three-roll computational model was used to identify the main factors affecting mill throughput and was used to construct a data set across a wide range of parameter values. The data set was used in a multiple regression analysis to develop an empirical model that could readily be used to identify conditions for maximum throughput.

The computational and empirical models developed during this investigation were shown to predict throughput better than existing models. Conditions for maximum throughput were identified and involved the openings between rolls, the speed of the rolls and the amount of water in the sugarcane material being processed.

As part of the investigation, further development of the computational milling model was undertaken in order to advance the model to a sufficient standard for this investigation. A material parameter was introduced to define the hardening rule for the plastic material model following established soil mechanics methodology. Darcy's law, describing fluid flow through porous media, was shown to adequately describe the flow of water through bagasse for a wide range of fluid velocities. Greater confidence in the measured magnitude of the permeability factor in Darcy's law was gained through improved experimental and parameter estimation procedures. One of the experimental and parameter estimation procedures was found to significantly reduce the time involved in measuring both the hardening rule for the plastic material model and the permeability for Darcy's law.

Contents

Sta	tement o	of access	ii
Ele	ctronic	сору	iii
Sta	tement o	of sources	iv
Ack	knowled	gements	v
Abs	stract		vii
Cor	ntents		ix
Tał	oles		xvi
Fig	ures		xviii
Syn	nbols		xxiv
1	Intro	duction	1
	1.1	Introductory remarks	1
	1.2	Overview of the milling process and milling equipment	1
		1.2.1 Description of sugarcane	1
		1.2.2 Description of the milling process	3
		1.2.3 Description of a milling unit	5
		1.2.4 Definition of milling terms	7
	1.3	The need to increase milling unit capacity	
		1.3.1 The Australian raw sugar industry	12
		1.3.2 Maintaining industry viability	13
		1.3.3 The path to processing larger crops	14
		1.3.4 Increasing milling unit capacity	14
	1.4	Overview of the thesis	14
	1.5	Concluding remarks	16
2	Mill	throughput literature review	17
	2.1	Introductory remarks	17
	2.2	Review of sugarcane milling unit throughput research	17
		2.2.1 Introductory remarks	17

		2.2.2 Empirical models	
		2.2.3 The two-roll mill	
		2.2.4 Extending the two-roll mill theory to more complex milli	ng
		geometry	
		2.2.5 The six-roll mill	
		2.2.6 Concluding remarks	
	2.3	Review of milling unit throughput research outside the sugarcan	e industry
		2.3.1 Introductory remarks	
		2.3.2 Roller mill applications	
		2.3.3 Throughput models for roller mills	
		2.3.4 Concluding remarks	
	2.4	The milling computational model	
	2.5	Concluding remarks	
3	Eval	uation of the Jenkins and Murry feeding model	
	3.1	Introductory remarks	
	3.2	Measuring the effectiveness of factory milling units	
	3.3	Factory effectiveness measurements	
	3.4	Performance of the Jenkins and Murry model	
	3.5	Concluding remarks	
4	Four	ndations of a new feeding model	
	4.1	Introductory remarks	
	4.2	Overview of the model	
	4.3	A porous media description for bagasse	
	4.4	Force equilibrium	
	4.5	Fluid continuity	
	4.6	Principle of effective stress	
	4.7	Constitutive behaviour of the solid phase	
		4.7.1 Introductory remarks	
		4.7.2 General description of a constitutive model	50
		4.7.3 Elastic behaviour	
		4.7.4 Shape of the yield and plastic potential surfaces	
		4.7.5 Size of the yield and plastic potential surfaces	

