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5 Abstract 
 

Mathematics is central to science, technology, engineering and mathematics (STEM), which 

is a core agenda for many governments (Siemon, 2021). In Australia, calculus-based 

mathematics subjects are a prerequisite for STEM university courses. In Queensland, better 

and more diverse career opportunities are available to high school students who graduate with 

Mathematical Methods or Specialist Mathematics. However, the decline in student 

participation and the high dropout rate in calculus-based mathematics options in Australia 

(and consequently Queensland) has been a cause for concern for researchers and policy 

makers. The Australian Mathematical Sciences Institute [AMSI] (2022) report called for 

urgent action to address the declining trends. This doctoral study investigated trends in 

student enrolment in calculus-based mathematics in Queensland and mathematics teachers’ 

perceptions on planning and teaching resources that can support student participation. 

 

This study was conceptualised within a constructivist epistemology and has four phases. In 

Phase One, the study used quantitative data from the Queensland Curriculum and Assessment 

Authority (QCAA) to investigate the trends in enrolment of Year 11 and Year 12 students in 

calculus-based mathematics. The study went on to investigate (1) the effects of socio-

economic indices for areas (SEIFA) from the Australian Bureau of Statistics (ABS); (2) the 

schools’ index of community socio-educational advantage (ICSEA) values from the 

Australian Curriculum, Assessment and Reporting Authority (ACARA), and (3) the effect of 

schools’ transfer ratings from the Queensland Department of Education (DoE) on student 

enrolment in calculus-based mathematics. In Phase Two, the study investigated and 

developed a planning framework and associated pedagogical resources (procedural 

flowcharts and concept maps) to sequence content from the Australian Mathematics 

Curriculum (Years 7 to 10) to the Senior Queensland Mathematical Curriculum (Years 11 to 

12) [QCAA, 2018], using the Mathematical Methods Unit 1 on Functions that is taught in 

Year 11. In Phase Three, the study investigated teachers’ perceptions on the effectiveness of 

the planning framework and associated pedagogical resources in mathematics teaching. 

Sixteen purposefully sampled senior high school mathematics teachers participated in 

workshops and completed surveys that included Likert scaled and open-ended questions. 

Eight of these teachers were available for in-depth interviews. The quantitative data from the 

Likert scale items was analysed using descriptive statistics in Excel and thematic analysis 
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was used to analyse the qualitative data. In Phase Four, the study investigated how procedural 

flowcharts could support problem solving in the Mathematical Methods subject. Data for this 

final phase was obtained from an in-depth follow-up interview with a teacher and from 

student-generated artefacts. Analysis of the data was informed by the stages of problem 

solving (QCAA, 2018). 

 

There are four main findings from this study. First, the trends analysis showed a high dropout 

rate in calculus-based mathematics options as students progressed into their initial course/s of 

study. The trends also showed that the SEIFA indices, the ICSEA indices and the schools’ 

transfer ratings correlated positively with the student dropout rate. Second, the study 

developed a framework on content sequencing on how prior knowledge can be linked to new 

knowledge during mathematics planning. The step-by-step systematic sequencing of 

mathematics content using the framework can promote interlinking, coherence and spiralling 

of concepts between the Australian Mathematics Curriculum (Years 7 to 10) and the recently 

introduced Senior Queensland Mathematical Curriculum: Mathematical Methods. The study 

identified that, depending on the level of assumed prior knowledge and the skills that students 

can recall and apply, teachers can start teaching from any level of the sequenced content. 

Third, the study revealed that the use of the pedagogical resources developed during the study 

(procedural flowcharts and concept maps) can support students in mathematics because of 

their visual nature. In particular, the pedagogical resources can be used to represent key 

procedural and conceptual mathematics knowledge.  Additionally, procedural flowcharts can 

support student-centred teaching of mathematics procedures while concept maps can support 

the interconnection of mathematical concepts, consolidation and assessment of mathematics 

knowledge. Fourth, the study revealed that procedural flowcharts can support mathematics 

problem solving through organising and communicating the proposed problem solutions. 

 

One major outcome from this study is the development of the planning framework on content 

sequencing and associated pedagogical resources (procedural flowcharts and concept maps). 

The study suggests that using the framework on content sequencing can play an important 

role in planning and teaching new mathematical knowledge by building on prior 

mathematical knowledge. In the same way, procedural flowcharts and concepts maps can 

play a significant role in representing mathematical knowledge that can support teaching of 

mathematics. The study suggests that these tools can be adapted to all mathematics subjects 

and levels, can help identify relationships between lower-level and upper-level topics, 
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concepts and skills, can link the two levels and can provide opportunities of building and 

organising mathematical knowledge in familiar and unfamiliar contexts. 

 

This study emphasises that to address the high dropout rate and declining enrolment and to 

promote participation in calculus-based mathematics, system-wide professional learning is 

imperative to support teachers with content sequencing that can foster effective teaching of 

mathematics.  The content sequencing can be developed from prior knowledge and provide 

gradual knowledge development as students build from what they already know. Thus, the 

study advocates the use of concept maps and procedural flowcharts as visual representations 

of mathematics conceptual and procedural knowledge and recommends the use of procedural 

flowcharts to support problem-solving in mathematics. 
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Chapter 1: Introduction and Background 
 

1.1 Chapter Introduction 

Mathematics is central to Science Technology Engineering and Mathematics (STEM), 

which is a core agenda for most governments (Siemon, 2021). The ability to apply 

mathematics in real-life situations and make predictions is vital in STEM (Office of the 

Chief Scientist, 2012). Mathematics plays a central role in innovation, scientific, 

technological, economic and social knowledge development (Watt et al., 2017), making 

modern life heavily dependent on mathematics (Australian Academy of Science [AAS], 

2016).  Furthermore, mathematics is an enabler of innovation, scientific and technological 

development, all of which are considered prosperity drivers and central to jobs of the 

future (Black et al, 2021; Watt et al., 2017). In Australia, “innovation and digital 

technologies have the potential to increase Australia’s productivity and raise GDP by 

$136 billion in 2034, and create close to 540,000 jobs” (PwC, 2013, p. 13); hence, 

mathematics is pivotal in reshaping the future (Chubb, 2012). Australia needs graduates 

with advanced mathematics skills to promote science, innovation, engineering, data 

synthesis and technology if it is to remain competitive in the global scenario, and this 

study uses Queensland as a representative case. 

 

Enhancing students’ participation and achievement in advanced or calculus-based 

mathematics in schools is a focus of most governments all over the world (Noyes & 

Adkins, 2016; Treacy et al., 2020). As the Australian Council of Deans of Science (2006) 

noted, “Calculus-based mathematics school graduates are essential for a strong science, 

research and innovation capacity. The statistics at hand indicate that enrolment numbers 

are shrinking in these areas and students are instead electing to take elementary 

mathematics” (p. 2). Similarly, Australia’s former Chief Scientist, Professor Ian Chubb, 

has expressed concern about the lack of students studying higher levels of mathematics 

in the last two years of high school (The Guardian, 2014). In a report by the Education 

Council (2018), another former Australian Chief Scientist, Dr Alan Finkel, went further, 

pointing out that more students are choosing low-level mathematics at upper secondary 

school, but opt for STEM courses at university, although they would need advanced 

mathematics skills to graduate in such degrees. This was supported by the Australian 
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Mathematical Sciences Institute’s [AMSI](2021) 2020 report, which confirmed a shift by 

students from calculus-based mathematics subjects to basic mathematics. Importantly, 

another report by the AMSI (2022) raised an alarm that participation rates in calculus-

based mathematics have reached a critical point and called for action to be taken. These 

reports also suggest that teachers can support students’ participation in calculus-based 

mathematics if those teachers are supported and use research-informed resources, which 

is the focus of this study. 

 

1.2 Background to the Project 

The structure of high school mathematics across Australia offers two diverging pathways, 

one calculus-based and the other not (Maltas & Prescott, 2014). The senior mathematics 

subjects in Queensland schools between 2008 and 2019 comprised Mathematics B and C 

as calculus-based options and Mathematics A and Prevocational Mathematics as non-

calculus options. When the new curriculum was introduced in 2019, Mathematical 

Methods and Specialist Mathematics were offered as calculus-based options and General 

and Essential Mathematics as non-calculus options. Calculus-based options are regarded 

as advanced mathematics options because they play an enabling role for STEM careers, 

especially at tertiary level (Adelman et al., 2003; Carnevale et al., 2011; Long et al., 2012; 

Rasmussen et al., 2011).  Importantly, they offer broader and more diverse career 

opportunities for high school graduates. Thus, students’ participation in these options 

have implications for their future prosperity at both the personal and societal levels. To 

bring to light these implications in depth, this study investigated trends in students’ 

participation in calculus-based mathematics in Queensland. It also investigated 

mathematics teachers’ perceptions of planning, teaching and learning resources that could 

support students’ participation in calculus-based mathematics. 

 

Phase One of the study investigated trends in students’ participation in calculus-based 

mathematics in Queensland, in both the phased-out and recently introduced curricula. 

Trends are important as they can be considered the most basic indicator of educational 

progress. “In competing economies, they are often used as an index of educational 

strength and they are a strong predictor of the future educational achievement of a country” 

(Wilson & Mack, 2014, p. 35). Importantly, trends in students’ participation can help 
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evaluate progress and inform policy makers considering the huge expense involved in 

delivering education (Kelly, 2013). There has been significant but conflicting media 

coverage on student participation trends in advanced mathematics in Australia, which 

shows the public’s interest in the subject (Kennedy et al., 2014). However, the state of 

Queensland has been lagging behind other states such as New South Wales in terms of 

the literature on such trends (Jaremus et al., 2018). When the central role of advanced 

mathematics as enabler of several disciplines and key to success in STEM courses at 

university means that participation in it can be an indicator of national educational 

progress and workforce projections, student participation trends can be used to identify 

areas that need improvement.   

 

In Phase Two of this study, a planning framework and associated pedagogical resources 

(procedural flowcharts and concept maps) were investigated and developed for content 

sequencing from the Australian Mathematics Curriculum (Years 7 to 10) to the Senior 

Queensland Mathematical Curriculum (Years 11 to 12) [QCAA, 2018] focusing on the 

Mathematical Methods Unit 1 on Functions that are taught in Year 11. Several 

mathematics subjects are on offer at senior secondary level in Queensland; however, this 

study focused on Mathematical Methods, which is a calculus-based subject. In Phase 

Three, the study investigated mathematics teachers’ perceptions of the effectiveness of 

the planning framework and associated pedagogical resources. In Phase Four, the final 

phase, the study investigated how procedural flowcharts can support problem-solving 

skills in mathematics. Mathematics teachers are curriculum deliverers and thus their 

perceptions after applying planning, teaching and learning resources during teaching and 

learning to support students’ participation is of significant importance. “The primary 

focus of the classroom teacher is on the planning, preparation and teaching of programs 

to achieve specific student outcomes. The classroom teacher engages in critical reflection 

and inquiry in order to improve knowledge and skills to effectively engage students and 

improve their learning” (Victoria Department of Education and Training, 2017, p. 4). 

Similarly, according to the Australian Institute for Teaching and School Leadership 

(AITSL), teachers are expected to plan for and deliver effective teaching and learning 

(2011). The mathematics teachers’ feedback after using the resources developed in this 

study represents their views, observations and experience during teaching and learning.   
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1.3 Research Focus and Questions 

This study was conceptualised according to a constructivist epistemology. Constructivists 

believe that new knowledge is attained and tested when people purposefully interact to 

exchange ideas, beliefs, views, skills and experiences (Garbett, 2011; Taber, 2019). In 

fact, “knowledge is attained when people come together to exchange ideas, articulate their 

problems from their own perspectives, and construct meanings that make sense to them” 

(Gordon, 2008, p. 324). During knowledge development, learners compare the new ideas 

presented to them with their prior experience and ideas and during this process they may 

either reject the new knowledge if there is a contradiction or update their previous 

knowledge (Tomljenovic & Vorkapic, 2020). The filtering of new insights through the 

lens of prior experience helps to make sense of what is presented and thus makes learning 

an active process (Garbett, 2011). Therefore, the purposive and active interaction between 

the researcher and senior school mathematics teachers and the sharing of experiences, 

views, beliefs, observations and ideas were key in developing and evaluating the planning 

and teaching resources in this study.  

 

The focus of this study was not only to provide insight into the trends in students’ 

participation in calculus-based mathematics in Queensland but also to develop resources 

that could be used by teachers to support the teaching and learning of the subject.  

Therefore, the overarching research questions were:  

1. What are the trends in Queensland senior students’ enrolment in calculus-based 

mathematics subjects?  

2. What pedagogical resources support the planning, teaching and learning of 

Mathematical Methods for Queensland senior students? 

 

As stated earlier, this study was divided into four phases. Phase One of the study 

investigated the enrolment trends of Year 11 and 12 students in calculus-based 

mathematics. The research question addressed in this phase was: What are the trends in 

Queensland senior students’ enrolment in calculus-based mathematics subjects? An 

additional study was undertaken in this phase to provide further insights into the impact 

of other external factors such as socio-economic status and school location on student 
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enrolment in calculus-based mathematics. The sub-question addressed in the additional 

study was: What is the relationship between students’ enrolment in calculus-based 

mathematics in the new Queensland curriculum and school level indicators such as socio-

economic status, school location and transfer rating? 

 

Phase Two of the study investigated and developed a planning framework and associated 

pedagogical resources (procedural flowcharts and concept maps) for content sequencing 

from the Australian Mathematics Curriculum (Years 7 to 10) to the Senior Queensland 

Mathematical Curriculum (Years 11 to 12) [QCAA, 2018], using the Mathematical 

Methods Unit 1 on Functions that is taught in Year 11. This phase involved interacting 

with teachers to exchange ideas, experiences and collaboratively trial the teaching and 

learning resources. The sub-questions addressed in Phase Two were: 

• What framework for content sequencing can support transition from junior to 

senior mathematics? 

• What teaching and learning resources can support students’ participation in 

senior mathematics? 

 

Phase Three of the study investigated mathematics teachers’ perceptions of the 

effectiveness of the planning framework and associated pedagogical resources that were 

developed in Phase Two. The sub-questions addressed in this phase were: 

• What are teachers’ perceptions of a planning framework on content sequencing 

for the teaching and learning of mathematics? 

• What are senior secondary teachers’ perceptions of how concept maps support 

the teaching and learning of mathematics at senior secondary school? 

• What are senior secondary teachers’ perceptions of how procedural flowcharts 

support teaching and learning of procedural fluency in the Mathematical 

Methods subject? 

 

Phase Four of the study investigated use of procedural flowcharts in supporting problem-

solving in mathematics. The questions addressed in this phase were: 

• What are teachers’ perceptions of how procedural flowcharts support students’ 

problem-solving skills in the Mathematical Methods subject?  
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This study focuses on supporting the teaching and learning of mathematics. 

“Mathematics teaching and learning practices range from practising essential 

mathematical routines to developing procedural fluency, through to investigating 

scenarios, modelling the real world, solving problems and explaining reasoning” 

(QCAA, 2018 p. 1). Importantly, the study aims to support teachers with resources to 

develop students’ mathematics proficiencies which are understanding, fluency, problem 

solving and reasoning (ACARA, 2010). Supporting students in making connections 

between related concepts and progressively applying the familiar to develop new ideas 

is key in developing mathematical understanding (ACARA, 2010; QCAA, 2018). 

Moreover, when teachers provide students with the opportunity to develop the capacity 

to select appropriate procedures, and carry them out flexibly, accurately and efficiently, 

it can support fluency (ACARA, 2010; QCAA, 2018). Problem solving as a critical 21st 

century skill can be supported through enabling students to plan a solution to a problem 

through interpreting, formulating, modelling and investigating problem situations, and 

communicating solutions effectively (ACARA, 2010; QCAA, 2018). Furthermore, 

students are supported to develop reasoning skills when they explain their thinking, 

deduce and justify strategies that thy have used and conclusions that they have reached 

during problem solving. Similarly, QCAA identified building new knowledge from 

prior knowledge and the ability to represent mathematical knowledge from one form to 

another as vital for mathematical teaching and learning, which is also a major focus of 

this study.  

 

The teachers’ perceptions in this study are their observations, experiences and opinions 

after using the resources developed that were in the study. The extent and depth of the 

support that the resources offered teachers and students during teaching and learning of 

mathematics at senior secondary was key in understanding the significance of the 

resources and evaluating them. The perceptions sought from senior mathematics 

teachers in this study were centred on how the resources supported the teaching and 

learning environment and promoted students’ development of mathematics 

proficiencies. In summary, the perceptions allowed teachers to provide in-depth 

feedback on how they used the resources that were developed in this study to support 

students’ mathematical development during teaching and learning of mathematics at 

senior secondary level. 
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1.4 Significance of the Study 

This study investigated trends in Queensland students’ enrolment in calculus-based 

mathematics subjects. The findings are significant because they can be used to evaluate 

different programs, plan for the future and inform policy makers and interested groups. 

Identification of the latest trends allows comparisons to be made between Queensland 

and other states or jurisdictions in Australia. The main findings from the trends analysis 

are the high dropout rate and continued decline in students’ enrolment in calculus-based 

mathematics.  

 

This study makes a significant contribution to mathematics education through the 

development of a planning framework and associated pedagogical tools. The framework 

links junior to senior level mathematics content, with an emphasis on building new 

knowledge from prior knowledge. In Australia, the states and territories are responsible 

for developing the senior curriculum (Year 11 to 12) while the junior curriculum is 

developed by the federal government. Thus, the framework provides a crucial tool for 

linking the two curricula. In Queensland there are currently limited resources that teachers 

can use to link them and to develop a scope and sequence during planning. The framework 

is not limited to calculus-based mathematics subjects but can be applied to any other 

mathematics subjects to articulate the hierarchical nature of the discipline.  

 

Lastly, the study developed and explored pedagogical resources (concept maps and 

procedural flowcharts) that can support the teaching and learning of calculus-based 

mathematics. Concept maps were developed and explored to support the development of 

webs of concepts that link prior concepts to new concepts, thus emphasising the 

importance of developing new knowledge from prior knowledge. Furthermore, using 

concept maps in this way also support students’ conceptual knowledge, teacher 

consolidation and assessment of students’ mathematical knowledge. Procedural 

flowcharts were also developed to support students’ mathematics procedural fluency and 

these serendipitously played an important additional role in supporting mathematics 

problem-solving. Similar to the framework described above, these resources are not 

limited to use in calculus-based mathematics only but may be applied to mathematics in 

general.    
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1.5 Structure of the Thesis 

This thesis comprises 12 chapters. Chapter 2 reviews trends and factors influencing 

students’ enrolment in calculus-based mathematics, planning for mathematics teaching 

and learning, mathematical representations and how representations support problem 

solving. Furthermore, the chapter reviews constructivism as a learning theory in 

mathematics education and argues that although constructivism is strongly encouraged in 

mathematics teaching and learning, cognitivism and behaviourism can also enrich the 

learning environment. The chapter goes on to discuss these approaches and their impact 

on instruction at the senior secondary level. These three learning theories are discussed 

in Chapter 2 in order to explore areas where the resources can complement different 

instructional models.  

 

Chapter 3 outlines the theoretical framework for the study along with the methodology, 

research design, data collection and analysis procedures. Chapter 4 analyses the trends in 

Year 11 and Year 12 students’ enrolment in mathematics subjects from 2010 to 2019, 

using data from the Queensland Curriculum and Assessment Authority (QCAA). This 

analysis focuses on the phased-out Queensland senior certificate mathematics subjects 

and was published in the journal PRISM: Casting New Light on Learning, Theory and 

Practice, 2022. The Chapter 5 analyses the impact of social and economic factors on 

trends in students’ enrolment in calculus-based mathematics in the new Queensland 

Certificate in Education (QCE) from 2019 to 2020. This work was published as a research 

paper in the conference proceedings of the International Conference of Education in 

Mathematics, Science and Technology, Antalya; Turkey 24 - 27 March 2022. 

Chapter 6 argues for effective sequencing of mathematics content from junior (Years 7 

to 10) to senior-level (Years 11 and 12) concepts and introduces a framework for 

(re)conceptualising and sequencing the mathematics content. Unit 1 on Functions in the 

Mathematical Methods subject is used as an example to demonstrate the framework. 

This chapter was published in the Eurasia Journal of Mathematics, Science and 

Technology Education, 2022.  

 

https://openjournals.ljmu.ac.uk/index.php/prism/article/view/446
https://openjournals.ljmu.ac.uk/index.php/prism/article/view/446
https://researchonline.jcu.edu.au/76298/
https://researchonline.jcu.edu.au/76298/
https://www.ejmste.com/download/a-framework-for-content-sequencing-from-junior-to-senior-mathematics-curriculum-11930.pdf
https://www.ejmste.com/download/a-framework-for-content-sequencing-from-junior-to-senior-mathematics-curriculum-11930.pdf
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Chapter 7 investigates teachers’ perceptions of the utility of the content sequencing 

framework developed in the previous chapter after they had used the framework in the 

planning, teaching and learning of mathematics in Queensland, Australia. This chapter 

was published in the Eurasia Journal of Mathematics, Science and Technology 

Education (EJMSTE). 

  

The following two chapters focus on teachers’ perceptions of the pedagogical resources 

that were developed as part of this research, namely, the concept maps and the 

procedural flowcharts. Chapter 8 explores teachers’ perceptions on the utility of concept 

maps as a resource to link junior (Years 7 to 10) concepts to senior (Year 11 and 12) 

concepts and how they support the teaching and learning of conceptual knowledge in 

senior secondary mathematics. This chapter has been published in the International 

journal of innovation in science and mathematics education (IJISME). 

 

Chapter 9 discusses mathematics teachers’ perceptions of the utility of procedural 

flowcharts for developing procedural fluency and supporting student-centred teaching 

and learning of mathematics. This chapter was published as a paper in the conference 

proceedings for MERGA 44, 2022. 

 

Chapter 10 examines how procedural flowcharts can support problem-solving in 

Mathematical Methods which is a senior secondary calculus-based mathematics subject. 

This chapter is under review in the Mathematics Education Research Journal (MERJ).  

 

Chapter 11 is a synthesis of the overall findings, starting with the analysis of student 

enrolment trends in calculus-based mathematics and thus highlights the main research 

problem. The rest of the discussion focuses on teachers’ perceptions on how the 

pedagogical resources that were developed in this study can support teaching and learning 

of calculus-based mathematics to address the high dropout rates and declining enrolments 

in this discipline. Finally, Chapter 12 presents the conclusions along with the implications 

for the teaching of calculus-based mathematics.   

https://www.ejmste.com/article/teachers-perceptions-of-the-effectiveness-of-a-planning-framework-on-content-sequencing-for-the-13108
https://www.ejmste.com/article/teachers-perceptions-of-the-effectiveness-of-a-planning-framework-on-content-sequencing-for-the-13108
https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.30722%2FIJISME.31.01.003&data=05%7C01%7Cdavid.chinofunga%40my.jcu.edu.au%7Ce83587e109474984bd2f08db7697464e%7C2eba4cf8af764db3bcaf81b5592535ef%7C0%7C0%7C638234164322588590%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=qmO8NBWkKKZR9lN%2BxLgojHrgaxoqmVfghIMe2qI7kaU%3D&reserved=0
https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.30722%2FIJISME.31.01.003&data=05%7C01%7Cdavid.chinofunga%40my.jcu.edu.au%7Ce83587e109474984bd2f08db7697464e%7C2eba4cf8af764db3bcaf81b5592535ef%7C0%7C0%7C638234164322588590%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=qmO8NBWkKKZR9lN%2BxLgojHrgaxoqmVfghIMe2qI7kaU%3D&reserved=0
https://merga.net.au/common/Uploaded%20files/Annual%20Conference%20Proceedings/2022%20Annual%20Conference%20Proceedings/Research%20Papers/Chinofunga%20RP%20MERGA44%202022.pdf
https://merga.net.au/common/Uploaded%20files/Annual%20Conference%20Proceedings/2022%20Annual%20Conference%20Proceedings/Research%20Papers/Chinofunga%20RP%20MERGA44%202022.pdf
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Chapter 2: Literature Review 
 

2.1 Introduction  
This chapter begins with a brief discussion of the importance of calculus-based 

mathematics in senior high school and its role in future career opportunities. It then goes 

on to review the trends and factors that influence students’ enrolment in calculus-based 

mathematics. A discussion of the research on recommendations to support student 

enrolment in calculus-based mathematics follows. The role of the mathematics teacher 

emerges as highly influential in student participation. An effective mathematics teacher 

not only possesses requisite subject content knowledge but also needs a thorough 

understanding of methods and skills to effectively deliver the content, known as 

pedagogical content knowledge. Furthermore, pedagogy that is collaboratively planned 

and underpinned by appropriate learning theories has important implications for 

mathematics teaching and learning. This leads into a review of the role of collaborative 

planning and learning theories in the teaching and learning of mathematics. Finally, 

specific pedagogical resources such as mathematical representations and their role in 

supporting problem solving are explored. 

 

2.2 Importance of Senior Secondary Advanced (Calculus-based) Mathematics 
High school advanced mathematics has been labelled as a critical filter of future 

opportunities (Watt et al., 2017). Across the world student enrolment in advanced 

mathematics have been a focus of researchers (Kennedy, 2014; Hine, 2019; Hodgen, 

2010; Noyes & Adkins, 2016) as the benefits of enrolling in the subjects go beyond 

personal prosperity (Adkins & Noyes, 2016; Gijsbers et al., 2020). In Australia and 

Queensland, in particular, advanced mathematics subjects are the preferred prerequisites 

for high impact mathematics intensive programs such as engineering and medicine.  

Furthermore, advanced mathematics plays an important role in the economic growth, 

research and innovation, and the general competitiveness of a country. Advanced 

mathematics subjects are generally those that enable students to further their 

participation in Science, Technology, Engineering, and Mathematics (STEM) fields 

(Wilkie & Tan, 2019) as well as develop students’ logical thinking and reasoning skills 

which are 21st century skills (Attridge & Inglis, 2013; O’Meara et al., 2023). Wolf 

(2002) notes that studying advanced mathematics at senior secondary level positively 
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influences future earnings. Advanced mathematics offers interdisciplinary skills needed 

to be successful in other mathematics related courses (Kennedy et al 2014; Ker, 2013). 

Moreover, its key enabling role in STEM helps to develop a scientifically literate 

workforce (Chinnappan et al., 2007; Maass et al., 2019). 

 

In Australia, advanced level mathematics subjects can be referred to as calculus-based 

mathematics subjects and are now regarded as an ‘endangered species’ (Maltas and 

Prescott, 2014) because many senior students are avoiding them (Wienk & O’Connor 

2020). Determining trends in students’ participation in calculus-based mathematics at 

senior secondary levels in Australia has been a focus for researchers for a long time (see 

Malone et al., 1993; Dekkers & Malone, 2000; Forgasz, 2006; Kennedy, 2014; Hine, 

2019; Jennings, 2022). McPhan et al., (2008) suggest that these trends can inform a 

country on its preparedness to supply the Science, Technology, Engineering and 

Mathematics sectors with students possessing the necessary prerequisites and can be 

used to evaluate the future economic competitiveness of Australia in the technologically 

advancing world. Although different factors that influence student enrolment and 

participation in advanced mathematics have been identified by researchers (Hine, 2019; 

Kirkham et al., 2020; McPhan et al., 2008), limited resources have been developed for 

teachers to support student participation. Thus, investigating the participation trends in 

calculus-based mathematics can provide valuable insight into what factors influence the 

trends as well as identify areas that need intervention. 

 

2.3 Factors that influence student participation in calculus-based mathematics at 
senior secondary. 
Researchers have identified an assortment of personal, educational, social, economic 

and demographical reasons that impact student participation in calculus-based 

mathematics. Generally, students are influenced by low levels of perceived competence 

in mathematics (Nagy et al., 2010; Kirkham et al., 2020; Sikora & Pitt 2019); students’ 

dissatisfaction with Mathematics (Hine, 2019); prior experiences of mathematics (Li 

2019; Ng, 2021; Fullarton & Ainley 2000; McPhan et al. 2008) perceived level of 

difficulty of the subject (Hine, 2019), parents, siblings and teacher influence (Jennings, 

2022; Kirkham et al., 2020) and the excessive amount of time that the subject requires 

in order to succeed (Jaremus et al. 2019; Kirkham et al., 2020; McPhan et al. 2008).  
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In addition, most Australian universities have removed Mathematics as a prerequisite 

for many courses and instead offer bridging courses resulting in students regarding 

calculus-based mathematics as unnecessary as they can catch up after senior secondary 

school (Hine 2023). Importantly, students aim to achieve a high Australian Tertiary 

Admission Rank (ATAR) score to be accepted in highly sought-after courses so 

avoiding calculus-based mathematics gives them a better chance to achieve a high score 

(Kirkham, 2020). Thus, students with good prior results in calculus-based mathematics 

choose to opt out of these subjects because they perceive them as possible threats to 

achieving a high ATAR at senior secondary school. Furthermore, many students pursue 

some undergraduate programs without the requisite mathematical knowledge required 

to be successful in the courses (Nicholas et al., 2015). However, students who enter 

university to pursue mathematics intensive courses without required mathematics 

knowledge and skills have a low attainment rate (Jennings, 2011).  

 

Research indicates that the most common reason that students opt out of advanced 

mathematics is the perceived level of difficulty of the subjects (see Brown et al., 2008; 

Hine, 2019; Kirkham et al, 2020; McPhan et al., 2008; O’Meara et al, 2020). Students 

hold the perception that there is a level when mathematics starts to be difficult, for 

example as they transition from junior to senior secondary school (Brown et al., 2008). 

Similarly, students feel calculus-based mathematics is too challenging and the 

knowledge and skills they have is not adequate as they perceive themselves not to be 

“really smart” (Hine 2019, 2023). However, a recent study by Jennings (2022) noted 

that students in Queensland do not consider their ability and skills as a factor in 

choosing a mathematics subject at senior secondary level but rather the usefulness of the 

subject post-secondary. This is important because students choosing subjects based on 

future interests may result in diverse ability groups of students in the different 

mathematics options which might put pressure on the teacher on how to best engage the 

students during teaching.  

 

Students’ perceptions point to the notion that if they did not understand some junior 

mathematics concepts well, then they would not understand senior advanced 
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mathematics, hence there was no need to pursue such options (Brown et al., 2008). 

Additionally, lack of an engaging and challenging pedagogy may lead to students 

choosing not to pursue mathematics subjects perceived as difficult (Goss, 2010). Some 

students also identified that they experienced poor teaching of mathematics and as a 

result they lost interest in the subject Easey (2019). Easey went further to note that the 

teaching of students by out-of-field teachers at junior level might contribute to students 

not choosing advanced mathematics at senior secondary level. Whilst Brown et al., 

(2008) posit that students feel they need to have obtained high grades at junior level for 

them to do well in advanced mathematics at senior level. Conversely, Mujtaba and 

colleagues (2014) find no relationship between prior attainment and the decision to 

pursue senior advanced mathematics. This finding is also true for Queensland (Jennings, 

2022). Thus, senior Advanced Mathematics classes consist of students with diverse 

mathematics experiences which may influence their perception of the subject. 

 

The economic and social variability of a nation is significantly influenced by the extent 

to which students from diverse backgrounds (that include educational, economic, 

linguistic, cultural, racial) are empowered to sustain their aspirations in mathematics 

(Ng, 2019). Ng (2019) emphasised that in Australia students from socially, 

economically and educationally disadvantaged backgrounds are overrepresented among 

those who obtain poor results in national and international benchmark assessments. 

Similarly, schools in regional and remote areas are highly impacted by the decline in 

student enrolment in calculus-based mathematics compared to metropolitan schools 

(Lynos et al., 2006). They went further to note that schools in regional areas are twice as 

likely, and those in remote areas are six times as likely as their metropolitan colleagues 

to report high annual staff turnover rates in mathematics. Furthermore, most schools in 

non-metropolitan areas resort to composite classes because of shortage of teachers, for 

example, combining Year 11 and 12 Mathematical Methods classes. Lynos and 

colleagues posit that the majority of teachers of Mathematics outside metropolitan areas 

indicated a significantly higher unmet need for teaching and learning resources that can 

cater for student diversity and ability levels. Consequently, at university level, students 

from rural and remote areas are underrepresented in mathematics intensive programs 

(Thomson & De Bortoli, 2008). The following section considers some 
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recommendations to support student enrolment and participation in calculus-based 

mathematics. 

  

2.4 Recommendations to support student enrolment and participation in calculus-
based mathematics 
To increase student enrolment, research has recommended providing incentives to 

students in the form of bonus points (Hine, 2023; O’Meara et al., 2020, 2023) and 

engaging with mathematics extra-curricular activities (Mujtaba et al., 2010). Other 

researchers suggest that universities should have unambiguous prerequisites for courses 

that are mathematics intensive (Maltas & Prescott, 2014; McPhan et al., 2008) and seek 

new and effective ways to deliver information of the importance of Advanced 

Mathematics at an earlier age (Kaleva et al., 2019). Of key importance to my study is a 

call by Mujtaba and colleagues (2014) for support to be provided to in-service teachers 

to meet the demand for high quality mathematics teachers if participation in Advanced 

Mathematics is to be boosted. This is because access to mathematics resources for 

teachers has important implications for their classroom practice which in turn can 

influence student participation (Mujtaba et al., 2010).  

 

Research shows that there is no greater influence on student participation and 

achievement than the teacher (Stronge, 2013). Although there are many factors that can 

affect student achievement - choices, learning, attitudes and beliefs - an effective 

teacher is the greatest asset in making a positive difference (Hattie, 2012). For example, 

Hattie argues that an expert teacher can identify the best and most effective ways in 

which to represent the subject they teach. Teaching effectiveness is the single most 

important school related factor influencing student engagement, experiences, and 

achievement (Hattie 2013; Leigh, 2010; Rivkin et al., 2005; Rowe, 2003). To clarify, it 

is what teachers know and do that has the greatest influence on students’ learning and 

achievement (Hattie, 2003). “The nature of classroom mathematics teaching 

significantly affects the nature and level of students’ participation” (Hiebert & Grouws, 

2007 p. 371). In mathematics, teachers can be effective by focusing on building upon 

what students know, employing different forms of representations, making connections, 

building procedural fluency and fostering communication (Sullivan, 2011).  
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Similarly, developing teacher capacity in teaching mathematics is identified as one of 

the key strategies to increase student participation in Advanced Mathematics. Hine 

(2018) posits that there is a need to develop teaching and learning practices that support 

the mathematics curriculum. Quality teachers supported by appropriate resources are a 

significant factor that can assist in the teaching of mathematics and thus have a positive 

impact on student achievement (Hoyles, 2009). Ngu (2019) notes that a significant 

number of socially and economically disadvantaged students are motivated to pursue 

Advanced Mathematics and it is important for teachers to develop pedagogical practices 

to sustain the students’ motivation and aspirations to learn advanced mathematics. 

Maltas and Prescott (2014) recommend the development of teachers’ resources that they 

can use to support student engagement in calculus-based mathematics if Australia is to 

increase enrolment in the subjects. Outside of the Australian context, a review 

conducted by Smith (2017) of the status of mathematics education at senior secondary 

level in England, recommends the need to support senior mathematics teachers in their 

teaching through professional development and research informed resources.  

 

Lynos and colleagues (2006) also suggest that research informed resources and 

strategies can support teachers in schools outside metropolitan areas thus having a 

positive impact on student participation in Advanced Mathematics. Importantly, Murray 

(2011) notes that students emphasised mathematics teaching should concentrate more 

on ways that can help students understand mathematics at every level. Additionally, the 

focus should not only be linked to boosting enrolment but retaining students in the 

subjects. 

 

Retention of students in calculus-based mathematics should be a focus for all 

stakeholders (Rasmussen & Ellis, 2013). “Instructional variables such as actively 

engaging students, having students explain their reasoning, etc. may make a difference 

in retaining STEM majors” Rasmussen & Ellis, 2013 p. 463). Students who are less 

engaged in mathematics at lower levels are more likely to drop out from Advanced 

Mathematics subjects at upper levels (Ellis et al., 2014). There is a high chance of 

dropping out of the subject when students are not confident that the skills that they 
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obtained from lower levels are adequate for them to engage meaningfully with content 

at the higher level (Rasmussen & Ellis, 2013).  It is important for teachers to build new 

knowledge from prior knowledge to support students’ understanding of mathematics. 

Therefore, sequencing concepts in a manner that allows students to use their prior 

knowledge to make sense of new knowledge has important implications for 

mathematics teaching and learning. Collaborative planning can support teachers in such 

sequencing. The following section discusses the role of planning in mathematics 

teaching. 

 

2.5 Role of planning in mathematics teaching. 
The planning and teaching of mathematics is complex as teachers are faced with ever-

increasing demands to cater for students’ cognitive diversity, and supporting students’ 

engagement and understanding (Davidson, 2019; Sullivan et al; 2013). Teachers 

consider planning as the core of teaching (Akyuz et al., 2013), therefore planning is a 

fundamental step in the mathematics teaching cycle (Davidson, 2019). However, 

planning is a broad activity and much of the focus has been on the time teachers spend 

preparing and designing activities for students (Superfine, 2008). But when teachers 

know and plan what they hope students will learn, they are better placed to support 

them in the learning process (Sullivan et al., 2012). The sequence of knowledge and 

skills fostered by a teacher during planning influences student engagement and learning 

in mathematics (Kilpatrick et a., 2001). However, there is limited research on how to 

support teachers during planning in developing mathematics content sequencing that 

can support teaching and student engagement (Roche et al., 2014). 

 

Prior research on content sequencing indicates that this process has many benefits in 

teaching and learning of mathematics. Identifying prerequisite concepts that underpin 

new knowledge supports instruction planning (Panasuk et al., 2002). To clarify, 

sequencing of content in a unit is more than ordering content but is informed by the 

relationships and connections between the concepts, and the deeper understanding that 

the sequence allows students to access (Howard & Hill, 2020).  

“The curriculum in many subjects is dependent on a deliberate approach to the 

sequencing of concepts because one concept often relies on the understanding of 

what has come previously and what will come next. Effective sequencing 
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provides a way of embellishing and unifying what may otherwise seem like 

disconnected fragments of knowledge” (Howard & Hill, 2020, p. 3). 

They went further to posit that sequencing content requires a systematic, streamlined 

approach to explicitly demonstrate connections between what has been learnt and what 

is to come next so that these connections strengthen students’ cognitive architecture, 

rather than act as an extraneous distraction. Given the above, content sequencing during 

planning plays an important role in mathematics teaching.   

 

Mathematics teachers are responsible for selecting and sequencing mathematics tasks, 

responding to students’ misconceptions, catering for the cognitive diversity of students, 

engaging students, using different representations of mathematics in their teaching and 

determining learning progressions. Therefore, it is critically important to support 

teachers in the planning and teaching process if effective teaching is to be realised 

(Galant, 2013; Roche et al., 2014).  “Learning progressions mean an evidence-based 

sequence of key concepts in mathematics, supported by suggested approaches to 

learning and teaching that are tailored to different stages of the sequence” (Callingham 

et al., 2021, p. 334). Teaching that starts from prior knowledge can address 

preconceptions which might interfere with learning new content (Hodgen et al., 2018; 

McGoven & Tall, 2010). When students are constructing new knowledge, the form in 

which prerequisite concepts are presented affect how the new knowledge is constructed 

(Panasuk et al., 2002). Importantly, Australian mathematics teachers are expected to 

plan mathematics sequences that promote student engagement, flexibility, creativity and 

problem solving to develop deeper understanding (Davidson, 2019). Davidson went 

further to note that mathematics teachers in Australia are expected to plan (and teach) 

mathematical sequences and experiences that encourage students to think flexibly and 

creatively about concepts to allow them to develop “big picture” thinking. Thus, content 

sequencing is a key first step when planning for mathematics teaching. Additionally, 

use of pedagogical resources to support student engagement, flexibility, creativity and 

problem solving is essential for deep understanding.   

 

Mathematics teaching should focus on providing students with opportunities to engage, 

reflect and demonstrate understanding. Teaching that allows students to reflect, build 
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upon, transform and restructure their prior knowledge support the development of 

mathematics competences (Donovan & Bransford, 2005). Emphasising meaningful 

relationships between concepts and prompting students to search for connections 

provide better opportunities for student understanding and achievement (Panasuk et al., 

2002). Teachers should plan for time and support for students to make mathematical 

connections (Davidson, 2019). In fact, when teaching for understanding, students 

should be supported and given time to explore, make connections, build meaning and 

understanding (Black, 2007; Davidson, 2019). Similarly, the ability to recognise 

interconnections between mathematics concepts and to develop different representations 

of mathematics concepts demonstrates a deeper level of mathematics understanding 

(Galant, 2013). During teaching for understanding, visual representations can be used as 

tools for manipulation and communication and conceptual understanding of 

mathematical ideas (Zazkis & Liljedahl, 2004). Similarly, research indicates that 

teachers who develop and organise content knowledge in an integrated manner are 

positioned to be expert teachers (Hattie, 2012). Additionally, mathematics teachers have 

to appreciate the importance of learning theories in informing practice in educational 

settings. This is discussed at greater length in following section. 

 

2.6 Importance of Learning Theories in Mathematics Education. 
Learning theories may contribute immensely to the current learning environment 

through offering solutions (Ertmer & Newby, 2013). Knowledge of learning theories 

allows practitioners to understand and know when to apply these theories to encourage 

student participation (Ertmer & Newby, 2013; Garbett, 2011). Theories of learning and 

instruction in mathematics education are tools for either transmitting knowledge to 

learners or directing them to construct their own knowledge (Cobb, 1988). However, 

calls for more student participation opportunities during learning have been amplified 

(NCTM, 2000) if learning outcomes are to improve (Eronen & Kärnä, 2018), if students 

are to appreciate the value, relevance and importance of mathematics (Riegle-Crumb et 

al., 2019) and to enjoy learning mathematics (Noyes, 2012). Thus, the contribution of 

learning theories to shaping classroom practice and supporting students’ participation is 

at the centre of effective teaching and learning of mathematics. Constructivism has 

emerged as the most advocated learning theory in mathematics education because it is 

student-centred (Confrey & Kazak, 2006). 
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2.7 Constructivism 
Constructivism emerged as a learning theory when scholars started realising the limits 

of the notion that “knowledge is independent of the knower” and began advocating for 

problem posing and interconnection of ideas (Glasersfeld, 1995). Bruner, Dewey, Piaget 

and Vygotsky are credited as the main scholars who laid the foundation of 

constructivism (Kumar, 2006; Bada & Olusegun; 2015). The pillars of constructivism 

include Piaget’s (1953) views on how learners construct knowledge, Bruner’s (1973) 

cognitive structures, Dewey’s inquiry learning (real-world problems) and Vygotsky’s 

social view of acquiring learning (Brau, 2018; Perkins 1992).  Although there are many 

different types of constructivism, it can be broadly divided into mainly two; cognitive 

(individual) and social constructivism (Powell & Kalina, 2009, Stewart, 2021). 

 

2.7.1 Cognitive and Social Constructivism 
Constructivism broadly focuses on how knowledge is constructed or how people 

acquire knowledge and learn. Specifically, cognitive constructivism was developed by 

Piaget (1953) who focused on individual construction of knowledge through a personal 

process. According to Piaget, the knowledge people interact with is added to schemas of 

prior knowledge wherein learners construct knowledge only in their minds (Alanazi, 

2016; Stewart, 2021). The schemas are developed through the process of assimilation 

and accommodation (Powell & Kalina, 2009). Piaget (1953) noted that humans cannot 

be given information, which they immediately understand and use; instead, humans 

must construct their own individual knowledge.  

 

In contrast, social constructivism is when knowledge is constructed through interaction 

in a social setting (Powell & Kalina, 2009). Vygotsky is regarded as one of the main 

proponents of social constructivism when he questioned Piaget’s views that focused 

mainly on cognitive development as an individual and not as a collaborative process 

(Martinez, 2010). Vygotsky went from focusing on the internal processes of learning 

that Piaget focused on to include external forces such as society and the environment 

(Alazani, 2016). Social constructivists believe reality is constructed through interaction 

in a social setting, and knowledge is socially and culturally constructed as people 

interact with each other and the environment they live in, while learning is a social 



Supporting the teaching of calculus-based senior mathematics in Queensland. 

20 
 

process that occurs when learners engage in social activities (Kim, 2001). What makes 

constructivism unique and appealing is the understanding that students have a greater 

contribution in the learning process compared to teacher-centred learning theories. 

    

2.7.2 Learning informed by constructivism 
Constructivists view learning as a process of constructing new knowledge from 

learners’ (or students’) beliefs, skills and prior experience; as a result, learners are 

simultaneously creators of knowledge (Garbett, 2011; Bruning et al., 2004). 

Constructivism is generally regarded as a theory of learning or meaning making, that 

emphasises individuals creating new knowledge on the basis of the interaction between 

prior knowledge, beliefs, ideas and any new knowledge with which they come into 

contact (Richardson, 2003). This means that, learners’ beliefs, skills, experiences and 

attitudes are an important factor in their learning (Agarkar, 2019), as they test the 

viability of anything new presented to them (Bodner et al., 2001). 

 

The knowledge learners have about any subject (phenomenon) of interest is determined 

by their experiences (Ertmer & Newby, 2013). Learners’ prior understanding is central 

to their understanding of new concepts, while for educators it directs design and 

implementation of learning instructions (Simon, 1995). Constructivism is a learning 

theory that is based on the premise that learning is the result of mental construction 

where new knowledge is examined through what someone already knows (Dennick, 

2016). Similarly, in constructivism, knowledge is constructed based on the existing 

knowledge in learners’ minds (Hmelo-Silver et al., 2007). The prior knowledge that 

each learner holds based on their unique experiences helps them to develop meaning of 

the world and construct representations, therefore each learner’s construct is unique 

(Begg, 1999). Thus, learners come to learning with knowledge from their prior 

experience, which forms the foundation of any future learning.  

 

In constructivism, learning is about creating knowledge rather than just receiving, 

understanding and applying it, recalling, thinking about and examining it or just 

gathering and memorising it (Gordon, 2008). When students are exposed to new 

knowledge, their minds filter it and create their own meaning based on their prior 
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experience, ideas and attitudes (Agarkar, 2019). When the mind has evaluated the new 

phenomenon, it may either accept it and alter the existing knowledge or discard it as 

peripheral or unrelated; thus, learners constantly update their knowledge as they engage 

with new experiences (Bada & Olusegun, 2015). According to Brau (2018), the central 

role of learners is to reflect on their prior experiences and consider variables that might 

limit the assimilation of new knowledge. When they do need to accommodate new 

knowledge, “this cognitive reconstruction is called reflective abstraction, as it involves 

reflecting the existing cognitive structures to a higher plane of thought and applying 

these structures to new stimuli” (Faulkenberry & Faulkenbury, 2006, p. 18). As a result, 

content should be presented in a spiral form so that new knowledge is built upon what 

learners already know (Bruner, 1973). Thus, constructivism involves applying, testing, 

reflection, evaluation, drawing conclusions from findings and linking new knowledge 

with prior knowledge.  

 

Glasersfeld (1995) notes that as learners link new knowledge to prior knowledge, they 

build conceptual understanding and emphasises that “concepts cannot simply be 

transferred from teachers to students – they have to be conceived” (p. 2). As a result, 

drilling students to answer standard questions does not result in competence when 

responding to unfamiliar questions. Constructivists focus instead on the learners’ 

knowledge construction processes and how knowledge is acquired. Knowledge is 

constructed not just through remembering facts or perceived universal truths but as a 

process of sense making (Hein, 1991). In constructivism learners are at the centre of 

knowledge creation because they are actively involved in the learning process. 

 

Learners are active participants in their learning as they interpret the meaning of new 

knowledge and reference it to prior experience (Garbett, 2011). Guided by the teacher, 

learners create knowledge actively, rather than acquiring it passively from the teacher or 

any other medium (Ertmer & Newby, 2013). Constructivists assert that learners 

construct knowledge rather than acquire new knowledge; therefore, learning is an active 

process throughout the learners’ experiences and the environment in which they are 

learning (Alanazi, 2016). Constructivism emphasises active learner participation and 

engagement with content which in turn promotes attentiveness and effective learning 

(Hyslop-Margison & Strobel, 2007).  Hyslop-Margison and Strobel nonetheless posited 
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that a teacher’s role remains critical and unrivalled, as learners depend on their 

guidance, feedback and support in creating and enabling an environment that promotes 

knowledge creation. Constructivists emphasise that learners must be active participants 

in the learning process and a teacher’s role involves facilitation of learning (Fernando & 

Marikar, 2017).  Interactions in the learning environment within a constructivist setting 

is central to knowledge development. 

 

Knowledge, meaning and understanding are developed collaboratively by learners as 

they interact among themselves and with their environment; thus, learning is also a 

social process (Kim, 2001). At the same time, Ertmer and Newby (2013) see learners as 

unique individuals and how they interact among themselves and with learning resources 

and educators is at the centre of constructivism. Within a social setting, learners have to 

relate with a problem for them to make sense of it and construct knowledge (Roth, 

2000). Roth went further to posit that when learners collaborate, that is, when reality 

and knowledge are socially constructed, the learning is a social process. Constructivists 

emphasise that focus should be on learners and on creating collaborative, interactive 

environments (Alanazi, 2016). However, Ertmer & Newby note that in the social 

process, guidance can come from the educator and/or capable peers as they collaborate, 

which results in skills exchange and deeper understanding. 

 

Vygotsky looked at learning as a collaborative process, thus introducing the social 

aspect of constructivism. The social environment plays an important role in knowledge 

construction as learners may test each other’s knowledge and provide alternative views, 

thereby questioning the viability of existing knowledge (Thomas et al., 2014). The 

interaction between learners and an adult or more advanced peers is necessary for 

knowledge construction and development and it requires the active involvement of all 

participants (Begg, 1999). Thus, a teacher can intentionally nurture and teach children 

only in collaboration with them. The process requires the teacher to move ahead of 

development into what Vygotsky called a zone of proximal development (Howe, 1996).  

 



Supporting the teaching of calculus-based senior mathematics in Queensland. 

23 
 

Vygotsky’s zone of proximal development (ZPD) emphasises that the level of 

understanding that individual learning provides might not match skills that are gained 

through peer learning or when learning is guided by an adult (Fani & Ghaemi, 2011). 

ZPD can be defined as “the distance between the actual developmental level as 

determined by independent problem solving and the level of potential development as 

determined through problem solving under adult guidance or in collaboration with more 

capable peers” (Vygotsky, 1978 p. 86).  Vygotsky noted that a learner who can 

understand something with guidance now will be able to do it independently in the 

future. Thus, learners need guidance to create meaning during the learning process, 

especially of complex phenomena (Kirchner et al., 2006).  Vygotsky emphasised that 

learners can successfully imitate concepts at their developmental level, but solutions of 

high-level mathematics problems may not be understood no matter how many times the 

teacher repeats the solution. Hence, it is important that learners are exposed to problems 

slightly above their developmental level so that they see the need to work 

collaboratively or with experts such as teachers in order to solve the problem 

(Roosevelt, 2008). Consequently, teachers, peers, learning instructions and any other 

media should guide learners to develop their skills base, not just to consolidate what 

they already know.  

 

However, some teachers feel that constructivist approach to tasks and activities are 

difficult to implement as they require more time which is not feasible for teachers faced 

with pressures such as completing the syllabus and preparing students for assessments 

(Teong, 2002). From this perspective, constructivism is viewed as vague and having 

different meaning and interpretation to different people while some scholars have 

reservations about what it represents (Powell & Kalina, 2009). Constructivism 

challenges conventional approaches such as behaviourism and cognitivism but it is 

“notoriously slippery and difficult to pin down” as it means different things to different 

authors and covers a multitude of differing positions as it lacks a clearly stated set of 

core claims (Hay, 2016 p. 520). Thus, constructivism has been a popular but contested 

approach to learning. 
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Other critics of constructivist approaches say it focuses on promoting group knowledge 

construction even though education systems promote mostly individual assessments 

(Alanazi, 2016).  Some psychology scholars criticise constructivism because there is a 

chance a dominant group might control interactions within their social learning 

environment during collaborative knowledge construction, making other students feel 

ignored (Gupta, 2011). Gupta went further to posit that dominant learners may end up 

driving the whole group towards their thinking and overlooking the knowledge 

construction and experience of others. 

 

Similarly, some critics of the Piagetian concept of constructivism suggest that it focuses 

mainly on cognitive factors, ignoring other contributing environmental and 

technological factors (Alanazi, 2016). Piagetian concept of constructivism overlooks 

important contextual factors in learning environments such as available educational 

resources, the need to integrate media into learning environments, and the affordance of 

individual learner thinking (Ackermann, 2001). They emphasise that such resources 

make a significant contribution to learning and thus should not be ignored. Similarly, 

the different ways in which learners interpret the world based on their diverse and 

unique experiences makes instruction less effective because curriculum components 

might not be commonly constructed (Jonassen, 1991). Moreover, common curricula 

will be ineffective, inefficient and not applicable if learners are to apply their different 

thinking with minimum guidance (Carlson, 1992). 

 

In addition, the idea of learning with minimum guidance goes against proponents of 

structured learning. Kirschner and colleagues (2006) suggest that constructivism 

promotes a teaching style with minimal guidance for students which they say might 

result in students feeling “lost and frustrated” (p. 6). They also noted that teaching 

approaches based on minimal guidance, as practiced through constructivist approaches, 

ignore empirical studies that have shown that unguided instructions are not effective in 

learning environments. For example, they pointed out that instruction based on minimal 

guidance ignores the importance and structure of working memory during learning. 

However, the emphasis placed on construction of new knowledge from prior experience 
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in constructivism is also supported by the cognitive load theory proposed by Sweller in 

1988, one of the critics of constructivism.  

 

2.7.3 Cognitive Load Theory  
As students move from a junior to senior level in education, there is an escalation in 

cognitive demand. The cognitive load theory focuses on prior knowledge playing a 

central role in lessening the cognitive burden. It emphasises the importance of 

foundational knowledge in acquiring new knowledge (Sweller et al., 2011). Prior 

knowledge that is relevant and related to new knowledge makes learning the new 

knowledge less difficult (Paas & Sweller, 2012).  Students who have acquired the 

necessary schema (foundational knowledge) have a better chance of deriving meaning 

from new knowledge and can use it as a building block to master a skill (Moreno & 

Park, 2010), thus learning follows a constructivist approach. Moreover, automation of 

lower level (foundational knowledge) schemas is critical for developing higher level 

(new knowledge) schemas (Sweller, 2010). Sweller (2010) went further to note that 

students who possess the relevant lower-level schemas in their long-term memory can 

learn and retain new knowledge effectively.  Therefore, students who are highly skilled 

and can readily learn new knowledge have acquired enormous stores of schematic 

knowledge in their memory.   

 

The long-term memory and working memory affect the cognitive load. Changes in the 

long-term memory store, that is, knowledge that has been learnt from others or through 

problem solving, happens slowly and gradually (Sweller, 2010). The working memory 

is activated when students are exposed to new information which enable them to 

transfer available information from long term memory and keep it to support problem 

solving. However, the working memory has limited capacity when dealing with novel 

information and does not have the capacity to process more than 4 items (Cowan, 

2001). Thus, burdening the working memory can impede learning (Martins & Evans, 

2020). When familiar information is involved, few working memory resources are 

utilized. This freeing up of working memory increases the opportunity to learn and store 

information in existing schemas in long term memory (Rosenshine, 2009). Thus, the 

cognitive load theory can complement the main ideas of constructivism. Therefore, if 
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constructivism is to be fully adopted, teachers should be supported with resources to 

reinforce its implementation. 

 

2.7.4 Constructivism in Mathematics Education 

Direct instruction has been the default way of teaching mathematics for a very long 

period (Kaur, 2019; Faulkenberry & Faulkenberry, 2006). In this case, the educator is 

regarded as the centre of knowledge and expected to transmit knowledge to students 

during the lesson (Ampadu & Danso, 2018). Lecturing is still considered applicable and 

viable in some mathematics classes, but from the 1970s there has been a consensus that 

constructivism offers students a better opportunity to gain a deeper understanding of the 

subject, to solve problems and to develop critical thinking (Ampadu & Danso, 2018; 

Boaler, 2009). Similarly, “critical thinking, problem-solving approach and analytical 

skills are the most important skills that are developed in the process of mathematics 

education and are also the cornerstones of sustainability” (Vintere, 2018, p. 6). This is 

critically important, especially at senior secondary school as students’ mathematics 

subject choices at this level directly influence their future careers.  

 

At senior secondary level, students’ prior knowledge from junior levels can provide a 

foundation for developing better conceptual understanding. A mathematics teacher’s 

planning must be anchored on learners’ prior experience which is preceded by a 

systematically planned teaching sequence with the aim of developing learners who can 

solve complex problems (Garbett, 2011). This is because the prior knowledge and skills 

students bring as they interact with new knowledge will determine how successfully 

they interpret and assimilate the new knowledge (Lambert, 1995). Including prior 

knowledge in planning also provides an opportunity to correct student misconceptions. 

Taylor and Kowalski (2014) also advocate that planning by teachers must consider 

students’ prior knowledge and skills because it will allow students to develop new 

knowledge from junior level concepts, thus enhancing the likelihood of engaging 

successfully with the learning activities with minimum assistance from the teacher.  

 

Constructivism sees the role of the teacher as a facilitator and moderator rather than a 

source of facts, rules and principles (Fernando & Marikar, 2017).). Learners engage in 
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activities and/or assessment tasks for the educator to evaluate whether they can apply 

new knowledge that they have constructed (Garbett, 2011). Constructivist teachers 

continually assess how an activity is helping learners reach the intended success criteria 

while continuing to reflect, deepen their understanding and expanding their knowledge 

(Shah, 2019). Teachers should provide students with opportunities to construct their 

meaning and interpretations as they engage with the learning (Airasian, & Walsh, 

1997). Moreover, teachers should encourage students to explore different methods to 

solve a problem as they develop new knowledge (Ampadu & Danso, 2018). Ampadu 

and Danso further posit that teachers should provide minimum guidance and promote 

students’ independent learning.  However, a teaching approach that involves moderate 

teacher involvement but leads to greater learner engagement and understanding requires 

teacher confidence, content knowledge, experience and resources that help students 

focus on their learning (Garbett, 2011). Finally, Holmes (2019) emphasises that 

constructivist teachers both pose questions and prompt learners to ask questions, that 

they allow alternative explanations or options and they guide students to find their own 

solutions.  

 

The teaching approach in a constructivist class should foster knowledge creation and 

making informed decisions about proposed solution(s). Constructivists design learning 

instruction and strategies that help learners to explore complex phenomena as experts in 

that field (Ertmer & Newby, 2013). Modelling problems are a good example of this in 

senior mathematics in Queensland. 

The role of instruction in the constructivist view is to show students how to 

construct knowledge, to promote collaboration with others to show the multiple 

perspectives that can be brought to bear on a particular problem, and to arrive at 

self-chosen positions to which they can commit themselves, while realizing the 

basis of other views with which they may disagree. (Cunningham, 1991, p. 14) 

As architects of learning instruction, teachers have a responsibility to make sure their 

instruction guides students to create meaning, apply knowledge and experience, 

evaluate, interact collaboratively and be productive    and come up with an acceptable 

solution. 
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Problem-solving and inquiry-based activities that encourage students to formulate and 

test their ideas, come to conclusions and make inferences and then share their 

knowledge in a collaborative learning environment are ideal for constructivists 

(Holmes, 2019). Projects and open-ended problem solving fit well with constructivism 

as teachers can track progress, probe and understand how learners think as teaching and 

learning progresses (Ahtee et al., 1994). For example, Assessment 1 in QCAA 

Mathematics general subjects (General, Methods and Specialist) in Years 11 and 12 is 

an open-ended problem-solving assessment where teachers are required to offer 

minimum support but allow students to explore and apply prior knowledge. Lesh and 

Doerr (2003) posited that by applying prior knowledge and real-life experiences to test 

facts and rules, learners draw conclusions and evaluate solutions that allow deeper 

understanding and greater participation. Similarly, meaningful learning includes 

reflecting and systematic linking of concepts from known to unknown, or from the 

simple familiar to the complex unfamiliar (Muirhead, 2006). Organisation tools such as 

concept maps, flow charts and other visual aids, including PowerPoint slides to show 

facts, flow and organisation of ideas, are important for guidance and redirection 

(Melrose, 2013). Moreover, knowledge representation maps are key in providing 

educators with mental models of what learners regard as mathematical realities 

(Thompson, 2013). Thus, constructivism in mathematics education produces a reflective 

learner who is not only good at applying mathematical facts but also makes informed 

decisions based on processes and outcomes of the learning process, which is central 

when sharing ideas during collaborative learning. 

 

Mathematics teachers who are constructivists promote cooperation and collaborative 

learning because they believe knowledge is socially constructed. The learning of 

mathematics has moved from “passive and decontextualised absorption of mathematical 

knowledge and skills … towards the active construction in a community of learners of 

meaning and understanding on the modelling of reality” (Corte, 2004, p. 280). Other 

studies have demonstrated that collaborative mathematics learning in small groups 

produces better outcomes than individual learning, again because, according to 

Davidson and Kroll (1991) and Schreiber and Valle (2013), knowledge is socially 

constructed through collaborative activities. Activities in such communities of learning 

should promote problem solving, reasoning, evaluating and communicating (Goos, 
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2004). Knowledge sharing within the group results in sharing that will reorganise 

existing knowledge and make sense of new knowledge, learnt from each other (Plass et 

al., 2013; Retnowati et al., 2017). However, teachers need to be aware that besides 

constructivism, there are other learning theories that impact teaching and learning in 

mathematics (Airasian & Walsh, 1997), and that teaching and learning methods are also 

informed by learning goals (Hiebert & Grouws, 2007). In other words, other learning 

theories, such as cognitivism and behaviourism, also contribute to teaching and learning 

of mathematics.  

 

2.8 Behaviourism 

Behaviourists regard learning as a process of reinforcing expected responses to a 

stimulus (Ertmer & Newby, 2013). Pavlov (classical conditioning), Thorndike 

(association, reinforcement and incremental growth) and Skinner (instrumental 

conditioning) are among the founders and proponents of the behaviourist perspective 

(Stewart, 2012). Pavlov referred to the process of changing behaviour by repeatedly 

pairing stimuli with conditioning, thus advancing our understanding of learning by 

association (Stewart, 2021). Experimental work on simple paring of stimuli grew in the 

United States, deepening the understanding of learning through association, 

reinforcement and incremental growth in desired outcomes (Thorndike 1898).  Stewart 

(2021) went further to note that by modifying tasks and using a series of positive 

rewards and negative reinforcers, Skinner demonstrated how behaviours could be 

shaped and reinforced towards specifically target outcomes.  

 

Behaviourists focus on “learning as a change in behaviour which takes place through 

connecting actions with outcomes, reacting to feedback and strengthening repeated 

actions” (Stewart, 2012 p. 4). Behaviourists emphasise that learning occurs by 

environmental conditioning, connecting actions with outcomes, reacting to feedback 

and strengthening through repeated action (Stewart, 2021). Skill and drill or practice are 

associated with behaviourism. Steward (2021) posited that it also stresses the 

importance of specifying clear learning targets and structuring learning tasks to achieve 

these. Thus, in behaviourism the teacher is in charge, connecting actions with outcomes, 

structuring the learning, setting learning targets and making sure there is repeated action 
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until a change in behaviour is witnessed.  Consequently, this can be attributed as a 

weakness as it gives rise to a teacher-centred approach and outcome-based view of 

learning where the teacher is the owner of knowledge, controller of the learning 

environment, with students as passive recipients and empty vessels to be filled with 

knowledge. Stewart (2021) noted that it emphasises rote learning which is effective at 

achieving results in the short term, but its long-term effectiveness is questionable.  

 

2.8.1 Behaviourism in Mathematics Education 

Skill and drill in mathematics education is viewed as a means to develop procedural 

knowledge that focuses on mastering steps needed to accomplish a goal. It is important 

to note that “in more advanced levels of mathematics learning, procedural skills can 

also include higher level cognitive processes, for example focusing on relations between 

different parts of the procedures or evaluating the effectiveness of a particular procedure 

for a given task” (Lehtinen et al., 2017, p. 3). Skill and drill are viewed as a way of 

developing students’ fluency in the basic mathematics skills needed for more advanced 

problems (Klinger, 2009). One of the teacher’s key responsibility is to develop and use 

instructional designs that facilitate step-by-step attainment of increasingly complex 

competencies and skills (Stewart, 2021). Thus, behaviourism places educators at the 

centre of the teaching and learning process as they facilitate, determine and control the 

environment and resources that influence the process.  

 

The teacher explains and demonstrates a concept and the students then practise the skills 

and techniques to solve the problem, with the teacher now positively reinforcing success 

and disapproving of failure (Klinger, 2009; Orton, 2004). In behaviourism, clear 

learning targets should be developed and learning should be structured to promote the 

competencies and skills needed to meet the targets (Stewart, 2012). Stewart notes that 

constructivists accept behaviourism as one component of the learning process since for 

a condition to be associated with a reward it must be incorporated with other concepts in 

an active process of schemata development and moderation. Klinger posited that in 

mathematics, cognitivism supplements behaviourism, especially when new concepts are 

being introduced. Moreover, “behaviourism has generally been proven reliable and 

effective in facilitating learning that involves discriminations (recalling facts), 
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generalizations (defining and illustrating concepts), associations (applying 

explanations), and chaining (automatically performing a specified procedure)” (Ertmer 

& Newby, 2013, p. 49). In behaviourism knowledge is viewed as external and absolute 

to the learner, teaching as instructional, while in cognitivism the learning process is 

viewed as the act of internalising knowledge. 

 

2.9 Cognitivism 

Cognitivism focuses on internal mental processes as learners acquire knowledge and 

emphasises knowledge acquisition, processing, storage, retrieval and activation during 

learning (Clark, 2018; Yilmaz, 2011; Pritchard, 2014). Internal mental processes such as 

critical thinking, recalling, recognising, understanding, reasoning and problem solving 

are the cornerstones of cognitivism (Clark, 2018; Hartsell, 2006). The brain is the centre 

and processor of all human action, behaviour, memory and it plays a central role in 

learning (Arponen, 2013; Ertmer & Newby, 2013; Watson & Coulter, 2008). 

Furthermore, cognitivism places value on ascribing meaning to learners’ existing 

knowledge and linking new knowledge to past experiences (Yilmaz, 2011). Some of the 

key theorists who have contributed to cognitivism include Piaget (stages of cognitive 

development), Vygotsky (social cognitive growth) and Gagne (conditions of learning) 

(Clark, 2018; Yilmaz, 2011). Piaget’s (1953) stages of cognitive development laid the 

foundation for cognitivism, namely, that mental growth develops in stages: motor skills, 

verbal expressions through mental imagery, abstract concepts, and sequential and 

logical reasoning (Zhou & Brown, 2015).  

 

The extensive involvement of memory makes cognitivism relevant to learning complex 

concepts that involve problem solving and reasoning (Ertmer & Newby, 2013; Schunk, 

2004). Central to student learning are teacher explanations, demonstrations and matched 

non-examples, all of which places the teacher at the centre of the learning process 

(Clark, 2018; Ertmer & Newby, 2013). The teacher’s role is that of a coach in charge of 

the learning process (Ertmer & Newby, 2013; McLeod, 2003).  Similarly, observations, 

practice, coaching, articulation and modelling can help learners acquire knowledge that 

includes strategies, skills, attitudes and rules (or theorems, as in mathematics) (Schunk, 
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2004; Yilmaz, 2011). As learners gain experience through active practice, their prior 

knowledge is modified or updated (Simmons & Watson, 2014).   

 

In cognitivism, learners are active participants in the learning process because 

knowledge needs to be encoded, transformed, rehearsed, recalled and restructured 

(Ertmer & Newby, 2013).  According to Clark (2018), knowledge consists of units 

called schema and several of these units form schemata or schemas which are stored in 

the long-term memory. When students are exposed to new knowledge through reading, 

observing, learning and experiencing, a new schema is formed, an old, related schema is 

updated or, if there is a contradiction, the old schema is altered to accommodate the new 

knowledge (Clark, 2018; Gillani, 2003). Schemas include misconceptions and 

inaccuracies and provide a foundation on which to map expected results when new 

knowledge is introduced (Clark, 2018; Gillani, 2003).  

 

The main criticism of cognitive psychology which forms the foundation of cognitivism 

is that it is abstract and not directly observable (Garnham, 2019).  Moreover, it ignores 

other reasons for behaviour such as environmental and social reasons (Stewart, 2021). 

Thus, it fails to account for environmental, biological or genetic influences on cognitive 

function. Importantly, Garnham (2019) posited that internal processes are not 

measurable and instead a behaviour or external feature that is believed to be associated 

with the internal process is measured without conclusive evidence of the connection.  

 

2.9.1 Cognitivism in Mathematics Education 

Teaching that considers prior knowledge does not only increase the chance of learners 

understanding by providing a step-by-step building of concepts; it may also provide 

opportunities of correcting students’ misconceptions.   “Students who are accelerated in 

their mathematics studies harbor misconceptions or knowledge in isolation that may 

make future connectivity with advanced mathematics problematic” (Bell, 2017).  Being 

a teacher-centred approach, cognitivism demands that educators organise instructions in 

such a way that learners can connect new information with prior knowledge to make the 

learning meaningful and effective (Clark, 2018).  Prior knowledge is critical for 
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comparison purposes when learners are exposed to new knowledge and it provides 

some form of mental scaffolding (Ertmer & Newby, 2013; Yilmaz, 2011). However, a 

teacher’s assumptions that students have prior knowledge of a linked concept might 

disadvantage those learners with only a limited schema to compare with stored memory. 

This is because hierarchical relationships in learning material help link prior experience 

to new knowledge (Ertmer & Newby, 2013). The stages of cognitive development are 

hierachical; thus, they play a significant role in the teaching of mathematics, which is a 

hierachical subject.  

 

The stages of cognitive development play a central role in mathematics teaching and 

learning especially at senior secondary school. Mathematics education has benefited 

from understanding stages of cognitive development because new knowledge on how 

children learn can support teaching (Ghazi et al., 2014). At senior secondary level, 

students are expected to be at the formal operational stage where they can form 

hypotheses, build their own mathematical understanding, evaluate options and use 

abstract concepts to represent a mathematical thought (Ojose, 2008). Learners are 

expected at this stage to solve problems involving application in real life, justifications, 

generalisations and mathematical inferences (Anderson, 1990). Brain & Mukherji 

(2005) go further to explain that at the formal operational stage, conceptual words or 

symbols can replace the physical representation of objects. Teachers can benefit from 

understanding what this stage entails as they prepare instruction. 

 

Lessons based on cognitivist principles should include probing questions to gain 

learners’ attention, a clear statement of lesson objectives, stimulation of prior 

knowledge, well-organised content presentation, practice, clear instructions for learners, 

corrective feedback, assessment and relating content to real-world problems (Clark, 

2018; Ertmer & Newby, 2013; Yilmaz, 2011). A cognitivist educator’s main role is to 

drive the learning process. Teachers have to break down information to make it easier 

for learners to accommodate new information with their existing schema. Furthermore, 

clear instructions and timely corrective feedback that guide mental processes can 

maximise learning (Clark, 2018; Ertmer & Newby, 2013). Breaking down complex 

problems into smaller parts can help students comprehend the problem better. Similarly, 
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observing educators modelling complex skills can help learners acquire those skills, 

while practice can help teachers give corrective feedback and provide a variety of 

information sources that expand knowledge and inform and motivate learners (Schunk, 

2004). Although practice is important, cognitivists put more value on observation 

(Schunk, 2004). And as much as observation can help students identify and acquire 

mathematical skills, practice is equally important as it provides an opportunity for 

feedback that will eliminate misconceptions and result in deeper understanding. 

 

2.10 Relationship between Learning Theories in Mathematics Teaching and 

Learning 

Mathematics education aims to promote the development of mathematical knowledge 

that goes beyond just recalling mathematical facts and imitation (Thompson, 1985). 

Thompson goes further, saying, “Constructing mathematical knowledge is the creation 

of relationships, and creating relationships is the hallmark of mathematical problem 

solving” (p. 3). Learning is effective when it is linked to real-life problems that create 

meaningful context and insight for learners (Ertmer & Newby, 2013).  

 

Effective learning must include students actively developing knowledge with the 

assistance of resources that are not limited to an educator (Ertmer & Newby, 2013; 

Stewart, 2012). Both constructivism and cognitivism acknowledge that students must be 

active in the learning process. Moreover, the importance of prior knowledge in 

developing new knowledge is key in fostering the active participation of students. This 

is highlighted by Stewart’s (2012) work, which posited that learners do not come to the 

learning process empty for the teacher to just fill them up with knowledge. 

 

Tasks that involve mathematical facts, rules and their simple applications are more 

suited to behaviourism and cognitivism, while those that demand advanced level 

mathematical abilities, for example, investigative problem-solving tasks, to a large 

extent require a constructivist mindset (Ertmer & Newby, 2013; Klinger, 2009). 

Jonassen (1991a, cited by Ertmer & Newby (2013)) classified knowledge acquisition 

into three stages: introductory, advanced and expert, with constructivism more 

applicable in the advanced stage. The introductory level of new concepts in most 
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mathematics lessons is the stage of acquiring mathematical facts, rules and basic skills, 

which is better suited to cognitivism and behaviourism (Klinger, 2009; Stewart, 2012). 

The expert level is when students have gained the knowledge to apply concepts in 

complex unfamiliar or unstructured problems, to validate and evaluate solutions and 

make generalisations. Constructivism may be more ideal at the stage when learners 

would have mastered concepts so they can apply concepts to real-world problems, such 

as problem-solving tasks that include extracting the mathematical meaning from word 

problems and applying concepts to new situations. It is important to note that pedagogy 

that is underpinned by appropriate learning theories has important implications for 

mathematics teaching and learning. Pedagogical resources such as mathematical 

representations and their role in supporting problem solving are explored in the next 

section. 

 

2.11 Visual representations in mathematics  
A number of research studies explore the idea of representation in mathematics 

education (e.g., Arcavi, 2003; Zazkis & Liljedahl, 2004; Stylianou, 2010). Teaching and 

learning that include visual representations of mathematics concepts result in improved 

performance in mathematics and lower cognitive load for students than learning without 

visual representations (Yung & Paas, 2015). Clearly, the significance of visual 

representations in mathematics is emphasised by Arcavi (2003): 

“Mathematics, as a human and cultural creation dealing with objects and entities 

quite different from physical phenomena (like planets or blood cells), relies 

heavily (possibly much more than mathematicians would be willing to admit) on 

visualisation in its different forms and at different levels, far beyond the 

obviously visual field of geometry, and spatial visualisation” (pp. 216-217). 

 

To mathematicians, diagrams may be most beneficial for exploration of unfamiliar 

problems (Pantziara et al, 2009), and can be part of the creative process when used to 

develop novel diagrammatic representations (Zahner & Corter, 2010). In fact, 

“Structured diagrams are thought to be more comprehensible than just words, and a 

clearer way to illustrate understanding of complex topics.” (Davies, 2011 p. 279).  

Although mathematicians have been aware of the value of visual presentations as tools 

for teaching and as heuristics for mathematical discovery, visual representation remains 
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underutilised in both the theory and practice of mathematics (Barwise & Etchemendy, 

1991). Importantly, creating, interpreting and reflecting on visual representations should 

be encouraged in mathematics and mathematics education as it promotes the 

development of previously unknown ideas and advances understanding (Arcavi, 2003; 

Zimmermann & Cunningham, 1991). 

 

Significant research (e.g., Diezmann & English, 2001; Friedlander & Tabach, 2001; 

Lamon, 2001) identifies representation in mathematics as a tool for thinking, gaining 

insight and demonstrating understanding. Understanding can be demonstrated through 

the ability to develop or apply various representations and identifying the appropriate 

representation for a problem situation (Zazkis & Liljedahl, 2004). Visual 

representations have been found to be effective for supporting students’ learning of 

content knowledge compared to text-based activities (Rau, 2017). Of importance is that 

this effectiveness is particularly observed if students have low prior knowledge (Mayer 

and Feldon 2014). Visual representation is recognised as a powerful teaching and 

learning tool as it can be used to focus on relevant information, promote relational and 

logical understanding, and support knowledge construction (Ainsworth & VanLabeke, 

2004; Barmby et al., 2007; Yung & Paas, 2015), leading to deeper understanding. 

Similarly, visual solutions to a problem may enable engagement with concepts and 

meanings which could have been overlooked if a non-visual solution had been offered 

(Arcavi, 2003).   

 

Visual representations offer many opportunities for a rich mathematics classroom 

experience. Availability and awareness of shared representations in a mathematics class 

create a social backdrop for mathematical discourse (Zazkis & Liljedahl, 2004), which 

can deepen mathematics understanding through reflection, meaning making and 

exchange of knowledge. Also, visual representations may play a central role in inspiring 

a complete solution, beyond the merely procedural (Arcavi, 2003).  When students 

include the appropriate type of visual representation during problem solving, higher 

rates of solution success are observed compared to when they do not include 

representations (Zahner & Corter, 2010). In addition, visual representations may 

function as a guiding tool for situations in which students may be uncertain about how 

to proceed as they solve a problem (Arcavi, 2003). Undoubtedly, visual representations 
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are a useful communication tool in mathematics (Rodriguez et al., 2020), thus they are 

key in promoting success in the field (Paoletti et al., 2022). Visual representations can 

structure and modify mathematical activities in class as they can influence the course 

and focus of a lesson and activities (David & Tomaz, 2012).  

 

Importantly visual representations are tools that teachers can introduce to support 

students’ learning in mathematics. Researchers (Ainsworth, 2006; Cobb, 2003; Dreher 

& Kuntze, 2015; Kaput et al., 2008) emphasise that representations are an essential and 

delicate issue for mathematics teaching and learning as it is a vehicle for capturing 

mathematics concepts. “The use of a variety of representations in a flexible manner has 

the potential of making the learning of mathematics more meaningful and effective” 

(Stylianou, 2010, p. 327). In fact, teachers should be aware that students learn more 

through multiple representations when they are provided with an opportunity to self-

explain the relationship between the different representations (Rau et al., 2009) thus 

providing a multi-faceted concept image (Dreher & Kuntze, 2015). When visual 

representations are developed by students, they become an assessment tool to gain 

insight into students’ thinking, reasoning and understanding (Stylianou et al., 2000). 

The representation that a teacher chooses to use in class can impact classroom 

discussion and facilitate students’ attention to particular mathematics connections and 

concepts (Stein et al., 2008). Contrastingly, some research found that visual presentation 

serves a peripheral and limited role in teacher instruction, because teachers have limited 

knowledge of their role and how best to use the different forms (Dreher & Kuntze, 

2015; van Garderen et al., 2018; Stylianou, 2010; Sullivan et al., 2019).  

 

Representational competencies (knowledge about how visual representation represent 

information about the content) are required for visual representations to be effective 

during teaching and learning (Rau, 2017). “Teachers’ conception of representation as a 

process and a mathematical practice appears to be less developed, and, as a result, 

representations may have a peripheral role in their instruction as well” (Stylianou, 2010, 

p. 325). However, every time students are introduced to a new representation; they must 

learn how it is used and interpreted (Rau, 2017). Therefore, visual representations 

should be fostered explicitly so as not to impede learning (Dreher, 2012; Renkl et al., 

2013). Research identifies multiple benefits for students’ learning; however, 
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representations may fail to support students’ learning if they are not used in the “right” 

way (Rau & Matthews, 2017). For example, they have to clearly represent the 

information they intend to convey, otherwise they will confuse students. With the 

increased push to include mathematics representations in class, this may place 

tremendous pressure on teachers as there is little evidence that necessary support is in 

place to implement such a move (Stein et al., 2008; Stylianou, 2010). Thus, teachers 

may have limited expertise in the use of visual representations when teaching 

mathematics (Izsák, & Sherin, 2003). Research (see Ball 1993; Dreher & Kuntze, 2015) 

notes a lack of awareness amongst mathematics teachers that the use of visual 

representations can support the development of mathematical thinking, hence deeper 

understanding of mathematical knowledge. Although, research demonstrates several 

benefits of including representation in mathematics education, teachers still find it 

challenging as how to incorporate them in the curriculum is not well articulated 

(Stylianou, 2010). Teachers might have a narrow view that representation is a tool for a 

selected few students, therefore it is the responsibility of those who support or prepare 

teachers to demonstrate and support the expansion of teachers’ use of representation 

across the mathematics curriculum (Morris, 2008; Smith et al., 2009; Stylianou, 2010). 

This study will develop visual representation tools and support teachers on how they 

can be incorporated in teaching and learning of mathematics including problem solving. 

 

2.12 Problem solving and Visual Representation. 
Problem solving is seen as a key and significant aspect of mathematics and mathematics 

education. It permeates mathematics curricula across the world resulting in calls for the 

teaching of problem solving as well as the teaching of mathematics through problem 

solving growing louder (Liljedah et al., 2016). However, there is no agreed definition of 

problem solving (see English & Gainsburg, 2016). This study will use Hegedus’s 

(2013) definition, which stipulates that: “problem solving is not just about solving a 

specific problem, which has a specific answer or application in the real world, but rather 

it is an investigation that might have multiple approaches and where students can make 

multiple observations” (p. 89). Importantly, the process should allow construction of 

meaning in open-ended, non-procedural tasks which will have been carefully developed 

to have mathematical purpose (Hegedus, 2013; Mamona-Downs & Downs, 2013). The 

problem-solving process is a dialogue between the prior knowledge the problem solver 
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possesses, the tentative plan of solving the problem and other relevant thoughts and 

facts (Schoenfeld, 1983).  Research in problem solving provides deeper understanding 

on the subject and offers insight into directions for future research.  

 

For decades, research in mathematics problem solving, including special issues from 

leading mathematics education journals (see, Educational Studies in Mathematics, (Vol. 

83, no. 2013); The Mathematics Enthusiast, (Vol. 10, nos. 1–2); ZDM, (Vol. 39, nos. 5–

6)), have offered significant insights but struggled to produce well-articulated guidelines 

for educational practice (English & Gainsburg, 2016). This could possibly be the reason 

why mathematics teachers’ efforts to improve students’ problem-solving skills have not 

produced the desired results (Anderson, 2014; English & Gainsburg, 2016). Despite 

Polya’s (1945) list of steps and strategies being so valuable in successful problem 

solving, there appear to be limited success when translated into the classroom 

environment (English & Gainsburg, 2016). English and Gainsburg went further to posit 

that one of the issues to be addressed is how to support problem-solving competency. 

However, use of visual representation as a tool that can support problem solving is well 

documented (see Krawec, 2014; Stylianou, 2008). This study will explore how visual 

representations such as procedural flowcharts can help to build problem-solving 

competency. 

 

Research on how visual representations support mathematics discovery and structural 

thinking in problem solving has come a long way (see Hadamard, 1945; Krutetskii, 

1976; Polya, 1957).  Visual representations can be used as a tool to capture mathematics 

relations and processes (van Garderen et al., 2021) and used in many cognitive tasks 

such as problem solving, reasoning, and decision making (Zhang, 1997). Indeed, 

representations can be modes of communicating during concepts exploration and 

problem solving (Roth & McGinn, 1998). Likewise, visual representations can be a 

powerful way of presenting the solution to a problem, including self-monitoring on how 

the problem is being solved (Kingsdorf & Krawec, 2014; Krawec, 2014). Using 

visualisations created by teachers or students in mathematics can support students’ 

problem-solving abilities (Csíkos et al., 2012). Furthermore, visual representations can 

be used to facilitate different subtasks during problem solving, for example, as a tool to 
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facilitate exploration of concepts (Stylianou, 2008; Stylianou & Silver, 2004). They can 

be used to illustrate the problem-solving process and to create connections among 

concepts (Stylianou, 2010).  

 

2.13 Chapter Conclusion 

The literature reviewed in this section shows that students are influenced by intrinsic 

and extrinsic factors when enrolling in calculus-based mathematics. The effectiveness 

of mathematics teachers is one of the main contributing factor that influences 

enrolment, participation and achievement in calculus-based mathematics. Importantly, 

in this chapter, literature has identified the scope of resources that can be used to 

support teachers in the teaching and learning of mathematics. Understanding of learning 

theories that are used by mathematics teachers is critical so as to explore ways the 

resources can be more effective in supporting teaching and learning.   

 

Teaching and learning of mathematics are informed by learning theories with a focus on 

maximising the impact of the teacher and other resources in influencing the learning 

process. Importantly, it considers how students develop mathematical knowledge and 

how they can represent that knowledge for educators to determine changes. 

Undoubtedly, teachers might benefit with increased access to resources that are 

underpinned by such theories. Moreover, for teachers to guide learning they need to be 

supported by resources that can promote student-centred learning and the gradual 

development of new knowledge from prior knowledge. Such resources can facilitate 

active participation of students in the learning process, both individually and 

collaboratively. On the contrary, lack of such resources may have a negative impact on 

student participation in mathematics, leading students to view mathematics as a difficult 

subject, with unrelated concepts and uninteresting calculations that need to be 

committed to memory. In this study, constructivism informed the conceptual 

framework. 