	4.8	Constitutive behaviour of the fluid phase	60
	4.9	Concluding remarks	61
5	Deter	rmination of material parameters for the new feeding model	62
	5.1	Introductory remarks	62
	5.2	Material parameters for the solid phase	
		5.2.1 Introductory remarks	63
		5.2.2 Apparatus	64
		5.2.3 Experimental method	67
		5.2.4 The parameter estimation process	67
		5.2.5 An example of the parameter estimation process	73
		5.2.6 Concluding remarks	
	5.3	Material parameters for the fluid phase – steady state method	
		5.3.1 Introductory remarks	
		5.3.2 Apparatus	79
		5.3.3 Experimental method	81
		5.3.4 The parameter estimation process	81
		5.3.5 An example of the parameter estimation process	83
		5.3.6 Concluding remarks	86
	5.4	Material parameters for the fluid phase – indirect method	87
		5.4.1 Introductory remarks	87
		5.4.2 Apparatus	87
		5.4.3 Experimental method	88
		5.4.4 The parameter estimation process	88
		5.4.5 An example of the parameter estimation process	93
		5.4.6 Concluding remarks	
	5.5	Effect of test method on permeability	97
		5.5.1 Introductory remarks	97
		5.5.2 Experimental materials	97
		5.5.3 The steady state permeability measurement experiment	98
		5.5.4 The transient permeability measurement experiment	100
		5.5.5 Comparison of results	102
		5.5.6 Concluding remarks	103
	5.6	Concluding remarks	103

6	Mill f	eeding	in a two-roll mill without juice expression	106
	6.1	Introd	uctory remarks	106
	6.2	Featur	res of the two-roll mill	107
	6.3	An ex	periment without juice expression	109
		6.3.1	Introductory remarks	109
		6.3.2	Apparatus	109
		6.3.3	Experimental design	111
		6.3.4	Procedure	111
		6.3.5	Results	112
		6.3.6	Discussion of feed speed results	124
		6.3.7	Discussion of roll load results	132
		6.3.8	Concluding remarks	133
	6.4	Mater	ial parameters for modelling the experiment without juice	
		expres	ssion	135
		6.4.1	Introductory remarks	135
		6.4.2	Material parameters for the solid phase	135
		6.4.3	Material parameters for the fluid phase	141
		6.4.4	Concluding remarks	144
	6.5	Mode	lling the experiment without juice expression	145
		6.5.1	Introductory remarks	145
		6.5.2	Model details	146
		6.5.3	Model results	152
		6.5.4	Using the model to explore mill feeding behaviour	155
		6.5.5	Concluding remarks	166
	6.6	Concl	uding remarks	166
7	Mill f	eeding	in a two-roll mill with juice expression	168
	7.1	Introd	uctory remarks	168
	7.2	Revie	w of Solomon's experiments	169
		7.2.1	Introductory remarks	169
		7.2.2	Comments on experimental design	170
		7.2.3	Analysis of results	171
		7.2.4	Concluding remarks	179

	7.3	Comparing Solomon's results to the results of the experiment with	out
		juice expression	180
	7.4	Modelling the two-roll mill with juice expression	181
	7.5	Concluding remarks	182
8	Mod	lelling mill feeding in a factory milling unit	183
	8.1	Introductory remarks	183
	8.2	Features of the factory milling unit	184
	8.3	A computational feeding model	187
		8.3.1 Introductory remarks	187
		8.3.2 Geometry	187
		8.3.3 Material parameters	189
		8.3.4 Boundary and initial conditions	190
		8.3.5 Feed speed calculation	191
		8.3.6 Concluding remarks	191
	8.4	Modelling Jenkins and Murry's small-scale experiments	191
		8.4.1 Introductory remarks	191
		8.4.2 Analysis of results	192
		8.4.3 Modelling Jenkins and Murry's small-scale experiments	195
		8.4.4 Concluding remarks	197
	8.5	Modelling Jenkins and Murry's factory experiment	198
		8.5.1 Introductory remarks	198
		8.5.2 Analysis of results	198
		8.5.3 Modelling the experiment	199
		8.5.4 Concluding remarks	200
	8.6	Modelling a new factory experiment	201
		8.6.1 Introductory remarks	201
		8.6.2 Apparatus	201
		8.6.3 Experimental design	206
		8.6.4 Procedure	208
		8.6.5 Results	209
		8.6.6 Discussion of experimental results	213
		8.6.7 Material parameters for modelling the factory experiment	214
		8.6.8 Modelling the factory experiment	214