 

When senior high school mathematics teachers are exposed to new knowledge, they can 

relate it to their own experiences, ideas and skills in teaching, evaluate it and then 

discard it, accept it or modify their practice, thus constructing new knowledge. The 
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active participation of teachers in developing, applying and evaluating resources though 

workshops, surveys and interviews brought different perceptions together to guide this 

study.    
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Chapter 3: Methodology 
 

3.1 Chapter Introduction 
This chapter outlines the theoretical position that frames the research questions and the 

methodology used to address them. It then describes the specific research methods used 

within this methodology. The primary focus of this study was to investigate, develop 

and explore pedagogical resources (framework on content sequencing, concept maps 

and procedural flowcharts) for mathematics teachers that will support students’ 

participation in calculus-based mathematics, drawing examples from the topic of 

functions. This researcher holds the view that teaching and learning play an important 

role in influencing participation in calculus-based mathematics and that teachers as 

classroom practitioners need to be supported through research-informed resources to be 

more effective in delivery. Since their input to and perceptions of such resources is 

central to their effectiveness and possible adoption, teachers, inferring from their 

experience, beliefs and skills, were at the centre of this study no how new knowledge 

can be constructed.  Choosing the appropriate research methods consequently played a 

significant role in deepening knowledge and validating findings.  

 

3.2 Theoretical Framework 
This study was conceptualised within a constructivist epistemology. The researcher 

holds a constructivist view that individuals construct knowledge when they purposefully 

interact, share and reflect on beliefs and experiences and several other researchers, such 

as Cahyono (2018), Cobb (1994) and Mita et al. (2017), have used constructivism to 

underpin their research in mathematics education. Constructivists believe that 

knowledge is constructed by the learner, not just transmitted from the educator to the 

learner (Narayan et al., 2013). From a constructivist viewpoint, learning is about 

creating knowledge, not just receiving, about understanding and applying, not just 

recalling, and about thinking and examining, rather than just gathering and memorising 

(Gordon, 2008).  This study used constructivism as a theoretical framework because 

mathematics teachers as participants were involved in constructing knowledge that 

informed their daily practice of teaching. Involvement of mathematics teachers provided 

them with the opportunity to be actively involved in drawing from their experience and 

creating new knowledge.  



Supporting the teaching of calculus-based senior mathematics in Queensland. 

43 
 

 

Constructivists strongly believe that during learning, individuals are expected to be 

actively involved, and not passive recipients of knowledge (Lew, 2010). As Jenkins 

(2000, p. 601) states, “If there is common ground among constructivists of different 

persuasion it presumably lies in a commitment to the idea that the development of 

understanding requires active engagement on the part of the learner.”  As a result, the 

teacher’s role is that of a facilitator or organiser who indirectly encourages and manages 

learners to “research, discover, and make conclusions” (Tomljenovic & Tatalovic 

Vorkapic, 2020, p. 15). Active participation of senior mathematics teachers in this study 

brought diverse experiences, which then facilitated the development of teaching and 

learning resources. Mathematics teachers were given the opportunity to apply the 

pedagogical resources and then evaluate the resources as active research participants. 

The researcher was a facilitator of meetings and workshops, working with mathematics 

teachers as practitioners on strategies to support teaching and learning of mathematics.  

In summary, participants were actively constructing new knowledge using their relevant 

existing knowledge. 

 

Constructivists view learning as a process of building new knowledge from beliefs, 

ideas, skills and prior experience (Garbett, 2011; Bruning et al., 2004; Taber, 2019). In 

constructivism, it is the learners who are the creators of knowledge, as they make sense 

of new knowledge using their existing knowledge and cognitions (Taber, 2019). 

Constructivism is “an approach to learning that holds that people actively construct or 

make their own knowledge and that reality is determined by the experiences of the 

learner” (Elliott et al., 2000, p. 256). During the process of learning, “new insights are 

compared with previous experiences and ideas, whereby old beliefs may be altered, or 

new information may be dismissed as irrelevant” (Tomljenovic & Tatalovic Vorkapic, 

2020, p. 15). Hence, learners are active participants in their learning as they interpret the 

meaning of new knowledge and reference it to what they already know (Garbett, 2011). 

In other words, the mind filters everything that it is exposed to and creates its own 

meaning which results in new knowledge being developed. The researcher holds the 

view that mathematics teachers’ beliefs, experiences, perceptions and skills are 

resources that can be used to create and evaluate new knowledge. Exposing 
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mathematics teachers to new ideas and resources provided them with the opportunity to 

compare them with previous ideas, resources, beliefs and experiences which resulted in 

them rejecting or adopting new ideas. Constructivism in this study provided the basis to 

actively involve teachers to interpret meaning of the new knowledge and how best the 

pedagogical resources could be utilised to benefit teaching and learning processes.   

 

Interactions between this researcher and teachers around the sharing of opinions and 

experiences and evaluating a program provided an opportunity to construct new 

knowledge.   Constructivists emphasise that “knowledge is socially constructed through 

interaction of the researcher with research participants” (Tavakol & Sandars, 2014, p. 

747). When individuals interact within a social setting, they have an opportunity to 

generate knowledge (Kim, 2001). Hence, “the individual mind becomes collective mind 

through social phenomena such as relationships, participations, negotiations, and 

sharing” (Belbase, 2011, p. 3). Collaboration among individuals with varied experiences 

provide the opportunity to co-create new knowledge (Powell & Kalina, 2009). The 

coming together of the researcher and senior mathematics teachers on different 

platforms that included a mathematics teachers’ conference, workshops and check-in 

sessions created a social engagement that facilitated an exchange of knowledge. 

Constructivism emphasises the importance of co-creating new knowledge and this co-

creation of knowledge informed this research. Participants brought their different 

experiences and qualifications which constructivism identifies as a strength in 

supporting knowledge development. Therefore, the active interaction between the 

researcher and senior mathematics teachers and the sharing of experiences, beliefs and 

ideas was crucial in developing and evaluating the planning and teaching resources in 

this study.  

 

3.3 Methodology 
It is important to clarify the use of the terms ‘methodology’ and ‘methods’ before 

providing a description of the methodology used in this study. Research methodology 

incorporates all the steps involved in the study starting with research design, data 

collection and analysis as well as the social, ethical and political viewpoints that the 

researcher brings to the study. According to (Kothari, 2004, pp. 7-8), “research methods 

may be understood as all those methods or techniques that are used for conduction of 
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research while research methodology is a way to systematically solve the research 

problem”.  During this study the methodology explained the logic behind the method or 

technique and contextualised it to the study. In this case, research methods are part of 

the overall research methodology of this study. 

The research methodology directs and guides activities involved in the research. 

Importantly, 

“A research methodology is like a strategy encompassing principles, processes, 

procedures and techniques to seek a solution to an identified research problem. 

In some sense, the methodology provides an architecture for the entire research 

exercise that determines the research methods to be applied in a given research 

exercise, developed to proceed from an understanding of the research 

question(s) and oriented towards providing direction and guidance to the whole 

effort to seek the answer(s) to the question(s)” (Mukherjee, 2020, p. 20).  

Furthermore, the research methodology provides directions for designing and executing 

evidence-based research that include quantitative and qualitative data (Acharyya & 

Bhattacharya, 2020). Therefore, knowledge of research techniques and procedures and 

where they can be best applied plays an important role in formulating an effective 

research methodology considering there are two basic research approaches in 

educational research: quantitative and qualitative. 

 

Quantitative research is used on a phenomenon that can be expressed in numeric data. It 

is influenced by the positivist paradigm that suggests reality is concrete or singular and 

must be independent to the opinion and influence of the researcher (Tavakol & Sandars, 

2014). Moreover, quantitative research is ideal for use when the sample or population 

size is significantly large (Kaplan, 2004). It involves testing relationships between 

variables to determine patterns and correlations with the primary purpose of explaining 

and evaluating (Leavy, 2017). Undertaking statistical calculations on numeric data to 

draw conclusions that answer a research question is central to quantitative research 

(Habib et al., 2014). Therefore, it was ideal to use quantitative research to investigate 

trends in students’ participation in Queensland as enrolment data is numerical and 

covers all students in years 11 or 12 state-wide. Moreover, correlation between different 

factors that may affect enrolment can also be investigated.  “The fundamental goal of 
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quantitative research is to make a convincing argument based on numerical data in 

response to a research question” (Hjalmarson & Moskal, 2018, p. 179). Research that 

involves collection of numeric data mostly requires quantitative analysis. However, if 

non-numeric data is involved, qualitative analysis is more appropriate. 

 

Qualitative research is more concerned with the individual’s personal experiences of the 

problem under study. It aligns with post-positivist paradigm or constructivist beliefs that 

several individually formulated realities exist, and knowledge and participants cannot be 

separated.  It is defined as 

“the study of the nature of phenomena’s quality, different manifestations, the 

context in which they appear or the perspectives from which they can be 

perceived without involving their range, frequency and place in an objectively 

determined chain of cause and effect” (Philipsen & Vernooij-Dassen, 2007 p. 5).   

Similarly, qualitative research is the collection, analysis, and interpretation of data using 

observation and what participants say through interviews (Habib et al., 2014). In fact, 

“the actual words of people in the study, offer many different perspectives on the study 

topic and provide a complex picture of the situation” (Creswell, 2014, p. 535). 

Qualitative research is used to unpack and explore meaning people attribute to 

activities, situations, events, or artefacts (Leavy, 2014). Moreover, it focuses upon 

drawing meaning from the experiences and opinions of participants (Cohen et al., 

2011). Therefore, qualitative research was used in this study for teachers to share their 

individual experiences, opinions, and context to gain a deeper understanding of the 

phenomenon. It is used to explore and explain people’s subjective experiences and 

meaning-making processes and acquiring a detailed and in-depth understanding which 

is ideal even with a small sample (Leavy, 2017). 

 

Quantitative and qualitative designs have their own weaknesses. The main limitation of 

quantitative research is its lack of detail and context that might help to provide deeper 

understanding of the phenomenon (Griffin & Museus, 2011; Johnson & Onwuegbuzie, 

2004). Similarly, a key limitation of qualitative research is that it might be influenced 

by the researcher and because personal experiences differ, the findings may not be 

generalisable to other contexts (Griffin & Museus, 2011). Importantly, the weaknesses 
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of both quantitative and qualitative research can be offset by the strengths of both as 

words (from the qualitative approach) can add meaning to numbers (from the 

quantitative approach) and numbers can add clarity to words (Johnson & Onwuegbuzie, 

2004).  

 

Mixed methods approach involves both quantitative and qualitative research. A mixed 

methods approach provides the platform to optimise the opportunities offered by 

quantitative and qualitative research as well as address the limitations of both (Johnson 

et al., 2007). It is used mostly where use of either the quantitative or qualitative 

approach will not be sufficient to gain a deeper understanding of the problem (Creswell, 

2014), as it integrates the two (Creswell & Zhang, 2009). More, importantly qualitative 

data can be used to support or validate findings from quantitative data (Fetters et al., 

2013). It is important to note that mixed methods research is:  

“the type of research in which a researcher or team of researchers combine 

elements of qualitative and quantitative research approaches (e.g., use of 

qualitative and quantitative viewpoints, data collection, analysis, inference 

techniques) for the broad purposes of breadth and depth of understanding and 

corroboration” (Johnson et al., 2007, p. 123). 

Therefore, this study adopted a pragmatic approach as it spanned the middle ground 

between quantitative and qualitative research because both numeric and textual data 

were collected and analysed to address the same problem (Griffin & Museus, 2011).  

 

Quantitative and qualitative research have the potential to provide concrete analysis; 

however, individually they have limitations especially in intersectional research analysis 

(Griffin & Museus, 2011). Despite the limitations, “qualitative methods are, for the 

most part, intended to achieve depth of understanding while quantitative methods are 

intended to achieve breadth of understanding” (Palinkas et al., 2013, p. 534). A mixed 

methods approach was adopted in this study to allow the generation of valuable data 

from senior mathematics teachers on the teaching of calculus-based mathematics 

options. The study positioned itself on exploiting the strength of both qualitative and 

quantitative research approaches. The approach aligns with Rocco and colleagues 

(2003) who noted that research is more robust when it mixes research paradigms, as a 
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fuller understanding of the phenomenon can be gained. Similarly, Creswell and Plano 

(2011) posited that mixed methods enables a greater degree of understanding to be 

formulated than if a single approach were adopted to specific studies. Thus, mixed 

methods approach is ideal for the purposes of breadth and depth of understanding and 

corroboration (Greene, 2007). The collection of both quantitative and qualitative data 

can provide a more complete picture and better understanding of the research questions 

compared with using either one of the methods alone (Guetterman et al., 2015). 

 

A mixed methods approach is generally appropriate when the purpose is to describe, 

explain or evaluate phenomenon (Leavy, 2014). In this study senior mathematics 

teachers as participants explained their views and experiences as well as evaluated the 

pedagogical resources developed in the study. Importantly the mixed methods approach 

allows triangulation of data, meaning “collecting and converging or integrating different 

kinds of data bearing on the same phenomenon” (Creswell, 2014, p. 536). Triangulation 

provides opportunities for convergence and corroboration of results that are derived 

from different research methods which enhances validity of data (Creswell & Plano, 

2018). 

 

Similarly, mixed methods help to deepen and broaden the understanding of the 

phenomenon under study, hence providing opportunities for future research (McKim, 

2017; O’Cathain et al., 2010). The study’s focus on a relatively less researched area  of 

teaching of calculus-based mathematics at senior secondary level provides insight into 

what teachers view as important in the delivery of this subject at this level. Therefore, 

the methodology in this study employed both qualitative methods, involving semi-

structured and in-depth interviews, and quantitative methods such as survey 

instruments. These data collection methods were the most appropriate for addressing the 

research questions outlined below and thus the methodology of this study is a mixed 

methodology. 

 

3.4 Research Design 
A research design explains how a study seeks answers to the research questions. It is a 

conceptual layout that guides how the research will be conducted (Dubey & Kothari, 
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2022; Kothari, 2004). A research design is a plan that recognises the processes and 

procedures to be followed during data collection and analysis (Creswell, 2014; Habib et 

al., 2014). This study comprised four phases to address the overarching research 

questions, outlined below: 

1. What are the trends in Queensland senior students’ enrolment in calculus-based 

mathematics subjects?  

2. What pedagogical resources support the planning, teaching and learning of 

Mathematical Methods for Queensland senior students? 

 

3.4.1 Phase One 

The research question addressed in this phase was:  

• What are the trends in Queensland senior students’ enrolment in mathematics 

subjects? 

 

The intention of Phase One was to investigate Queensland senior students’ mathematics 

enrolment in different mathematics curricula options from 2010 to 2020.  

Until the end of 2018, the mathematics options at senior level in Queensland were 

Mathematics A, B, C and Prevocational. In 2019, these were changed to Essential, 

General, Methods and Specialist Mathematics. This new curriculum brought some 

changes to the mathematics options that were offered as well as to the assessment policy 

because Queensland introduced an external examination at the end of Year 12. An 

additional study was undertaken in this phase to further understand trends in enrolment 

and some of the external factors that influence students’ participation in calculus-based 

mathematics under the new curriculum. The sub-question addressed by this additional 

study was: What is the relationship between students’ enrolment in calculus-based 

mathematics in the new Queensland curriculum and school level indicators such as 

socio-economic status, school location and transfer rating? 

 

Quantitative methods were used to analyse data from the Queensland Curriculum and 

Assessment Authority (QCAA) to identify trends in student enrolment in different 

mathematics options. This method was most appropriate because “quantitative research 

identifies a research problem based on trends in the field or on the need to explain why 
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something occurs” (Creswell, 2014, p. 13). Permission was sought from the QCAA and 

consent was given to use publicly available data on students’ mathematics enrolment at 

senior secondary level from 2010 to 2020. Likewise, quantitative data from the 

Australian Bureau of Statistics’ Socio-Economic Index for Areas (SEIFA), Schools 

Index of Community Socio-Economic Advantage (ICSEA) and schools transfer ratings 

were used to determine their influence on students’ enrolment in calculus-based 

mathematics options. Data was analysed using Excel suite and Statistical Package for 

the Social Sciences (SPSS). SPSS was used to analyse correlation between the different 

factors that affect enrolment in calculus-based mathematics.  Excel can be used to 

analyse data in quantitative research and SPSS is ideal for developing comparative 

graphs especially on trends (Davis & Davis, 2016; Kolluri et al., 2016).  

 

3.4.2 Phase Two 

The sub-questions addressed in Phase Two were: 

• What framework for content sequencing can support linking of concepts from 

junior to senior mathematics? 

• What teaching and learning resources can support students’ participation in 

senior mathematics? 

 

The aim of this phase was to develop pedagogical resources that could support 

planning, teaching and learning of calculus-based mathematics with a special focus on 

functions in mathematical methods. Indeed, pedagogical decisions and resources 

teachers use during teaching can play an important role in influencing student 

participation and achievement (Little, 2020; Witterholt et al., 2016). Furthermore, 

pedagogical resources can be used to; support teacher capacity, build concepts from 

prerequisites and experimenting, supporting deeper understanding of concepts (Larson 

& Murray, 2008). Thus, this phase will focus on developing, and identifying 

pedagogical resources that can support mathematics teachers in the delivery of calculus-

based mathematics. 

 

Planning is key to effective teaching and learning as it can be used to link resources to 

the content and the teaching method. The study therefore argued first for content 
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sequencing in the planning and teaching of mathematics to aid transition from junior to 

senior mathematics.  A coherent sequencing of content supports meaningful reflection 

on concepts and the nature of mathematics (Conner et al., 2011), which is important for 

mathematics teachers and students.  To this end, the literature was synthesised to 

develop an original mathematics planning framework on content sequencing. Synthesis 

involves pulling various sources together into some kind of harmony so that the sources 

combine clearly and coherently with your own (Clevenger, 2011, p. 1). This provided 

the opportunity to build on previous findings, integrate existing findings and identify 

gaps (Grant & Booth, 2009). Creating a learning environment in which students’ 

participation is anchored on creating skills and knowledge based on prior experience is 

one of the most effective pillars of a robust and effective teaching methodology 

(Hailikari et al., 2008). The planning framework for this study emphasised the 

importance of prior knowledge and the hierarchical and spiral nature of mathematics 

and mathematics teaching respectively. 

 

This phase laid the foundation of a framework on how content sequencing in schools 

play a significant role in effective linking of prior knowledge to new knowledge. A 

framework specifies the relationships between the constructs within a phenomenon 

(Johnson & Morgan, 2016) and advocates planning that focuses more on how new 

knowledge is developed from relevant concepts that students have been exposed to in 

previous levels. The relevant prior concepts should be clearly linked to the new 

knowledge using the framework on content sequencing. 

 

Second, the development of tools that can be used by teachers to promote procedural 

and conceptual knowledge in mathematics was equally important. Such tools would 

play a critical role in supporting the teaching and learning of mathematics.  The 

involvement and input of teachers in the development of the pedagogical resources is 

important because the sharing of their experience, skills and ideas makes them active 

participants in the process. Teachers as architects of planning, teaching and learning 

were active participants in this study. 
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The regional Association of Mathematics Teachers conference for the Cairns region 

held on the 28th of May 2021 presented an opportunity to share the initial draft of the 

pedagogical resources with the region’s mathematics teachers. The resources included 

associated examples from the Functions section in Unit 1 to demonstrate how the 

resources were applied in Mathematical Methods. The researcher conducted an 

interactive presentation with mathematics teachers at this conference and teachers 

provided feedback verbally and through survey questions. The survey consisted of 

Likert scale items and open-ended questions. A more detailed description of these 

instruments is provided in the data collection section below. The teachers’ feedback and 

contributions were used to improve the pedagogical resources. The planning tool also 

provided teachers with an opportunity to brainstorm concept development, thus 

deepening their understanding. The understanding that complex unfamiliar questions 

are developed from simple familiar concepts was enhanced, demystifying mathematics 

by demonstrating the importance of every level in learning the subject. Vocabulary 

development was also prioritised in the planning tool to keep pace with the development 

of the students’ mathematical knowledge.  

 

The outcomes of Phase Two included development of a framework on content 

sequencing and associated pedagogical resources to support teaching and learning of 

mathematics. It was important to evaluate the framework and pedagogical resources 

with a sample of senior mathematics teachers in Queensland; this was undertaken Phase 

Three, which is described below.  

 

3.4.3 Phase Three 

The sub-questions addressed in Phase Three were: 

• What are teachers’ perceptions of a planning framework on content sequencing 

for the teaching and learning of mathematics? 

• What are senior secondary teachers’ perceptions on how concept maps support 

the teaching and learning of mathematics at senior secondary school? 

• What are teachers’ perceptions on how procedural flowcharts support teaching 

and learning of procedural fluency in the Mathematical Methods subject? 
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This third phase of the study generally focused on evaluating the framework and 

pedagogical resources that were developed in Phase Two with a sample of senior 

mathematics teachers in Queensland, as described above. It used both quantitative and 

qualitative research to enable triangulation of results from both types of data and 

increase the validity of the findings (Yin, 2009). The inclusion criteria for participant 

selection were teachers currently teaching or who had taught mathematics, especially 

calculus-based options at senior high school level, that is, Years 11 and 12 in 

Queensland. Purposive sampling was used to select the 16 participants. Purposive 

sampling involves identifying and selecting knowledgeable participants or those who 

have experienced the phenomenon of interest and are available and open to share their 

experiences and opinions (Bernard, 2011; Cresswell & Plano, 2011). Purposive 

sampling was used because participants are selected by virtue of their capacity to 

provide richly- textured information about the phenomenon being investigated (Patton, 

2002; Vasileiou et al., 2018). Purposive sampling has shown greater efficiency 

compared to random sampling in research that involve qualitative data (van Rijnsoever 

et al., 2017). The collection of both quantitative (Likert-scale survey items) and 

qualitative data (open-ended surveys questions and interviews) from the teachers after 

they had engaged with the framework and pedagogical resources provided a more 

complete picture and better understanding of results compared with using either one of 

the methods alone (Creswell, 2015). 

Table 3.1 Demographic Information for Participants 

Participant Gender Data collection 
method 

Qualifications  Schooling 
system 

Number of 
years teaching 
mathematics 

1 Female Survey and 
Interview 

Masters Public 31 

2 Female Survey and 
Interview 

Bachelors Private 10 

3 Female Survey and 
Interview 

Bachelors Public 25 

4 Female Survey and 
Interview 

Bachelors Public 17 

5 Male Survey and 
Interview 

Bachelors Private 19 

6 Male Survey and 
Interview 

Bachelors Public 11 

7 Female Survey and 
Interview 

Masters Public 15 
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8 Male Survey and 
Interview 

Masters Public 19 

9 Female Survey Bachelors Public 11 
10 Female Survey Bachelors Public 15 
11 Male Survey Bachelors Public 7 
12 Male Survey Bachelors Public 9 
13 Male Survey Bachelors Private 10 
14 Female Survey Bachelors Public 13 
15 Male Survey Masters Public 5 
16 Female Survey Bachelors Private 11 

 

A half hour video presentation was developed to articulate the framework and 

pedagogical resources (concept maps and procedural flowcharts) with associated 

examples. This video presentation was used during a workshop with teachers to train 

them in how to apply the framework and pedagogical resources in their classroom 

practice.  

 

3.4.3.1 The Presentation to participants 
The video presentation started by explaining to participants that the research developed 

resources that can support mathematics teachers during planning for content sequencing 

and representation of mathematics knowledge. The participants were invited to apply 

the resources in their teaching and learning for a full school term then share their 

opinions, feedback and experiences on the level of support the resources offered in their 

practice. Firstly, the presentation focused on the framework on content sequencing by 

unpacking its four pillars:  

1. What exactly do students need to know and be able to do in this unit? 

2. What prerequisites, conceptual understanding and skills are necessary for 

students to effectively learn new knowledge? 

3. How do the concepts identified as prior knowledge link with new knowledge? 

4. What do we expect students to retain? 

A demonstration was given on how the framework on content sequencing is used to 

sequence mathematics content using an extract from a section of the QCAA 

Mathematical Methods syllabus document. The extract is on Functions. 

In this sub-topic, students will:  



Supporting the teaching of calculus-based senior mathematics in Queensland. 

55 
 

• understand the concept of a relation as a mapping between sets, a graph and as a 

rule or a formula that defines one variable quantity in terms of another  

• recognise the distinction between functions and relations and use the vertical 

line test to determine whether a relation is a function.  

• use function notation, domain and range, and independent and dependent 

variables.  

• examine transformations of the graphs of 𝑓(𝑥), including dilations and 

reflections, and the graphs of 𝑦=𝑎𝑓(𝑥) and 𝑦=𝑓(𝑏𝑥), translations, and the graphs 

of 𝑦=𝑓(𝑥+𝑐) and 𝑦=𝑓(𝑥)+𝑑; 𝑎,𝑏,𝑐,𝑑∈ 𝑅  

• recognise and use piece-wise functions as a combination of multiple sub-

functions with restricted domains.  

• identify contexts suitable for modelling piece-wise functions and use them to 

solve practical problems (taxation, taxis, the changing velocity of a parachutist). 

(QCAA, 2018 p. 20) 

 

During the presentation the presenter went through the processes advocated by the 

framework on content sequencing in addressing the first pillar: identifying key words 

then combine related key words to determine main conceptual connections. For the 

second pillar teachers were shown how to develop a concept break-down table by 

identifying the synonym of key words, defining key words, identifying prior knowledge 

of concepts through backward mapping and identifying conceptual connections. An 

example of a concept break-down table developed from the section on functions in 

Table 1 was shared with the teachers. 
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Table 3.2: Concept break-down table shared with participants during video presentation 

Keyword 

Definition of 

keywords (were 

possible) 

Assumed prior 

knowledge 

concept linked 

to keyword 

Vocabulary 

transition 

How assumed 

prior 

knowledge link 

with new 

knowledge 

Relations (Sets, 

domain, range, 

independent and 

dependent 

variables, rule, 

functions, 

mapping, 

piecewise, 

vertical line, 

graph and 

restricted 

domain) 

Domain -set of all 

the first (x) 

coordinates of 

ordered pairs- 

independent 

variable. 

 Range – set of all 

second (y) 

coordinates of 

ordered pairs- 

dependent variable. 

-a relation defines 

the relationship bet

ween sets of values 

of ordered pairs 

Cartesian Plane, 

ordered pairs, 

sets, tables of 

values of graphs, 

inequalities, 

linear and non-

linear equations 

and graphs. 

  

-x-values that 

satisfy a graph – 

Domain. 

-y-values that 

satisfy a graph – 

Range. 

-inequalities – 

restricted 

domain 

-Combination of 

linear and non-

linear equations 

is piecewise. 

-Ordered pairs –

Relations. 

-In ordered pairs 

the set all x 

(first) 

coordinates 

represent the 

domain 

(independent 

variable) and the 

set of y (second) 

coordinates is 

the Range 

(dependent 

variable). A 

vertical line is a 

line parallel to 

the y-axis. (Yr 7 

& 8). The 

relationship 

between the x 

and y is the rule, 

formula, 

equation or 

mapping, arrow 

diagrams. 

Represent linear 

and non-linear 
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equations 

graphically after 

using general 

substitution 

(start Yr7) to 

create a table of 

values. 

Represent 

quadratic 

equations 

graphically (Yr 9 

&10). 

Inequalities 

solutions makes 

a statement true. 

Transformatio

ns (Dilation, 

reflection and 

translation) 

Transformation- 

Changing a shape 

using turn, flip, 

slide and resize. 

Flip, slide, resize Flip- Reflection 

Slide- 

Translation 

Resize- Dilation 

 Rules of 

translation- 

translating 

horizontally or 

vertically. 

Reflection about 

the x and y axis 

(Yr 7). 

Enlargement and 

reduction as a 

form of dilation 

(Yr 9). 

 

The third pillar focused on identifying essential concepts through synthesising concepts 

under the keywords’ column in the concept break-down table. In this example the 

essential concepts were functions, relations and transformations. The fourth and last 

pillar developed the sequence guided by conceptual connections, prior concepts and 
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hierarchical nature of mathematics. Using the three guiding principles, a hierarchical 

table for the identified content on a section on functions in Table 2 was shared with the 

participants.  

Table 3.3: Hierarchical table shared with participants during video presentation 

Domain & Range Relations (mapping and 

graphing) 

Transformations 

Cartesian plane 

Ordered pairs 

Sets 

Table of values 

Domain and range 

Inequalities 

Restricted domain 

Rule (general substitution into 

linear and non-linear equations) 

Independent and dependent 

variable. 

Sketch graphs from tables of 

values 

Vertical line test 

Piecewise functions 

Flip- reflection 

Slide- translation 

Resize – dilation 

combinations 

 

Using all the pillars of the framework on content sequencing the final sequence for 

teaching the content under consideration was presented as follows:  

o Cartesian Plane 

o Ordered pairs. 

o Sets 

o General substitution 

o Relations, rule, mapping- linear and non-linear functions 

o Tables of values 

o Domain and range 

o Inequalities 

o Restrict domain. 

o Graph linear and non-linear  

o Vertical line test 

o Piecewise  
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o Flip (reflection), slide (translation), resize (dilation) and combination of 

transformations. 

Participants were encouraged to use the framework on content sequencing 

collaboratively with colleagues who were teaching the same year level as well as across 

different levels so as to also gain feedback from them. In concluding this section of the 

presentation, the researcher identified key concepts at junior level which are critical for 

the teaching and learning of functions in Mathematical Methods at senior secondary 

level. 

 

The second section of the presentation focused on representations of mathematical 

knowledge focusing mainly on conceptual knowledge, procedural knowledge and 

fluency. Firstly, the researcher introduced procedural flowcharts as a resource that can 

be used to represent mathematics procedures. The flexibility of procedural flowcharts 

was illustrated through the representation of more than one procedure on a single 

flowchart. Their ability to guide decision making during problem solving and 

communicating the solution to the problem was highlighted and participants were 

encouraged to explore how they could adopt the flowcharts more broadly in their 

practice. Importantly the researcher discussed the different ways that procedural 

flowcharts could be used: 

• Procedural flowcharts could be used as a resource by teachers as they outlined 

the procedure to solve a problem.  

• Students could use them to communicate the procedure as they solved a 

problem.  

In summary the researcher explained to teachers that this resource was mainly 

developed to support teaching and learning of procedural knowledge and developing 

procedural fluency. An example of a procedural flowchart in Figure 9 (see Chapter 9) 

was shared with the participants.  

 

In the second part of the presentation, the researcher started by emphasising that 

concept maps can be used to create a web of connections, thus leading to conceptual 
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understanding. However, in this study the main focus was to use concept maps in 

linking junior concepts to senior concepts and showing how prior knowledge connects 

or supports the construction of new knowledge.  The researcher referred participants to 

the important role of the content sequencing framework in identifying prior concepts in 

developing new concepts. Using the results from the section on functions, the researcher 

emphasised the importance of junior concepts in teaching functions at senior level. For 

example, the Cartesian Plane, and flip, slide and resize are the basis of transformations 

in functions. The researcher also emphasised that when concept maps are used in this 

way, they can be used to introduce a topic, knowledge construction, assessment or as a 

consolidation resource. The researcher encouraged participants to explore how this 

resource could support their practice. The concept map in Figure 7 (see Chapter 8) was 

shared with the participants. Finally, the researcher informed the participants that after 

the implementation period, they would be asked to respond to survey questions and an 

interview that will provide them with the opportunity to share their feedback. 

 

Teachers were given a full term to use the resources before data collection began. They 

were then asked to assess how the planning framework and pedagogical resources with 

a focus on Functions in Mathematical Methods had worked. The teachers were also 

asked to reflect on possible improvements to both the planning framework and the 

pedagogical resources. 

 

3.4.4 Phase Four 

The question addressed in Phase Four was: 

• What are teachers’ perceptions of how procedural flowcharts support students’ 

problem-solving skills in the Mathematical Methods subject?  

 

This phase involved an in-depth follow up interview with a teacher who had applied 

flowcharts in a problem-solving task. Semi-structured in-depth interviews focus 

participants’ attention on the phenomenon being investigated as they elicit data from 

participants’ experiences and the relationship of the experiences with existing constructs 

within the area of focus (Galletta & Cross, 2013). Thus, this study used an in-depth 

interview to elicit a mathematics teacher’s experiences and observations when applying 
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procedural flowcharts to teaching and learning of calculus-based mathematics. Artefacts 

from the students involved in the problem-solving task were also collected. In this 

study, students’ artefacts provided insight into how procedural flowcharts supported 

their problem solving in the task. Importantly, students generated artefacts can be linked 

to knowledge, beliefs, and logic expected within the domain (Risan, 2020). Figure 3.1 

below illustrates the four phases in the research design. 

 

 

Figure 3.1: Phases in the research design 

In summary, Table 3.2 provide an overview of the phases involved in the study, the 

study timeline and data source used to address the research questions. The research 

.  
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Phase 2 

 

 

 

 

Phase 3 

 

 

 

 

 

 

Phase 4 
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phases coincided with COVID 19, hence physical access to schools and face to face 

contact with teachers was limited. 

 

Table 3.4: Research phase timeline, questions and data source 

Phase Research Question Data Source 
 

1 
 

School Terms 2 
& 3 2020 

What are the trends in Queensland 
senior students’ enrolment in 
mathematics subjects? 

• Quantitative (QCAA 
enrolments data) 

What is the relationship between 
students’ enrolment in calculus-based 
mathematics in the new Queensland 
curriculum and school level 
indicators such as socio-economic 
status, school location and transfer 
rating? 

• Quantitative (QCAA 
enrolments data, 
ICSEA values, SEIFA 
index and school 
transfer ratings). 

 
2 
 

School Term 4 
2020 to term 2 

2021 

What framework for content 
sequencing can aid linking of 
concepts from junior to senior 
mathematics? 

• Literature synthesis 

What teaching and learning resources 
can support students’ participation in 
senior mathematics? 

• Literature synthesis 

 
 
 
 
 
3 
 

School Term 3 
and 4 2021  

What are teachers’ perceptions of a 
planning framework on content 
sequencing for the teaching and 
learning of mathematics? 

• Quantitative (Likert 
Scale items)  

• Qualitative Data (Open 
ended questions and 
semi structured 
interviews). 

What are senior secondary teachers’ 
perceptions on how concept maps 
support the teaching and learning of 
mathematics at senior secondary 
school? 

• Quantitative (Likert 
Scale items)   

• Qualitative Data (Open 
ended questions, semi 
structured interviews 
and artefacts). 

What are teachers’ perceptions on 
how flowcharts support teaching and 
learning of procedural fluency in the 
Mathematical Methods subject? 

• Quantitative (Likert 
Scale items)  

• Qualitative Data (Open 
ended questions and 
semi structured 
interviews and 
artefacts). 

 
4 

School Term 1 
and 2 2022   

What are teachers’ perceptions of 
how procedural flowcharts support 
students’ problem-solving skills in 
the Mathematical Methods subject? 

• Qualitative data (semi 
structured interviews, 
in-depth interview and 
students’ artefacts). 
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3.4.5 Ethics  

Initially, James Cook University Human Research Ethics Committee conditionally 

approved the researcher’s ethics application on the condition that approval was gained 

from the Queensland Department of Education. Since the research covered more than 

one site (school), approval was required from the state Department of Education. The 

COVID-19 pandemic presented new challenges as the Department of Education wanted 

a clear outline on how the research could be done safely. To limit exposure, the 

researcher proposed to present to participants remotely and follow latest Queensland 

Health guidelines for face-to-face interviews. Ethical approval was gained from the 

Department of Education, Queensland: Reference number: 550/27/2383. Following this, 

James Cook University Human Research Ethics approval was also gained: Approval 

number: H8201.  

 

To ensure confidentiality and privacy of all respondents, several measures were 

undertaken to make participants aware of the nature of the study and their rights. The 

principals of identified schools and their senior secondary mathematics teachers as 

participants were provided with detailed information regarding the purpose of the study, 

methods of data collection, rights to privacy, confidentiality and the ability to withdraw 

at any point during the research. As the study evolved, an ethics amend from the 

university was obtained so as to include students’ artefacts in the study. Detailed 

information about the study, and students’ rights to terminate consent on use of their 

artefacts at any point in the study was made available.  Information was shared through 

information sheets and consent forms that were prepared for the various participants 

involved in the study. Contact details of the researcher, advisory panel members and 

university ethics committee were made available on the documents in case participants 

had concerns they wanted to raise. 

 

3.5 Research Tools 

Research has indicated that identification of student prior knowledge (Bringula et al., 

2016; Fyfe et al., 2012), professional collaboration among teachers (Boyle & Kaiser, 

2017; Fernandez & Cannon, 2005) and social learning groups (Ashman & Gillies, 2003; 

García-Carrión & Díez-Palomar, 2015) support students’ participation. Creating a 

learning environment in which students’ participation is anchored on creating skills and 
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knowledge based on prior experience is one of the most effective pillars of a robust and 

effective teaching methodology (Hailikari et al., 2008). The planning framework and 

pedagogical resources with associated examples developed in Phase Two are research 

instruments that were shared with the senior mathematics teachers participating in this 

study.  

 

The introduction of summative evaluation in 2020 (QCAA, 2018) in Queensland's 

senior secondary schools brought challenges and pressures both to teachers and 

students, as students had to retain their mathematical knowledge for longer. The 

external examination covers two years of learning, with most of the questions based on 

concepts taught in Further Calculus (Unit 3) and Further Functions and Statistics (Unit 

4). Thus, strategies that provide opportunities for students’ independent learning, skills 

development and deeper conceptual understanding are required to support their 

participation in these subjects. The framework developed in Phase Two proposed the 

use of visual tools as a way of helping students attain the necessary skills and 

comprehend conceptual connections faster, based on the understanding that procedural 

flowcharts are critical in promoting fluency and skills development. Above all, they 

promote students’ independent or self-paced learning. Similarly, concept maps help 

students visualise their mathematical knowledge and clearly demonstrate conceptual 

connections. Importantly, procedural and conceptual knowledge depend on students’ 

prior skills, knowledge and mathematical facts. Therefore, development of procedural 

and conceptual knowledge depends on the sequencing of concepts. 

 

The aims of the framework and associated pedagogical resources that were developed in 

this study were: 

• to emphasise the value of content sequencing during planning  

• to highlight the importance of concept maps in concept development in 

mathematics 

• to highlight the importance of prior knowledge in students’ participation and 

minimisation of misconceptions 

• to draw attention to the importance of flowcharts in teaching procedural 

knowledge and fluency  
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• to propose ways of checking for understanding in a mathematics class that are 

learner centred.  

• to explore how procedural flowcharts support problem solving in Mathematical 

Methods subject. 

 

3.6 Data Collection Methods 

Surveys and semi structured interviews were used to collect data from timetabled senior 

mathematics teachers to evaluate the effectiveness of the planning framework and 

pedagogical resources in teaching and learning of mathematics. Data collection was 

done after the teachers had spent a term utilising the resources. The importance of 

research instruments such as surveys is that it can add more detailed information about 

the research problem under consideration (Habib et al., 2014). The surveys took 

approximately 20 minutes to complete. Surveys provide opportunities to collect 

responses from each participant which helps in identifying different viewpoints or 

experiences (Gürbüz, 2017). Moreover, surveys are used with the aim of determining 

the attitudes, beliefs, opinions, and expectations of participants (Kelley-Quon, 2018). In 

this study, surveys were used to determine the opinions, viewpoints, and experiences of 

senior mathematics teachers in the teaching of calculus-based mathematics. The surveys 

were sent via email, which has been identified as a better way of providing participants 

with more time to answer the questions carefully and minimises the researcher’s 

influence on participants hence allowing more accurate data to be obtained (İslamoğlu 

& Alnıaçık, 2014). 

The survey instruments comprised of open and closed response items.  

“Quantitative approaches use more closed-ended approaches in which the 

researcher identifies set response categories, whereas qualitative approaches use 

more open-ended approaches in which the inquirer asks general questions of 

participants, and the participants shape the response possibilities” (Creswell, 

2014, p. 19). 

The study used open response questions because they require participants to develop 

their own response while closed response questions provide participants with the 

opportunity to select from the responses provided. Open responses provided participants 

with the opportunity to share their thinking unlike closed response questions. 
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Importantly, the advantage of using both types of items were that closed response items 

focused participants’ responses to issues important to the study while open response 

items may provide an opportunity to gain unforeseen responses (Johnson & Morgan, 

2016).  

 

The closed response questions were in the form of Likert scale items. Likert items are 

used to measure participants’ attitudes, opinions or beliefs to a particular question or 

statement (Johnson & Morgan, 2016). The study used a 5-point Likert scale to explore 

participants’ perceptions of pedagogical resources as it can accommodate a “neutral 

anchor, to allocate equal psychological distance between the neutral category and the 

adjacent side categories” (Wakita et al., 2012, p. 534). Likert scales are more suitable to 

use when evaluating an intervention (Sullivan & Artino, 2013). Thus, the study used the 

Likert scale items for the participants to evaluate the pedagogical resources developed 

in the study. Importantly, a 5-point scale is regarded as reliable, enough to pick a 

category fairly fast and provide a good range of choices (Wakita et al., 2012). However, 

closed response items may limit participants’ responses as they are required to read and 

write or select responses.   

 

Semi structured interviews were also conducted with the senior mathematics teachers. 

On average the interviews took 15 minutes. Semi-structured interviews were conducted 

to gain a deeper understanding of how teachers used the framework on content 

sequencing, concept maps and procedural flowcharts in their teaching of mathematics. 

The study used semi structured interviews as they are adjustable and adaptable and 

provide opportunities for the interviewer to ask follow-up questions based on the 

interviewee’s responses (Galletta & Cross, 2013; Kallio et al., 2016). To gain a deeper 

understanding of teachers’ experiences within the study, semi structured interviews 

“offer a focused structure for the discussion during the interviews but should not be 

followed strictly” (Kallio et al., 2016, p. 2955), allowing complementarity between 

interviewer and participant (Galletta & Cross, 2013). This allowed the researcher to 

prompt questions that allows for further elaboration or follow-up on a participant’s 

response. Similarly, it provides the interviewer with the opportunity to restructure 

questions and might obtain spontaneous responses as well as obtain supplementary 

information (Kothari, 2004). In this study, semi-structured interviews were used to 
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provide opportunities for participants to further expand on their answers and to share 

other important feedback that the researcher might have overlooked. Questions in the 

research instruments were adapted from Truxaw et al. (2008) and Abdeljaber (2015). 

The semi structured interview questions were pre-tested with 2 randomly selected 

teachers to establish flow and clarity of questions.  

 

As senior mathematics teachers were using the pedagogical resources in their teaching, 

different artefacts were developed. An artefact is a purposeful and intentional object 

made by humans and is commonly used in critical and qualitative or interpretive 

research (Czerwinski, 2017). In fact, artefacts can be presented as arguments that 

embody the response to a research question (Biggs, 2002). Mäkelä (2007) emphasised 

that “the works created during the research process can be conceived as answers to the 

posed research questions” (p. 163). Firstly, artefacts were developed during check in 

sessions with the researcher as consultations and collaboration resulted in jointly 

developed procedural flowcharts. Secondly some participants also shared artefacts they 

developed during the implementation stage. Lastly, student developed artefacts were 

also collected during the teaching and learning using the pedagogical resources.  

 

 

3.7 Data analysis 

Quantitative data collected in phase one from QCAA, ABS, schools ICSEA values and 

schools transfer rating was analysed using means, frequency counts, percentages, and 

correlation tests. Descriptive statistical analysis was done using excel suite and 

inferential statistics using SPSS. Descriptive Statistics (means, frequency counts and 

percentages) form a major component of all quantitative data analysis when coupled 

with several graphics’ analysis as it summarises raw data from a sample or population 

(Yellapu, 2018). This study combined descriptive statistics with graphs to offer a 

comprehensive insight into the data on trends analysis. Yellapu (2018) went further to 

note that in most cases it is used to break down huge amounts of data into a simpler 

form or describe the behavior of a sample. The dataset in phase one was large as it was 

drawn from school enrolments across the state of Queensland and from other 

institutions. Thus, descriptive statistics provided a general overview of the trends. 

Importantly, as part of good research practice, it is essential that one report the most 
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appropriate descriptive statistics using a systematic approach to reduce the likelihood of 

presenting misleading results (Huebner et al., 2016). In summary this study used 

descriptive statistics because it provided an overview of the general trends (Peace & 

Hsu, 2018). Descriptive data analysis was done using Excel suite which also provided 

opportunities to present the data graphically. Calculating descriptive statistics represents 

a vital first step when conducting research and should always occur before making 

inferential statistical comparisons (Kaur et al., 2018).  

 

Inferential statistics complements descriptive statistics and involves coming up with a 

conclusion drawn from the existing data. In this study the Spearman’s rank correlation 

coefficient was used to measure the strength and direction of a monotonic association 

between a range of variables and students’ enrolment. A monotonic association is 

observed when the value of one variable increases the other value also increases or as 

one variable increases the other decreases (Sedgwick, 2014). The Spearman’s rank 

correlation coefficient was used to analyse the statistical relationship between ICSEA, 

SEIFA and transfer ratings on students’ enrolment and dropout rate in calculus-based 

mathematics. Use of SPSS also allowed development of comparative diagrams as it 

offered diverse resources for complex displays. 

 

During phase 3 both quantitative and qualitative data was collected. The quantitative 

data was collected using Likert scale survey items. For Likert Scale data, “computing 

means and standard deviations are considered to be inappropriate, but use of 

nonparametric statistics is encouraged” (Wu & Leung, 2017, p. 528). This is because, 

Likert scale data are generally ordinal in nature and are best analysed using modes, 

frequency, and medians (Stratton, 2018). Therefore, mode and median which are 

descriptive statistics were used to analyse this data. 

 

Qualitative data constituted open-ended questions in surveys and recordings of 

interviews with mathematical methods teachers. After transcribing the semi structured 

interviews, member check was done with participants to verify accuracy of the 

transcribed scripts. Data analysis of survey open-ended questions and interviews 

followed a thematic analysis. Thematic analysis aims to identify, investigate, and reveal 

patterns found in a data set (Braun & Clarke, 2006). In this study, a thematic analysis 

was used to identify, analyse, and report patterns in the qualitative data. Braun and 
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Clarke went further to posit that thematic analysis is a fundamental method for any 

qualitative analysis, and that it provides researchers with core skills that are useful for 

conducting most forms of qualitative analysis, as most of them are essentially thematic. 

This process entails a search for themes that are important to the description of the 

phenomenon and its relation to the study focus (Daly et al., 1997). The study used 

thematic analysis to identify the themes that best described the qualitative data collected 

in the study. 

 

Thematic Analysis (TA) is widely used in qualitative research to identify and describe 

patterns of meaning within data (Braun & Clarke, 2006; Ozuem et al., 2022). It is key 

for examining the perspectives of different research participants, identifying similarities 

and differences and generating unpredictable insights (King, 2004). As a foundational 

method for any qualitative analysis, a TA provides the researcher with critical skills that 

are useful for conducting different forms of qualitative analysis, as many of them are 

essentially thematic (Braun & Clarke, 2006). Importantly, a TA offers:  

“Flexibility in terms of research question, sample size and constitution, data 

collection method, and approaches to meaning generation. It can be used to 

identify patterns within and across data in relation to participants’ lived 

experience, views and perspectives, and behaviour and practices; ‘experiential’ 

research which seeks to understand what participants’ think, feel, and do” 

(Clarke & Braun, 2017, p. 297). 

Moreover, another key advantage of a TA is the flexibility of the method to identify 

constructs (Lawrence, 2012). TA follows an accessible and systematic approach that 

identifies, analyses, organises, interprets and reports patterns of meaning (themes) 

(Braun & Clarke, 2006; Clarke & Braun, 2017). Themes are patterns of shared meaning 

fostered by a core concept and informed by the research questions (Braun & Clarke, 

2006, 2019). Through coding the data, a TA develops ideas, meaning and understanding 

(Ozuem et al., 2022).  The researcher plays an active role in coding and theme 

development following a clear and usable framework for doing TA (Maguire & 

Delahunt, 2017), shown in Table 3.1. 

 

Theme development is an active process involving the researcher and the qualitative 

data available (Braun et al., 2022), and is the goal of a TA (Maguire & Delahunt, 2017). 
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During a TA, data is analysed without engaging pre-existing themes, which makes it 

ideal for any research that relies primarily upon participants’ responses and 

clarifications (Alhojailan, 2012). Braun and Clarke identified two levels of themes: 

semantic and latent. Semantic level can be identified within the explicit meanings of the 

data and the analyst is not looking beyond what participants have provided. However, 

analysis transcends beyond just what is provided in the data by interpreting and 

explaining it (Maguire & Delahunt, 2017). Contrastingly, latent level looks beyond 

what participants said “to identify or examine the underlying ideas, assumptions, and 

conceptualisations – and ideologies - that are theorised as shaping or informing the 

semantic content of the data” (Braun & Clarke, 2006, p. 84). A semantic level was 

adopted for this study because it explored teachers’ perceptions on how pedagogical 

resources developed in the study supported the teaching of calculus-based mathematics. 

 

The emergence of themes can be developed using deductive or inductive analysis. 

When themes are developed deductively the researcher brings theoretical concepts to 

the research and when developed inductively the themes emerge from the raw data 

(Joffe, 2012), thus is data driven (Bonner et al., 2021). The study adopted the inductive 

approach which produce codes that solely reflective of the contents of the data (Byrne, 

2022). Participants shared their perceptions on how the pedagogical resources 

developed in the study have supported their teaching of mathematics. As participants 

are practicing mathematics teachers, their opinion after using the pedagogical resources 

is key in how the resources supported their teaching. Existing research and theory 

provide a lens for analysing and interpreting the data in TA (Braun & Clarke, 2021). 

Moreover, the inductive approach ensured that themes were connected strongly to the 

data and did not use an existing coding frame or the researcher’s pre-existing ideas 

(Braun & Clarke, 2006; Patton, 1990). Importantly, the themes were linked closely to 

the responses and meanings obtained from participants. The researcher’s interpretations 

and findings should be clearly derived from the data and then inform conclusions and 

interpretations for confirmability (Tobin & Begley, 2004).  Table 3.1 below outlines the 

phases of thematic analysis as informed by Braun and Clarke (2006, 2019, 2021). 

 

Table 3.5: Phases of Thematic Analysis (Braun & Clarke, 2006, 2019, 2021). 

Phase Description 
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Data familiarisation and writing 
familiarisation notes. 

Transcribing data, reading and re-reading 
the data, highlight initial ideas. 

Systematic data coding Coding interesting features of the data 
systematically across the entire data set, 
categorise data relevant to each code. 

Generating (initial) themes from coded 
and collected data 

Organising codes into potential themes, 
collect all data relevant to each potential 
theme. 

Developing and reviewing themes. Checking whether the data supports the 
themes in relation to the coded extracts 
and across the data set; generating an 
initial map of themes. 

Refining, defining and renaming themes Continuous refining of the specifics of 
each theme, and the overall story the 
analysis tells, generating clear definitions 
and names for each theme. 

Reporting Selecting vivid, compelling extract 
examples, analysis of selected extracts, 
relating back to the research question and 
literature. 

 

3.7.1 Data analysis using Thematic Analysis 
The six phases of Thematic Analysis proposed by Braun and Clarke (2006, 2019) in 

Table 3.1 was followed during analysis. In qualitative research, trustworthiness can be 

achieved if a clearly detailed account of how the data was analysed is available and all 

assumptions made are included (Nowell et al., 2017). Providing a step-by-step process 

of analysis is a method of demonstrating transparency of how the researcher formulated 

the overarching themes from the participants’ data (Fereday & Muir-Cochrane, 2006). 

Indeed, “the analytic process involves immersion in the data, reading, reflecting, 

questioning, imagining, wondering, writing, retreating, returning” (Braun & Clarke, 

2021, p. 332). Although the Thematic Analysis was informed by Braune and Clarke’s 

stages of analysis this study also adopted and referred to Maguire & Delahunt (2017) 

and Nowell and colleagues (2017) examples of using Braun and Clarke’s Thematic 

Analysis. Importantly, Bree & Gallagher (2016) recommended that Excel can be used in 

Thematic Analysis as a tool to assist in coding and developing themes because it can 

identify duplicate entries, can be used to colour code cells and changes can be tracked 

across different spreadsheets in a workbook. A research team of the principal researcher 

and two supervisors met every Thursday for three months during this thematic analysis.    
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3.7.1.1 Phase 1 
Data management and understanding the data is key in any credible data analysis. 

Firstly, the raw data files were issued participants codes as file names. The researcher 

and supervisors (research team) read and re-read the open-ended questions and the 

interview transcripts to familiarise themselves with the entire body of data corpus. As 

the transcripts were read, early impressions were noted. A spreadsheet was created with 

column headings of open-ended survey questions and rows with participant names. 

Responses were populated in the spreadsheet for easy navigation through questions and 

responses. Another spreadsheet was created with column headings of research questions 

to be addressed by the study.  

 

3.7.1.2 Phase 2 

The researcher and supervisors met as a team for the initial coding of the data. From the 

start of the thematic validity was ensured using theory triangulation. It involves sharing 

qualitative responses among colleagues at different status positions in the field then 

comparing findings and conclusions (Guion et al., 2011). Firstly, as a team we coded 

two participants’ open responses and two interviews transcript. As data was being coded 

the team kept revisiting the research questions to identify each segment of data that 

captured something interesting about the research questions. The coding process 

involves identifying and recognising an important moment within the data and encoding 

it prior to a process of interpretation (Boyatzis, 1998). Moreover, a code is something of 

interest to the researcher, which they view as of significance in answering the research 

question (Swain, 2018). Coding involves taking qualitative text data apart to see what 

they yield before putting the data back together in a meaningful way (Creswell, 2015) 

“Coding allows the researcher to simplify and focus on specific characteristics of the 

data” (Nowell et al., 2017, p. 6), with the goal of attaining clarity in organising and 

interpreting the data (King, 2004). Coding was done with no pre-set codes and line-by-

line coding was used as this was mainly an inductive analysis. At the conclusion of step 

1, initial ideas on codes were discussed as a team to give team members a background 

and clarity on the process. Notes were recorded on initial observations about interesting 

aspects of the data items and emerging impressions. Separately, we went further to code 

another set of open-ended survey questions and interview transcript. A discussion, 

comparison and collating of codes followed the initial independent coding. This was 
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done to moderate and modify our coding before we went to code the rest of the data 

separately. Peer debriefing helped the team to debrief on how their thoughts were 

evolving as they engaged deeply with the data and the coding process. During this step 

2 of coding, codes were copied and pasted under specific research questions in the 

spreadsheet (see Appendix A).  

 

3.7.1.3 Phase 3 
Codes are the building blocks for themes, which are patterns of meaning with a shared 

core idea (Clarke & Braun, 2017). A code is viewed as something shorter, or basic 

(Braun & Clarke, 2006), which can be combined or connected to form a much broader 

understanding referred to as a theme (Fereday & Muir-Cochrane, 2006). A theme is 

determined through the sound judgement of the researcher which should be applied 

consistently through the analysis considering that a theme can be judged on whether it is 

essential to addressing the overall research question (Campbell et al., 2021). The data 

covered a wide variety of concepts so initially the different concepts that grouped the 

research questions as ‘conceptual themes’ were utilised to organise the data. The 

research team examined the codes, checking on their meaning and relationships to 

determine which ones were underpinned by a central concept. In Excel, codes that 

shared a core idea from the initial phase that used data from the open-ended responses 

and interview transcripts were colour coded (see Appendix B). This is supported by 

King (2004) who suggested that when searching for themes it is best to start with a few 

codes to help guide analysis. After the independent thematic analysis, the filter function 

in Excel was used to sort the codes using cell colour. Moreover, Excel provided the 

opportunity to identify duplicates as codes were collated from the three researchers. 

Same coloured codes were synthesised to develop a general pattern of meaning, which 

we referred to as candidate themes (see Appendix C). The code that did not belong to 

any of the candidate themes were listed under miscellaneous theme for further analysis 

and review. At this stage, data or codes which do not fit under any of the candidate 

themes should not be abandoned as without further review during the fourth phase of 

thematic analysis, it is uncertain whether the themes will hold, be combined, refined, 

separated, or discarded (Braun & Clarke, 2006). Thus, the sorting and collation 

approach would bring together all codes under each theme which then would facilitate 

further analysis and review (Bree et al., 2014). Independent thematic analysis among the 

team members ended at this stage as codes and candidate themes had been.  
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3.7.1.4 Phase 4 
This phase focused on reviewing, modification and refinement of the candidate themes 

identified in stage 3. In this phase, the researcher should conduct a recursive review of 

the candidate themes in relation to the coded data items and the entire dataset (Braun 

and Clarke 2012, 2021). The team went back to review the themes and codes 

independently coded and evaluated the meaning and association within and across 

themes.  We were guided by the questions developed by Braun and Clarke (2012 p. 65) 

on how to review themes:  

• Is this a theme (it could be just a code)? 

• If it is a theme, what is the quality of this theme (does it tell me something 

useful about 

• the data set and my research question)? 

• What are the boundaries of this theme (what does it include and exclude)? 

• Are there enough (meaningful) data to support this theme (is the theme thin or 

thick)? 

• Are the data too diverse and wide ranging (does the theme lack coherence)? 

The researcher and supervisors went on to review the relationship of the data and the 

codes that informed the themes. Moreover, the coded data extracts for each theme was 

reviewed to check for coherence. Importantly, if the codes form a coherent and 

meaningful pattern the theme makes a logical argument and may be representative of 

the data (Nowell et al., 2017).  Furthermore, the team also reviewed the themes in 

relation to the data. This is because Nowell and others posited that themes should 

provide the most accurate interpretation of the data. Importantly, the focus of this stage 

is to check inadequacies in the initial coding and themes which may require some 

changes, for example new codes or subcodes can be developed (King, 2004). As a 

result, we vetted, reviewed and cross analysed the coded data for each theme and 

subthemes to ascertain coherence. This also involved going back to the data to make 

sure participants’ voices were reflected. During the review, whenever new themes, old 

themes were integrated or codes were moved to another theme, a new spreadsheet was 

created so that if further review was necessary the old data and layout would still be 

available. Braun and Clarke emphasised that at the end of this phase, researchers should 
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have a good idea of the themes developed, their relationship and the overall story they 

tell about the data. 

 

3.7.1.5 Phase 5 
This phase is considered the final theme refinement stage. Braun and Clarke noted that 

the aim of the phase was to “...identify the ‘essence’ of what each theme is about” (p. 

92). Each theme or sub-theme should be expressed in relation to the dataset and the 

research question(s) (Byrne, 2022). As a team the researcher and supervisors discussed 

and wrote detailed analysis for each candidate theme identifying the main story behind 

each theme and how each one fit on the overall story about the data through the lens of 

the research questions. Each meeting focused on one theme and each member was given 

the opportunity to share their understanding and evaluation and other team members 

had opportunities to ask questions. Data was read and codes scrutinised and reviewed to 

ensure credibility. We only moved to the next theme when consensus was reached about 

the theme names, codes and themes as representational of the data. Finally, in this phase 

we also linked quotes to final themes reached during the analysis. Illustrating findings 

with direct quotations from the participants strengthen the face validity and credibility 

of the research (Bryne, 2022; Patton, 2002; Nowell et al., 2017).  

 

3.7.1.6 Phase 6 
This phase is the end point of the research when all themes and subthemes have been 

finalised. The writeup provided a concise, coherent and logical cogent narrative of the 

data within and across themes (Braun & Clarke, 2006; Byrne, 2022). Researchers 

should show the significance of the patterns and their broader meanings, implications 

and how the findings relate to literature (Braun & Clarke, 2006; Nowell et al., 2017; 

Starks & Trinidad, 2007). Importantly, more direct quotes from participants were 

included in the analytical narrative to connect readers with the raw data (King, 2004; 

Nowell et al., 2017), hence enhancing the validity and merit of the analysis (Braun & 

Clarke, 2006). The principal researcher was the one responsible for writing all the 

research reports that emanated from the data. However, all the reports were shared with 

the supervisors for feedback and validation. Credibility can be obtained through peer 

debriefing which provide an opportunity for external check on the research process, as 

well as examining referential adequacy as a means to check preliminary findings and 

interpretations against the raw data (Lincoln & Guba, 1985). The report of the analytical 
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narrative was shared with participants for them to check if the results represented their 

responses. Member check in was used to validate participants’ responses to a 

researcher’s transcription or conclusions about them (Cutcliffe & McKenna, 2002). 

Furthermore, part of the results were presented at the Mathematics Education Research 

Group of Australasia (MERGA) conference for peer feedback. Conference 

presentations of the researcher’s data interpretation can allow opportunities for further 

comment from peers and experienced researchers (Fereday & Muir-Cochrane, 2006).  

 

During phase 4 qualitative data were collected using an in-depth interview and her 

students’ artefacts. The stages of problem solving in mathematics (Artigue et al., 2020; 

Geiger et al., 2021; Polya, 1971; QCAA, 2018) were used in analysing the in-depth 

interview with the teacher. Interpretation of artefacts overcomes its muteness and gives 

it a voice and meaning (Mäkelä, 2007). Students’ artefacts were analysed using the 

QCAA’s (2018), problem solving and modelling task flowchart (see Appendix A). The 

stages of problem solving were used in the analysis because the phase was focused on 

supporting students’ problem-solving skills using procedural flowcharts.  

 

3.8 Data Storage  

Data were stored using the university data storage protocols. Data was saved offline, 

replicated three times and saved on different platforms immediately after collection. A 

data record was created with a link to the master copy used in the active stage of the 

research and the copy was uploaded onto the university data repository after the data 

was de-identified. The data will be retained for five years.  

 

3.9 Chapter Conclusion 

This chapter has outlined the two main questions this study intended to address, along 

with the theoretical position that frames them. It has justified the methodology used in 

the design of the study and detailed the methods within the design that were used for 

data collection in the four phases involved. Chapter 4 is an analysis of trends in student 

participation in calculus-based mathematics in Queensland.  
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Chapter 4: Senior High School Mathematics Subjects in Queensland: 
Options and Trends of Student Participation 

 

A version of this chapter was published as a research paper in the 

PRISM Casting New Light on Learning, Theory and Practice. 

https://openjournals.ljmu.ac.uk/index.php/prism/article/view/446 

 

4.1 Chapter Introduction 

Mathematics has been described as a critical filter for future academic and career 

options and enrolment in Advanced Mathematics subjects in high school paves the way 

for high-status careers (Watt et al., 2017). Furthermore, Advanced Mathematics is 

central to the study of many university courses, including science, technology, 

engineering and mathematics (STEM) courses. “Mathematics is a key science for the 

future, through its enabling role for science, engineering and technology. This is 

illustrated by dramatic advances in communications, bioinformatics, the understanding 

of uncertainty, and dealing with large data sets” (Lemaire, 2003, p. 1). Students need a 

strong foundation of mathematical skills, especially at secondary school, to make a 

successful transition from school to studying STEM disciplines at university (Lyakhova 

& Neate, 2019). Consequently, government programs often target mathematics as one 

important part of STEM education that will lead to better jobs, innovation, improved 

economy and greater global leadership (Peters et al., 2017). Importantly, the post 

COVID-19 economic reboot will require students with advanced mathematics skills as 

demand for skilled STEM professionals will increase (Vernon, 2020). The important 

contribution that mathematics makes towards STEM-based careers means it is essential 

to understand students’ choices in different options that the subject offers, especially 

options that are prerequisites for STEM courses. 

 

The technology-driven modern world requires a deep understanding of mathematics, 

hence equipping citizens with advanced mathematics skills becomes a right (Centre for 

Curriculum Redesign, 2013). Students who take calculus-based or Advanced 

Mathematics in countries such as Australia, The USA and the UK are better positioned 

to enrol in STEM-related courses at tertiary level (Carnevale et al., 2011; Lyakhova & 

Neate, 2019). Advanced mathematical knowledge, skills and understanding of distinct 

https://openjournals.ljmu.ac.uk/index.php/prism/article/view/446
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concepts are important for further study in fields where mathematics plays a key 

enabling role (Maltas & Prescott, 2014). Calculus-based or Advanced Mathematics as 

prerequisites of tertiary STEM courses have a direct impact on university enrolments 

and the diverse opportunities students have after high school. Therefore, it is essential to 

look at the enrolment rates of senior students in different mathematics curricula. 

Analyses of student enrolment trends in different mathematics options can be 

confounded by the diverse classifications of mathematics subjects. The following 

sections discuss how mathematics is classified internationally and the classifications 

used in Australia. This will be followed by a discussion of global and Australian trends 

in student enrolment in senior school mathematics, with a final focus on trends in the 

state of Queensland, which is the context of this study. 

 

4.2 Mathematics Classifications Internationally 

Senior high school mathematics curricula differ from country to country. Some 

countries follow a national curriculum where all students engage with the same 

mathematics curriculum. In the UK, students who progress to A-level studies and opt 

for mathematics have the option of obtaining AS (Advanced Subsidiary) qualifications 

after a year, the full A-level (A2) or Further Mathematics (FM) at the end of two years 

(Noyes & Adkins, 2016). New core mathematics qualifications were introduced in 2015 

as an alternative pathway for students who have passed GCSE mathematics but want to 

pursue courses that do not demand advanced mathematics (Lee, 2016). Countries that 

have a national curriculum classify all mathematics options under a common 

nomenclature. This eliminates complications in defining subject classifications when 

undertaking analysis of national trends in student enrolment. 

 

Federal countries with autonomous states that determine their own curricula may have 

no consistent framework for naming mathematics subjects. For example, in the USA, 

some states allow the education structure to be decided at local level. As nomenclature 

is not consistent between state jurisdictions, compiling data into nationally consistent 

and coherent information is problematic. For example, subjects with very similar course 

content can have different titles and possibly be classified as belonging to different 

learning areas. The National Centre for Education Statistics [NCES], (2007), cited in 
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Rasmussen et al. (2011), classified different mathematics subjects in order of 

complexity, as follows: Algebra I or Plane Geometry, Algebra II, Algebra 

III/Trigonometry or Analytical Geometry, Pre-calculus, Calculus and Advanced 

Placement (AP). Clarity around the categorisation of mathematics options offered in 

different states is an important prerequisite for an informative analysis of student 

enrolment trends in this subject, as the criteria used for categorisation can be contested.  

 

4.3 Mathematics Classification in Australia 

In Australia, senior school curricula are the responsibility of states and territories. This 

means that the classification and scope of the mathematics subjects can be different 

from one jurisdiction to another. In addition, researchers in Australia have differing 

views on the way that mathematics subjects ought to be classified. Some take into 

consideration only the opportunities that the subject offers post-secondary school, while 

others use only subject content as the basis for their classification. This prompted some 

scholars to meet in 2004, when they resolved that the categorisation of subjects and 

compilation of enrolment data be listed alongside each other (Barrington & Brown, 

2014). Table 4.1 shows the different classifications researchers have since used in 

analysing mathematics subjects. Mathematics subjects are classified into three 

categories: basic, elementary or low-level, intermediate, and advanced or high-level 

(Kennedy et al., 2014). Basic Mathematics covers basic mathematics skills and is not 

considered for any future educational purposes, intermediate mathematics is considered 

useful in pursuing courses in which mathematics content is minimal, while Advanced 

Mathematics is a prerequisite for university courses in which mathematics plays an 

integral role (Dekkers & Malone, 2000). Thus, entry level (see Table 4.1) is part of 

elementary mathematics which include mathematics subjects that are considered as a 

numeracy option for tertiary admission (Kennedy et al., 2014). 
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Table 4.1: Researchers’ Classifications of Australian High School Mathematics 

Subjects 

 
(Kennedy et al., 2014 p. 36). 

The curriculum diversity and options offered in different countries reinforces the idea 

that mathematics should prepare students for different career choices, highlighting the 

‘critical filter’ tag that has been used to describe the subject (Watt et al., 2017). As 

countries adjust or change mathematics curricula, their objective should be to increase 

students’ enrolment, especially in advanced or calculus-based options, as these provide 

students with more diverse and better career opportunities. Increased mathematics 

choices naturally means that different subjects compete for students. As a result, an 

analysis of the trends in student choices may shed some light on the distribution of 

students among subject options. 

 

Dekkers, 
DeLaeter & 
Malone 
Classification 
(2000). 

Barrington & 
Brown 
Classification 
(2004) 

Kennedy, Lyons 
& Quinn 
Classification 
(2014) 

General Course Content 

Low-Level Elementary 

Background 

Terminal mathematics courses that 
are not designed for further tertiary 
study and do not contribute towards 
tertiary admissions rankings. 

Entry 

Terminal mathematics courses that 
are not designed for further tertiary 
study yet do contribute to 
calculated tertiary admissions 
ranking. 

Intermediate Intermediate Intermediate 

Mathematics courses that provide a 
satisfactory knowledge base for 
tertiary courses requiring minimal 
mathematics knowledge. 

High-Level Advanced Advanced 

Mathematics courses that provide a 
specialised knowledge base for 
tertiary studies in STEM courses or 
in courses in which mathematics is 
an integral part. 
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4.4 International Trends in Student Participation in Mathematics Subjects  
Global trends in student enrolment in senior school mathematics indicate that student 

enrolment in calculus-based mathematics subjects is either declining or has reached a 

stagnation point. For example, enrolment in Advanced Mathematics in countries such as 

Germany, Ireland, Netherlands, Russia and Spain is 15% or less of the total student 

cohort (Hodgen et al., 2010a). Correspondingly, South African enrolment in calculus-

based mathematics declined by 16% between 2015 and 2019 (Businesstech, 2020). On 

the other hand, in Japan, South Korea, New Zealand, Singapore and Taiwan, 

approximately 31% of upper secondary students chose to study Advanced Mathematics 

between 2005 and 2010 and these countries had the highest share of students’ enrolment 

in Advanced Mathematics worldwide (Hodgen, 2013; Hodgen et al., 2010b). The USA 

showed a general increase in Advanced Mathematics enrolments until 2005 when 

calculus and AP (Advanced Placement) had a combined rate of 23% enrolment, but 

enrolments stagnated thereafter (Hodgen et al., 2010b; National Science Board, 2018). 

Following the introduction of Curriculum 2000 in the UK, a steady increase in students 

opting for mathematics for their A-level was noted between 2006 (7.9%) and 2015 

(12.7%) (Hodgen et al., 2010b; Noyes & Adkins, 2016); however, mathematics still 

remains a minority subject and females are less represented in A2 (Hodgen et al., 

2010b).  

 

4.5 Trends in Student Participation in Mathematics Subjects in Australia 
Available national trends in Australia focus on Year 12 enrolment statistics from all 

states and territories and are generally categorised as elementary, intermediate and 

advanced. Concerns have been raised about student enrolment in intermediate and 

Advanced Mathematics options. For example, Australia’s former Chief Scientist, 

Professor Ian Chubb, expressed his concerns about the lack of appetite by students to 

study higher levels of mathematics in Years 11 and 12 (Evershed & Safi, 2014). 

“Intermediate and, especially Advanced Mathematics students are essential for a strong 

science, research and innovation capacity. The statistics at hand indicate that enrolment 

numbers in these areas are shrinking and students are instead electing to take 

Elementary Mathematics” (Australian Council of Deans of Science, 2006, p. 2).  
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4.5.1 Elementary/Entry-level/Low-Level Mathematics 

In Australia, student enrolment in elementary mathematics has maintained a significant 

and steady growth in enrolments from 1990 to 2012, with the exception of 2001 

(Barrington & Brown, 2014). By 2010, 51% of all mathematics enrolment was in the 

elementary level, increasing to 52% in 2011, where it stayed until 2015 (Barrington & 

Evans, 2014; Barrington & Evans, 2016). In 1990, around 51,855 students opted for 

low-level mathematics but by 2015 about 117, 000 students were enrolled in the subject, 

a 125.6% increase (Dekkers & Malone, 2000; Barrington & Evans, 2016). Kennedy et 

al. (2014) also reported an increase in enrolment rates in entry level mathematics 

between 1994 (38%) and 2012 (49%). The differences in participation rates in 

elementary mathematics reported by the various researchers can be attributed to the 

different categorisations used in their analyses. However, it is clear from both trends 

that there was a significant increase in enrolment in elementary mathematics. Using 

other criteria, female dominance in elementary mathematics declined between 1990 

(56.7%) and 1999 (52.4%) and again to almost parity with male students after 2000 

(Dekkers & Malone, 2000; Forgasz, 2006b). The female-to-male ratio of enrolment by 

2012 was 11 females to 10 males (Kennedy et al., 2018) and in 2015 the percentage was 

approximately 51% to 49% in favour of females (Barrington & Evans, 2016). From the 

different categorisations presented, these trends show that enrolment in elementary 

mathematics between males and females became fairly balanced from early to mid-

2000. 

 

4.5.2 Intermediate Mathematics 

Nationally, slight variations in participation rates in intermediate mathematics have 

been reported by different researchers due to their differing categorisation of this option. 

For example, according to Barrington & Brown (2014), Barrington and Evans (2014; 

2016) and Forgasz (2006a), student enrolment rates in intermediate mathematics 

declined during the period 1995 (27.3%) to 2015 (19.2%), with the exception of 2002 

and 2014. However, Ainley et al. (2008) report slightly different enrolment rates 

between 2001 (34.7%) and 2007 (30.6%) and Kennedy et al. (2014) report different 

rates of decline again, between 1994 (38%) and 2012 (27%). However, the findings 

from the various researchers do evince a similar trend of a steady decline in students’ 
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enrolment in intermediate mathematics from the mid-1900s to 2012. These trends also 

show that males dominated enrolment in intermediate mathematics, although females 

were not far behind (Kennedy et al., 2014; Barrington & Brown, 2014). 

 
4.5.3 Advanced/High-level Mathematics 

Participation rates in Advanced Mathematics declined between 1990 (24%) and 1999 

(16%) (Dekkers & Malone, 2000). Kennedy et al. (2014) reported a similar decline 

between 1994 (16%) and 2012 (9%). The period 2001 to 2007 saw student enrolment 

numbers in Australia declining from 26,216 to 22,999 respectively (Ainley, 2008). 

Since 2007, raw enrolment data have been fairly static, between 20,000 to 21,000 until 

2012 (Kennedy et al., 2014). One in 10 students in 2013 studied Advanced Mathematics 

in Year 12 (Mater et al., 2014). With the exception of 2003, 2008 and 2014, enrolment 

rates between 1995 and 2015 continued to decline until they stabilised at around 9.5% 

from 2012 (Barrington & Evans, 2014; 2016). Though researchers used different 

classification categories for mathematics subjects, their findings that Advanced 

Mathematics enrolment had declined over the last few decades were consistent. Female 

enrolment rates in Advanced Mathematics also showed a steady decline from 41.1% in 

1990 to 38.9% in 1999 (Dekkers & Malone, 2000). The ratio of male and female 

enrolment in the late 1990s was six females to 10 males, which declined to 14 females 

to 25 males by 2012 (Kennedy et al., 2014). The trend continued in 2013, when the rate 

of female enrolment was 6.7% compared to 12.7% of boys (Barrington & Brown, 

2014). By 2015, the female participation rate was at 6.9% while the male rate was 

12.6% (Barrington & Evans, 2016). Just 6.6% of girls enrolled in Advanced 

Mathematics in 2013, a 23% decline from 2004 (Mater et al., 2014). Thus, a clear 

dominance by males characterised enrolment in Advanced Mathematics. 

 

Research indicates that in Australia, calculus-based mathematics is becoming less 

popular with most students, as indicated by the low number and proportion of Year 12 

students studying this option in 2013 compared to 1995 (Barrington & Brown, 2014). In 

fact, student participation rates in both intermediate and Advanced Mathematics steadily 

declined to around 19.2 % and 9.6% respectively in 2015. On the other hand, the 

elementary mathematics enrolment rate has shown a steady increase from 2005 to 2015, 
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stabilising at 52% from 2010. These trends were consistent in the majority of states in 

Australia, especially for calculus-based subjects, and this decline in enrolment rates in 

calculus-based mathematics is a cause for concern (Engineers Australia, 2016). 

 

4.6 Trends in Student Participation in Mathematics Subjects in Queensland 

The latest literature of trends in students’ enrolment in Queensland was part of Ainley et 

al’s (2008) research on national trends in Advanced Mathematics, which was 14 years 

ago. This is in contrast to states such as New South Wales, where more recent research 

has been undertaken to analyse trends in student enrolment in mathematics (Jaremus et 

al., 2018). From 2008 to 2019, Queensland offered Mathematics A, B, C and 

Prevocational Mathematics, which were replaced by General, Methods, Specialist and 

Essential Mathematics respectively (Queensland Tertiary Admissions Centre [QTAC], 

2018). Mathematics A is considered Elementary Mathematics, Mathematics B is 

considered Intermediate and Mathematics C is Advanced (Forgasz, 2006b). 

Mathematics C is a recommended companion subject to Mathematics B and offers more 

diverse and better career opportunities (Queensland Studies Authority [QSA], 2014). 

Although Mathematics C provides additional preparation, both Mathematics B and C 

cater for students interested in university courses with high demands in mathematics, 

such as science, medicine, mining, engineering, information technology, mathematics, 

finance, business and economics (QCAA, 2008). This is different from the categories 

that have been used in previous analyses of enrolment trends nationally, as only 

Mathematics C was regarded as a prerequisite for such courses.  Mathematics A is for 

students who want to pursue studies and training in courses with moderate demand for 

mathematics, such as carpentry, plumbing, auto mechanics, tourism, hospitality and 

administration (QCAA, 2008). Prevocational Mathematics can be classified as 

background elementary mathematics (Kennedy et al., 2014) as it does not prepare 

students for any further tertiary studies; hence it is a terminal option. Nor was 

Prevocational mathematics ever considered in any previous enrolment trends analysis, 

hence there is no literature on the subject. 
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The following section includes a discussion of raw data as well as percentages to 

identify gaps in the literature on Queensland. Raw enrolment numbers of mathematics 

enrolment in Year 12 increased marginally, from 46,517 in 2000 to 47,465 in 2004, 

apart from a decline of 694 students in 2001 (Forgasz, 2006b). Between the early 1990s 

and 2005, there was a significant decline in the proportion of Year 12 students studying 

Mathematics B and C in Queensland. However, enrolment rates seemed to stabilise by 

2013 after a marginal increase (QSA, 2014).  

 

4.6.1 Elementary Mathematics 

A marginal increase from 66.0% in 2000 to 67.5% in 2004 characterised students’ 

enrolment in elementary mathematics (Forgasz, 2006b). Raw Year 12 data show that 

student enrolment increased from 26,298 in 2000 to 27,415 in 2004, which was an 

increase of 4.2% (Forgasz, 2006b). Females dominated participation year by year from 

2000 to 2006 (McPhan et al., 2008). Between 2000 and 2004, male enrolment rates 

trailed females, increasing by 3.5% compared to 4.9% for females (Forgasz, 2006b). In 

addition, female enrolment as a proportion of all Year 12 females increased from 67.3% 

to 69.8%, while male enrolment as a proportion of all Year 12 males was stable at 

around 65% in the same period (Forgasz, 2006b). 

 

4.6.2 Intermediate Mathematics 

A steady decline in enrolment in Intermediate Mathematics (Mathematics B) was 

witnessed from 1992 to 2008, but this was followed by a steady but marginal increase 

until 2013 (QSA, 2014). The mean percentage enrolment rate among the Year 12 cohort 

was 41.5%; however, the Intermediate Mathematics (Mathematics B) participation rate 

fell by 2.1% for the period 2000-2004 (Forgasz, 2006a, 2006b). From 2000 to 2004, the 

female participation rate declined by 4.8% while the male enrolment rate increased by 

0.3% (Forgasz, 2006a, 2006b). In the same period, both male and female enrolment 

rates as proportions of their Year 12 gender declined, with the male rate falling from 

46.2% to 44.7% and the female rate from 39.3% to 37.0% (Forgasz, 2006b).  
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4.6.3 Advanced Mathematics 

In Advanced Mathematics, a decline in enrolment was witnessed from the early 1990s 

until 2000 (Ainley et al., 2008), falling from 15.8% in 1991 to 7.8 % in 2007, despite 

marginal increases in 1995 and 2004 (Ainley et al., 2008). From year 2000 to 2003, the 

raw data show a decline in enrolment from 3,242 to 3,175; however, a significant 

increase to 3430 was welcome in 2004 (Forgasz, 2006b). The sum of all Advanced 

Mathematics enrolments from 2000 to 2004 was only 8% of all Year 12 students 

(Forgasz, 2006b). However, the increase in enrolment has been credited to the bonus 

points system Queensland offered in 2008, which incentivised students to enrol (Maltas 

& Prescott, 2014). The bonus points enabled a student with a pass in Mathematics C to 

receive two adjustments to boost the selection mark for tertiary courses. Finally, 

between 2000 and 2004, the female enrolment rate in Advanced Mathematics (5.5%) 

was slightly lower than male enrolment rate (6%) (Forgasz, 2006b) and the male 

dominance has not been challenged over that period (Forgasz, 2006b). 

No analysis of trends in student enrolment in mathematics options involving Years 11 

and 12 enrolment data has been undertaken for Queensland, the last comprehensive 

study using Year 12 enrolment data having been carried out by Ainley et al. in 2008. 

This constitutes a significant gap in the literature which this study aims to fill by 

reporting on an analysis of student enrolment trends for the period 2010 to 2019 in the 

Sunshine State. 

 

4.7 Study Methods and Results 

This study investigated students’ options and trends of enrolment in Mathematics A, B, 

C and Prevocational mathematics between 2010 and 2019 using data from the 

Queensland Curriculum and Assessment Authority (QCAA). Quantitative methods were 

applied to analyse trends of student options. Consent to use the data in this study was 

provided by QCAA. The data covered schools, gender, indigenous or non-indigenous 

and the number of students in the various different options. Table 4.2 shows the raw 

data of the student numbers in the year levels from 2010 to 2019. 
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Table 4.2: Raw data showing student numbers 

Year Year 
level 

Gender Non-
Indigenous Indigenous Total 

Male Female 

2010 11 30571 28856 56866 2561 59427 
12 28534 28143 54666 2011 56677 

2011 11 30600 29261 57243 2618 59861 
12 29319 28444 55647 2116 57763 

2012 11 30920 29769 57951 2738 60689 
12 29728 29353 56821 2260 59081 

2013 11 31770 30560 59278 3052 62330 
12 30378 29724 57724 2378 60102 

2014 11 32445 30581 59848 3178 63026 
12 31132 30457 58829 2760 61589 

2015 11 32520 30868 60112 3276 63388 
12 31844 30519 59489 2874 62363 

2016 11 33314 31556 61389 3481 64870 
12 31964 31116 60005 3075 63080 

2017 11 32090 31334 60019 3405 63424 
12 33032 31829 61639 3222 64861 

2018 11 24351 21494 43586 2259 45845 
12 31613 31582 60016 3179 63195 

2019 11 Introduction of new curriculum 
12 24247 21868 43912 2203 46115 

 

 

To perform the analysis, a descriptive quantitative method was employed using 

Microsoft Excel. Microsoft Excel offers a suite of statistical analysis functions that can 

be used to run descriptive statistics, to perform several different and useful inferential 

statistical tests and process data using formulas (Abbott, 2011). Descriptive statistics 

and graphical representations of data can be useful when making comparisons between 

sets (Carr, 2008). Descriptive statistics (e.g., calculation of the measures of central 

tendency such as the mean, mode and median) were used to describe the data using the 

Microsoft Excel software. According to Aldrich and Rodriguez (2013), multiline graphs 

can be used to identify trend changes in one or more variables over time. The following 

section describes the trend changes in (1) average percentage enrolment; (2) schools not 

offering calculus-based mathematics; (3) gender enrolment in Mathematics A, B and C; 

(4) Indigenous students enrolment; and (5) dropout rates in Mathematics B and C.  

 



Supporting the teaching of calculus-based senior mathematics in Queensland. 

88 
 

4.7.1 The Average Percentage Enrolment  

An analysis of the average percentage of student enrolment in Mathematics A, B, C and 

Prevocational mathematics between 2010 and 2019 was conducted. The analysis ranked 

the mathematics enrolment in the different options as follows: 

Mathematics A: 42.55% at Year 11 and 43.44% at Year 12 

Mathematics B: 30.41% at Year 11 and 29.53% at Year 12  

Mathematics C: with 7.82% at Year 11 and 7.62% at Year 12 

Prevocational Mathematics (PVM): 19.22% at Year 11 and 19.21% at 

Year 12  

 

Figure 4.1 below is a graph of student enrolment in all the four mathematics options, 

namely, Mathematics A, B, C and Prevocational mathematics between 2010 and 2019. 

The Mathematics A, B, C and Prevocational syllabi terminated at the end of 2019, 

hence Year 11 data ended in 2018. 
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Figure 4.1: Enrolment Summary from 2010 to 2019 

 

4.7.2 Schools with no Students Participating in Calculus-based Mathematics 

Figure 4.2 is a graph of the number of schools that did not register any student for 

Mathematics B and C between 2010 and 2019. The yearly average number of schools 

that did not have students’ enrolment in calculus-based mathematics, that is, 

Mathematics B, is 13, and Mathematics C is 83. The difference in number between 

schools offering Mathematics A, B or C gave the number of schools that did not have 

students’ enrolment in calculus-based mathematics.  
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Figure 4.2: Schools with no Students Enrolment in Calculus-based Mathematics from 

2010 to 2019 

 

4.7.3 Gender enrolment in Mathematics A, B and C 

Table 4.3 shows the average percentage enrolment in Mathematics A, B and C from 

2010 to 2019 in gender groups. It also shows the gender distribution in calculus-based 

Mathematics B and C and non-calculus Mathematics A. 