		8.6.9 Concluding remarks	
	8.7	Concluding remarks	
9	Using	g the new feeding model	
	9.1	Introductory remarks	
	9.2	Sensitivity analysis	
		9.2.1 Introductory remarks	
		9.2.2 Sensitivity to material parameters and initial and boundar	У
		conditions	
		9.2.3 Sensitivity to geometry	
		9.2.4 A final sensitivity analysis	
		9.2.5 Concluding remarks	
	9.3	Comparison with Jenkins and Murry model	
	9.4	Concluding remarks	
	9.5	Concluding remarks	
10	Aven	nues for increasing the capacity of Australian raw sugar factory	milling
	units	5	
	10.1	Introductory remarks	
	10.2	An empirical feeding model	
		10.2.1 A data set for developing the new empirical feeding mode	el 231
		10.2.2 The new empirical feeding model	
		10.2.3 Testing the new empirical feeding model	
		10.2.4 Concluding remarks	
	10.3	Conditions for maximum throughput	
		10.3.1 Introductory remarks	
		10.3.2 Effect of underfeed nip setting on effectiveness	
		10.3.3 Effect of underfeed roll speed on effectiveness	
		10.3.4 Effect of fibre content on effectiveness	
		10.3.5 Concluding remarks	
	10.4	Understanding the conditions for maximum throughput	
		10.4.1 Introductory remarks	
		10.4.2 Comparing laboratory two-roll mill results to factory six-	roll mill
		results	
		10.4.3 The underfeed roll effect	

		10.4.4 Concluding remarks	248
	10.5	Concluding remarks	249
11	Gener	al discussion and conclusions	251
	11.1	Introductory remarks	251
	11.2	Aim of the research	251
	11.3	Summary and conclusions of the research	251
		11.3.1 Previous throughput models	251
		11.3.2 The new feeding model	252
		11.3.3 Testing the new feeding model	255
		11.3.4 Insights into the feeding process	256
		11.3.5 Increasing milling unit capacity	258
	11.4	Significance of the research	259
		11.4.1 Introductory remarks	259
		11.4.2 Extraction benefits	259
		11.4.3 Deferral of capital expenditure	260
	11.5	Recommendations for future research	260
	11.6	Concluding remarks	261
Refe	rences		263
Арре	endix A	Jenkins and Murry's factory measurements of effectiveness	270
Арре	endix B	1997 factory measurements of effectiveness	274
Арре	endix C	Permeability measurements for comparing measurement techni	ques
			277
Арре	endix D	A two-roll mill experiment at underfeed nip conditions	280
Арре	endix E	Results of Solomon's two-roll mill feeding experiments	285
Арре	endix F	Results of Jenkins and Murry's feeding experiments	296
Арре	endix G	A factory mill experiment	303
Арре	endix H	Data set used for the development of the new empirical feeding	model
			310

Tables

Table 3.1	Comparison of Jenkins and Murry model results from Figure 3.3	40
Table 5.1	Results of the parameter estimation process for the two assumed val	ues of
	coefficient of friction	75
Table 5.2	Estimated parameters from the steady state permeability experiment	t 99
Table 5.3	Estimated parameters from the transient permeability experiment	101
Table 6.1	Roll dimensions for the two-roll mill experiments	110
Table 6.2	Levels of each factor explored in the two-roll mill experiment	111
Table 6.3	Analysis of variance of Murry's feed speed ratio for the two-roll mi	11
	experiment	113
Table 6.4	Analysis of variance of Murry's feed speed ratio for the two-roll mi	11
	experiment treating results from tests 3, 13 and 19 as missing values	5118
Table 6.5	Analysis of variance of Murry's feed speed ratio for the 40° contact	angle
	tests from the two-roll mill experiment	119
Table 6.6	Analysis of variance of Murry's feed speed ratio for the 120 mm nig)
	setting tests from the two-roll mill experiment	121
Table 6.7	Results of the solid phase material parameter estimation process	136
Table 6.8	Analysis of variance of the four estimated solid phase material para	meters
		137
Table 6.9	Solid phase material parameters selected to be representative of the	
	prepared cane used in the two-roll mill experiment	141
Table 6.10	Results of the permeability parameter estimation process	143
Table 6.11	Main effect of each experimental factor on Murry's feed speed ratio	154
Table 7.1	Range of values for $\cos \alpha$ in Solomon's experiments	170
Table 7.2	Analysis of variance of Murry's feed speed ratio for Solomon's fact	orial
	experiment	175
Table 8.1	Roll dimensions for Mulgrave's #5 mill	202
Table 8.2	Factors and factor levels explored in the experiment	207
Increasing the capa	acity of Australian raw sugar factory milling units	xvi