 

Table 4.3: Average Percentage Gender Enrolment in Mathematics A, B and C from 

2010 to 2019 

Year 
Level 

Subject Gender Average 
Percentage 

11 Mathematics 
A 

Males 46.61 
Females 53.39 

Mathematics 
B 

Males 52.54 
Females 47.46 

Mathematics 
C 

Males 64.71 
Females 35.29 

12 Males 46.30 
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Mathematics 
A 

Females 53.70 

Mathematics 
B 

Males 52.37 
Females 47.63 

Mathematics 
C 

Males 64.89 
Females 35.11 

 

 

The results show that male enrolments in calculus-based mathematics was higher than 

female enrolments. The average percentage of males enrolled in Mathematics B 

compared to the total Mathematics B enrolment was 52.54% in Year 11 and 52.37% in 

Year 12. This means for every 13 males enrolled in Mathematics B, there were 12 

females. Similarly, in Mathematics C, males constituted 64.71% of the Year 11 cohort 

and 64.89% in Year 12. For every 13 males enrolled in Mathematics C, there were 7 

females. In contrast, females dominated enrolment in the non-calculus option of 

Mathematics A where, in Year 11, females surpassed males by an average percentage of 

6.78%, which increased to 7.4% in Year 12. There was a slight increase in the ratio 

from every 12 males:13 females in Year 11 to 6 males:7 females in Year 12. 

 

4.7.4 Indigenous Students Enrolment 

Figure 4.3 shows trends in Indigenous students’ enrolment in the mathematics options. 

A large number of Indigenous students enrolled in Pre-Vocational Mathematics but only 

a very small percentage in Mathematics C. Table 4.4 below shows how Indigenous 

students were distributed among the four options. The percentages were calculated as a 

total of the state Indigenous student population. 
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Figure 4.3: Percentage Enrolment in Mathematics of Indigenous Students in Queensland 

from 2010 to 2019 

 

Table 4.4: Average Percentages of Distribution of Indigenous Students in Mathematics 

in Queensland from 2010 to 2019 

Year 11 Year 12 
Mathematics A (39.05%) Mathematics A (40.58%) 
Mathematics B (10.33%) Mathematics B (10.53%) 
Mathematics C (1.70%) Mathematics C (1.76%) 
Prevocational (48.91%) Prevocational (47.13%) 

 

4.7.5 Dropout Rates in Mathematics B and C 

Figure 4.4 shows the dropout rate in Mathematics B and C for all students, while Figure 

4.5 shows the dropout rate according to gender. Figure 4.6 shows the percentage drop of 

Indigenous versus non-indigenous students. Additionally, the trends of students’ 

movement between mathematics subject options can also be determined through data 

analysis. The availability of both Year 11 and 12 data allowed changes in students’ 

enrolment as they moved from one year to the next to be tracked.  
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Figure 4.4: Dropout rate in Mathematics B and C for all students from 2010 to 2019 

 

Mathematics B had consistently more students than Mathematics C dropping out as they 

moved from Year 11 to Year 12. On average, about 688 students dropped from 

Mathematics B every year compared to 108 students in Mathematics C. This meant that 

the dropout rate from Mathematics C, although averaging 2.35%, was calculated on a 

smaller population than for Mathematics B with an average of 3.77%.  For the period 

under consideration, that is, 2010 to 2019, a total of 3372 females and 4582 males 

dropped out of calculus-based mathematics in Queensland. 
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Figure 4.5: Dropout Rate According to Gender from 2010 to 2019 

 

A larger percentage of males than females dropped out of Mathematics B and C, with 

an average rate of 4.06% in Mathematics B and 2.38% in Mathematics C. By 

contrasting, females were in the minority in both options but their dropout rate was 

3.45% in Mathematics B and 2.32% in Mathematics C. 
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Figure 4.6: Dropout of Indigenous versus Non-Indigenous Students from 2010 to 2019 

 

The average dropout rate for Indigenous students was 7.03% for Mathematics B and 

3.71% for Mathematics C. This was despite the fact that Indigenous students comprise a 

very small percentage of enrolments at any year level. In comparison, non-Indigenous 

students had an average dropout percentage of 3.72% for Mathematics B and 2.24% for 

Mathematics C. Raw data show a total of 225 indigenous students dropped out of 

calculus-based mathematics from 2010 to 2019. 

 

4.8 Discussion 

Findings from this research indicate that more male students opted for Mathematics B 

and C than female students in Years 11 and 12 in Queensland in the years 2010 to 2019. 

As highlighted in the data, an average of 47.5 % and 35.2 % of all Mathematics B and C 

respectively in Years 11 and 12 were females. This agrees with the earlier findings of 

Ainley et al., (2008), Forgasz, (2006a), Forgasz, (2006b) and indicates that fewer 

females opted for calculus-based mathematics than males for the period 2010 to 2019. 

The low percentage of females choosing Advanced Mathematics is a concern compared 

to males. Against that, however, the dropout rates of females from these two subjects in 
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the same period was 3.45% for Mathematics B and 2.31% for Mathematics C, which is 

less than the dropout rates for males of 4.06% for Mathematics B and 2.38% for 

Mathematics C. This suggests that the female dropout rate could be further reduced if 

female enrolment was improved and that sustained improvements in female enrolments 

could give female students the potential to surpass male students in their numbers in 

Mathematics B and C. Female students must be encouraged to choose options that offer 

more STEM opportunities and to perform well in those options. This supports the need 

for educators to develop strategies that improve female enrolment in these subjects in 

Year 11. While the results of trends analysis cannot explain why fewer females choose 

Mathematics B and C, a closer focus on not only academic but also social and cultural 

factors that support female students’ enrolment in Mathematics B and C is essential and 

this could be a focus of future research.  

 

Mathematics is compulsory in Queensland for all students to achieve a Queensland 

Certificate of Education (QCE) and students decide on which option to pursue in Years 

11 and 12. However, findings from this research indicate that not all schools offer all 

options. As suggested earlier, the Australian Council of Deans of Science in 2006 found 

that schools in more remote regions struggled to recruit qualified mathematics teachers. 

While this study did not focus on this issue, the Australian Mathematical Sciences 

Institute [AMSI] (2014) noted that this is a particular challenge for Queensland schools. 

The results in this study exposed a worrying trend as a significant number of schools 

across Queensland do not have student enrolment in Mathematics B and C, the yearly 

average being only 13 and 83 schools respectively. This agrees with the AMSI (2014), 

which suggests that the number of schools able to provide Advanced Mathematics 

subjects at Years 11 and 12 is steadily declining and with this, the number of students 

studying Advanced Mathematics. Additionally, the report suggests that shortages in 

specialised mathematics teachers has meant that around 40 percent of classes are taught 

without a qualified mathematics teacher. There is need to develop both material and 

human resources to empower classroom practise, which may help address the decline in 

student enrolment in Mathematics B and C. However, it is also important to target these 

resources to schools that currently do not offer some of the mathematics options so that 

they can do so in the future. Significantly, a declining trend of student enrolment in 

Advanced Mathematics subjects may also lead to fewer qualified mathematics teachers 

for the future.  
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Results from the study showed that Indigenous students opted mostly for Mathematics 

A and Prevocational mathematics. Although Indigenous students constitute a very small 

percentage of enrolments at any year level, the average dropout rate is worth noting     

7.03% for Mathematics B and 3.71% for Mathematics C. In addition, schools in remote 

regions have difficulty recruiting qualified mathematics teachers (Australian Council of 

Deans, 2006), which may impact Indigenous students more than other student groups. 

The study argues for an urgent focus to redress these trends and imbalances. The data 

does not include socio-economic status or cultural factors that might also be at play 

within such settings. Additionally, lack of local STEM career opportunities in remote 

and regional areas might also play a part in the mathematics subjects students opt. This 

is because graduating from high school may not necessarily translate to starting a high-

status career. It would be worthwhile to conduct further research that investigates the 

views of indigenous students in remote and regional schools to shed further light on 

their experience of learning mathematics. However, this is beyond the scope of this 

study as the aim here is to identify broad trends purely from a statistical viewpoint.  

 

Arresting the dropout rates in calculus-based mathematics can be one way to improve 

the participation rate in the subjects. Results show that a significant number of students 

who opted for the calculus-based mathematics subjects in Year 11 dropped the subject 

and enrolled in non-calculus-based mathematics in Year 12. Mathematics B particularly 

showed more students than Mathematics C dropping out as they moved from Year 11 to 

Year 12. Data from 2010 to 2019 also shows that more students opted for Mathematics 

B or C in Year 11 than in Year 12, which was the opposite for Mathematics A and 

Prevocational. As suggested by McPhan et al. (2008), schools can arrest the decline and 

the high dropout rates in calculus-based mathematics if they implement classroom 

practises that engage students and focus on improving student understanding of 

important concepts at every level of learning. Arresting this decline becomes imperative 

to support students’ future enrolment in STEM-related careers. 

 

Research is needed to develop teaching and learning strategies that increase student 

enrolment in calculus-based mathematics subjects. More needs to be done to increase 

enrolment in calculus-based mathematics to satisfy the demand in STEM-related 

careers. One way of doing this would be to focus on improving enrolments in 
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Mathematics B (now called Mathematical Methods in Queensland’s new syllabus), 

which has an average percentage enrolment of 30.41% and offers almost the same 

opportunities as Mathematics C, now called Specialist Mathematics. It is also important 

for teachers to engage resources that may increase the chances of students’ engagement 

and success in mathematics which can play an enabling role increasing student 

enrolment. Thus, Queensland has the potential to have more than 31% of all Year 12 

enrolments eligible for the STEM tertiary program and becoming STEM champions.  

 

4.9 Chapter Conclusion 

This chapter investigated Years 11 and 12 students’ options and trends of enrolment in 

calculus-based and non-calculus-based mathematics subjects between 2010 and 2019, 

using data from the Queensland Curriculum and Assessment Authority. It also looked at 

the central role that mathematics plays as an enabler of STEM-related courses and 

careers. It found out that the mathematics trends in Year 12 in Queensland are 

consistent with previous research at national level. Males dominated in Mathematics B 

and C and fewer female students opted for calculus-based mathematics. Indigenous 

students opted mostly for Mathematics A and Prevocational mathematics. However, a 

significant number of schools do not offer calculus-based mathematics options and 

consequently have no student enrolment in the subject. The study argued for an urgent 

focus to redress these trends and imbalances and calls for further research that focuses 

not only on academic factors, but social and cultural factors to support all students’ 

participation in calculus-based mathematics. The next chapter provides an analysis of 

student participation in calculus-based mathematics using data from the Queensland 

Curriculum and Assessment Authority (QCAA), Socio-Economic Indexes for Areas 

(SEIFA) from the Australian Bureau of Statistics (ABS); schools’ Index of Community 

Socio-Educational Advantage (ICSEA) values from the Australian Curriculum, 

Assessment and Reporting Authority (ACARA); and schools transfer ratings from the 

Department of Education (DoE).  
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Chapter 5: Trends in Calculus-Based Mathematics in the New Senior 
Secondary Queensland Certificate of Education 

 

A version of this chapter was presented at the International 

Conference on Education in Mathematics, Science and Technology, 

Antalya, Turkey, March 24-27, 2022. 

https://researchonline.jcu.edu.au/76298/  

 
5.1 Chapter Introduction 

 Mathematics plays a central role in innovation, scientific, technological, economic and 

social knowledge development (Watt et al., 2017). The sciences   digital technologies 

and innovation in particular   are regarded as the economic drivers and main jobs of the 

future (Black et al., 2021; PwC, 2013), and mathematics is regarded as a significant 

enabler of these fields (Australian Academy of Science, 2016). In Australia, “innovation 

and digital technologies have the potential to increase Australia’s productivity and raise 

GDP by $136 billion in 2034, and create close to 540,000 jobs” (PwC, 2013, p. 13), 

hence mathematics is pivotal in reshaping the future (Chubb, 2012). Australia in 

general, and Queensland in the context of this research, needs graduates with Advanced 

Mathematics skills to promote innovation, data synthesis and technology if it is to 

remain competitive globally.  

 

Indeed, promoting enrolment and achievement in Advanced Mathematics in schools is a 

focus of most governments all over the world (Noyes & Adkins, 2016; Treacy et al., 

2020), because mathematics drives STEM (Shaughnessy, 2013). Similar to other 

countries such as the United Kingdom, Australia offers bonus points at university entry 

for students who pass Advanced Mathematics as an incentive to encourage students to 

study Advanced Mathematics at senior secondary level (Prendergast et al., 2020; Treacy 

et al., 2020). The distinct advantage of studying Advanced Mathematics in high school 

is not only to achieve individual goals but because of its recognised value to society. 

 

Developing Advanced Mathematics skills results in high economic value, since “strong 

mathematical skills are critically important for a thriving and competitive knowledge-

based economy” (Adkins & Noyes, 2016, p. 94). Studies have shown that students who 

pursue Advanced Mathematics are interested in pursuing high-impact jobs (Gijsbers et 

https://researchonline.jcu.edu.au/76298/
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al., 2020). Indeed, people with advanced mathematics skills progress to earn about 11% 

more than those without by the time they reach 34 years of age (Adkins & Noyes, 

2016). Similarly, choosing Advanced Mathematics is generally regarded as a pathway 

to high-paying jobs (Light & Rama, 2019). The link between economic development, 

prosperity and Advanced Mathematics makes mathematics a key transformational focus 

for governments and understanding trends in students’ enrolment in Advanced 

Mathematics can inform policy makers. 

 

The purpose of this chapter was to determine trends in enrolment in calculus-based 

mathematics under the new curriculum introduced in Queensland in 2019. The chapter 

built on Chapter 4 which focused on students’ enrolment in calculus-based mathematics 

in the phased-out curriculum in Queensland (Chinofunga et al., 2021). This chapter 

expanded the focus further to the relationship between enrolment, dropout rates, SES, 

school location and teacher mobility and transfer ratings and contributes to the limited 

literature available on the impact of social and economic factors and school location on 

enrolment in calculus-based mathematics. 

 

5.2 Importance of Calculus-based Mathematics 

Calculus is built on the foundations of the analysis of changing phenomena. Therefore, 

“calculus is essential for developing an understanding of the physical world” 

(Queensland Curriculum and Assessment Authority (QCAA), 2018 p.1).  Calculus-

based mathematics introduces differentiation and integration at high school, which 

provides students with the opportunity to model quantities that undergo change and a 

portal for deeper theoretical growth (Maltas & Prescott, 2014). In Queensland, 

graduates with either Specialist Mathematics and or Mathematical Methods have a 

pathway to pursue tertiary courses that are mathematics-intensive, such as natural 

sciences, health sciences and engineering (QCAA, 2018). However, students who opt 

for Specialist Mathematics also have to study Mathematical Methods but have a distinct 

advantage at tertiary level as Specialist Mathematics is regarded as more advanced. 

Thus, studying these subjects is critical as students prepare for careers in a competitive 

world.  

 

Several scholars have highlighted the importance of Advanced Mathematics in 

providing better and more diverse career opportunities, (Chinnappan et al., 2008; 
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Chinofunga et al., 2021; Maltas & Prescott, 2014; Noyes & Adkins, 2017) and 

facilitating skills for the STEM workforce (Kennedy et al., 2014). Moreover, calculus-

based mathematics is critical in “developing students’ logical thinking and reasoning 

abilities” (Prendergast et al., 2020, p. 753). A country’s economic status and social 

wellbeing is enhanced by having a workforce that possess Advanced Mathematics skills 

as these skills are critical for research, industry and business to thrive (Black et al., 

2021). A projected increase in school enrolments of 20.4% by 2026 in Queensland must 

prompt policy makers to find ways of boosting calculus-based graduates by the same 

margin (O’Connor & Oam, 2019). Calculus-based mathematics offers distinct 

advantages for graduates as it supports critical thinking and decision-making which is 

central to problem solving, thus preparing them for individual growth and flexible but 

critical career options. 

 

High school calculus-based mathematics increases the chances of entry into highly 

sought-after courses in higher education (Cogan et al., 2019). Hence, 

Students need a good measure of rigorous, formal mathematics in order to be 

literate, prepared for whatever career path students choose upon completion of 

their secondary education whether they choose to enter immediately the work 

force; to enter a technical, trade or vocational career path, or to continue their 

formal education at a college or university” (Cogan et al., 2019, p. 531).  

Furthermore, studying calculus-based mathematics at senior secondary level enhances 

the chances of success in STEM courses at tertiary level (Cohen & Kelly, 2020; 

Gottfried, 2015; Nicholas et al., 2015; Redmond-Sanogo et al., 2016). Research also 

indicates that students who graduate from high school with Advanced Mathematics 

subjects do well in health sciences at university with a high-grade average (Ryan et al., 

2017). High school graduates with non-calculus options who want to pursue tertiary 

courses where calculus-based mathematics is a pre-requisite are required to take up 

bridging or remediation courses (Nicholas et al., 2015; Redmond-Sanogo et al., 2016; 

Varsavsky, 2010). Undoubtably, the role that calculus-based mathematics plays in 

STEM tertiary courses cannot be underestimated (Maass et al., 2019).  
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5.3 Socio-economic Background and Participation in Calculus-based Mathematics 

Social and economic background largely determines access to resources. Students from 

high SES families and/or schools have access to better resources that can provide 

opportunities for success compared to those from lower socio-economic backgrounds 

(Bornstein & Bradley, 2014). Consequently, students’ enrolment and achievement are 

significantly influenced by “school characteristics such as location and socio-economic 

background of the students it serves.” (ACARA, 2013 p.1). Additionally, differences in 

student achievement are often influenced by students’ SES (Broer et al., 2019). “In 

Australia, the magnitude of the socio-economic gap in mathematics achievement at age 

10 is about 65% as large as the gap observed among 15-year-olds, and about 58% as 

large as the gap in numeracy proficiency among 25-29-year-olds” Organisation for 

Economic Co-operation and Development [OECD, 2018, p. 2]. Consequently, students 

from low SES are more likely to encounter limited educational opportunities and social 

inequality (Perry, 2018). Moreover, financial and human capital complemented by 

resources accessed through networking play an important role in shaping students’ 

choices and beliefs (Bradley & Corwyn, 2002). The better and more diverse 

opportunities that calculus-based mathematics offer are skewed towards students from 

high SES families or who go to high SES schools. 

 

Socio-economic factors also influence students’ mathematics subject choices and 

achievement (Valero et al., 2015). Consequently, students from a high SES background 

are more likely to enrol in and achieve well in mathematics, especially in advanced 

options, than those from a low SES background (Valero et al., 2015). Moreover, parents 

of students from high SES background have high expectations and encourage their 

children to take Advanced Mathematics (Hascoët et al., 2021). In contrast, students 

from lower SES communities may not interact much with knowledgeable and 

experienced adults who can act as role models and provide stimulating and motivating 

experiences, thus limiting the opportunities and options for such students (Bradley & 

Corwyn, 2002). This is because the immediate social network around students, 

including parents, teachers, siblings and friends, plays a key role in influencing 

students’ mathematics choices (Kirkham et al., 2019). The critical role that parents and 

social background play in influencing students’ mathematics choices emphasises the 

importance of school location, school choice and the social network to which a student 

is exposed.  



Supporting the teaching of calculus-based senior mathematics in Queensland. 

103 
 

 

On average, a student who attends a higher SES school enjoys higher educational 

outcomes compared to a student from a similar social background who attends a lower 

SES school (Perry & McConney, 2013, p. 125). This is because high status peers are 

significantly influential to other peers within a social group (Choukas-Bradley et al., 

2015). Schools with a high SES are strongly associated with high academic 

expectations, competition and achievements (Perry & McConney, 2013), hence 

students’ mathematics choices are influenced by the school environment, which is 

expected to be highly stimulative, productive and positive (Willms, 2010). Clearly, the 

interaction between students from different levels of SES in high SES schools provides 

an opportunity for networking among peers that will boost mathematics achievement, 

especially for those from a low SES (Perry & McConney, 2013). Hence, school SES 

plays a critical role in students’ mathematics choices regardless of the students’ family 

SES. 

 

A school reflects the demography of the community within its catchment area and those 

located in communities with low SES have students who are in some way 

disadvantaged (Hernández, 2014). In fact, “schools that are in the same district, but 

located in neighbourhoods of differing SES display a large disparity in opportunities 

and quality of education offered to students” (Hernández, 2014, p1). Students who 

attend schools in high SES neighbourhoods have access to relevant information and 

experiences that help them set high expectations and above all better educational 

resources (Ireneusz, 2020; Pritchett, 2001). Schools in affluent areas have better 

physical and material resources that differentiate them from other schools. As Broer et 

al. (2019) said, differences in educational opportunities are influenced by accessibility 

to well-resourced schools. Similarly, “It is not just the relative wealth of parents that 

holds large numbers of bright kids back: it is postcode inequality too. What part of the 

country a child grows up in has a real impact on their life chances” (Nick Clegg, former 

leader of the UK Liberal Democrats, 2016). In contrast, students from low SES areas 

who attend high SES schools score 86 points higher than their counterparts in low SES 

schools (OECD, 2018). Students from low SES families and communities have limited 

options to pursue because of the social and financial capital that is needed to attend 

reputable and well-resourced schools. 
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Student enrolment and achievement in Advanced Mathematics is linked to school 

resources that include discipline-trained teachers and family social economic status 

(Chiu, 2010). Importantly, it is the mathematics teachers’ expertise in teaching the 

subject and making it more engaging and understandable to students that plays a critical 

role in student enrolment and participation in calculus-based mathematics (Kirkham et 

al., 2019). As Chinnappan (2008) says, “the likelihood of a student pursuing further 

studies in mathematics would be influenced by their experiences in mathematics classes 

at secondary school” (p. 33). For example, past mathematics achievement directly 

influences students’ attitude towards mathematics (Birgin et al., 2010; Hascoët et al., 

2021; Sikora et al., 2019). Clearly, “attitudes concerning mathematics show significant 

impact on one’s decisions about the amount and nature of mathematics one will study in 

the future” (Recber et al., 2017). As a result, students’ choice of schools influences the 

mathematics options they select (Sikora et al., 2019). Students from low SES families 

have limited options in terms of school choices as they are more likely to enrol in 

schools within their communities.  

 

The location of a school is a major factor in the resources and opportunities that school 

can offer, not least in how it contributes to its teacher mobility and transfer rating. 

Queensland state schools are allocated transfer ratings from 1 to 7 depending on their 

remoteness, access to and level of amenities in the area, the complexity of the school 

environment and staffing requirements (Department of Education [DoE], 2019). 

Remoteness is determined by distance from Brisbane or Toowoomba or any coastal city 

of more than 8000 people (DoE, 2019). In fact, school transfer ratings are the basis of 

the transfer points teachers accrue (Department of Education, 2020). Therefore, 

“teachers who elect to work for longer periods in schools of rating 3 to 7 increase their 

prospects of securing a transfer to a preferred location where they choose to return, 

while schools benefit from the greater stability and stronger community integration.” 

(DoE, 2020, p. 5). Teachers who are attached to a school for a longer period perform 

better than those who have a short stint at the school and this pattern is more apparent in 

disadvantaged schools (Hanushek & Rivkin, 2010). Teachers at a school with a rating of 

7 are due for transfer after two years while others are expected to serve three years at a 

school to qualify (DoE, 2020). However, any other personal, social, professional 

circumstances and transfers from a school with a lower rating to one with a higher 

rating may also lead to approved transfers (DoE, 2020). The higher the school transfer 
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rating, the more transfer points teachers accrue, which may result in unintended 

consequences of high teacher turnover in such schools.  

 

High teacher turnover in schools is also a key factor in hindering quality education and 

better options for students in disadvantaged communities (Barbieri et al., 2011). 

Teachers may target schools with high transfer ratings because they “are simply waiting 

to move on to a desired location, putting low effort into their current work duties and 

disregarding any longer-term plans for their students” (Barbieri et al., 2011, p. 1430). 

Therefore, a substantial number of teachers tend to be more effective and more focused 

on delivery after a voluntary transfer (Jackson, 2013). Contrastingly, teachers who teach 

students who are keen to engage or are high achievers are less likely to transfer (Boyd et 

al., 2011). This means that teachers in low transfer-rated schools may serve longer in a 

school, which in turn provides stability, consistency and confidence for students to enrol 

in calculus-based mathematics, if other factors like socio-economic disadvantages are 

minimised.  

 

5.4 Socio-economic Measures in the Study 

A significant number of researchers (Anastasiou et al., 2020; Avan & Kirkwood, 2010; 

Broer et al., 2019) have linked family and neighbourhood socio-economic status (SES) 

with educational outcomes. SES differences mainly involve accessing material 

(financial, assets) and social (community networking, neighbourhood) resources that 

impact the wellbeing and development of individuals, families and neighbourhoods 

(Bornstein & Bradley, 2014; Bradley & Corwyn, 2002). However, obtaining individual 

family SES data is very difficult considering the sensitivity of the subject to society 

(Broer et al., 2019). Nevertheless, the SES of an area can be determined using the 

Socio-Economic Index for Areas (SEIFA), which indicates the relative advantage and 

disadvantage of a neighbourhood (Australian Bureau of Statistics [ABS], 2018b). This 

study sought to determine the correlation between the school districts’ SEIFA indices, 

schools’ Index of Community Socio-educational Advantage (ICSEA), teacher mobility 

and transfer ratings with students’ dropout rates in calculus-based mathematics subjects 

in Queensland state schools.  
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The Australian Bureau of Statistics census data can be used to infer important school 

information such as relative advantage and disadvantage of a neighbourhood (Gibson & 

Asthana, 2000). The SEIFA index is developed after every census, the current index 

being based on the 2016 census. The data includes SES index in percentiles and name 

of area. This data was correlated with school data obtained from the QCAA, which 

included the name of the district, the postcode, and enrolment per unit. The period under 

study was of particular interest because Queensland changed to a new senior curriculum 

in 2019 and the first external examination was in 2020. Importantly, the analysis would 

help determine the impact of school postcodes and SES on enrolment in calculus-based 

mathematics.   

 

The SEIFA value was used to better understand the relationship between socio-

economic advantage and disadvantage and social and educational outcomes (ABS, 

2018a). The ABS broadly defines “relative socio-economic advantage and disadvantage 

in terms of people's access to material and social resources, and their ability to 

participate in society” (2018a, p. 6). While the percentile value on the SEIFA index is 

meant to indicate where each area sits in terms of SES within Australia as a whole 

(ABS, 2018a), this study focused only on Queensland. The socio-economic status of an 

area is mainly attributed to the collective income, education, employment and 

occupation of people in a neighbourhood (ABS, 2018a). Thus, a low score on the index 

indicates a high proportion of relatively disadvantaged people in an area (ABS, 2018a, 

p. 6). This index was used comparatively in the trend analysis in this study.  

 

To better understand the impact of socio-economic factors in relation to different 

schools and their location, the Australian Curriculum, Assessment and Reporting 

Authority (ACARA) developed an Index of Community Socio-educational Advantage 

(ICSEA). ICSEA values are developed using students’ family background data, location 

of school and demography of indigenous and non-indigenous students (ACARA, 2013). 

It enables “comparisons between schools based on the level of educational advantage or 

disadvantage that students bring to their academic studies.” (ACARA, 2013, p. 1). 

Similarly, it can be used as a measure of socio-economic advantage in education 

(Callingham, 2017). The ICSEA values range from 500, representing schools with 

students from hugely underprivileged educational backgrounds, to 1,300 for schools 

with students from very highly privileged educational backgrounds, and they have a 
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benchmark average of 1,000 (ACARA, 2013). This study analysed trends in enrolment 

in calculus-based mathematics using ICSEA values of all Queensland government 

secondary schools to investigate if school location and socio-economic background 

plays a role in students’ enrolment in the subjects. 

  

5.5 Study Methods and Results 

The study used data from a range of institutions (ABS, ACARA, DoE, QCAA) to 

investigate the impact of social and economic factors on enrolment in calculus-based 

mathematics. Quantitative methods were used to analyse trends from within and across 

data sets to establish a comprehensive picture of how socioeconomic status and school 

location affect enrolment. QCAA provided consent for the use of its data, which 

included school name, subject name, postal code and enrolment per unit. Each school 

and district were matched to their relevant SEIFA index (ABS), ICSEA value 

(ACARA) and transfer points (DoE). Statistical Package for the Social Sciences (SPSS) 

was used for inferential statistics as it involves coming up with conclusions drawn from 

the existing data. The Spearman’s rank correlation coefficient was used to measure the 

strength and direction of a monotonic association (Sedgwick, 2014) between a range of 

variables (ICSEA, SEIFA and transfer ratings) and students’ enrolment across the state 

of Queensland. The association was also tested on the variables and dropout rate. A 

monotonic association is observed when there is dependence on variable changes 

among two variables (Sedgwick, 2014). 

 

Similarly, descriptive quantitative methods were applied to analyse trends using the 

Microsoft Excel suite of functions because it “provides a comprehensive approach to 

quantitative data analysis” (Johri, 2020, p. 4). Microsoft Excel is especially ideal for 

descriptive quantitative statistical analysis and data management through its use of 

functions and data organisation tools (Rubin & Abrams, 2015). Measures of central 

tendency such as mean (average) and mode, together with Excel in-built functions (e.g 

IF, COUNTIF, LOOKUP, graphics), were used to determine trends in students’ 

participation. Specifically, the data analysis explored (i) students’ enrolment and 

dropout rates per district, (ii) school location SEIFA index and students’ enrolment, (iii) 

school ICSEA value and students’ enrolment and (iv) transfer ratings and students’ 

enrolment. The next section describes the data analysis using the SEIFA index, ICSEA 
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value, school transfer rating and student enrolment to determine trends in students’ 

enrolment in calculus-based mathematics. 

 

5.5.1 Students’ Enrolment and Dropout Rates per QCAA district 
First, an analysis was carried out of the average percentages of student enrolment in 

Mathematical Methods and Specialist Mathematics in state schools per QCAA district 

between 2019 and 2020. Distance education schools were considered separately because 

their catchment area can span more than one district. In both Tables 1 and 2, enrolment 

in Unit 1 was considered for 2019 because it is the first unit students engage with in 

Year 11. Similarly, Unit 4 enrolment was considered in 2020 because it is the last unit 

before students sit for the external examination, hence it indicates the number of 

students who completed Year 12 calculus-based mathematics.  

 

Table 5.1: Mathematical Methods Enrolment per QCAA District, 2019 to 2020 

QCAA District 
Unit 1 Enrolment 
2019 

Unit 4 Enrolment 
2020 Dropout % dropout 

Brisbane-Ipswich  563 405 158 28.1 
Brisbane Central 950 718 232 24.4 
Brisbane East 619 405 214 34.6 
Brisbane North  829 513 316 38.1 
Brisbane South 625 334 291 46.6 
Cairns 451 267 184 40.8 
Gold Coast 731 457 274 37.5 
Mackay 247 134 113 45.7 
Rockhampton 337 179 158 46.9 
Sunshine Coast 661 390 271 41.0 
Toowoomba 388 223 165 42.5 
Townsville 364 209 155 42.6 
Wide Bay 354 208 146 41.2 
Distance education  88 53 35 39.8 
Total 7,207 4,495 2,712  

 

Table 5.1 shows the raw data on enrolment and dropout rates in Mathematical Methods 

in state schools per district at the beginning of Year 11 in 2019. The data shows that 

7,207 state school students opted for Mathematical Methods in 2019 but those still 

enrolled for Unit 4 in Year 12 in 2020 numbered 4,495, representing a percentage 

dropout rate of 37.6%. This means that the total number of students in state secondary 

schools who opted out of Mathematical Methods from the start of Year 11 to the end of 
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Year 12 was 2,712. That is, for every 14 students who chose this subject, 5 did not 

complete it. Brisbane Central and Ipswich were the only districts with a less than 30% 

dropout rate, while Brisbane South, Mackay and Rockhampton were over 45%. Due to 

the high dropout in Brisbane South, Mackay and Rockhampton districts, for every 20 

students who chose Mathematical Methods in Year 11, about 9 of the students had 

dropped out by the end of Year 12.  

 

Table 5.2: Specialist Mathematics Enrolment per QCAA District 2019- 2020 

QCAA District Unit 1 Enrolment 
2019 

Unit 4 Enrolment 
2020 Dropout % Dropout 

Brisbane-Ipswich 113 88 25 22.1 
Brisbane Central 330 280 50 15.2 
Brisbane East 168 131 37 22.0 
Brisbane North 225 170 55 24.4 
Brisbane South 196 139 57 29.1 
Cairns 101 67 34 33.7 
Gold Coast 191 147 44 23.0 
Mackay 33 23 10 30.3 
Rockhampton 91 59 32 35.2 
Sunshine Coast 191 141 50 26.2 
Toowoomba 99 60 39 39.4 
Townsville 68 49 19 27.9 
Wide Bay 100 77 23 23.0 
Distance education 55 34 21 38.2 
Totals 1,961 1,465 496  

 

Table 5.2 shows the raw data on enrolments and dropout rates in Specialist Mathematics 

in state schools per district from 2019 to 2020. The total number of students who opted 

to study Specialist Mathematics in Year 11 at the beginning of 2019 was 1,961 (Table 

5.2), but only 1,465 enrolled for Unit 4; that is, 496 students, or 25.3%, dropped out.  

Thus, for every 20 students who opted for Specialist Mathematics in Year 11,15 

continued until the end of Year 12. Cairns, Mackay, Rockhampton and Toowoomba 

districts had greater than 30% dropout rates. Similarly, distance education schools had a 

38% dropout rate, the highest of all the jurisdictions under consideration. Brisbane 

Central remained the district with the lowest percentage dropout rate (15.2%) followed 

by Brisbane East and Brisbane- Ipswich at 22%. Mackay contributed the smallest 

percentage of 2.28% of students studying calculus-based mathematics among all the 

districts. 
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An analysis of the number of schools offering calculus-based mathematics in each 

district was also done. Figure 5.1 shows the distribution and number of schools offering 

Mathematical Methods and Specialist Mathematics in the 13 districts. 

 

 
Figure 5.1: Schools Offering Calculus-based Mathematics per District 2019-2020 

 

An analysis of Figure 5.1 and Tables 5.1 and 5.2 gives a deeper understanding of 

enrolment and the number of schools offering the options per district. Figure 5.1 shows 

Brisbane Central having only 10 and 9 schools respectively offering Mathematical 

Methods and Specialist Mathematics, but the enrolment in this district was the highest 

in Queensland. It also had the lowest percentage dropout rate (24.4%) than any other 

district. Contrastingly, Brisbane East and Mackay districts each had 12 schools offering 

Mathematical Methods, but Brisbane East had almost three times the enrolment of 

Mackay and the dropout rate was significantly lower. This was also true if a comparison 

is made between the Sunshine Coast and Toowoomba, Brisbane North and Cairns 

districts in Mathematical Methods. The number of schools offering Mathematical 

Methods and Specialist Mathematics in Mackay, Brisbane Ipswich, Brisbane South, 

Cairns, Mackay, Rockhampton, Toowoomba, Townsville and Wide Bay was 

significantly different. 

 

5.5.2 School location SEIFA index and student enrolment 

The first aspect was to investigate if the relationship between; enrolments in 

Mathematical Methods and SEIFA, and dropout and SEIFA, was statistically significant 
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or not. Correlation analysis in the form of Spearman correlation coefficient was used to 

examine the nature and strength of the relationship under the following hypothesis. 

H0: There is no statistically significant relationship between enrolments/dropout 

and SEIFA. 

Versus 

H1: There is a statistically significant relationship between enrolments/dropout 

rate and SEIFA. 

Results in Table 5.3 were obtained from the analysis of the relationship between SEIFA 

values and enrolment. 

Table 5.3: Spearman’s rho correlation coefficient SEIFA, enrolment and dropout 

 Enrolments SEIFA Index 

Spearman's rho 

Enrolments 

Correlation Coefficient 1.000 .335** 

Sig. (2-tailed) . .001 

N 88 88 

SEIFA Index 

Correlation Coefficient .335** 1.000 

Sig. (2-tailed) .001 . 

N 88 88 

   Dropout SEIFA Index 

  Correlation Coefficient 1.000 .341** 

 Dropout Sig. (2-tailed) . .000 

Spearmen’s rho  N 201 201 

  Correlation Coefficient .341** 1.000 

 SEIFA Index Sig. (2-tailed) .000 . 

  N 201 201 

**. Correlation is significant at the 0.01 level (2-tailed). 

The data from Table 5.3 indicate that there is a weak positive link between; enrolments 

and the SEIFA Index, and dropout and SEIFA index with a Spearman's correlation 

coefficient value of 0.335 and 0.341 respectively. Additionally, the probability value of 

0.000, which is smaller than the threshold value of 0.01 for both, makes the connection 

statistically significant at 1%. The alternative hypothesis, according to which there is a 
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statistically significant correlation between; enrolments and the SEIFA Index, and 

dropout and SEIFA is supported by these findings. Even though the correlation is modest, 

it indicates that enrolments improve with increases in the SEIFA Index.  

 

In addition, an analysis of student enrolment in Mathematical Methods and Specialist 

Mathematics and school location based on their SEIFA index was undertaken on 203 

schools. This excluded 4 distance education schools because their location had no 

influence on students’ enrolment. Since the SEIFA data was presented as percentiles, 

50% and upwards was considered as the upper half and thus designated areas with 

economic advantage while below 50% was considered as areas that were economically 

disadvantaged. Although there were 115 schools with students enrolled in Mathematical 

Methods in the lower half, they constituted only 39.8% of the Unit 1 Mathematical 

Methods cohort. Schools below the 50% percentile had an average percentage dropout 

rate of 42%, while those above the 50% economic advantage percentile had a dropout 

rate of 34.7%. Similarly, in Specialist Mathematics, the group in the 50% economic 

advantage percentile had a dropout rate of 24% compared to 26.6% in the economic 

disadvantage percentile. Although 49.7% (76 out of 153) of schools were considered to 

have economic advantage, they contributed 63.1% of all students who studied Specialist 

Mathematics in Unit 1.  

 

5.5.3 School ICSEA value and student enrolment 
A correlation analysis in the form of Spearman correlation coefficient was used to 

examine the nature and strength of the relationship between; enrolments and ICSEA 

values, ICSEA and dropout. Results of the analysis of the relationship are shown in Table 

5.4. 

Table 5.4: Spearman’s rho correlation coefficient ICSEA, enrolment and dropout 

 Enrolments ICSEA 

Spearman's rho 

Enrolments 

Correlation Coefficient 1.000 .613** 

Sig. (2-tailed) . .000 

N 39 39 

ICSEA 

Correlation Coefficient .613** 1.000 

Sig. (2-tailed) .000 . 

N 39 39 
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   Dropout ICSEA 
  Correlation Coefficient 1.000 .496** 
 Dropout Sig. (2-tailed) . .000 
Spearman’s rho  N 201 199 
  Correlation Coefficient .496** 1.000 
 ICSEA Sig. (2-tailed) .000 . 
  N 199 199 

**. Correlation is significant at the 0.01 level (2-tailed). 
 

The results in Table 5.4 results show a Spearman’s correlation coefficient value of 0.613 

which suggests that there is a strong positive relationship between enrolments and ICSEA. 

These results suggest a statistically significant relationship between enrolments and 

ICSEA thus as ICSEA values increase enrolment also increase. Similarly, the results 

suggest that there is a weak positive relationship between ICSEA and dropout rate as 

supported by the correlation value of 0.496. The probability value of 0.000 which is less 

than the threshold of 0.01, implies that the relationship is statistically significant at the 

1% significant level. According to the findings, as ICSEA increases, dropout rate also 

increases.  

 

Similarly, descriptive statistical analysis of student enrolment in Mathematical Methods 

and Specialist Mathematics according to school ICSEA index was undertaken and the 

results indicated that dropout rates were influenced by school ICSEA index. Schools 

with an ICSEA value of more than 1,100 had a dropout rate of 27%, those between 

1,000 and 1,100 had a dropout rate of 29.2% and those with an ICSEA value of less 

than 1,000 had a dropout rate of 43.4% in Mathematical Methods. The trend was the 

same in Specialist Mathematics in schools with an ICSEA value of 1,000 and above 

having a dropout rate of 20.3% compared to 29.2% of schools with a value less than 

1,000. 

 

5.5.4 School transfer ratings and student enrolment 

Spearman’s correlation coefficient was used to determine the relationship between 

enrolment and transfer ratings and also dropout and transfer ratings.  Results of the 

analysis are shown in Table 5.5. 
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Table 5.5: Spearman’s rho correlation coefficient Transfer rating and enrolments. 

 Transfer Rating Enrolments 

Spearman's rho 

Transfer Ratings 

Correlation Coefficient 1.000 -.505** 

Sig. (2-tailed) . .000 

N 207 202 

Year 11 enrolments 

Correlation Coefficient -.505** 1.000 

Sig. (2-tailed) .000 . 

N 202 202 

**. Correlation is significant at the 0.01 level (2-tailed). 

Results show a weak negative correlation between enrolment and transfer rating as 

evidenced by the correlation value of -0.505. The relationship is statistically significant 

at 1% significant level since the p-value of 0.000 is less than the chosen threshold value 

of 0.01. These results support the null hypothesis, which states that there is a 

statistically significant negative relationship between enrolments and Transfer ratings. 

Thus, as the transfer ratings decrease enrolment rises.  

 

Lastly, an analysis of school transfer ratings and student enrolment in Mathematical 

Methods and Specialist Mathematics was undertaken. In 2019, at the end of Unit 1, 

there were 106 state secondary schools with transfer ratings of 1 and these schools had 

an enrolment of 4,919 students in Mathematical Methods. There were 101 schools with 

transfer ratings of 2 and above, but they had only 2288 students enrolled in the same 

option.  Only 31.7% of all students who studied Unit 1 of Mathematical Methods were 

enrolled in schools with transfer ratings of 2 and above. Hence, the total enrolment of 

all the other schools with a transfer rating of 2 and above was less than half of those 

with a transfer rating of 1. Despite schools with a transfer rating of more than 2 

enrolling 68.3% of all students studying Mathematical Methods, 1691 (34.4%) students 

dropped out of the subject from schools with a transfer rating of 1, compared to 1,021 

from schools with a transfer rating of 2 and above. In fact, 54.5% of the enrolled 

students in schools with transfer ratings of 7 dropped out. Figure 5.2 shows the dropout 

rates in relation to school transfer ratings. 
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Figure 5.2: Dropout Rates and School Transfer Ratings 2019-2020 

 

Fewer students in schools with a transfer rating above 1 chose to study Specialist 

Mathematics. Out of 156 schools with students studying the subject, only 61 had a 

transfer rating of 2 and above. This means less than half of schools with higher transfer 

ratings offer Specialist mathematics as compared to those with a rating of 1. In addition, 

only some schools with transfer ratings from 1 to 5 had any students who enrolled in 

Specialist Mathematics, as shown in Figure 5.3. 

 
Figure 5.3: Schools Offering Specialist Mathematics and their Transfer Ratings 2019-

2020 

 

5.6 Discussion 

Education systems all over the world aim to support and nurture students to reach their 

goals when they have chosen a career path. Hence, minimising dropout rates in 
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calculus-based mathematics is fundamental. Undoubtedly, dropping out has 

“considerable social and economic implications,” (Goss & Andren, 2014), especially 

considering the importance of calculus-based mathematics as a key enabler of STEM 

courses at tertiary institutions (Maltas & Prescott, 2014). In this study, enrolment in 

calculus-based mathematics in all districts showed a high dropout rate. In fact, for 

Mathematical Methods (about equivalent to the Mathematics B subject previously 

offered), the dropout rate in state schools of 37.6% from 2019 to 2020 was 10 times the 

average dropout rate of 3.77% of all Queensland secondary schools from 2010 to 2019 

(Chinofunga et al., 2021). Similarly, in Specialist Mathematics (about equivalent to the 

Mathematics C subject previously offered), the dropout rate of 25.3% from 2019 to 

2020 was more than 10 times the average dropout rate of 2.35% of all secondary 

schools in the state from 2010 to 2019 (Chinofunga et al., 2021). The substantial 

increase in student dropout rates from calculus-based mathematics between 2019 and 

2020 is alarming, in that it indicates that students who initially showed interest and 

opted studying these subjects found it hard to continue. 