Table 8.3	Analysis of variance of Murry's feed speed ratio for the factory mill	
	experiment using the direct measure of feed speed	. 210
Table 8.4	Analysis of variance of Murry's feed speed ratio for the factory mill	
	experiment using the indirect measure of feed speed	. 210
Table 8.5	Results of the material parameter estimation process	. 214
Table 9.1	Comparison of model results from Figure 9.5	. 228
Table 10.1	Comparison of model results from Figure 10.3	. 235

Figures

Figure 1.1	Cross-section of a cane stem (after Payne 1968)	2
Figure 1.2	Typical layout of a milling train with four milling units (from Neill,	
	McKinnon & Garson 1996)	5
Figure 1.3	Typical layout of a milling unit (from Neill, McKinnon & Garson 19	996) 6
Figure 1.4	Roll dimensions	8
Figure 1.5	Nip and chute settings and contact angles	9
Figure 2.1	Two-roll mill geometry	20
Figure 2.2	Forces acting on a strip of bagasse in a two-roll mill	23
Figure 3.1	Feed chute dimensions	36
Figure 3.2	Comparison of the Jenkins and Murry and 1997 effectiveness	
	measurements with Jenkins and Murry model predictions	39
Figure 3.3	Comparison of the difference in effectiveness of pairs of milling uni	ts
	with the predicted difference using the Jenkins and Murry model	40
Figure 4.1	Stresses acting on an elemental volume	44
Figure 4.2	Fluid flowing through the elemental volume	46
Figure 4.3	The yield surface for the simplified Drucker-Prager cap material mo	del 54
Figure 4.4	A comparison of constant λ and constant λ_1 hardening rules for mode	elling
	uniaxial compression	58
Figure 5.1	Uniaxial compression test cell used to provide experimental data for	
	material parameter determination	65
Figure 5.2	Uniaxial compression test cell used to provide experimental data for	
	material parameter determination (second configuration)	66
Figure 5.3	Typical experimental and model results for uniaxial compression tes	sts
	obtained from parameter estimation process for solid phase material	
	parameters	74

Figure 5.4	Results of sensitivity analysis for solid phase material parameters
	showing the relative change in the objective function for a change in the
	material parameters
Figure 5.5	Steady state permeability test apparatus (Downing 1999)
Figure 5.6	Typical experimental results for the steady state permeability tests
Figure 5.7	Regression fit to determine the permeability parameters for typical
	experimental results for the steady state permeability tests
Figure 5.8	Typical experimental and model results for indirect permeability tests
	obtained from parameter estimation process for fluid phase material
	parameters
Figure 5.9	Results of sensitivity analysis for permeability parameters showing the
	relative change in the objective function for a change in material
	parameters
Figure 5.10	Results from the steady state permeability experiment99
Figure 5.11	Void ratio and permeability relationships from the transient permeability
	experiment10
Figure 5.12	Comparing permeability measurements between steady state (black
	curves) and transient (red curves) testing methods 102
Figure 6.1	Two-roll mill layout
Figure 6.2	Mean values of Murry's feed speed ratio for each level of each factor for
	the two-roll mill experiment with all results included 114
Figure 6.3	Significant interactions identified in the analysis of variance of Murry's
	feed speed ratio for the two-roll mill experiment11:
Figure 6.4	Mean values of Murry's feed speed ratio for the two-roll mill experiment
	with tests 3, 13 and 19 removed110
Figure 6.5	Mean values of Murry's feed speed ratio for each level of each factor for
	the 40° contact angle tests from two-roll mill experiment 120
Figure 6.6	Mean values of Murry's feed speed ratio for each level of each factor for
	the 120 mm nip setting tests from two-roll mill experiment
Figure 6.7	Roll load history for the two-roll mill experiment's test 6 122
Figure 6.8	More realistic flow path for the surface of the bagasse mat 12:
Figure 6.9	Forces acting on a strip of bagasse in a two-roll mill under conditions of
	forward slip