 

Importantly, students who drop out from calculus-based mathematics options are not the 

same as students who choose to avoid the options at senior secondary school (Hine & 

Mathematics Education Research Group of Australasia, 2017). These are students with 

an initial genuine interest in calculus-based mathematics options as they think about and 

prepare for these options in Year 10 and then enrol in Year 11. If we are to increase the 

number of students enrolment in calculus-based mathematics, then the focus should 

start from retaining students who drop out. Disrupting this trend would reverse the 

enrolment and enrolment numbers in these subjects which have been shown as tumbling 

across Australia (Kennedy et al., 2014; Maltas & Prescott, 2014). Teachers as 

facilitators of learning can help to retain these students through effective planning and 

teaching that support student participation and engagement, thus increase the chances of 

success. Calculus-based mathematics teachers’ planning must focus on enhancing 

students’ confidence and their relationship with their chosen subject (Grundén, 2020) 

through providing a coherent and spiral sequencing of mathematical concepts that are 

anchored on student’s prior knowledge and interest to support student participation and 

achievement (ACARA, 2015). In other words, effective mathematics teaching must 

support the connection of prior knowledge to new knowledge, and build, interconnect 

and expand knowledge and skills from familiar to unfamiliar contexts, (Novak, 2010; 
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Stoll et al., 2012) increasing opportunities for success. Such an approach is likely to 

arrest the dropping enrolment in calculus-based mathematics subjects. This approach 

might call for new and innovative research focused on supporting mathematics content 

sequencing and ways of promoting mathematics knowledge development at all levels in 

the school curriculum to stop the decline in enrolment in calculus-based mathematics.  

 

The economic advantage or disadvantage of a school location and students who attend a 

school can be determined by the SEIFA index and ICSEA value. Inferential data 

analysis using the Spearman’s rho correlation coefficient show a strong positive 

correlation between ICSEA and SEIFA against enrolment. Thus, statewide as the 

ICSEA and SEIFA values increases the enrolment also increases. Contrastingly, the 

Spearman rho correlation coefficient show a weak correlation between SEIFA and 

ICSEA against dropout rate demonstrating that statewide as the SEIFA or ICSEA 

values increase the dropout rate decreases. This study also showed that, when 

considering the initial uptake of Mathematical Methods, Brisbane Central district had 

the highest enrolment. Importantly, all 10 schools in this district had a SEIFA value of 

more than 92 and an ICSEA value of more than 1,000, demonstrating a high economic 

advantage enjoyed by the student population. Although it was a district with the least 

number of schools, it had the highest number of students enrolment in calculus-based 

mathematics in Queensland. Similarly, the Brisbane North district had 10 school 

locations out of 20 with a SEIFA value of more than 80 and 5 schools with an ICSEA 

value of more than 1,000 and it had the second highest enrolment. Contrastingly, the 

highest SEIFA value of a school location in the Mackay district was 74 and there were 

only 4 out of 12 schools in areas with values above 50. There were no schools with an 

ICSEA value of more than 1,000. Likewise, 6 school locations out of 13 in the 

Rockhampton district had a SEIFA value of more than 50 but less than 72 and there 

were no schools with an ICSEA value of 1,000 and above. The Wide Bay district had 

17 schools offering Mathematical Methods and there was no school location with a 

SEIFA value above 50 and ICSEA of 1,000 and above. In addition, Townsville and 

Toowoomba districts had only up to two schools in the top SEIFA index or ICSEA 

value band, with the rest below average. It was observed that all these districts had low 

enrolments and a substantial difference between the number of schools offering 

Mathematical Methods and Specialist Mathematics. This meant that potential students 
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who had the interest and capability to enrol and achieve well in the calculus-based 

mathematics subject did not have the option of enrolling in these subjects. 

 

A proactive research agenda that supports teachers who teach in low SES areas and less 

desired schools in relation to the teacher mobility and school transfer ratings must not 

be limited to financial rewards. The focus should be on planning and pedagogical 

resources that build a foundation that promotes knowledge and skills development and 

facilitates independent learning. As argued by some researchers, it is “more meaningful 

to study what educators can work with to improve students’ participation and 

achievement” (Valero et al., 2015, p. 288). Thus, proactive research that focuses on 

planning and developing such pedagogical resources should be a priority. These 

pedagogical resources would need to include multiple representations, including visuals, 

as they are easy for students to follow and understand (Raiyn, 2016). Thus exploring 

how mathematical knowledge (procedures and concepts) can be visually represented 

can support teaching and learning of mathematics as they promote information 

processing. This proactive approach may also assist in promoting self-directed learning 

in students. Importantly, a common framework that can be used by teachers in such 

schools will help to bring stability to students’ learning because it would provide 

uniformity in concept development and critical delivery resources.  

 

The economic advantage or disadvantage of a school location can be determined by the 

SEIFA value. The data analysis in this study showed that schools in the top half of 

SEIFA indexes of 50 and above contributed more than 60% of all students enrolled in 

calculus-based mathematics despite accounting for fewer than half of all state schools in 

Queensland. This is because school location and economic advantage significantly 

influence the knowledge, skills, experiences and other forms of capital students gain 

(Ireneusz, 2020). Schools, parents and students located in economically advantaged 

areas normally have high expectations, as modelled by the community (Pritchett, 2001). 

Resources offered by schools differ mainly because of SES location (Broer et al., 2019). 

Considering schools in the top half of SEIFA indexes of 50 and above, the data analysis 

in this study showed that the dropout rate was less than the lower half of SEIFA 

indexes, which reinforces the high expectations that schools in such locations foster. It 

is particularly important to pay special attention to schools with lower ICSEA values. 

The ICSEA value of a school provides a clearer indication of the economic advantage 
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and disadvantage of students enrolled in that school. The relationship between the 

average dropout rate and a school’s ICSEA value supports Perry and McConney’s 

(2013) findings that schools with highly economically advantaged students are strongly 

associated with high academic expectations and are competitive, compared to schools 

with economic disadvantage. Thus, the high expectations and competition in schools 

with high ICSEA values have a substantial influence on students to continue with the 

subjects. 

 

One of the most critical resource in any school is teachers. Teachers are attracted to 

different schools based on a range of considerations. School location and resources are 

key in attracting and retaining teachers, which is why schools’ transfer ratings are 

mainly based on these factors. Results from the Spearman’s rho correlation coefficient 

show a negative correlation between transfer rating and enrolment. Thus, as transfer 

ratings decrease which is determined by school location and resources the enrolment 

increases. In this study, almost 70% of the Mathematical Methods cohort were in the 

schools that had a transfer rating of 1 and minimal teacher turnover, in other words, 

schools that had stable and predictable environments. The schools with transfer ratings 

of 1 also had a significantly lower dropout rate than schools with transfer ratings above 

1. A similar trend was witnessed in Specialist Mathematics, where enrolment was 

biased towards schools with ratings of 1, even if there were fewer of them than those 

with transfer ratings above 1. Barbieri and colleagues (2011) concluded that teachers in 

schools with high transfer ratings might not have long term plans to teach in those 

schools, hence they might be less committed and wait for an opportunity to leave, 

resulting further in less stable and predictable school environments.  

 

The COVID-19 pandemic impacted education systems in different ways across the 

world. It might have affected students physically and psychologically and might have 

influenced to some extent the results obtained in this study. However, Queensland 

experienced minimum disruptions in 2019 and 2020 and the dropout rate was much 

higher in 2019, before COVID-19, than in 2020. A total of 3,117 students had dropped 

out calculus-based subjects by the end of 2019, during which the state experienced no 

lockdowns or restrictions at all. The introduction of external examinations, which 

contributed towards 50% of the overall calculus-based subject result, might have had an 

impact on students’ confidence and thus their participation. 
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5.7 Chapter Conclusion 

This paper investigated the numbers of senior secondary students enrolled in calculus-

based mathematics subjects between 2019 and 2020 in Queensland state schools from 

different socio-economic districts. The QCAA data, which included subjects, unit 

enrolments, school postcodes and districts, was matched to SEIFA index (ABS), ICSEA 

value (ACARA) and transfer points (DoE). The high overall dropout rate in the new 

calculus-based mathematics subjects is a concern and the state is consequently losing a 

large number of students who could have pursued opportunities that are deemed to be 

jobs of the future. This study showed that socioeconomic factors, school location and 

transfer rating play a significant role in students’ participation in calculus-based 

mathematics and dropout rates. Specifically, they showed that schools in low 

socioeconomic locations that enrol students from low SES backgrounds and that have 

high transfer ratings have both a low uptake in calculus-based options and high dropout 

rates. Further research is recommended to identify proactive strategies on how 

mathematics teachers can improve planning and delivery so as to promote participation 

and achievement and retain more students in calculus-based subjects.  Importantly, there 

is urgent need for research that focuses on developing pedagogical resources that not 

only build a foundation that promotes knowledge and skills development but facilitates 

more structured learning for the students, thus, minimising the impact of school 

location, family SES and teacher turnover. The following chapters focus on the 

development of pedagogical resources to support the teaching of calculus-based 

mathematics. 
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Chapter 6: A Framework for Content Sequencing from the Junior 
Secondary to the Senior Secondary Mathematics Curriculum 

 

A version of this chapter was published as a research paper in the 

Eurasia Journal of Mathematics, Science and Technology Education. 

(2022) 18(4), em2100 DOI: https://doi.org/10.29333/ejmste/11930. 

 

6.1 Chapter Introduction 

According to Roche et al., 

Given the complexity of mathematics teaching, including addressing 

curriculum goals, engaging students, catering for the diversity of readiness, 

connecting mathematics teaching to students’ experience, and assessing 

student learning, to name just a few issues, it is difficult to imagine that 

teachers of mathematics can perform their role without substantial planning. 

(Roche et al., 2014, p. 854) 

 

Effective planning provides direction and resources for quality curriculum delivery, 

particularly in the context of mathematics teaching. Further, planning links curriculum 

requirements in official curriculum documents and commercial and non-commercial 

resources to how knowledge is developed in class (Li et al., 2009). This chapter argues 

for and provides a framework for understanding and engaging in collaborative planning 

for effective sequencing of mathematics content for the transition from the Australian 

Mathematics Curriculum (Preparatory – Year 10) to the Senior Queensland Mathematical 

Curriculum (Years 11 - 12) [Queensland Curriculum and Assessment Authority (QCAA), 

2018]. The Mathematical Methods Unit 1 on Functions that is taught in Year 11 was used 

as an example to illustrate the framework.  

 

Planning plays a critical role in enacting the curriculum as it involves “activities related 

to knowing what to teach and how” (Fernandez & Cannon, 2005, p. 485). What and how 

teachers teach is critical to students’ participation and achievement. As Roche and 

colleagues noted:  

Planning for mathematics teaching is important at all levels from 

sequencing of content and the structuring of lessons to the selection and 

preparation of manipulatives and worksheets but despite its centrality to 

https://doi.org/10.29333/ejmste/11930
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curriculum delivery research-based descriptions of the practises of 

effective mathematics teachers do not emphasise planning. (Roche et al., 

2014, p. 854)   

Planning by teachers directly influences the quality of learning that students receive 

(González et al., 2020; Grundén, 2020; Li et al., 2009; Roche et al., 2014). For teachers, 

“planning is seen as an essential part of their work that has consequences for students’ 

learning as well as work situation – planning can cause stress as well as be a way to reduce 

stress” (Grundén, 2020, p. 80). In fact, planning should focus on improving students’ 

relationship with mathematics through providing a platform that promotes active 

engagement (Grundén, 2020). Planning is the foundation that sustains the whole 

curriculum implementation, as it makes a difference in every aspect of curriculum 

delivery, and consequently contributes to student participation and achievement as well 

as determining teaching quality. 

 

An effective mathematics teacher must be an exceptional planner. “Excellent teachers of 

mathematics plan for coherently organised learning experiences that have the flexibility 

to allow for spontaneous, self-directed learning” (Australian Association of Mathematics 

Teachers (AAMT), 2006, p. 4). Australian teachers are expected to plan and teach 

“mathematical sequences and experiences that encourage students to think flexibly and 

creatively about concepts to develop ‘big picture’ thinking” (Davidson, 2019, p. 8). 

Similarly, the Australian Institute of Teaching and School Leadership (AITSL) (2014) 

expects teachers to design a teaching and learning sequence using curriculum knowledge, 

content, students’ learning strategies and teaching pedagogies to increase student 

participation and achievement. This is because, during planning, teachers predict and plan 

the structure and conditions of the learning space (Conway & Munthe, 2017). 

Consequently, to ensure that no child is left behind in learning mathematics, planning 

must be the first port of call.  

 

Supporting current teachers’ planning practises can be a starting point (Sullivan et al., 

2013). However, ways of improving the current planning in schools must be explored if 

teaching and learning is to be enhanced (Attard, 2012). “The curriculum that students 

experience in classrooms is the product of a complex web of decision-making which is 

shaped, but not determined, by the formal curriculum documentation” (Sullivan et al., 

2013, p. 459). Therefore, curriculum planners such as teachers need to be supported on 
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how to select and organise the crux of the curriculum (O'Neill et al., 2014). Mathematics 

teachers’ understanding of the structure of the subject and how best content can be 

presented for maximum student engagement can be key to effective planning and 

consequently teaching and learning. 

 

A critical aspect of effective planning is identifying and sequencing content and delivery 

strategies to optimise acquisition of knowledge, understanding and skills among students 

(QCAA, 2019). Content sequencing influences student engagement and helps them to 

develop mathematical knowledge (Kilpatrick, et al., 2001). The “what” of planning 

informs the “how”, thus teacher effectiveness and learner participation and understanding 

is not only limited to classroom practice, but how the content is planned, sequenced and 

taught.  

 

6.2 Collaborative Planning 

This study draws from intentional collaboration of teachers as defined by the Queensland 

Department of Education. “Providing time and resources for staff to develop and plan 

units together was suggested as a way of deepening understanding of the Australian 

Curriculum” DoE, 2021, p. 7). Nevertheless, how teachers interrelate during 

collaboration and how they interpret the curriculum has a strong influence on the planning 

process (Grundén, 2020). Since teachers enact the curriculum, there is a strong correlation 

between curriculum planning and delivery material (Superfine, 2008). Indeed, the 

National Council of Teachers of Mathematics (NCTM, 2014 p. 12) states: “Effective 

mathematics teaching begins with a shared understanding among teachers of the 

mathematics that students are learning and how this mathematics develops along learning 

progressions.” As a result, the level of engagement among teachers during planning 

influences the quality of the output (Bieda et al., 2020). This chapter will develop a 

framework on content sequencing that can support teachers on processes to be followed 

as they plan sequencing of mathematics content. The chapter will advocate for a 

collaborative approach to planning guided by a proposed framework. 

 

Collaborative planning is not limited only to teachers teaching a year level but all 

mathematics teachers within or across schools. Many teachers look to each other for 

support during planning. Thus, school leaders must ensure that collaborative meetings are 

scheduled for teachers to review and share their experiences and expertise (Clarke et al., 
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2012). Collaborative planning can present opportunities for teachers to learn from each 

other, which results in the benefit of students (Gilbert & Gilbert, 2013). Especially, “when 

whole grade levels are involved, they create a critical mass for changed instruction at all 

levels; above all teachers serve as support groups for one another in improving practice” 

(Darling-Hammond & Richardson, 2009 p. 46). Collaborative professional learning 

brings teachers to work together, resulting in improvements to the whole school system 

rather than just to the class or grade level (Darling-Hammond et al., 2009).  Research also 

indicates that effective professional learning is a contributing factor in differences in 

school performance (Darling-Hammond et al., 2009). As Tricoglus (2000) states, 

professional collaboration improves planning practice and teacher quality as teachers get 

an opportunity to discuss, share and document important aspects of teaching and learning. 

Collaboration of mathematics teachers within or across year levels can facilitate learning 

from each other and improve effectiveness in delivery and resource utilisation. 

 

Mathematics planning must support effective teaching and learning at every year level to 

ensure students’ success. Many scholars (Kafyulilo, 2013; Konuk, 2018; Lynch, 2017; 

Schuhl, 2020; Usha, 2010; Voogt et al., 2016) have noted that when mathematics 

planning is done collaboratively:  

• it reminds teachers that all levels/grades play a critical role in developing 

mathematical knowledge 

• it reminds teachers that skills taught at every level/grade are applicable to 

subsequent levels 

• it reinforces the notion that mathematical concepts are interlinked 

• teachers develop a sense of ownership of the product 

• it enhances teachers’ pedagogical and content knowledge 

• it brings consistency across year levels 

• it develops individual and team collective teacher efficacy 

• it ensures consistent curricular priorities among colleagues 

• it ensures students learn identified essential mathematics standards 

• it enhances student learning 

• teachers realise teaching is a shared responsibility 

• it enhances the sense of community and revitalises enthusiasm towards teaching 
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• teachers might consider issues that they might not have been considered 

independently 

Linking concepts across year levels demonstrates the hierarchical nature of mathematics 

and shows that every mathematics teacher at different year levels contributes to building 

students’ mathematical knowledge. This is especially important in Australia and 

Queensland, where the mathematics curriculum transitions from a national curriculum 

(junior level) to a state curriculum at senior secondary. It also justifies the importance of 

collaborative planning within the cohort. Furthermore, students grasp that active 

participation in lower grades contributes towards success in mathematics at higher levels.  

 

6.3 Mathematics Planning in Queensland 

Queensland mathematics teachers have a range of resources at their disposal during 

planning. Apart from the official curriculum documents provided by the QCAA, non-

official resources that are commercial or non-commercial in nature, such as textbooks, 

resources developed by colleagues or mathematics educators’ associations and school 

documents, play an important role in planning, delivery and assessment (Roche et al., 

2014; Sullivan et al., 2013). Also, web-based resources have grown in influence and use, 

especially multimedia video resources like YouTube and Khan Academy, as they are 

readily available. The diversity of available resources provides dynamic options to 

teachers as they can be useful in improving the quality of planning, be it individual or 

collaborative. 

 

Queensland schools and teachers are the drivers of the planning process. Undoubtedly 

this is important because “curriculum planning is essential for contextualising curriculum 

content” (QCAA, 2019, p. 1). Thus, different schools can contextualise content according 

to students’ experiences which might not be shared across schools (Demski & 

Racherbäumer, 2017). Roche’s (2014) findings indicate that planning documents 

produced by teachers within or across schools vary, with some teachers valuing aspects 

of planning that others do not. Planning templates and samples from the federal 

Department of Education and QCAA have been developed and distributed to schools. 

However, it is important for teachers to understand the processes that underpin the 

planning decisions that have led to the creation of such documents (Roche, 2014). 

Therefore, a guiding framework is necessary to bring consistency and uniformity to the 

process of planning. Ultimately, this study proposed that a more relational and contextual 
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planning framework underpinned by constructivism that provides a step-by-step 

systematic sequencing of curriculum content to promote interlinking, coherence and 

spiralling of mathematics concepts between lower- level and upper-level topics. 

Constructivism positions learning as a process of building new knowledge from the 

learner’s prior knowledge, beliefs and skills (Garbett, 2011). Thus, the framework 

supports planning that fosters the development of new knowledge from prior knowledge. 

 

As part of their planning, Queensland mathematics teachers are required to create a 

school-specific sequence of content; this is because the official syllabus document is not 

regarded as a teaching sequence (Roche et al., 2014; QCAA, 2014, p. 8), which in turn 

suggests that schools must take responsibility for developing “a spiralling and integrated 

sequence”. Clearly, spiral sequencing deepens knowledge through revisiting concepts, 

building on previous knowledge, creating new knowledge using prior knowledge and 

dealing with increased conceptual complexity as learning progresses (Harden, 1999). 

Above all, the manner in which content is structured in the curriculum facilitates how 

students learn and understand complex phenomena (Bruner, 1977). For example, students 

are taught fundamental concepts at a lower level of schooling and the concepts are then 

revisited at a higher level to deepen understanding through application, comprehension 

and interconnections with other concepts.  

 

Queensland schools classify long-term planning on three levels: (1) whole school 

curriculum and assessment plan, (2) year-level curriculum and assessment plan and (3) 

unit overviews (QCAA, 2019). A unit is “a sequence of lessons with a coherent focus, 

sometimes referred to as a topic sequence” (Roche et al., 2014, p. 854). A whole-school 

curriculum plan “shows learning sequence within and across the year levels”, a year-level 

plan “outlines the sequence of learning and reflects the development of knowledge, 

understanding and skills within a level” and a unit overview “links prior and future 

learning” (QCAA, 2019, p. 3-4). Each level of planning informs the other. Thus, effective 

planning at all levels has the potential to improve curriculum delivery in Queensland 

schools. 

 

The Queensland State Schools Improvement Strategy (2022-2026) mentions intentional 

collaboration as an improvement focus on curriculum delivery. It is defined as “the 

deliberate actions we take to work together, learn together and improve together” 
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(Department of Education [DoE], 2020, p. 1). Schools have the responsibility to 

implement the strategy document, thus requiring them to put in place mechanisms for 

collaboration among teachers. It is common practice in education departments the world 

over to allocate planning time for teachers as a means of enhancing curriculum delivery 

and student learning (Li et al., 2009). Queensland teachers are allocated five professional 

collaboration days, which are not only limited to planning in subject areas but other 

activities that the profession demands. Professional collaboration days at the beginning 

of the year provide an opportunity for long-term planning. However, for secondary full-

time teachers, an additional 210 minutes a week is also allocated for planning, such as 

short-term individual planning, preparation, correction and administrative work 

(Queensland Teachers’ Union [QTU], 2020). In addition, schools are encouraged to set 

time for staff curriculum meetings, which might involve all teachers or a sector.  

 

6.4 Enhancing Student Participation and Understanding through Planning 

Focusing planning on how students develop mathematical knowledge, skills and 

understanding enhances participation, as teaching becomes student centred (Grundén, 

2020). Therefore, planning should be informed by hypothesising students’ current level 

of understanding and how to develop it further (Simon, 1995). It is important during 

planning for teachers to be mindful of students’ abilities and learning needs, the goal 

being for all students to participate and engage optimally (Attard, 2012). As a result, 

planning that focuses on student learning indirectly develops teachers’ pedagogy, content 

knowledge and practice (Darling-Hammond & Richardson, 2009; Garet et al., 2001; 

Smith 2007). Because student-focused planning anticipates the learning process, it also 

supports student understanding.  

 

In enacting the curriculum, teachers have the responsibility to identify key topics and 

provide students with the opportunity to deepen their understanding of such topics 

(ACARA, 2009). As the QCAA emphasised, “To support the development of complexity 

and independence of student learning, when planning units of work for a course of study, 

teachers should consider a range of designing opportunities together with the sequencing, 

content and interrelatedness of teaching strategies and learning experiences” (2013, p. 1). 

Content that is coherently planned provides students with an opportunity to deepen their 

mathematical knowledge, understanding and skills if they understand the fundamental 

concepts. 
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Planning for student understanding focuses on how students develop mathematical 

knowledge. Procedural knowledge, conceptual knowledge and procedural flexibility are 

critical for students to develop their mathematical knowledge and competency (Rittle-

Johnson, 2017). Procedural knowledge is defined as knowledge of sequences of steps or 

operations, mathematical rules and facts that can be used to solve problems (Crooks & 

Alibali, 2014; Rittle-Johnson et al., 2015). Conceptual knowledge is the “comprehension 

of mathematical concepts, operations, and relations” (Kilpatrick et al., 2001, p. 

5). Procedural flexibility involves knowledge, the use of varied procedures and the robust 

application of these to a variety of conditions (Rittle-Johnson & Star, 2007). Conceptual 

knowledge also plays an important role in flexible problem solving because 

understanding the conceptual foundations of a procedure will lead to generalisations 

when confronted with new but related problems. The relationship between conceptual 

and procedural knowledge is bi-directional as they both support the development of the 

other. However, both rely on students’ prior knowledge as a foundation on which to build. 

 

Planning that builds on prerequisites helps a teacher to identify gaps in student 

understanding that are likely to be encountered in class (Reys et al., 2020). A significant 

number of teachers administer diagnostic tests and studies support the practice as they 

may stimulate interest in learning and decode forthcoming lessons (John et al., 2013). At 

the same time, diagnostic tests help teachers to gain understanding of students’ prior 

knowledge, understanding and skills since in most cases students may be at different 

levels. However, checking prior knowledge is insufficient on its own as teachers must 

also ensure that the planning provides every student with the opportunity to acquire the 

knowledge that is critical to engage with new knowledge meaningfully. When gaps in 

student knowledge are identified, the teacher can start and build from the concepts 

identified as prerequisites. Gaps in prior knowledge and skills impede students’ 

understanding of new knowledge (Hailikari, 2008). A comprehensive sequence of 

learning provides flexibility in a class because students can start from varying levels of 

competence. For this reason, and in the sequencing of content, an ideal framework must 

develop a system of linking concepts and determine procedures that are involved in 

solving problems within a concept. 
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6.5 Content Sequencing in Unit 1 on Functions in the Mathematical Methods 

Subject 

Once students have finished Year 10 or reached the age of 16, they have the option to 

remain in school or seek vocational traineeships. Students who choose to proceed to 

senior secondary are expected to engage with a mathematics option of their choice. In 

Queensland, students who plan on pursuing Advanced Mathematics are encouraged to 

engage with the 10A curriculum for gifted students at Year 10. However, students who 

choose to pursue the general Year 10 curriculum can still enrol in Advanced Mathematics 

in senior school. The mathematics curriculum from primary school to Year 10 is governed 

by the Australian curriculum while the Queensland curriculum, which is developed by 

the QCAA, is followed at senior secondary level. This chapter describes how the 

Australian mathematics curriculum (P-10) and the QCAA Mathematical Methods 

curriculum documents were used to develop examples on how to apply the proposed 

framework. 

 

For the purpose of this study, prior knowledge will be defined as prerequisite concepts 

from lower levels that interlink with concepts at upper levels. Assumed prior knowledge 

is identified from the Australian Curriculum (P-10) that students have engaged with 

before entering senior secondary school. New knowledge is outlined in the Mathematical 

Methods syllabus.  “To make decisions about the mathematical content in the planning 

process, teachers reflect and have considerations in relation to students’ abilities and their 

prior knowledge” (Grundén, 2020, p. 78). Correspondingly, prior knowledge is important 

in developing quality programs and sequencing as it demonstrates continuity and 

reinforces the importance of fundamental concepts and structure of mathematics (Reys et 

al., 2020). The hierarchical nature of mathematics must be the basis of effective planning 

and classroom practice. 

 

Learning in mathematics is sequential, which means basic concepts presented in lower 

levels must be mastered to enhance the chances of understanding new knowledge 

(Brosvic & Epstein, 2007). Similarly, Hailikari and Nevgi (2010, pp. 2082-2083) 

emphasise, “Concepts presented in the introductory courses are usually needed 

throughout the academic career and should provide building blocks for more advanced 

courses in the same subject.” During planning, teachers have the responsibility of 

identifying relationships between lower-level and upper-level topics, concepts, and skills, 
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linking the two levels and providing students with the opportunity to build from the 

familiar to the unfamiliar.  

 

Creating a framework to support and improve existing planning practices is of critical 

importance (Superfine, 2008; Sullivan, 2012; 2013). Not only does a framework provide 

transparency, accountability and evaluation of the process by stakeholders (O'Neill et al., 

2014), but frameworks that are flexible can accommodate adjustments during 

implementation (Grundén, 2020). The proposed framework in Figure 6.1 will provide a 

step-by-step systematic sequencing of curriculum content to promote interlinking, 

coherence and spiralling of concepts. This will cater for mathematical methods students 

at every level of their mathematics journey in Unit 1 of Year 11. Depending on the level 

of assumed prior knowledge and skills students can recall and apply, teachers can start 

teaching from any level of sequenced content. The framework can be adapted to all 

mathematics options and levels, although for the purposes of this study, Queensland 

Mathematical methods Unit 1 were considered. 
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Figure 6.1: Diagramatic Representation of a Framework on Content Sequencing 

 

The foundation of the framework is coherence of content so that students can construct 

new knowledge from assumed prior knowledge. Scholars (Schuhl, 2020; Usha, 2010) 

have argued that for content coherence to be mastered, mathematics teachers should be 

guided by the following questions during collaborative planning: 

1. What exactly do students need to know and be able to do in this unit? 

2. What prerequisite conceptual understanding and skills fluency are required for all 

students to effectively learn new knowledge? 

3. How do the concepts identified as prior knowledge link with new knowledge? 

4. What do we expect students to retain? 
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Tackling these questions collaboratively provides equity and consistency to students’ 

learning experiences from one teacher/class/level to the next (Schuhl, 2020). As a result, 

“student learning improves because your entire team is working to ensure each student 

learns the organised mathematics content from one concept to the next” (Schuhl, 2020, p. 

13). The four questions guide the collaborative framework on concept sequencing being 

applied to Unit 1 of the Mathematical Methods option discussed below. 

 

6.5.1 Mathematical Methods Unit 1 Functions and Graphs (QCAA, 2018, p 20-21) 
Unit 1 

Firstly, identify key words from the syllabus document: 

Functions 

In this sub-topic, students will: 

• understand the concept of a relation as a mapping between sets, a graph and as a rule or 

a formula that defines one variable quantity in terms of another. 

• recognise the distinction between functions and relations and use the vertical line test to 

determine whether a relation is a function. 

• use function notation, domain and range, and independent and dependent variables. 

• examine transformations of the graphs of 𝑓(𝑥), including dilations and reflections, and 

the graphs of 𝑦=𝑓 (𝑥) and 𝑦=𝑓(𝑏𝑥 ), translations, and the graphs of 𝑦=𝑓(𝑥 +𝑐) and 

𝑦=𝑓(𝑥)+𝑑; 𝑎,𝑏,𝑐,𝑑∈ 𝑅. 

• recognise and use piece-wise functions as a combination of multiple sub-functions with 

restricted domains.  

• identify contexts suitable for modelling piece-wise functions and use them to solve 

practical problems (taxation, taxis, the changing velocity of a parachutist).  
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Review of quadratic relationships 

Recognise and determine features of the graphs of 𝑦 = 𝑥2, 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, 𝑦 =

𝑎(𝑥 − 𝑏)2 + 𝑐 , and 𝑦 = 𝑎(𝑥 − 𝑏)(𝑥 − 𝑐) , including their parabolic nature, turning 

points, axes of symmetry and intercepts. 

Inverse proportions 

In this sub-topic, students will: 

• examine examples of inverse proportion 

• recognise features of the graphs of 𝑦 =
1

𝑥
 and 𝑦 =

𝑎

(𝑥−𝑏)
, including their hyperbolic 

shapes, their intercepts, their asymptotes and behaviour as 𝑥 →∞ and 𝑥 →−∞. 

 

Powers and polynomials 

In this sub-topic, students will: 

• identify the coefficients and the degree of a polynomial 

• expand quadratic and cubic polynomials from factors 

• recognise and determine features of the graphs of 𝑦 = 𝑥3, 𝑦 = 𝑎(𝑥 − 𝑏)3 + 𝑐 and 

𝑦 = 𝑘(𝑥 − 𝑎)(𝑥 − 𝑏)(𝑥 − 𝑐), including shape, intercepts and behaviour as 𝑥 → ∞ and  

𝑥 →−∞ 

• use the factor theorem to factorise cubic polynomials in cases where a linear factor is 

easily obtained. 

• solve cubic equations using technology, and algebraically in cases where a linear factor 

is easily obtained. 

• recognise and determine features of the graphs 𝑦 = 𝑎(𝑥 − 𝑏)4 + 𝑐, including shape and 

behaviour. 

• solve equations involving combinations of the functions above, using technology where 

appropriate. 

 

Graphs of relations  

In this sub-topic, students will:  

• recognise and determine features of the graphs of 𝑥2+𝑦2 = 𝑟2 and (𝑥 − 𝑎)2 + (𝑦 −

𝑏)2 = 𝑟2, including their circular shapes, centres and radii  

• recognise and determine features of the graph of 𝑦2 = 𝑥, including its parabolic shape 

and axis of symmetry.  

  



Supporting the teaching of calculus-based senior mathematics in Queensland. 

134 
 

Exponential Functions 1 

Indices and the index laws  

In this sub-topic, students will: 

• recall indices (including negative and fractional indices) and the index laws 

• convert radicals to and from fractional indices 

• understand and use scientific notation 

 

6.6 Applying the Framework to Functions and Graphs 
6.6.1 Importance of Keywords 

The Oxford Advanced Learner’s Dictionary (2000) defines a keyword (noun) as a main 

idea or concept that is very important in a particular context. Keywords “provide 

significant clues for the main points about the sentence” (Li et al., 2020, p. 8196). 

Therefore, a keyword is one that is essential to the meaning of a sentence. Definitions of 

some keywords help in identifying prerequisites of the concept as they provide more 

detail about the key word. For example: 

 

Question 1: What exactly do students need to know and be able to do in this unit? 

Key words in the syllabus highlight critical skills and concepts as well as link 

prerequisites to new concepts. When they are closely analysed by teachers, different 

concepts not directly mentioned in the syllabus will emerge as prerequisites. An example 

of a definition that can directly link to prerequisites is the definition of a relation. A 

relation is a set of ordered pairs (Evans et al., 2019). Ordered pairs are points on a 

Cartesian plane that are represented in the form (𝑥, 𝑦). The definition helps to realise the 

importance of a Cartesian plane in understanding relations and any other concepts related 

to them. In the ordered pairs we derive the Domain and Range. It is critical to ensure that 

every student understands a Cartesian plane and can identify all 𝑥 𝑎𝑛𝑑 𝑦  values that 

satisfy a graph represented on the plane. How 𝑥 values  will be manipulated to give 

corresponding 𝑦 values is called mapping. 

 

Key words that are repeated or mean the same can be combined or expanded under one 

unifying name.  

Examples:  

• Shapes and intercepts, asymptotes and shapes, behaviour and features, centre and 

radii can all be features of graphs.  
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• Coefficients, variables and formula can fall under algebra. 

• Factors, factor theorem, factorise linear and non-linear functions (linear, quadratic 

and cubic) can fall under factorisation. 

• Mapping, domain, range, sets, independent and dependent variable come under 

relations 

• Index laws, negative and fractional indices fall under indices. 

• Translation, reflection and dilation fall under transformations. 

• Solving linear quadratic and simultaneous equations fall under solving equations. 

 

6.6.2 Curriculum Mapping of Concepts 

Curriculum mapping is a critical tool used to display the comprehensive coherence of the 

curriculum (Levin & Suhayda, 2018), investigate the degree of how concepts in a 

curriculum are interlinked (Vashe et al., 2020) and improve communication among 

teachers on content, skills and teaching and learning (Koppang, 2004). Curriculum 

mapping promotes long-term planning as it reflects topics or content, concepts to be 

covered and skills both new and old to be mastered in a specific period (Koppang, 2004). 

The investigation of content connectedness enables educators to identify gaps that might 

be addressed during teaching to help students gain a deeper understanding (Vashe et al., 

2020). While curriculum mapping involves creating visual representation of linked 

displays, it is not limited to a diagrammatic linking of curriculum content but also to 

structure and assessments, which are beyond the scope of this study. 

 

Mapping provides visual displays, which are quick to understand and easy to compare. 

“Mapping is a visual representation of information and can be in the form of tables, flow 

charts or textual information” (Ervin et al., 2013, p. 310). Undoubtedly, diagrams or 

visual displays enhance explanatory power (Peterson et al., 2021). Tables and scope and 

sequence charts provide a visual representation of knowledge. “Graphical displays are 

more effective than text for communicating complex content because processing displays 

can be less demanding than processing text” (Ioanna, 2002, p. 262). Concept breakdown 

tables and flowcharts will be used in this study to present a diagrammatic representation 

of how content is broken down and sequenced to realise coherent planning.  
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The tables and flowcharts can also be used to demonstrate how content develops from 

familiar to complex unfamiliar, that is, from prior knowledge to new knowledge. 

Therefore, “a careful examination of such a chart reveals how the sequence of activities 

related to a particular unit is organised in a spiral approach, giving students repeated 

opportunities to develop and broaden concepts” (Reys et al., 2020, p. 55). Spiralling 

involves building from assumed prior knowledge or from what is known and then 

navigating through to complex phenomena.  

 

Mapping a unit plays an important role in providing a visual representation of knowledge. 

It provides resources to visualise how concepts are developed from foundational 

principles to new or future developments, hence exposing the complications involved in 

learning (Wilson et al., 2016).  In this instance, a breakdown table formulated from the 

syllabus document became a starting point. Collaborative mapping of mathematical 

concepts bring together teachers’ knowledge and understanding of the topic or concepts 

under consideration. Done collaboratively, the exercise will provide an opportunity for 

teachers to have better insight on how prior knowledge can link with new knowledge. 

 

A range of researchers (Gurupur et al., 2015; Novak, 2010; Reina, 2018) have identified 

the following advantages of mapping: 

• it breaks down concepts and link them to develop high cognitive skills 

• it lays the foundation of how concepts will be developed. 

• teachers share content knowledge as the map is being developed. 

• it develops deeper conceptual understanding 

• it showcases the importance of prior knowledge  

• teachers become better prepared to teach 

• other planning documents like unit plans and term planners can use it as a 

foundation 

• it gives teachers an opportunity to interrogate the syllabus 

• it expands the knowledge and scope of key concepts, which enhance teaching and 

learning 

• pictorial representation of knowledge is easy to understand and adjust when need 

arises.  

• it helps create connection activities or tasks as a new concept is being introduced. 
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6.6.2.1 Concept Breakdown Table 

The concept breakdown table was instrumental in addressing the following questions: 

Question 2: What prerequisite conceptual understanding and skills fluency are 

required for all students to effectively learn new knowledge? 

Question 3: How do the concepts identified as prior knowledge link with new 

knowledge? 

 

Concept breakdown tables explore how the key words link to prior knowledge. They 

include defining key words, identifying similar assumed prior knowledge concepts and 

linking assumed prior knowledge to new knowledge. This aspect of the proposed 

framework is necessary because mathematical language is content specific (Harmon et 

al., 2005). In addition, it is important to note that mathematics terminology increases in 

complexity as students progress from lower to higher levels of school. “Students who 

lack the formal language of mathematics have difficulties reasoning and communicating 

about mathematics” (Ben-Hur, 2006, p. 67). In fact, mathematical language has been 

identified as a hindrance to students as they engage with new concepts (Schuhl, 2020). 

Including mathematical vocabulary in the proposed framework demonstrates how 

language changes as concepts develop and reinforces the importance of terminology in 

enhancing teaching and learning. 

 

For example, at Year 9 and Year 10 levels, students learn about quadratic expressions and 

equations which are key in understanding parabolas.  Likewise ordered pairs on a 

Cartesian plane in Year 7 is a mapping of 𝑥 𝑜𝑛𝑡𝑜 𝑦. The concept breakdown tables can 

be made available to students to dissuade their view of mathematics “as a series of 

unrelated procedures and techniques that have to be committed to memory” (Swan, 2006, 

p. 162). Their views are influenced by how they are taught and consequently how they 

learn (Wong et al., 2001). Therefore, the planning process undertaken by teachers has a 

strong impact on how students are taught. Lack of content coherence will promote 

students’ memorisation of procedures if concepts are taught in isolation. Mathematics has 

a highly connected web of concepts and skills; therefore, these must be firmly 

consolidated to provide a basis for new learning (Australia Academy of Science, 2015, p. 

17). Above all, concept breakdown tables provide “a clear line-of-sight for the 
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development of students’ cognitive skills across year levels” (Department of Education 

(DoE), 2021 p. 23).  

 

Thus, a concept breakdown table will influence students’ views on mathematics as it will 

demonstrate that mathematical concepts are interconnected and hierarchical and therefore 

that procedures and skills are transferable. Table 6.1 shows the relationship between 

assumed prior knowledge and new knowledge for Unit 1 of the Mathematical Methods 

option in Year 11. 

 

Table 6.1: Concept Breakdown Table: Linking junior concepts with senior 

Mathematical Methods concepts for Unit 1: Functions 

Keywords 
(QCAA 
mathematical 
methods Unit 
1) 

Definition of 
keys words 
where 
applicable 

Assumed prior 
knowledge of similar 
concept (Australian 
Curriculum) 

Link between assumed prior 
knowledge from Australian 
Curriculum and key words 

Relations 

 
Ordered pairs 

Cartesian plane, 
ordered pairs 

On ordered pairs the set of 𝑥 (first) 
coordinates represent the domain 
which is also an independent variable 
and the set of 𝑦 (second) coordinates is 
the Range which is also a dependent 
variable. A vertical line is a line 
parallel to the y-axis (Years 7 & 8). 
The relationship between the 
𝑥 𝑎𝑛𝑑 𝑦 is the rule, formula, equation 
or mapping, arrow diagrams. 

Transformations 
(reflection, 
translation & 
dilation) 

Changing a 
shape using: 
turn, flip, 
slide, or resize. Flip, slide and 

enlargement 

Rules of translation- translating 
horizontally or vertically. Reflection 
about the 𝑥 𝑎𝑛𝑑 𝑦 axis (Yr 7). 
Enlargement and reduction as a form 
of dilation (Yr 9). 

Piece-wise 

Combination 
of multiple sub 
functions Combining linear and 

non-linear equations 
and graphs 

Distinguish linear and non-linear using 
highest powers of variables 
(degree). Represent linear and non-
linear equations graphically (Years 9 
& 10). 

Inverse 
Proportion 

When one 
value 
increases and 
the other 
decreases Direct proportion 

For direct proportion Increase in one 
variable result in an increase in another 
variable (Year 9) which is opposite for 
inverse proportion. 

Features of the 
graphs 

Characteristics 
of graphs Linear and non-linear 

graphs 

Calculate intercepts, increasing and 
decreasing graphs. Distinguish 
between linear and non-linear graphs 
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The next question after the concept breakdown table should emphasise identification of 

the important concepts that must be learnt to prepare students. 

 

Question 4: What do we expect students to retain? 

 

(including 
quartic) 

comparing shapes. Graph quadratic 
equations, identify intercepts and 
turning points (Yeasr 9 – 10A). 

Algebra 

Rules to 
manipulate 
symbols 

  

Identify coefficients (Year 7), group 
and simplify like terms (Year 7), 
general substitution (Years 7-9), 
making one variable a subject of 
formula (Years 9-10A). 

Expand 
Multiply 
factors Distributive law 

Removing brackets using distributive 
laws (Years 8-10A). 