Figure 6.10	The effect of the angle from the nip on the function of the angle in
	equation (6.3)
Figure 6.11	Mean values of estimated material parameters for each level of each
	factor from the material parameter estimation process
Figure 6.12	Significant interactions identified in the analysis of variance of the
	estimated material parameters
Figure 6.13	Results of sensitivity analysis showing the relative change in the objective
	function for a change in the elastic material parameters for cane variety
	Q117 prepared at a shredder speed of 1200 r/min
Figure 6.14	Permeability relationships for each cane variety and level of preparation
	using the estimated parameters
Figure 6.15	Typical unconfined uniaxial compression loading path147
Figure 6.16	Mean values of Murry's feed speed ratio for the two-roll mill numerical
	experiment
Figure 6.17	Murry's feed speed ratio compared between the two-roll mill model and
	the two-roll mill experiment
Figure 6.18	Model blanket deformation for 40° and 16° model runs
Figure 6.19	Comparing the contact angle effect to the feed speed ratio effect
Figure 6.20	Speed of the selected node for 40° and 16° model runs
Figure 6.21	Difference in Murry's feed speed ratio between models using coefficient
	of friction between prepared cane mat and roll surface of 0.36 and 1.00
Figure 6.22	Effect of contact angle on the ratio of tangential stress to normal stress161
Figure 6.23	The effect of nip setting, feed pressure and roll speed on model blanket
	deformation
Figure 6.24	The effect of nip setting, feed pressure and roll speed on model blanket
	speed
Figure 6.25	Air pressure differences due to surface speed changes (Pa) 165
Figure 7.1	Mean values of $\cos \alpha$ for each level of each factor for the factorial
	experiment
Figure 7.2	Mean values of Murry's feed speed ratio for each level of compression
	ratio for Solomon's initial test series

Figure 7.3	Mean values of Murry's feed speed ratio for each level of compression
	ratio for Solomon's compression ratio test series
Figure 7.4	Mean values of Murry's feed speed ratio for each level of compression
	ratio for Solomon's photographic measurement series
Figure 7.5	Mean values of Murry's feed speed ratio for each level of each factor for
	Solomon's factorial experiment series
Figure 7.6	Significant interactions identified in the analysis of variance of Murry's
	feed speed ratio for Solomon's factorial experiment series 177
Figure 7.7	Factors from Solomon's factorial experiment that affect work opening 178
Figure 8.1	Three-roll pressure feeder layout
Figure 8.2	Example model geometry
Figure 8.3	Typical relationship between void ratio and permeability $\left(\frac{k}{\mu_{\nu}}\right)$
Figure 8.4	Quality of fit for regression equation (8.3)
Figure 8.5	Quality of fit for regression equation (8.4)
Figure 8.6	Experimental and model results for Murry's feed speed ratio from the first
	model tests of Jenkins and Murry (1981)
Figure 8.7	Experimental and model results for Murry's feed speed ratio from the
	second model tests of Jenkins and Murry (1981)
Figure 8.8	Quality of fit for regression equation (8.5)
Figure 8.9	Experimental and model results for Murry's feed speed ratio from the
	Marian mill tests of Jenkins and Murry (1981)200
Figure 8.10	The underfeed roll support bracket allowing the underfeed nip setting to
	be easily adjusted
Figure 8.11	The three pneumatic cylinders allowing the feed chute setting and
	position to be adjusted
Figure 8.12	Mean levels of Murry's feed speed ratio using directly measured feed
	speed results
Figure 8.13	Mean levels of Murry's feed speed ratio using indirectly measured feed
	speed results
Figure 8.14	Murry's feed speed ratio compared between the values calculated from
	directly and indirectly measured feed speed results