Factorisation 

Express as a 
product of 
several factors 

Factors 

Factorise algebraic (Years 9 &10A) 
and quadratic expressions (Year 10). 
Factor theorem and remainder theorem 
to find factors of polynomials (Year 
10A). 

 
Solve equations 

 
 
Find solutions 
in a balanced 
system 
through 
algebraic 
manipulation. 

 
-Linear equations 
-Quadratic equations 
(factorisation, 
quadratic formulae, 
completing the square 
& graphically) 
Simultaneous equation 
(substitution and 
elimination) 

 
Solve linear equations (Years 7 &8).  
Solve quadratic equation using 
quadratic equations (Year 9), 
factorisation, and completing the 
square (Years 10 &10A). Completing 
the square can also be used to 
standardise a quadratic function and 
the equation of a circle to determine 
coordinates of centre and radius. 
Solve simultaneous equation (Year 
10A) 
Equations show the relationship 
between variables (mapping) (Years 7-
10A).  

Indices 

Power or 
superscript 

Exponents 

Write surds in indicial notation, index 
laws, negative indices, fractional 
indices and solve simple indicial 
equations (Years 8-10A). 

Scientific 
notation 

When a 
number 
between 1 and 
10 is 
multiplied by 
a power of 10  

Expressing numbers to scientific 
notation (Year 9). 
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Essential Concepts represent the most critical content from the content domains – the 

deep understandings that are important for students to remember long after they have 

forgotten how to carry out specific techniques or apply particular formulas (NCTM, 2018, 

p. 11). They are the big ideas in a unit (Schuhl, 2020), the ideas that play an important 

role in building students’ mathematical conceptual understanding. However, Sullivan et 

al., (2012) noticed that during planning, teachers are less clear when asked to articulate 

the important ideas in a topic. Mapping concepts helps identify the essential concepts that 

students must retain. 

 

6.6.3 Determining essential concepts 

Scholars Ervin et al. (2013) and Harden (2001) emphasised the need to create main 

conceptual conceptions by synthesising concepts that are interlinked. The main concepts 

are identified below: 

Relations – number/ algebra/graphs 

Transformations (Reflection, Translation & Enlargement) – algebra/ graphs  

Combination of multiple sub functions - graphs/algebra 

Inverse proportion – algebra/graphs 

Features of graphs - graphs 

Algebra - algebra 

Expand - algebra 

Factorisation - algebra 

Solve equations – relations/algebra 

Indices – number/algebra 

Scientific notation – number  

 

Creating a table such as Table 6.2, with the main concepts identified in the conceptual 

connections and all the other concepts students must learn listed under the corresponding 

main concept will help teachers check if some concepts have been left out. It also provides 

an opportunity to further link, expand or collapse the main concepts.  
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Table 6.2: Grouping concepts under main concepts 

1. Numbers 2. Relations 3. Algebra 4. Graphs 

-indices  
-scientific 
notations 
-relations 
 

-relations 
- solve equations 
 

-relations 
-algebra 
- combination of 
multiple functions 
-inverse proportion 
-algebra 
-expand 
-factorisation 
Solve equations 
 

-transformation of 
graphs 
-relations 
-combination of 
multiple functions 
-features of graph 
-inverse proportion 

 

Table 6.2 shows that different concepts can be repeated in a range of main concepts. 

Hence the table can be condensed to identify only the essential concepts that students 

must retain. For example, “relations” are found under all four main concepts, hence the  

need to have relations as one of the main concepts is eliminated. Additionally, in the 

Australian Currriculum, "mathematics”, “numbers” and “algebra” have a linked 

relationship and thus can be combined into one concept. In another example, graphs have 

different features and characteristics, for example, “if the 𝑥 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 in a hyperbola 𝑦 =

 
1

𝑥
 is increased to a very big value (approaches positive infinity), the value of 𝑦 approaches 

zero.” Consequently, different types of graphs can be renamed as characteristics and 

features of graphs. Thus, the essential concepts can be distilled down to “numbers”, 

“algebra” and characteristics and features of graphs.  

 

6.6.4 Content Sequencing 

The main conceptual connections identified in this unit on Functions were “number”, 

“relations”, “algebra” and “graphs”. Using the main conceptual connections (instead of 

the essential concepts, which may be too broad) will ensure all concepts to be taught are 

included. For example domain, range and rule are all part of the definition of relations. It 

is important to include all the assumed prior knowledge from the concept breakdown table 

in their hierachical order to show the structure of knowledge development. “Mathematics 

is a hierarchical subject, where new learning builds on earlier learning in a highly 

connected way” (Australian Academy of Science, 2015, p. 17). The hierachical nature of 

mathematics means concepts increase in complexity as they develop hence assummed 

prior knowledge must generally follow levels of hierachy to new knowledge as shown in 
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Figure 6.2. This is important to develop a logical cohension of content (topics) that build 

on each other as teaching and learning progresses. 

 

 

 
Figure 6.2: Sequenced Content using the Framework. 

 

6.7 How the Planning Framework Influences Effective Teaching of Mathematics 

Teachers have a responsibility to ensure that mathematics learning is effective. 

Mathematics teachers are expected to unpack subject matter, sequence content, provide 

students with an opportunity to connect prior knowledge to new knowledge and gradually 

release support for students (Stoll et al., 2012). Similarly, effective teaching and learning 

require students to have suitable, relevant and applicable prior knowledge and new 

knowledge that interconnects and can be expanded to other concepts as well as allow 

students to link concepts (Novak, 2010). The framework on content sequencing 

emphasizes the identification of prerequisites needed for students to access senior level 

concepts which can help teachers in addressing identified gaps in students’ prior 

knowledge. 
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The hierarchical nature of mathematics and spiral sequencing of concepts across levels 

make senior level mathematics teaching and learning highly dependent on junior level 

mathematical understanding. The amount and quality of prior mathematics knowledge a 

student possesses determines how that student builds new mathematical knowledge 

(Schneider et al., 2011). It is a prerequisite for successful achievement of learning 

outcomes (Achmetli et al., 2019). High levels of understanding of prior knowledge helps 

students identify different methods of solving a mathematical problem and choosing the 

most efficient one (Newton et al., 2020). The connection of critical and relevant prior 

knowledge and corresponding new knowledge, as emphasised in the concept breakdown 

tables, is critical in supporting effective teaching and learning.  

 

Students have a better chance of participating and achieving in mathematics when links 

are developed between what students already know and new concepts (Australian 

Curriculum, & Assessment and Reporting Authority [ACARA], 2018; QCAA, 2018). For 

example, the Cartesian plane, creating a table of values of linear and non-linear 

relationships may support students’ understanding of independent and dependent 

variables, domain and range and mapping of functions and relations. To illustrate this, 

when students are asked to create a table of values for a linear relationship at Year 8 level, 

they substitute 𝑥 − 𝑣𝑎𝑙𝑢𝑒𝑠 in the given relationship to obtain corresponding 𝑦 − 𝑣𝑎𝑙𝑢𝑒𝑠. 

Importantly teachers can emphasise that the  𝑦 − 𝑣𝑎𝑙𝑢𝑒 obtained is dependent on the 𝑥 −

𝑣𝑎𝑙𝑢𝑒 substituted, thus defining independent and dependent variables. Knowledge of the 

Cartesian plane is vital when representing the relationship graphically. Importantly all the 

𝑥 − 𝑣𝑎𝑙𝑢𝑒𝑠  in the table of values of the linear relationship satisfy the graph, hence 

defining the domain of the graph, since domain is a “set of all the first coordinates of the 

ordered pairs in a relation (Evans et al., 2018, p. 215). Correspondingly, the 𝑦 − 𝑣𝑎𝑙𝑢𝑒𝑠 

of the table of contents will define the range of the linear relationship. However, 

restricting a domain involves considering only a smaller portion of a domain. Inequality 

solutions when displayed on a number line can also be used to indicate only the part that 

satisfies the solution. Similarly, restricting a domain is considering only the 𝑥 − 𝑣𝑎𝑙𝑢𝑒𝑠 

that satisfy a given condition in a relation or a function, hence inequalities might be prior 

knowledge that support students’ understanding of restricting a domain. In addition, 

inequalities can also help build foundational knowledge for piece-wise functions as piece-

wise functions have “different rules for different subsets of the domain” (Evans et al., 
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2018, p. 231). Thus, a piece-wise function has the domain divided into different sections 

which can be defined by inequalities. Knowledge of linear and non-linear relationships at 

Year 9 level can facilitate students’ understanding of different rules for different sections 

of a piece-wise function. For example: to sketch the graph of 𝑓(𝑥) =  { 𝑥2 + 1      𝑥 ≥ 0
1 − 𝑥         𝑥 ≤ 0

 , 

students apply the knowledge from linear and quadratic graphs.  

 

Tables of values are not limited to linear relationships but can also be extended to non-

linear relationships that include parabolas, hyperbolas, exponential graphs and 

logarithmic graphs, to mention just a few. It follows that as students are creating their 

tables of values, they are mapping an independent variable to a dependent variable. At 

Year 8 level, the linear relationship is the rule or formula for mapping the variables. 

Grouping all 𝑥 − 𝑣𝑎𝑙𝑢𝑒𝑠 in one set and all 𝑦 − 𝑣𝑎𝑙𝑢𝑒𝑠 in another set, then using arrows 

to match all corresponding ordered pairs, will demonstrate an arrow diagram. Different 

relationships shown from arrow diagrams will allow the teacher to introduce conditions 

for a relationship to be defined as a function or not. Similarly, when linear and non-linear 

relationships are represented diagrammatically from the tables of values on the Cartesian 

plane, students can be asked to use the vertical line test to determine if the relationships 

are for functions or not. Different ways of determining if relationships are functions or 

not will support flexibility and deeper understanding of the concept.  

 

From junior secondary level (Years 7-10), students are expected to represent relationships 

graphically. The relationship between the rule of the relationship and the shape of the 

graph must be emphasised. In fact, “the likelihood of information being maintained in 

memory increases when students’ brains are prepared in advance to ‘catch’ the new input” 

(McTighe & Willis, 2019, p. 99). To develop mastery of features and shapes of graphs in 

Year 11, prior knowledge on features and shapes of graphs from lower levels is significant.  

For example, linear relationships are represented by straight lines while quadratic 

relationships are represented by a concave shape. Features and shapes can also include 

turning points that are expected to be covered in Year 9 when non-linear graphs are 

introduced. Other points, such as intercepts and tables of values, can also be important 

when emphasising the zeros on intercepts. Most of the graphs in Year 11 are also in the 

Year 10A curriculum, hence it is important for teachers to start by recapping the assumed 

prior knowledge. Furthermore, when teaching and learning in mathematics start from 



Supporting the teaching of calculus-based senior mathematics in Queensland. 

145 
 

prior knowledge, it not only facilitates the retention of ideas but also deepens 

mathematical knowledge by integrating the ideas and creating effective mathematical 

meaning (Kilpatrick, 2001). Indeed, “the most significant variable in learning something 

new is prior knowledge” (McTighe & Willis, 2019, p. 99). Thus, students with high 

cognition of prior knowledge are better positioned to use both procedural and conceptual 

learning effectively and efficiently (Newton et al., 2020). In fact, mathematical 

understanding is enhanced when students are presented with the opportunity to adapt or 

reflect on their prior experience and knowledge and make connections between concepts, 

resulting in a gradual development of new knowledge (ACARA, 2018; Lowrie et al., 

2018). Similarly, effective teaching involves “activating prior knowledge by making 

explicit connections to new learning” (DoE, 2021 p. 14). Therefore, teaching that is 

informed by starting with the familiar then progressing to unfamiliar concepts can 

promote student participation, knowledge building and understanding. 

 
6.8 Chapter Conclusion 

The planning framework can reinvigorate the pedagogical dialogue as classroom teachers 

collaboratively plan to deliver effective teaching of mathematics. To reiterate, a central 

premise of this chapter is the development of a framework on sequencing of mathematics 

content that can support the linking of junior mathematics (Years 7 to 10) content to the 

senior mathematics (Years 11 and 12) content in Queensland. The potential 

implementation of this planning framework can mean that the hierarchical nature of 

mathematics and spiral sequencing of concepts across levels can be articulated more 

explicitly. The identification and linking of critical and relevant prior knowledge and 

corresponding new content knowledge, as emphasised by the pillars of the framework, 

can support gradual development of mathematical knowledge during teaching and 

learning. However, there are potential limitations when implementing this framework, 

which focuses mainly on the spiral sequencing of mathematics concepts across levels. 

The limitations might include a lesser focus on catering for individual student needs, 

diversity of readiness and connecting mathematics teaching to students’ diverse everyday 

experiences. 

 

This chapter provides the basis of supporting collaborative planning for effective 

sequencing of mathematics content between lower-level and upper-level topics and across 

different level mathematics subjects and proposes a step-by-step systematic sequencing 
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of mathematics content to promote interlinking, coherence and spiralling of concepts 

between the Australian Curriculum (Prep – Year 10): Mathematics and the Senior 

Queensland Mathematical Curriculum: Mathematical Methods Unit. It has identified that 

depending on the level of assumed prior knowledge and skills students recall and apply, 

teachers can start teaching from any level of the sequenced content.  

This chapter suggests that the framework can be adapted to all mathematics subjects and 

levels; it can help identify relationships between lower-level and upper-level topics, 

concepts and skills and it can link the two levels and provide students with the opportunity 

to build their mathematical knowledge from the familiar to unfamiliar contexts. The aim 

is to encourage further research, dialogue and professional development to 

(re)conceptualise collaborative planning for effective sequencing of mathematics content. 

The next chapter outlines teachers’ perceptions on the importance of content sequencing 

in teaching and learning of mathematics. 
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Chapter 7: Teachers’ Perceptions of the effectiveness of a Planning 
Framework on Content Sequencing for the Teaching and Learning of 

Mathematics.  
 

A version of this chapter has been published in the Eurasia Journal of 

Mathematics, Science and Technology Education. 
https://doi.org/10.29333/ejmste/13108 

 

7.1 Chapter Introduction 

The Australian Mathematical Sciences Institute (AMSI) director Professor Tim 

Marchant warns that year 12 students studying Advanced Mathematics in Australia has 

dropped by 10 per cent for the first time, mathematics enrolments have dropped to an 

alarming level and that action must be taken now (AMSI, 2022). With enrolment rates 

in Advanced Mathematics at senior secondary level declining in most western countries, 

that include the United Kingdom (Noyes & Adkins, 2016; Watt, 2007) and especially 

Australia (Bita & Dodd, 2022; Kennedy et al., 2014), planning for effective teaching 

and learning of mathematics needs renewed focus. Importantly, how teachers plan 

informs teaching and learning which influences participation and achievement 

(Australian Institute for Teaching and School Leadership [AITSL], (2014).  Moreover, 

the sequence of concepts and tasks teachers develop during planning are informed by 

several preparatory actions and is central to teaching and learning (Sullivan et al., 

2013).  Therefore, teachers’ views on how content sequencing can inform teaching and 

learning of mathematics can assist planning at senior secondary level and support 

student participation and achievement. 

 

Planning is an instrument for effective teaching and learning of mathematics which 

focuses on “how pupils learn mathematics; the structure of the mathematics curriculum; 

the specific content, skills and concepts you are teaching; the prior knowledge of the 

pupils; ways of teaching mathematics” (Jones & Edwards, 2017, p. 70).  Planning 

informed by sequencing from fundamental to more complex content enhances teaching 

and learning (Fautley & Savage, 2014). However, limited research is available on how 

sequencing mathematics content and tasks inform the teaching and learning of 

https://doi.org/10.29333/ejmste/13108
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mathematics (Sullivan et al., 2013). This chapter seeks to explore teachers’ perceptions 

on how mathematics content sequencing, a key pillar of mathematics planning, can 

inform teaching of senior mathematics with the view to supporting students’ 

participation and achievement. 

 

Mathematics is hierarchical in nature (Nakamura, 2014). This means that sequential 

development of concepts fosters deeper mathematical understanding (Newton et al., 

2020). In Japan and Thailand, the use of ‘Bansho’ which emphasises making use of 

board space to sequence learning from prior knowledge has been hailed as an effective 

teaching and learning strategy (Kuehnert et al., 2018).  Importantly, significant research 

(Duncan et al., 2007; Geary et al., 2013; Pagani et al., 2010; Schneider et al., 2011; 

Watts et al., 2014) indicates that prior mathematical knowledge supports high 

achievement at upper grades. Similarly, creating a learning environment in which 

students’ participation is anchored on creating skills and knowledge based on prior 

experience is one of the most effective pillars of a robust and effective teaching 

methodology (Ealy, 2018; Hailikari et al., 2008). Content sequencing by teachers 

maximises their ability to set clear goals for the teaching and learning program (Smith 

et al., 2020). Therefore, sequencing of content supports teaching and learning and 

content sequencing is key when planning for effective teaching and learning of 

mathematics as delivery should reflect planning. This article investigates teachers’ 

perceptions of how a framework (Chinofunga et al., 2022) on content sequencing from 

junior prior mathematics knowledge (years 7 to 10) to senior new mathematical 

knowledge (years 11 to 12) supports teaching and learning of mathematics.  

 
7.2 Mathematics Planning 

Planning sets the foundation and path for teaching and learning. Mathematics planning 

involves “imagining a learning trajectory” through sequencing content to be taught “in 

an order that is likely to lead learners to develop further” (Mousley et al., 2007, p. 466). 

Likewise, effective planning promotes development of coherent content and 

experiences that facilitate self-paced learning [Australian Association of Mathematics 

Teachers (AAMT, 2006)]. However, planning is currently influenced by official 

curriculum documents which sometimes act as a textbook (Remillard, 2005). In 

Australia, secondary teachers mainly use commercial publications such as textbooks for 
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their yearly, termly and unit planning (Sullivan et al., 2012). However, the quality of 

textbooks has always been questioned as limited options are available that can support 

linking of concepts to promote opportunities for gradual development of content 

(Mithans & Grmek, 2020). Drawing from China, planning focuses on the process of 

reviewing existing knowledge and linking it to new knowledge, meaning investigate 

current knowledge then transfer to new context (Jin, 2012). Jin went further to note the 

planning that has significantly contributed to student learning and success. In addition, 

China obtained the best results in the 2018 PISA, under the 15-year category in 

mathematics (Organisation for Economic Co-operation and Development [OECD], 

2019). Therefore, teachers as curriculum implementers are best placed to evaluate if the 

framework on content sequencing can support linking prerequisite knowledge to 

unfamiliar contexts during planning. 

 

During planning, hypothesising how students will engage with sequenced content helps 

teachers choose the most effective teaching and learning instruction and activities that 

will be used during lesson planning (Mousley et al., 2007; Simon, 1995). When 

mathematics planning is done collaboratively, it builds teacher capacity through 

knowledge sharing and demonstrates that every mathematics teacher at different year 

levels contributes to building students’ mathematical knowledge (Davidson, 2019). 

Content sequencing informs mathematics lesson planning and sequencing, which is 

particularly beneficial to teachers if done collaboratively.  

 

Collaborative planning provides teachers with an opportunity to share knowledge and 

learn from each other (Gilbert & Gilbert, 2013).  “If teachers spend time collaborating 

and providing critical feedback on their tasks with a goal of conceptual understanding, 

then their students have a better chance of developing mathematical understanding and 

increase interest in mathematics” (Boyle & Kaiser, 2017, p. 406). This echoes the 

National Council of Mathematics Teachers [NCMT] (2014), which says that teachers 

need a deep understanding of the mathematics that their students have to learn and this 

will help them to collaboratively determine a suitable progression of how concepts 

should develop to new knowledge. Similarly, Schuhl et al. (2020) say that collaborative 

mathematics planning increases the chances of uniformity in students learning 
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expectations across grade level or school because colleagues decide what students 

should be taught and key concepts and skills to retain enhancing students learning. 

Hence collaborative planning can be used to support teacher efficacy and teaching and 

learning. 

 

Teachers are heavily involved in mathematics planning at school level in many 

countries. Official curriculum documents and in most cases centrally approved or 

endorsed resources such as textbooks are provided. However, teachers in most countries 

have the responsibility of sequencing content (Davidson, 2019) as well as contextualise 

official commercial (eg textbooks) or non-commercial (syllabus) documents to suit their 

classroom dynamics (Remillard, 2005). In China, while planning is heavily influenced 

by official nationally approved textbooks and curriculum and instructional materials, 

teachers still have to contextualise content to suit the needs of their students (Li et al, 

2009). Similarly, in the United States of America, states develop the curriculum and 

provide suggested sequencing but mathematics teachers during planning decide on how 

content is sequenced and enacted in a classroom (Remillard, 2005). In Australia, 

Queensland mathematics teachers have the responsibility to sequence content during 

planning. 

 

The Australian curriculum, developed by the federal government, sets the national 

curriculum from preparatory to year 10 (P-10) while each state or territory determines 

its own senior secondary curriculum (Years 11 to 12). Long term planning such as 

teaching and learning plans or unit planning involve sequencing and contextualising 

content to students’ needs and learning experiences as schools’ dynamics differ (Roche 

et al., 2014). Most curriculum bodies provide templates and exemplars that teachers can 

use as reference material during planning (Grundén, 2020). The framework on content 

sequencing, linking junior to senior content developed by Chinofunga and colleagues 

(2022), links the nationally designed Australian curriculum (prior knowledge) to state 

developed senior mathematics curriculum (new knowledge). The focus of the research 

described in this chapter was to evaluate mathematics teachers’ perceptions on how the 

framework supports the teaching and learning of mathematics especially at senior level. 

The framework emphasis on linking foundational concepts identified at junior level to 
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concepts to be developed at senior level to promote the gradual and deeper 

understanding of mathematics to reduce students’ cognitive overload.  

 

7.3 Framework on Content Sequencing from Junior to Senior Mathematics 

The framework on content sequencing in Figure 6.1 outlined in the last chapter, was 

developed to provide consistency and a broad understanding on how mathematics 

content can be sequenced from prior to new knowledge. The key objective was to 

promote collaborative planning among teachers through linking mathematics concepts 

from the national curriculum (P-10) to concepts at senior secondary (Years 11-12). In 

Queensland, at senior secondary level students are required to choose mathematics 

subjects between calculus-based and non-calculus-based options. Mathematical 

Methods and Specialist Mathematics are calculus-based options. Some students who 

previously achieved good results in junior secondary school (Years 7-10) found 

themselves struggling to comprehend concepts in calculus-based subjects at senior 

secondary level (Bennett, 2019). Therefore, the framework on content sequencing 

demonstrates that prior knowledge (from junior secondary mathematics) is critical in 

developing new knowledge (senior secondary mathematics concepts). 

 

Constructivists believe learners are active participants in their learning as they interpret 

the meaning of new knowledge and reference it to what they already know (Garbett, 

2011). As a result, the chapter was conceptualised within a constructivist epistemology. 

Similarly, there is emphasis that “knowledge is socially constructed through interaction 

of the researcher with research participants”, as they share experiences (Tavakol & 

Sandars, 2014, p. 747). Therefore, the active interaction between the researcher and 

senior mathematics teachers and the sharing of experiences, beliefs and ideas played a 

vital role in evaluating the framework on content sequencing. 

 

The framework “provides a step-by step systematic sequencing of curriculum content to 

promote interlinking, coherence and spiralling of mathematics concepts between lower- 

level and upper level topics” (Chinofunga et al., 2022, p. 3). It ensures that prior 

knowledge is central when mapping mathematics content from junior secondary to 
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senior secondary level. Thus, the emphasis is on developing new knowledge from prior 

experiences. Such a framework is designed based on the constructivist view that 

students learn by making sense of what is presented to them through the lenses of their 

prior knowledge and skills (Hu et al., 2011; Taber, 2019). Constructivism has been 

credited with reshaping the teaching and learning of mathematics over the years despite 

advocacy from traditional rote learning (Hu et al., 2011; Mallamaci, 2018; Simon, 1995; 

Stemhagen, 2016). Content sequencing helps to reduce the cognitive load of the official 

curriculum and make it familiar through linking new knowledge to prior knowledge. 

Hence evaluating teachers’ perceptions on how the framework supports teaching and 

learning of mathematics is key in realising a critical part of mathematics planning and 

delivery of the lessons. 

 

The content sequencing framework informs the process of sequencing mathematics 

concepts from familiar to unfamiliar concepts as described by Chinofunga and 

colleagues (2022). The framework is based on four elements as described below: 

The first element identifies and defines key words and their synonyms from the subject 

matter provided in the syllabus and is central to identifying skills and prerequisites of 

new knowledge. Keywords “provide significant clues for the main points about the 

sentence” (Li et al., 2020, p. 8196) in the content descriptions in the official curriculum 

documents. Similarly, key words give meaning to a sentence as dominant sentences are 

composed by important keywords (Domínguez et al., 2016; Wang, 2012). Importantly, 

by identifying key words teachers can identify the main concepts related to subject 

content provided in official curriculum documents (Chinofunga et al., 2020). The 

second element details how the prior skills and concepts link with new knowledge in the 

subject content and is central to content sequencing. Importantly, for deeper 

understanding students are expected to link mathematical concepts (Novak, 2010). 

Therefore, backward mapping using a concept break down table is critical in this 

process as it provides the opportunity to clearly link prior knowledge to new knowledge 

which enhances teaching and learning of mathematics (Queensland Curriculum and 

Assessment Authority [QCAA], 2018). The third element identifies essential concepts. 

These are concepts and skills that students are expected to retain at the end when the 

teaching and learning process is complete and this is done by grouping new knowledge 
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and prerequisites into main concepts. Essential concepts are the key ideas in a unit 

(Schuhl, 2020), that enhances conceptual understanding (Hansen, 2011) and are to be 

retained long after the teaching and learning process (National Council of Teachers of 

Mathematics [NCTM], 2014). The fourth and final element will follow the hierarchical 

nature of the identified main concepts and the sub-concepts under each main concept. 

“Mathematics is a hierarchical subject, where new learning builds on earlier learning in 

a highly connected way” (Australian Academy of Science, 2015, p. 17). Therefore, the 

framework takes into consideration the fact that mathematics concepts build in 

complexity as more teaching and learning take place.  

 

7.4 Methods 

This study followed a mixed-methods approach (see Chapter 3). Mixed methods 

involve the use of quantitative and qualitative data in order to better understand the 

research problem because it builds on the strength of both types of data (Creswell, 

2014). Importantly, a mixed-methods approach also provides the opportunity to 

converge or integrate data in a study (Fetters et al., 2013) and helps to deepen 

(qualitative) and broaden (quantitative) the understanding of the phenomenon under 

study, hence providing opportunities for future research (McKim, 2017; Palinkas et al., 

2013).  

This chapter focused on the following research question:  

• What are teachers’ perceptions of a planning framework on content sequencing 

for the teaching and learning of mathematics? 

 

Purposive sampling was used to select 16 high school mathematics teachers in 

Queensland. Purposive sampling involves identifying and selecting knowledgeable 

participants or those who have experienced the phenomenon of interest and who are 

available and open to share their experiences and opinions (Bernard, 2011). The 

inclusion criteria were teachers who were currently teaching or who had taught 

mathematics, especially calculus-based options at senior high school level (Years 11 

and 12) in Queensland. Ethical approval was gained from the Department of Education, 

Queensland: Reference number: 550/27/2383 and James Cook University Human 

Research Ethics Committee: Approval number: H8201. 
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Sixteen (16) research participants watched a 10-minute video where they participated on 

how the framework on content sequencing could be used in planning for teaching and 

learning of mathematics (see Chapter 3). This was the most convenient way due to 

COVID 19 restrictions and time constraints among participants distributed across 

Queensland. The mathematics content used in the presentation and exercise was drawn 

from Unit 1 in Mathematical Methods, with functions as a focus. The participants were 

given a full term (10 weeks) to apply the framework in their planning sessions before 

data collection began. 

 

7.4.1 Data Collection and Analysis 

Data collection was conducted through a survey and semi-structured interviews. The 

survey was made up of six five-point Likert scale items and five open-ended questions. 

The researcher and participants had follow-up and check-in sessions fortnightly via 

Zoom. The sessions were used to check on progress and challenges and if participants 

needed support or more information as they were applying the framework. Semi-

structured interviews were conducted with eight of the 16 participants who were 

available. This provided opportunities for the interviewer to ask follow-up questions 

based on the interviewee’s responses (Galletta & Cross, 2013; Kallio et al., 2016). Each 

interview took approximately 25 minutes. 

 

Quantitative data from the 5-point Likert scale survey was collated and the initial results 

tabulated. The mode and median responses for each question were determined.  This 

was because Likert data are generally ordinal in nature and are best analysed using 

modes and medians (Stratton, 2018). Thereafter, a table of questions and percentage 

responses was created to summarise the results. Data analysis of the open-ended 

questions and interviews followed a thematic analysis (see Chapter 3). Thematic 

analysis aims to identify, investigate and reveal patterns found in a data set (Braun & 

Clarke, 2006). To ensure validity, the study used theory triangulation, which involved 

sharing qualitative responses among colleagues at different status positions in the field 

then comparing findings and conclusions (Guion et al., 2011). Coding was 

independently undertaken by the researcher on the open-ended survey responses and 
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interview transcripts. This included independent initial identification of themes and data 

related to the themes, collaboratively reviewing findings, revising and discussing 

themes (see Appendix A, B and C).  

 
7.5 Results 

The survey data collected using the five-point Likert scale were analysed and the findings 

are presented in Table 7.1.  

Table 7.1: Likert Scale responses showing Participants Perceptions of how the 

Framework on Content Sequencing Support Teaching and Learning of Mathematics 

Question Strongly 
Agree 

Agree Not 
Sure 

Disagree Strongly 
Disagree 

1. Content sequencing as outlined 
in the framework is a critical 
component of mathematics 
planning and teaching as it 
provides a clear link between 
relevant and significant assumed 
prior knowledge and 
corresponding new knowledge.   

 

(14) 

87.5% 
 

 

(2) 

12.5% 

 

0 

0.0% 

 

0 

0.0% 

 

0 

0.0% 

2. Content sequencing as outlined 
in the framework places assumed 
prior knowledge, skills and 
conceptual connections at the 
centre of mathematics knowledge 
development.  

 

13 

81.3% 

 

3 

18.8% 

 

0 

0.0% 

 

0 

0.0% 

 

0 

0.0% 

3. Content sequencing as outlined 
in the framework helps identify 
key concepts in a unit and 
hypothesising effective delivery 
methods.  

13 

81.3% 

3 

18.8% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

4. Collaborative content 
sequencing as outlined in the 
framework reinforces teachers’ 
responsibility of effective teaching 
of mathematics concepts at every 
level.  

13 

81.3% 

3 

18.8% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

5. Collaborative content 
sequencing as outlined in the 
framework fosters a common 
agenda of focusing on how 
students develop mathematical 
knowledge.  

13 

81.3% 

3 

18.8% 

0 

0.0% 

0 

0.0% 

0 

0.0% 
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6. Collaborative content 
sequencing as outlined in the 
framework makes mathematics 
teaching a collective responsibility 
as students understanding and 
participation at higher levels 
depend on lower levels.  

 

14 

87.5% 

 

0 

0.0% 

 

2 

12.5% 

 

0 

0.0% 

 

0 

0.0% 

 

All participants strongly agreed or agreed that the collaborative content sequencing as 

outlined in the framework supports teaching and learning of mathematics.  In fact, at 

least 13 which is 81.3% of participants strongly agreed that content sequencing 

informed by the framework linked development of new knowledge to prior knowledge. 

Likewise, at least 13 which is 81.3% of participants strongly agreed that the framework 

highlighted the hierarchical nature of mathematics through collaborative content 

sequencing and mapping of concepts. The majority of participants strongly agreed with 

all the Likert scale items. This was further demonstrated by the mode and median of all 

items being 5 or strongly agree. The study strongly supported the importance of the 

framework on content sequencing in enhancing teaching and learning of mathematics. It 

further underpinned the significance of collaboration during content sequencing in 

fostering mathematics teaching and learning and knowledge development and cohesion 

within and across levels.   

 

The data from the open-ended survey questions and semi-structured interview questions 

were analysed and the following themes agreed upon as capturing the views of the 

participants on: 

• the utility of content sequencing framework in creating an environment that 

promotes development of new knowledge from prior knowledge. 

• the utility of the framework on content sequencing in articulating the 

hierarchical nature of mathematics 

7.5.1 Theme 1: The utility of Content Sequencing Framework in Creating an 

Environment that Promotes Development of New Knowledge from Prior Knowledge.  

The general observations from participants in the open-ended survey questions showed 

that participants agreed that content sequencing as guided by the framework supports 
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the development of new concepts from prior knowledge. Participants noted that the 

framework on content sequencing emphasised:  

• sequencing content appropriately and logically to support student understanding 

• identifying skills needed to engage with new knowledge 

• linking prior knowledge to new concepts in the unit 

• breaking down concepts to determine fundamental concepts students need to 

understand or access new concepts 

• identifying key concepts in the new unit and sequencing them in a logical way 

that links prior knowledge and builds on to new knowledge, thus develop new 

knowledge in small steps.        

• building from concrete to abstract 

 

These results demonstrated the importance of the framework on content sequencing in 

fostering how new and unfamiliar mathematics knowledge is developed from prior and 

familiar knowledge. Semi structured interviews supported the general observations but 

went further to include participants’ perceptions on the four elements of the framework.  

 

Semi structured interviews provided more detail on participants’ views on element 2 of 

the framework. This aspect of the framework emphasised the importance of linking 

prior to new knowledge. The central role of prior knowledge in teaching and learning of 

mathematics was noted by participant 5 when he provided an example “if you're doing 

measurement and geometry, make sure that the kids are good in numbers field, that 

number has to come before measurement.” Thus, this provides students with an 

opportunity to participate and engage in the learning if they understand prior 

knowledge. The participant is emphasising the importance of including in the planning 

and teaching, relevant and necessary prior knowledge to aid students’ understanding of 

new knowledge. Participant 8 said  

 

“The proposed framework is very important because it provide guidelines and 

steps to follow when we are planning... Expectations across each level are now 

uniform and teacher empowerment in different ways for example developing unit 

plans is being achieved”  
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The participant identified consistency in planning across levels as something that can be 

achieved by using the framework. The participant went further to say, “we really did 

not take content sequencing as so important until we become part of research 

participants but it’s a weakness we are prepared to correct as we have realised it is 

very important for our students to develop their knowledge gradually from known to 

unknown.” The extract demonstrates that in some cases teachers might not have 

appreciated the importance of content sequencing, but the framework might highlight 

the benefits it brings to effective planning and teaching. Participant 1 summed the 

content sequencing framework by saying “cut down an awful lot of time that we spend 

doing sequencing” and pointed out that “there is no document that I know of that links 

the current senior syllabus back to the knowledge that students need to know at P-10.” 

Therefore, the framework on content sequencing provides the basis of linking junior to 

senior curriculum.  

 

Interestingly participants also highlighted how the framework on content sequencing 

helps to contextualise learning for different students depending on their capabilities. 

Participant 4 emphasised that “how we use sequenced content varies, depends on your 

local context and also conceptual and procedural connections between subject 

matters.” She went further to share her experience in two different schools when she 

said “my second school, this is a more rural school, and students, their prior 

knowledge, has been observed, not as solid as in an urban school, so therefore content 

sequencing is helpful.” The participant is highlighting the key role content sequencing 

might play in a differentiated class. Participant 7 noted the importance of framework on 

content sequencing in a class when she said “I, myself personally feel that is best 

practice, that is an amazing opportunity to really customize for children.” She went 

further to say “We, we keep forgetting that every class has a specific group dynamic, 

every school has a specific context.” Importantly participant 3 noted that the framework 

could support teaching and learning after identifying “student ability level and their 

prior knowledge to see where we need to start.” Therefore, students operating at 

different levels of prior knowledge can significantly benefit as teachers have a pathway 

to follow which is informed by planning. The different elements proposed in the 

framework play a significant role in content sequencing. 
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Participants also highlighted the importance of element 1 of the framework. This 

element emphasised the importance of identifying and defining key words and their 

synonyms from the subject content as central to identifying skills and prerequisites of 

new knowledge. Participant 6 appreciated the importance of key words in identifying 

prior knowledge when he said “Get those keywords that you talked about from the 

whole thing then from there, go back to your content, try to see, which are the key 

concepts that I need to cover for students to understand new concepts.” Participant 2 

went further to also include a benefit of identifying prior concepts when she said 

“identify prior concepts that you do need to teach for each particular topic using key 

words, this makes you think about the students' needs and what they already know.”  

Similarly, participant 8 pointed out that “key words help identify prior knowledge then 

fundamental and essential concepts that students have to master.” The participants 

emphasised how key words can provide a deeper insight into concepts. Identifying key 

words helps identify prior skills and concepts that are fundamental to develop new 

knowledge, however it is also important to explore and link the identified concepts to 

new knowledge.  

 

Participants highlighted the importance of linking prior skills and concepts with new 

knowledge using a concept break down table as central to content sequencing. 

Participant 3 appreciated the framework by saying “the framework actually enhance 

content sequencing starting from prior experience through to at level content, and in 

fact I was keen to develop a content break down table when I saw it.” This was 

supported by participant 8 when he said “It highlights the importance of content 

sequencing as it is central to any planning and demonstrate to teachers the importance 

of prior knowledge as demonstrated in the content breakdown table.” Importantly the 

participant went further to say,  

“Not that teachers are not aware of the importance of prior knowledge but this 

goes deeper by including much more prior knowledge in our planning as in the 

content breakdown table so that our students can even correct prior knowledge 

misconceptions and increase their chances of understanding new knowledge 

with this clear and defined link.” 

Participant 4 had a similar view when she said “building connection between prior 

experience and new knowledge using backward mapping in the content breakdown 

table is very important in systematically developing students’ mathematics 
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understanding.” Participants appreciated that linking of prior knowledge to new 

knowledge using a concept breakdown table provides more detail during planning on 

how new knowledge will be developed.  The concept-break-down table plays a 

significant role in clearly defining how prior knowledge links with new knowledge. 

During check-in with participants, we collaboratively developed a concept break down 

table in Figure 7.1, for a section on Introduction to differentiation in Unit 2 of 

Mathematical Methods. 
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Figure 7.1: Content break down table on Introduction to Differentiation 

 

The content breakdown table shows the prior content from the Australian Curriculum 

that builds the foundations of the concept of differentiation at senior secondary school. 

The Year 11 column is the content that students are expected to engage with as new 

knowledge.  
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Semi structured interviews also provided positive feedback on element 3 of the 

framework. This element helps in identifying essential or key concepts which students 

are expected to return to as they develop their conceptual understanding. Participant 6 

noted that the framework on content sequencing helped to identify, “exactly 

the concepts that are very relevant and essential to teach…. which are the key concepts 

that I need to cover.” Participant 2 supported the view when she said “very good in 

terms of identifying what are the key concepts.” Participant 5 gave an example of 

essential concepts when he said “depend on the matrix of the 3 big ideas algebra, 

geometry and number. If you’re doing measurement and geometry, you make sure kids 

are good in numbers field.” The participant observed that foundational concepts may be 

key in developing higher order concepts and need to be included during planning to 

support teaching and learning.  The key or essential concepts help build students’ 

mathematics knowledge as they are the concepts that students need to retain or use as a 

foundation for conceptual understanding.  

 

7.5.2 Theme 2: The Utility of the Framework on Content Sequencing in Articulating 

the Hierarchical Nature of Mathematics  

Generally, results showed that participants agreed that collaborative content sequencing 

during planning illuminated the hierarchical nature of mathematics. From the open-

ended survey results, participants’ responses emphasised the following:  

• hierarchical, spiralling and logical development of concepts  

• backward mapping to lower levels  

• link-related concepts where one skill from a lower level can easily be transferred 

to another unit at the level or above.       

• the importance of teachers gaining a better understanding on how skills and the 

content they teach are prerequisites to learning new knowledge at a higher level.

     

Semi structured interviews showed positive views regarding element 4 of the 

framework. Participants agreed that use of the framework during collaborative planning 

articulated the hierarchical nature of mathematics across school levels. Participant 1 

noted that, 
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“Collaborative content sequencing places the responsibility on teachers to make 

sure that their students know how to do this (apply a skill) because it’s relevant 

down the track, whether it’s the next topic or two three topics time, you know 

when a particular skill is important.”  

The participant went further to say, 

“teachers that never ever taught high level maths to see that okay, what I’m 

teaching here is really important out there so I better do a really good job. And I 

really better make sure that my kids are doing or have mastered this because, 

it’s then going to limit or they’re going to limit themselves in being able to 

access higher learning of maths”     

The participant emphasised the responsibility of teachers in determining that students 

understand junior concepts to be able to engage meaningfully with senior concepts. 

Participant 8 conclusively said “everyone is agreeing it remind teachers that 

mathematics is hierarchical therefore collaborative planning is more beneficial to 

everyone than individual planning.” Therefore, applying the framework collaboratively 

helps to foster the culture of collaboration at all levels and brings to the fore the 

understanding that mathematical concepts interlink and build on each other.   

 

Participant responses also showed their agreement with the idea that exposure to more 

learning allowed concepts to develop and deepen for students. Participant 6 

demonstrated the hierarchical nature of mathematics articulated by the framework as the 

basis of teaching and learning when he said,  

“when you move from one topic to another I always use some of the concepts 

that they did from previous lessons because if they suddenly jump and feel like 

there’s a sudden jump, there’s something that is very different from what they 

were doing on the previous lesson, it’s is a hustle to get them to understand what 

needs to be done… I'll start with the basis, like the basics of the topic, so that at 

least I get the understanding of those students.” 

The participant went further to say “you know the concepts that are relevant from other 

units or levels.” The participant’s emphasis was on how the framework promotes 

linking of concepts to develop a web of knowledge that is coherent and developing in a 
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gradual form. Similarly, participant 2 said the framework “draw the links between the 

topics…which one comes first… where we need to go to within that topic.” Participant 3 

went on to say “concepts are presented according to the level they are expected to be 

taught making content sequencing easy.” Participants appreciated that the framework 

on content sequencing could provide a foundation for effective planning. Participant 5 

considered the broader hierarchy of mathematics when he said “simple familiar content 

and build into complexity making sure they know the simple stuff and how to build it 

into, complex content.” The observation by the participant demonstrates that prior 

knowledge plays an important role in developing the understanding of complex 

concepts. Participants’ responses show that the framework on content sequencing 

fosters the identification of prior concepts, development of new knowledge from prior 

knowledge, identification of key concepts and the hierarchical nature of mathematics. 

 

7.6 Discussion 

The purpose of this study was to gain a better understanding of teachers’ perceptions on 

how the framework on content sequencing from junior (Years 7 to 10) to senior level 

(Years 11 and 12) can support the planning, teaching and learning of mathematics. The 

results of this research provide supporting evidence that the framework places prior 

knowledge at the centre of mathematics planning, teaching and learning. All 

participants in the study agreed that the framework highlighted content sequencing as a 

critical component of mathematics planning and teaching as it links relevant and 

significant assumed prior knowledge and corresponding new knowledge. The 

qualitative data supported this view as participants identified that the framework 

facilitated the systematic and logical linking of prior knowledge to new knowledge. The 

findings can add value to current trends in Australia of secondary teachers relying more 

on commercial publications (Sullivan et al., 2012) which have been found to be limited 

in explicitly breaking down and linking junior to senior content in mathematics 

(Mithans, & Grmek, 2020) These results align with previous findings by Hailikari et al. 