Figure 8.15	Experimental and model results for Murry's feed speed ratio from the	
	Mulgrave mill tests	15
Figure 9.1	Results of the sensitivity analysis of the material parameters and the	
	initial and boundary conditions2	19
Figure 9.2	Results of the sensitivity analysis of the geometrical parameters	21
Figure 9.3	Results of the sensitivity analysis of the most influential parameters 2	23
Figure 9.4	Comparison of Jenkins and Murry (1981) empirical model and new	
	computational model predictions of effectiveness against measurements	
	of Jenkins and Murry (1981) and Kent (1998)2	26
Figure 9.5	Comparison of effectiveness differences using the Jenkins and Murry	
	(1981) empirical model and new computational model predictions of	
	effectiveness against measured effectiveness differences from Jenkins and	nd
	Murry (1981) and 1997 measurements	27
Figure 10.1	Comparison of new empirical model predictions with computational	
	model values2	33
Figure 10.2	Comparison of new empirical model predictions against measurements of	of
	Jenkins and Murry (1981) and 1997 measurements 2	34
Figure 10.3	Comparison of effectiveness differences using new empirical model	
	predictions against measured effectiveness differences of Jenkins and	
	Murry (1981) and Kent (1998)	35
Figure 10.4	Effect of model parameters on the optimum underfeed nip setting (new	
	empirical feeding model)	38
Figure 10.5	Effect of model parameters on the optimum underfeed nip setting	
	(Jenkins and Murry model)	39
Figure 10.6	Effect of model parameters on the optimum ratio of underfeed roll speed	1
	to pressure feeder roll speed (new empirical model)	41
Figure 10.7	Typical effect of fibre content on Murry's feed speed ratio (new empiric	al
	model)	42
Figure 10.8	Stresses in the feed direction for a typical pressure feeder (in Pa)24	44
Figure 10.9	Stresses in the feed direction for a pressure feeder without a bottom	
	pressure feeder roll (in Pa)24	45
Figure 10.10	The effect of the ratio of the underfeed roll speed to the pressure feeder	
	speed on Murry's feed speed ratio	47

xxii

Figure 10.11	The ratio of the tangential pressure to the normal pressure on the	
	underfeed roll for different ratios of the underfeed roll speed to the	
	pressure feeder speed	. 248

Symbols

A	Cross-sectional area
A_T	Total cross-sectional area
C_0	Compression ratio
D	Mean roll diameter
D'	Outside roll diameter
D_i	Inside diameter
D_p	Pressure feeder roll mean diameter
D_p'	Pressure feeder roll outside diameter
Ε	Effectiveness
F	Total frictional force
F	Yield surface
F_F	Tangential force component
F_H	Horizontal force component
F_N	Normal force component
F_V	Vertical force component
F_{b0}	Initial force at bottom of sample
F_c	Cap yield surface
F_s	Shear yield surface
F_{t0}	Initial force at top of sample
G	Plastic potential surface
\hat{G}	Shear modulus
G_c	Cap plastic potential surface
G_p	Pressure feeder torque
G_s	Shear plastic potential surface
G_u	Underfeed roll torque
Н	Height of a strip of bagasse in the feed chute

H_1	Height of bagasse in the feed chute
H_2	Total height of feed chute
Κ	Bulk modulus
K_0	Ratio of transverse to axial pressure
L	Roll length
М	Slope of the critical state line
Р	Pressure of fluid
P_a	Bagasse feed pressure
P_b	Pressure in bagasse
P_d	Bagasse pressure in feed chute
P_{dH1}	Bagasse pressure in feed chute at height H_1
P_{do}	Bagasse pressure at the feed chute exit
P_{sp}	Hydraulic pressure on pressure feeder drive
P_{su}	Hydraulic pressure on underfeed roll drive
p_t	Intercept of shear surface on p axis
p_t^{e}	Elastic tensile limit
$P_{\nu\theta}$	Vertical pressure in bagasse at an angle θ from the nip
Q	Total mass rate
Q_c	Cane rate
Q_{cf}	Cane fibre rate
Q_f	Fibre rate
Q_{f}^{*}	Theoretical maximum fibre rate for a pressure feeder
R	Cap eccentricity parameter
S	Roll surface speed (based on mean diameter)
S'	Roll surface speed (based on outside diameter)
S_F	Bagasse feed speed at entry plane
S_p	Top pressure feeder roll surface speed
S_p'	Top pressure feeder surface speed at outside diameter
U	Feed chute position offset
V	Volume
V_0	No-void volume

V_E	Escribed volume
V_g	Volume of solid
V_{v}	Volume of voids
W	Nip work opening
W_p	Pressure feeder nip work opening
W_s	Nip setting
W_{sp}	Pressure feeder nip setting
W _{su}	Underfeed nip setting
W_{su}^{*}	Underfeed nip setting for maximum throughput
W _{sua}	Underfeed nip setting relative to setting for maximum throughput
W _{sup}	Setting between underfeed roll and bottom pressure feeder roll
W_u	Underfeed nip work opening
Ζ	Level of cane preparation
а	Regression constant
b	Regression constant
c_i	Regression constants where <i>i</i> is a positive integer
d	Related to material cohesion
d_g	Roll groove depth
е	Void ratio
e_0	Void ratio at reference volume
f	Fibre fraction
f_c	Fibre fraction in cane
f_d	Fibre content of bagasse in feed chute (accounting for imbibition)
g	Acceleration due to gravity
h	Chute setting
h^{*}	Theoretical feed chute setting for maximum throughput of pressure
	feeder rolls
h_d	Feed chute setting
h_{do}	Feed chute exit setting
${h_{do}}^*$	Feed chute exit setting for maximum throughput
h_{doa}	Feed chute exit setting relative to setting for maximum throughput
k	Intrinsic permeability

Increasing the capacity of Australian raw sugar factory milling units

$k_i, i = 1, 2$	Permeability parameter
l	Length of bagasse mat
т	Mass
n	Porosity
n_R	Number of rolls in a milling train
р	Pressure stress
p_a	Pressure stress at maximum cap height
p_b	Hydrostatic compression yield strength
q	Deviator stress
r_M	Murry's feed speed ratio
t	Time
v_i , $i = x, y$ or z	Velocity component of fluid
W	Material coordinate
x	Cartesian coordinate
У	Cartesian coordinate
α	Contact angle (based on mean diameter)
lpha'	Contact angle (based on outside diameter)
$lpha_{do}'$	Contact angle between feed chute and rolls forming underfeed nip
β	Related to material angle of friction
\mathcal{E}_a	Axial strain component
$\varepsilon_{ij}, i, j = x, y \text{ or } z$	Strain component
\mathcal{E}_p	Volumetric strain
\mathcal{E}_q	Deviatoric strain
\mathcal{E}^{e}	Elastic strain
${oldsymbol {\mathcal E}}^p$	Plastic strain
γ	Compaction
γ_{lpha}	Compaction of bagasse at entry plane
Ya	Compaction in feed chute
Ydo	Compaction at the feed chute exit
η	Ratio of deviatoric to mean stress components

φ	Angle of nip
к	Logarithmic bulk modulus
λ	Hardening rule size parameter
λ_1	Hardening rule size parameter
μ	Coefficient of friction
μ'	Ratio of tangential force to normal force
μ_{v}	Absolute or dynamic viscosity
V	Poisson's ratio
θ	Angle
ρ	Bulk density
$ ho_{lpha}$	Bulk density at entry plane
$ ho_{f}$	Density of fibre
$ ho_{j}$	Density of juice
$ ho_{\scriptscriptstyle W}$	Density of fluid
σ_a	Axial stress component
σ_{ao}	Initial axial stress component
$\sigma_{ij}, i, j = x, y \text{ or } z$	Total stress component
$\sigma'_{ij}, i, j = x, y \text{ or } z$	Effective stress component
σ'_{zz0}	Initial axial effective stress component
ω	Roll angular velocity
Ψ	Chute angle
Ζ	Cartesian coordinate
Z ₀	Initial height