(2008), who posited that linking prior knowledge to new knowledge is key for effective 

mathematics teaching. The content sequencing framework focuses on including prior 

knowledge at the planning stage and shows how it contributes to the development of 

new knowledge (Chinofunga et al., 2022a). These results represent participants’ support 
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of the framework as an inherent part of the planning that is key to teaching and learning 

mathematics. 

 

The identification of key words in the subject matter provided in official curriculum 

documents played a key role in identifying prior concepts and this is one of the critical 

processes advocated by the framework. The quantitative results show that at least 14 

participants strongly agreed that the framework facilitated the identification of prior 

knowledge and linked it to new content while the qualitative results provided further 

evidence that identification of key words in the syllabus was central to the identification 

of relevant prior knowledge. These results are consistent with the first stage of the 

framework, which emphasises that identification of key words from content as stated in 

official curriculum documents assists in identifying prior knowledge (Chinofunga et al., 

2022a). These results are also consistent with Li et al.’s (2020) work that emphasised 

that key words help decode the main focus of a sentence. After using key words in 

identifying prior knowledge, it is important to present how prior knowledge links with 

new knowledge in the subject matter. 

 

The use of concept breakdown tables in backward mapping concepts from junior to 

senior level is also one of the key stages of the framework. Quantitative results from 

this study show that 13 participants strongly agreed that the framework places assumed 

prior knowledge, skills and conceptual connections at the centre of mathematics 

knowledge development. This is important because effective teaching and learning 

requires students to have relevant prior knowledge to construct new knowledge and 

allows students to link concepts for deeper understanding (Novak, 2010). Moreover, the 

open-ended survey results showed that participants agreed with the view that it is 

important to break down new concepts using prior concepts so that student engagement 

with new concepts can be supported. The semi-structured interview results also 

highlighted the importance of concept breakdown tables in this regard and clearly 

identified the relationship as a gradual way for students to access new knowledge. 

These results are consistent with other research (QCAA, 2018; Newton et al., 2020) that 

suggest that a clear definition of the link between prior knowledge and new knowledge 

supports teaching and learning of mathematics.  
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A vital feature of the framework is the identification of key or essential concepts that 

students should retain at the end of the teaching and learning process in order to build 

conceptual understanding. Both the quantitative and qualitative results provide evidence 

that the framework contributes to conceptual understanding by facilitating the 

identification of key or essential concepts. Identification of key or essential concepts is 

important as it supports Schuhl’s (2020) and Hansen’s (2011) findings that key concepts 

are key ideas in a unit and they are the ones that help students build conceptual 

understanding. Their identification helps teachers to focus on those concepts, which 

students must retain long after the teaching and learning process (NCTM, 2014). 

Therefore, the opportunity that the framework offers teachers in identifying the key 

concepts can support teaching and learning of mathematics.  

 

As stated many times previously, mathematics is a hierarchical subject and reflecting 

this in mathematics planning, teaching and learning can support understanding.  The 

quantitative data in this study showed that 14 participants strongly agreed that the 

framework reflected this hierarchical and interconnected nature of mathematics. This 

was confirmed by the qualitative results, which were consistent with the work of 

Nakamura (2014) and the Australian Academy of Science (2015) and reinforce that the 

hierarchical nature of mathematics makes collaborative planning the best way to apply 

the framework on content sequencing. 

 

The hierarchical nature of mathematics also sets the platform for collaborative content 

sequencing among teachers. The quantitative results in this study show that at least 13 

participants strongly agreed that the framework on content sequencing from junior to 

senior mathematics emphasised to teachers that understanding senior mathematics 

depends on how effectively concepts are taught at lower levels. Participants noted that 

the framework also highlighted that effective teaching of mathematics at junior level is 

critical for students’ participation at senior level. Similarly, the qualitative results 

support the notion that the framework stresses the interlinking of mathematics content 

within and across levels, thus supporting Schneider and colleagues (2011) who posited 

that when students are taught well at junior levels and retain the knowledge, their 

chances of understanding senior level mathematics is supported. Taken together, the 
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findings indicate that the framework on content sequencing emphasises the hierarchical 

nature of mathematics as a way mathematics can effectively be planned, taught and 

learnt.  

 

7.7 Chapter Conclusion 

In summary, teachers have a perception that the framework on content sequencing from 

junior to senior level mathematics can be an effective framework to use in identifying, 

linking and sequencing mathematics concepts. The results indicate that teachers believe 

that the stages in the framework can assist them to effectively sequence mathematics 

content in a way that promotes the gradual development of new knowledge. Moreover, 

teachers noted that using the framework collaboratively appears to benefit teachers 

across all levels as the hierarchical nature of mathematics promotes the interconnection 

and interdependence of mathematics concepts.  

 

Importantly, the chapter provides a framework that teachers can use across schooling 

levels within a community of practice as they sequence content during planning.  The 

chapter also highlights the importance of content sequencing during planning, teaching 

and learning. This chapter supports the constructivist view of teaching mathematics that 

new knowledge is constructed from prior knowledge. Similarly, the chapter advocates 

for prior knowledge to be included during planning and linked to new knowledge which 

could contribute towards conceptual understanding.  

 

The chapter used teachers’ perceptions as curriculum planners to evaluate the 

framework on content sequencing from junior to senior concepts in mathematics. 

Although the present results indicate that the framework on content sequencing can 

support teaching and learning of mathematics, it is appropriate to recognise that the 

main limitation of this chapter is the sample size. In terms of future research, it would 

be useful to extend the current findings by examining the impact of content sequencing 

using this framework on teacher instruction and student achievement. The next chapter 

outlines the development of a resource (concept maps) that can supplement the 

framework on content sequencing in developing conceptual knowledge through linking 

prior knowledge to new knowledge. 
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Chapter 8: How can Concept maps as a resource support the teaching 
and learning of mathematics at senior secondary level. 

 

A version of this chapter has been published in the International 

Journal of Innovation in Science and Mathematics Education 

(IJISME). 

https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2

Fdoi.org%2F10.30722%2FIJISME.31.01.003&data=05%7C01%7Cda

vid.chinofunga%40my.jcu.edu.au%7Ce83587e109474984bd2f08db76

97464e%7C2eba4cf8af764db3bcaf81b5592535ef%7C0%7C0%7C63

8234164322588590%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC

4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn

0%3D%7C3000%7C%7C%7C&sdata=qmO8NBWkKKZR9lN%2Bx

LgojHrgaxoqmVfghIMe2qI7kaU%3D&reserved=0 

 

8.1 Chapter Introduction 

Schools are facing challenges in developing students’ conceptual knowledge in 

mathematics (Richland et al., 2012), conceptual knowledge being defined as the 

knowledge of the interconnection of fundamental concepts in a domain (Schneider & 

Stern, 2010). According to Richland et al. (2012), students lack the deeper understanding 

of mathematics that facilitates reasoning, flexibility and generalisations and high school 

graduates who enter the community college system in USA end up in mathematics 

bridging courses because they lack conceptual knowledge. Similarly, in Australia, limited 

conceptual knowledge focus has been identified as the main factor influencing students’ 

participation in mathematics (Smith et al., 2018). However, mathematics teaching and 

learning can be supported when students learn “with understanding, actively building new 

knowledge from experience and previous knowledge” (National Council of Teachers of 

Mathematics [NCTM], 2000, p. 2). Australian teachers believe conceptual knowledge is 

essential in helping students understand mathematics (Hurrell, 2021) and understanding 

that conceptual knowledge plays a key role in mathematics knowledge development 

highlights the importance of interlinking mathematics concepts. 

 

https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.30722%2FIJISME.31.01.003&data=05%7C01%7Cdavid.chinofunga%40my.jcu.edu.au%7Ce83587e109474984bd2f08db7697464e%7C2eba4cf8af764db3bcaf81b5592535ef%7C0%7C0%7C638234164322588590%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=qmO8NBWkKKZR9lN%2BxLgojHrgaxoqmVfghIMe2qI7kaU%3D&reserved=0
https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.30722%2FIJISME.31.01.003&data=05%7C01%7Cdavid.chinofunga%40my.jcu.edu.au%7Ce83587e109474984bd2f08db7697464e%7C2eba4cf8af764db3bcaf81b5592535ef%7C0%7C0%7C638234164322588590%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=qmO8NBWkKKZR9lN%2BxLgojHrgaxoqmVfghIMe2qI7kaU%3D&reserved=0
https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.30722%2FIJISME.31.01.003&data=05%7C01%7Cdavid.chinofunga%40my.jcu.edu.au%7Ce83587e109474984bd2f08db7697464e%7C2eba4cf8af764db3bcaf81b5592535ef%7C0%7C0%7C638234164322588590%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=qmO8NBWkKKZR9lN%2BxLgojHrgaxoqmVfghIMe2qI7kaU%3D&reserved=0
https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.30722%2FIJISME.31.01.003&data=05%7C01%7Cdavid.chinofunga%40my.jcu.edu.au%7Ce83587e109474984bd2f08db7697464e%7C2eba4cf8af764db3bcaf81b5592535ef%7C0%7C0%7C638234164322588590%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=qmO8NBWkKKZR9lN%2BxLgojHrgaxoqmVfghIMe2qI7kaU%3D&reserved=0
https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.30722%2FIJISME.31.01.003&data=05%7C01%7Cdavid.chinofunga%40my.jcu.edu.au%7Ce83587e109474984bd2f08db7697464e%7C2eba4cf8af764db3bcaf81b5592535ef%7C0%7C0%7C638234164322588590%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=qmO8NBWkKKZR9lN%2BxLgojHrgaxoqmVfghIMe2qI7kaU%3D&reserved=0
https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.30722%2FIJISME.31.01.003&data=05%7C01%7Cdavid.chinofunga%40my.jcu.edu.au%7Ce83587e109474984bd2f08db7697464e%7C2eba4cf8af764db3bcaf81b5592535ef%7C0%7C0%7C638234164322588590%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=qmO8NBWkKKZR9lN%2BxLgojHrgaxoqmVfghIMe2qI7kaU%3D&reserved=0
https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.30722%2FIJISME.31.01.003&data=05%7C01%7Cdavid.chinofunga%40my.jcu.edu.au%7Ce83587e109474984bd2f08db7697464e%7C2eba4cf8af764db3bcaf81b5592535ef%7C0%7C0%7C638234164322588590%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=qmO8NBWkKKZR9lN%2BxLgojHrgaxoqmVfghIMe2qI7kaU%3D&reserved=0
https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.30722%2FIJISME.31.01.003&data=05%7C01%7Cdavid.chinofunga%40my.jcu.edu.au%7Ce83587e109474984bd2f08db7697464e%7C2eba4cf8af764db3bcaf81b5592535ef%7C0%7C0%7C638234164322588590%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=qmO8NBWkKKZR9lN%2BxLgojHrgaxoqmVfghIMe2qI7kaU%3D&reserved=0
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Conceptual knowledge is a network of concepts that constitute a bigger unit of knowledge 

(Österman & Bråting, 2019). Complex unfamiliar problems in mathematics mostly 

require students to make connections of knowledge within or across a domain (QCAA, 

2018). Importantly, awareness of the connectedness and coherence of mathematics 

concepts is often overlooked by mathematics teachers; however, it is an important goal 

that has reshaped instruction during teaching and learning of mathematics (Novak, 2010). 

This is because “mathematics is a field of continuous inquiry about new relationships and 

of proving these relationships.” (Bingölbali & Coşkun, 2016, p. 236). Moreover, coherent 

instruction in mathematics connects prior and fundamental concepts to new knowledge 

and provides the opportunity to deepen the understanding of complex concepts (Doabler 

et al., 2012). Importantly, one of the key aims of the Australian Curriculum: Mathematics 

v9.0 is to help students see the bigger picture and make connections between mathematics 

concepts (Australian Curriculum, Assessment and Reporting Authority [ACARA], 2023). 

Mathematical understanding is enhanced when students have the opportunity to adapt or 

reflect on their experience and knowledge and make connections between prior 

knowledge and new knowledge, thus gradually developing their own new knowledge, 

(ACARA, 2013). “Well-constructed knowledge is interconnected, so that when one part 

of a network of ideas is recalled for use at some future time, the other parts are also 

recalled” (Sullivan, 2011, p. 6).  Thus, this study’s focus was on exploring a visual 

representation that teachers can use to support students’ development of mathematical 

knowledge through the ability to link junior to senior concepts as learning progresses. 

 

Students learn better when exposed to information in visual form (Raiyn, 2016). In fact, 

students retain visual formats better and longer in their minds, as it is easy to understand 

and show connections (Raiyn, 2016). Similarly, visuals not only provide teachers and 

students with the opportunity to identify and visualise concepts and procedures but also 

to realise and illustrate relationships, making recalling easier (Birbili, 2006). Indeed, 

visuals are “the best tool for making teaching effective and the best dissemination of 

knowledge” (Shabiralyani, 2015, p. 226). Moreover, they can represent a large amount of 

information, reducing the time required to go through the information (Raiyn, 2016). As 

a result, visuals such as concept maps that can link junior concepts (Years 7 to 10) to 

senior concepts (Years 11 and 12) can support teaching and learning of mathematics. 
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8.2 Concept Maps 

The use of concept maps in teaching conceptual knowledge has been highly 

recommended.  Novak (1990) introduced concept maps in science and mathematics to 

organise and link concepts. Research on use of concept maps in mathematics has focused 

mostly on middle school and teacher training level with very limited research at the senior 

secondary level (Schroeder, Nesbit, Anguiano, & Adesope, 2018). Importantly, a 

metanalysis by Schroeder and colleagues concluded that research has focused more on 

explaining the benefits of using concept maps without collecting evidence to support such 

assertions. This study reports on teachers’ perceptions of the benefits of concept maps for 

mathematics teaching at the senior secondary level.  

 

 Concept maps show concepts and how they are connected, thus giving a representation 

of conceptual understanding. They are a resource that can be used to represent and 

demonstrate conceptual understanding (Watson, Pelkey, Noyes, & Rodgers, 2016). 

Moreover, they can be a tool to demonstrate concept cohesion within or across a domain 

(Hartsell, 2021), which is key to mathematics content sequencing during planning 

(Chinofunga, Chigeza & Taylor, 2022).  In this view, conceptual understanding is 

represented by concept nodes that are connected by single or bidirectional arrows labelled 

with verbs to specify the relationship between and among them (Birbili, 2006; Novak, 

2010). They can be hierarchical or non-hierarchical in nature as it is the input that 

determines the shape (Llinas, Macias, & Marquez, 2018). 

 

Concept maps promote higher order thinking (Cañas, Priit, & Aet, 2017), facilitate 

integration of complex ideas (Beat, 2015) and promote problem solving (Watson et al., 

2016). Their ability to provide opportunities to present conceptual interconnections and 

relationships that include the main concepts and other related prior or sub-concepts 

promotes critical thinking (Groffman & Wolfe, 2019). Similarly, use of visual 

representations to show relationships of mathematics concepts encourages critical 

thinking and enhances teaching and learning of mathematics (Bay-Williams & 

SanGiovanni, 2021). It follows that, “concept mapping promotes students' understanding 

of complex constructs and complicated relationships, while stimulating critical analysis 
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and improving critical thinking” (Fonteyn, 2007, p. 200). Furthermore, they enhance the 

quality of students’ learning by facilitating connection of ideas and providing a solid 

foundation to add and understand new knowledge, which is valuable for problem solving 

(Kinchin, Möllits, & Reiska, 2019). Being able to break down complex phenomenon into 

familiar concepts is central in solving complex questions that might require integration 

of different concepts, which is expected in mathematics at senior secondary (QCAA, 

2018). Moreover, linking as much prior knowledge as possible to new knowledge 

enhances cohesion of concepts and understanding (Mai et al., 2021). At senior secondary 

level, students’ ability to link relevant prior knowledge at junior level to senior level 

concepts support participation and understanding. 

 

Broadly, concept maps have several benefits to teaching and learning. They are beneficial 

“in activating students’ prior knowledge, identifying misconceptions, focusing 

discussions, facilitating collaborative learning and as revision and assessment tools” 

(Kinchin, 2011, p. 183). Concept maps help teachers in focusing students on what they 

need to learn and the main concepts they need to retain (Hartsell, 2021). They also 

facilitate a meaningful and consolidated understanding of mathematics, as well as help to 

show the differences in knowledge and understanding among students (Ho, Harris, 

Kumar, & Velan, 2018). As a result, they can be used in mathematics formative 

assessments which to not require students to recall facts and procedures (Bell, 2017). 

Importantly, they provide an overall picture of the phenomenon in question rather than 

just focusing on facts (Vasconcelos et al., 2019). Mapping concepts provide opportunities 

of multiple representation which enhances deeper understanding (Gokalp & Bulut, 2018). 

Similarly, they can be used to identify students’ misconceptions in their conceptual 

understanding (Watson et al, 2016).  Moreover, they enhance integration and clarity of 

concepts and motivate students to learn (Chiou, 2008). Concept maps support student 

centred learning by making them active participants in the learning process (Groffman & 

Wolfe, 2019). Thus, teaching and learning of mathematics that involve concept maps 

support the interlinking of mathematics concepts (Schroeder et al., 2018).  

 

However, concept maps are also viewed to have several disadvantages in teaching and 

learning. The relational aim of using concept maps can be a disadvantage as teaching and 
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learning in some cases require arguments and objections to positions (Davies, 2011). 

Furthermore, Eppler (2006) found that students often feel overwhelmed and demotivated 

when faced with designing concept maps as they require some expertise to design. 

Concept maps do not enable easy separation of concepts of critical importance to those 

of secondary importance (Daley, 2004). Davies suggested that they are not adequate to 

capture more complex relationships between concepts. 

 

Teachers as classroom practitioners are well placed to evaluate resources. Thus, this study 

investigated teachers’ perceptions of the impact of concept maps that link junior to senior 

concepts on the teaching and learning of mathematics at senior secondary school.  The 

study addressed the following research question: 

What are senior secondary teachers’ perceptions of the impact of concept maps that 

link junior to senior concepts on the teaching and learning of mathematics at senior 

secondary school? 

 
8.3 Method 

This mixed methods study explored the impact of concepts maps in the teaching and 

learning of mathematics. The mixed methods approach is ideal because it provides an 

opportunity for consolidating results from both quantitative and qualitative research 

methods (Creswell, 2015). Quantitative and qualitative data are analysed and then 

integrated in order to cross validate findings (Creswell, 2015). The purpose of the study 

was to investigate secondary mathematics teachers’ perspectives on the effectiveness of 

using concept maps that link junior to senior concepts as tools that mathematics teachers 

can use in developing students’ conceptual knowledge. 

 

Purposive sampling was used to select 16 high school mathematics teachers in 

Queensland, Australia. The inclusion criteria were teachers who are currently teaching or 

who have taught mathematics, especially calculus-based options at senior high school 

level that is Year 11 and 12 in Queensland. Ethical approval was gained from the 

Department of Education, Queensland: Reference number: 550/27/2383 and James Cook 

University Human Research Ethics Committee: Approval number: H8201. 
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Sixteen research participants took part in a 10-minute video presentation where they were 

provided with information on how concept maps that link junior to senior concepts could 

be used in teaching and learning of mathematics. The video presentation included how to 

develop the concept maps and the possible stages where they could be used during 

teaching and learning. They were given a full school term (10 weeks) to respond after 

including concept maps that link junior to senior concepts in their teaching. During the 

implementation period, fortnightly after-hours Microsoft Teams check-in meetings with 

all participants were organised to check on progress and offer support. When and how to 

employ such concept maps during teaching and learning was left for teachers to decide 

considering class dynamics. The concept maps could be teacher developed, student 

developed and/or class developed depending on the pedagogy employed by the teacher. 

This provided teachers with the opportunity to be innovative resulting in diverse 

experiences and perceptions. The concept map tools that link junior to senior concepts 

were developed using a Content Sequencing framework developed by Chinofunga and 

colleagues (2022). The mathematics content presented in the concept map presented to 

teachers was drawn from Unit 1 in Mathematical Methods (Figure 1), with functions as a 

focus.  

 

 

Figure 8.1: Concept map that links junior to senior concepts: Functions 

The concept map shown in Figure 8.1 links the concepts on a section of functions in Unit 

1 Mathematical Methods. It includes phrases that help explain how the concepts link and 
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the to- and from- arrows show that some connections are bi-directional. Thus, concept 

maps help to construct meaning and relationship between concepts.  

 

During the designing of concept maps that link junior to senior concepts, the following 

processes were used: Firstly, a concept of focus at senior mathematics was identified. 

Novak and Canas (2006) noted that a concept map begins with a concept or phase which 

represents a focus question that require an answer. Secondly, junior concepts that link to 

the concept of focus were identified. That is, concepts identified in the concept breakdown 

table can be used. Thirdly, connecting terms are used to link junior and senior concepts. 

Davies (2011) posited that connecting terms are used to show relationships between 

concepts represented.   

 

8.4 Data Collection 
Data collection were conducted through a survey and semi structured interviews.  The 

survey with a five-point Likert scale and five open-ended questions was shared with the 

participants. The scaled survey questions required teachers to rate their level of agreement 

on a scale from 1 to 5 on questions based on use of concept maps that link junior to senior 

concepts in developing students’ mathematics knowledge.  

 

Semi-structured interviews were conducted to gain knowledge of how teachers used the 

concept maps in their teaching of mathematics. Semi structured interviews are adjustable 

and adaptable, because they provide opportunities for the interviewer to ask follow-up 

questions based on the interviewee’s responses (Kallio, Pietilä, Johnson & Kangasniemi, 

2016). Interviews were conducted with only eight out of the 16 participants who 

completed the survey due to competing schedules. The interviews ranged about 25 

minutes. 

 

8.5  Data Analysis 

Quantitative data from the 5-point Likert scale was collated in Excel. Rows were allocated 

to participants and columns to questions. From the initial results tabulation, the mode and 

median responses for each question were determined.  This is because Likert data are 

generally ordinal in nature and are best analysed using modes and medians (Stratton, 
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2018). Thereafter a table of questions and percentage responses was created to summarise 

results. 

 

This study involves two types of qualitative data which are open ended survey questions 

and semi structured interviews. After transcribing the semi structured interviews, member 

check was done with two participants to verify accuracy of the transcribed scripts. Data 

analysis of survey open-ended questions and interviews followed a thematic analysis. 

Thematic analysis aims to identify, investigate and reveal patterns found in a data set 

(Braun & Clarke, 2006). To ensure validity the study used theory triangulation. It involves 

sharing qualitative responses among colleagues at different status positions in the field 

then comparing findings and conclusions (Guion et al., 2011). Survey open-ended 

responses and interview transcripts of participants were shared among the principal 

researcher and his two supervisors for independent analysis. Analysis was informed by 

the research questions. Coding was independently undertaken by the principal researcher 

and his two supervisors. This included initial identification of themes and data related to 

the themes independently. The findings were collaboratively reviewed, and themes were 

discussed and revised. The following themes were agreed upon which captured the views 

of participants on: 

• the utility of concept maps that link junior to senior concepts in creating an 

environment that creates awareness of the interconnection of mathematical 

concepts. 

• the utility of concept maps that link junior to senior concepts in creating an 

environment that supports consolidation and assessment of teaching and learning 

of mathematics. 

 

Semi- structured interviews gave participants an opportunity to explain their experiences 

after using such concept maps in teaching and learning of mathematics.  Quantitative and 

qualitative data were integrated to answer the research question. Combining the two data 

sets may result in validated and well justified findings (Creswell, 2015).  
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8.6 Results  

The teachers’ responses suggested that use of concept maps that link junior to senior 

concepts can enrich mathematics classrooms. Table 1 below represents the Likert scale 

items that captured the teachers’ perceptions on the utility of concept maps in the teaching 

and learning of mathematics.  
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Table 8.1: Likert Scale Responses in Percentages 

Questions Strongly 
Agree Agree Not 

Sure Disagree Strongly 
Disagree 

1. Concept maps help students understand how 
mathematical concepts are related. 

14 
88% 

2 
13% 

0 
0% 

0 
0% 

0 
0% 

2. Student or teacher developed concept maps 
can be used to link prior knowledge to new 
knowledge. 

13 
81% 

3 
19% 

0 
0% 

0 
0% 

0 
0% 

3. Concept maps facilitate consolidation of 
learning. 

10 
69% 

6 
31% 

0 
0% 

0 
0% 

0 
0% 

4. Concept maps facilitate a visual evaluation 
of students’ learning. 

12 
75% 

4 
25% 

0 
0% 

0 
0% 

0 
0% 

5. Concept maps give an overview of a topic. 13  
81% 

3 
19% 

0 
0% 

0 
0% 

0 
0% 

6. Concept maps help identify key concepts in 
a topic. 

13 
81% 

3 
19% 

0 
0% 

0 
0% 

0 
0% 

7. Concept maps promote integration of 
concepts that deepen mathematical 
understanding. 

10 
69% 

3 
19% 

1 
6% 

1 
6% 

0 
0% 

8. The hierarchical nature of mathematics 
makes concept mapping central to teaching and 
learning of mathematics. 

9 
56% 

4 
25% 

3 
19% 

0 
0% 

0 
0% 

 

The research question is centred on teachers’ views on how concept maps that link junior 

to senior concepts can strengthen the teaching and learning of the interconnection of 

concepts. The mode and median of all the questions under consideration shows strong 

agreement. Similarly, all participants agreed or strongly agreed that concept maps support 

conceptual understanding, facilitate consolidation, are a visual representation of 

mathematical knowledge, provide overviews and help identify key concepts. Moreover, 

at least 81% of participants agreed or strongly agreed that concept maps play an important 

role in enhancing the teaching and learning of mathematics especially through connecting 

concepts. 

 

8.6.1 Theme 1: The utility of concept maps that link junior to senior concepts in 

creating an environment that stimulates awareness of the interconnection of 

mathematical concepts.  

This theme focused on the use of concept maps in developing knowledge of the 

interconnection of mathematics concepts. Results from the survey open-ended questions 

indicated participants’ views on the usefulness of concept maps in enhancing students’ 

knowledge of conceptual connections. Participants identified the following benefits: 
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• providing concept maps for students helps them to visualise the links between 

concepts.  

• developing concept maps in class helps students make conceptual connections. 

• students can also develop their concept maps to represent their own knowledge 

development. 

• concept maps allow students to link prior knowledge or foundational concepts 

with new knowledge. 

• concept maps show students how simple familiar procedures develop into 

complex problem solving. 

 

These views highlighted the critical role that concept maps can play in developing 

students’ mathematics conceptual knowledge.  

 

The semi-structured interview data further explored feedback from participants on the 

role of concept maps in the teaching and learning of conceptual knowledge. The value of 

linking concepts to students’ learning was made clear. Participants observed that it helped 

students value current learning as they realised it was connected to future understanding. 

For example, Participant 1 combined the importance of visuals and conceptual connection 

when she said, “They can see the relevance of what they have learnt in the past and how 

it links to something you are trying to teach them now and something that you will teach 

them in the future.”  Participant 2 stated, “So that definitely helps in terms of helping the 

students make that link between concepts and why they need to actually learn those 

concepts.” Participant 8 was more specific when he said, “... have since included concept 

maps in conceptual teaching and students seem to understand the linking of concepts 

better.” 

 

In relation to linking prior experience to new knowledge or linking concepts within or 

across domains, which is key to effective mathematics teaching, Participant 4 stressed 

that concept maps can show “connections between prior and current learning, that’s one 

purpose of using a concept map”. The same observation was put forward by Participant 

8, who said, “Concept maps also emphasise the importance of prior knowledge to new 

content.” It was interesting that the directions of the linking arrows (emphasising that 

mathematics is spiral and hierarchical in nature and concepts can be integrated) in the 
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concept maps was a key focus. Participant 3 said, “Conceptual maps actually allow 

students to have something to hang on and they can go backwards and forwards” and 

Participant 8 mentioned “two-way linking”. Similarly, Participant 5 noticed the 

importance of backward arrows when he mentioned “... forward and backwards arrows 

that can help your concept map”.  

The use of arrows in facilitating integration of concepts was noted by Participant 2, who 

said arrows could help in “showing how they can actually link concepts together and 

use it, for example, in problem solving where you've got to use multiple concepts at a 

time.” These indicated that complex problems are a combination of concepts, and a 

concept map is useful in building that understanding and hence that concepts maps can 

be very effective in teaching and learning of conceptual knowledge. 

 

8.6.2 Theme 2: The utility of concept maps that link junior to senior concepts in 
creating an environment that supports consolidation and assessment of mathematics 
knowledge. 
This theme focused on how concept maps can assist in consolidation and assessment of 

mathematics knowledge, as shown by the following participant responses: 

• students can develop concept maps for consolidation of a topic or unit.  

• students can be asked to develop a concept map at the end of a lesson, topic or unit as 

part of assessment. 

• uncompleted concept maps can be used as a task for students to fill in the gaps. 

• concept maps developed in class can be used to expose misconceptions or common 

mistakes. 

 

Student-developed concept maps represent their mathematics knowledge and thus can be 

used as an assessment tool to measure students’ understanding. Participant 7 pointed out 

that concept maps “… would give me a better way to checklist how each individual 

student is acquiring knowledge”. Participant 8 went further when he said he “used it in a 

lesson for students to show me how their knowledge has developed.” Participant 2 was 

more focused on visual learners’ representations when she said, “it helps those visual 

learners and organising their thoughts”. These results show that concept maps, when 

developed by students, can be used to evaluate students’ mathematics understanding, 

hence can be an assessment tool that requires teacher feedback.  

 



Supporting the teaching of calculus-based senior mathematics in Queensland. 

180 
 

The importance of this feedback was emphasised by Participant 7 when she said, “If kids 

miss concepts, you will never get them to be able to progress until you go back. By having 

a map, we know where to go back to and we can trace back until we find the gap.” Thus 

student-developed concept maps might also open an opportunity to identify students’ 

misconceptions, evaluate their understanding and take corrective action. This was 

supported by Participant 8 who said, “Misconceptions can also be identified as students 

develop concepts that give the teacher the opportunity to reteach or redirect.”  

Importantly, opportunities for effective consolidation arises at the end of a topic or unit, 

when teachers take into consideration students’ knowledge representations and sum up 

everything that they have learnt.  

 

Artefacts from teachers and students collected during the course of this study also offer 

valuable evidence on use of concept maps in teaching and learning. The artefacts 

provided an insight into how teachers used concept maps as a resource to link prior and 

new concepts and for consolidation of concepts. Figures 8.2, 8.3 and 8.4 show concept 

maps from Participants 4 and 8 covering three different concepts in Mathematical 

Methods. Additionally, Figures 8.5, 8.6 and 8.7 show concept maps developed by 

students in different topics in Mathematical Methods subject.  
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Figure 8.2: Teacher developed concept map on Trigonometry and its applications. 
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Figure 8.3: Teacher developed concept map on Sequences and Series 
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Figure 8.4: Teacher developed concept map on Differentiation. 
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Figure 8.5: Student developed concept map on Continuous Random Variables. 

 
 
 
 



Supporting the teaching of calculus-based senior mathematics in Queensland. 

185 
 

 
Figure 8.6: Student developed concept map on Differentiation. 
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Figure 8.7: Student developed concept map on Integration. 

 

8.7 Discussion 

Analysis of both qualitative and quantitative data indicate that teachers have a perception 

that concept maps that link junior to senior concepts can support the teaching and learning 

of mathematics at the senior secondary level. In particular, participants’ views provide 

supporting evidence that such concept maps can support students’ knowledge of 

conceptual connections which is critical in making students aware of how mathematics 

concepts relate to each other. During semi structured interviews, participants noted that 

students’ understanding of mathematics as a web of concepts can be supported by concept 

maps. Additionally, artefacts from students indicated that students could link several 

concepts, especially from their prior knowledge to concepts at senior level mathematics. 

The findings are consistent with previous research by Watson and colleagues (2016) who 
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noted that concept maps enhance conceptual understanding. Thus, promoting the 

interlinking of mathematics concepts is a more effective teaching and learning strategy in 

senior school mathematics compared to other instructional models (Novak, 2010). It is 

because it promotes coherent instructions that foster the development of new knowledge 

from prior knowledge (fundamental concepts) then provide opportunities to include more 

complex concepts as teaching and learning progresses (Doabler et al., 2012). These 

results support the idea that concept maps can also be used to show the cohesion of 

concepts (Hartsell, 2021), which can promote content sequencing in mathematics. The 

nature and structure of concept maps, that is the nodes, arrows and linking words, might 

be key in deepening students’ understanding of mathematics.   

 

The uni or bi-directional arrows on concept maps show links between concepts which can 

support integration and help identify key concepts. Quantitative results show that 88% of 

participants agreed that concept maps support integration of concepts while all 

participants agreed that they can be used to identify key concepts. During interviews, 

participants further emphasised that concept maps provide evidence on how solving a 

problem may involve several concepts. Similarly, during open-ended survey responses, 

participants noted that concept maps may demonstrate how simple familiar concepts 

integrate to complex unfamiliar concepts as concepts integrate. These views support the 

position that complex problems require students to integrate different concepts (QCAA, 

2018). Similarly, Fonteyn (2007) suggest that concept maps may demonstrate how 

concepts evolve from simple familiar to complex unfamiliar as concepts integrate and 

relationships get more complex.  Artefacts from students and teachers showed links 

between different concepts which demonstrates that linking a system of foundational 

concepts may assist in the development of complex concepts in mathematics.  

Importantly, the findings also indicate that concept maps can help students understand 

and integrate concepts (Beat, 2015; Kinchin et al., 2019). Concept maps show 

relationships of mathematics concepts which will help students to understand 

mathematics as a web of concepts. 

 

The interconnection of concepts is not only important in understanding the nature of 

mathematics but can also inform how it is effectively taught. Teachers’ views from both 

quantitative and qualitative results show that concept maps can facilitate the linking of 

prior knowledge to new knowledge. Semi structured interview data provided an in depth 
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understanding as participants explained that the concept maps promoted and enabled 

connections to be made between junior and senior concepts.  This supports the 

hierarchical nature of mathematics and underscores the importance of content sequencing 

from prior to new knowledge since this is critical to students’ understanding of new 

concepts. The results provide supporting evidence to Kinchin (2019) who posited that by 

identifying connections and underlying links between prior knowledge and new 

knowledge, students have a better chance to learn effectively. This is because 

mathematics is all about exploring new and existing relationships among concepts 

(Bingölbali & Coşkun, 2016).  Therefore, concept maps that link junior to senior concepts 

can be a critical resource in supporting the teaching and learning of mathematics as 

connections between prior knowledge and new knowledge play a key role in 

comprehension.  

 

The views of participants in this research provide supporting evidence that conceptual 

maps can be a tool for consolidation and assessment. Consolidating a topic or a unit 

requires students to have a general understanding of the interlinking of concepts that are 

involved because topics in a unit or topic are closely connected. The artefacts from 

students can demonstrate that if students are provided the opportunity to develop concept 

maps, their concept maps can show what they view as key prior concepts that are 

fundamental to new knowledge.  This can provide a teacher with opportunities to add 

value by suggesting other concepts students might have overlooked, thus deepening their 

understanding. Likewise, teacher developed concept maps (artefacts from teacher) 

provided an overview of the linking words that could be critical in establishing how the 

concepts are related, which align with Novak’s (2010) findings. During semi-structured 

interviews participants went further to point out that concept maps can help identify gaps 

in knowledge and also show connections of concepts within a topic or subject matter 

together. The gaps might indicate misconceptions. These results point to the effectiveness 

of concept maps in facilitating consolidation, as well as identifying and addressing 

misconceptions. The results support Kinchin (2011) whose works determined that 

concept maps can expose students’ conceptual misconceptions and also support 

consolidation. The findings also indicate that concept maps that link junior to senior 

concepts made by students represent their conceptual understanding and thus can be used 

as an assessment tool.  
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Concept maps can be considered a visual representation of students’ conceptual 

understanding. Quantitative results show that all participants agreed that they can be a 

representation of students’ knowledge of the interconnection of concepts. In open-ended 

survey questions responses, participants noted that students can develop concept maps 

during or at the end of a learning session or a topic or unit. Interviews with teachers 

provided an in-depth insight that concept maps can represent students’ thoughts. 

Importantly the student artefacts collected in this study provided an insight into students’ 

conceptual understanding, especially when students identified the prior concepts that 

linked with new knowledge. Results demonstrate that concept maps developed by 

students can be used to check for understanding which in turn provides an opportunity 

for teachers to give feedback. The results align with Ho and colleagues’ (2017) work 

which noted that concept maps represent a visual display of an individual’s conceptual 

understanding. The results are also in line with Bell (2017) who posited that concept maps 

may be used as an assessment task during formative evaluation to assess knowledge 

beyond facts and procedures. Furthermore, participants highlighted that incomplete 

concept maps can be used as assessment pieces for students to complete. Therefore, 

effective use of concept maps that link junior to senior concepts may play an important 

role in improving students’ participation and achievement in mathematics. 

 

8.8 Implications for practice 
Concept maps that link junior to senior concepts can be a resource that teachers can use 

to support teaching and learning of mathematics at senior secondary school. Linking prior 

to senior concepts can facilitate gradual development of knowledge and deeper 

understanding.  The linking of junior to senior concepts is critical to teaching and learning 

as it shows that mathematics is a web of concepts that build on each other. Moreover, it 

represents continuity, especially in jurisdictions where students choose different 

mathematics subjects at senior secondary level. Similarly, concept maps are visual 

representations that research has identified as easy to recall and an effective teaching and 

learning tool. The use of concept maps at senior secondary level needs to be encouraged 

and their inclusion in resources such as textbooks and assessments can be further 

developed.   
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8.9 Chapter Conclusion 
In conclusion, teachers have a perception that concept maps that link junior to senior 

concepts can play a central role as a key resource of choice in deepening senior secondary 

students’ mathematics knowledge. The results from this chapter can support concept 

maps as a resource that can create a rich learning environment beyond developing 

conceptual knowledge in mathematics teaching and learning at senior secondary level. 

However, the main limitations of this study are that a small number of participants was 

used, and senior secondary students’ views and experiences as key stakeholders were not 

solicitated. Furthermore, this study did not include evidence of impact on students’ 

learning outcomes. Despite these limitations, the present study has contributed important 

insights into our understanding of the role of concept maps in the teaching and learning 

of mathematics at senior secondary level. We hope this study will stimulate further 

investigation on the importance and role of visuals in mathematics teaching and learning 

especially at senior secondary level. The next chapter outlines the development of another 

resource (procedural flowcharts) which can support the teaching and learning of 

mathematics. 
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Chapter 9: Role of Procedural Flowcharts in Teaching and Learning 
of Senior Secondary Mathematics. 

 

A version of this chapter was published in N. Fitzallen, C. Murphy, & 

V. Hatisaru (Eds.), Mathematical Confluences and Journeys 

(Proceedings of the 44th Annual Conference of the Mathematics 

Education Research Group of Australasia, July 3-7, 2022), pp 130-

137. 
https://merga.net.au/common/Uploaded%20files/Annual%20Conference%20Proceed

ings/2022%20Annual%20Conference%20Proceedings/Research%20Papers/Chinofu

nga%20RP%20MERGA44%202022.pdf  
 

9.1 Chapter Introduction 

When the senior secondary Mathematical Methods subject was introduced by the 

Queensland Curriculum and Assessment Authority (QCAA) in 2019, parents raised the 

issue that students who obtained ‘As’ at junior level were getting lower grades at senior 

level (Bennett, 2019). In Queensland, trends have shown a decline in student participation 

and achievement in calculus-based senior secondary mathematics options (Chinofunga et 

al; 2022a, b) and international trends have shown a similar decline in participation in most 

countries (Hodgen et al., 2010a, b). Researchers have pointed to pedagogy and classroom 

practices that are disengaging (Tytler, et al., 2008) as one of the causes of the decline in 

participation and achievement in advanced mathematics subjects. Additionally, students’ 

limited procedural fluency has been highlighted as one of the causes that is limiting their 

understanding of mathematics ideas and solving mathematics problems (Kilpatrick et al., 

2001), hence affecting participation and achievement.  

 

9.2 Procedural Fluency 

Procedural knowledge is a part of procedural fluency in mathematics education and is 

defined as knowledge of procedures and steps to a solution (Braithwaite & Sprague, 

2021). Procedural fluency is more than just being able to perform a procedure as it 

involves conception of the problem, choosing the appropriate method and adaptability in 

applying the chosen method (Bay-Williams, 2020). It also involves “using procedures 

efficiently, flexibly, and accurately” (Bay-Williams et al., 2022, p. 178). Bay-Williams 

and San Giovanni (2021) define “efficiency” as selecting the best method and using it to 

https://merga.net.au/common/Uploaded%20files/Annual%20Conference%20Proceedings/2022%20Annual%20Conference%20Proceedings/Research%20Papers/Chinofunga%20RP%20MERGA44%202022.pdf
https://merga.net.au/common/Uploaded%20files/Annual%20Conference%20Proceedings/2022%20Annual%20Conference%20Proceedings/Research%20Papers/Chinofunga%20RP%20MERGA44%202022.pdf
https://merga.net.au/common/Uploaded%20files/Annual%20Conference%20Proceedings/2022%20Annual%20Conference%20Proceedings/Research%20Papers/Chinofunga%20RP%20MERGA44%202022.pdf
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solve a mathematics problem within a set time and “accurately” as using a procedure 

correctly, while “flexibility” is conceptualised as knowing more than one procedure and 

being able to modify procedures when solving a mathematics problem (Star, 2005). “To 

support flexibility, teaching standards in numerous countries recommend that students be 

introduced to multiple procedures early in instruction and be encouraged to compare the 

procedures” (Rittle-Johnson et al., 2012, p. 437). Students demonstrate procedural 

fluency when they exhibit flexibility in using a skill, obtain the correct solution and can 

effectively communicate the method used (McClure, 2014). Procedural knowledge is 

therefore part of procedural fluency and teachers are expected to help students build 

procedural fluency, using different strategies and teaching styles to do so.  

 

Teachers in Queensland use explicit teaching approaches to help students execute 

procedures accurately and to select the optimal method to solve a problem while practice 

brings flexibility and efficiency. In this approach, teachers demonstrate the skill, then 

guide students’ practice and finally provide the opportunity for unprompted practice 

(Archer & Hughes, 2010). Thus, after the students have been taught explicitly a method 

to solve a mathematics problem, they must be given an opportunity to practice when and 

how to use the method (Bay-Williams et al., 2022). When students can identify a context 

where the procedure can be suitably applied, they also have the opportunity for procedure 

modification (NCTM, 2014), resulting in deeper knowledge. Similarly, “procedural 

fluency is a comprehensive way of navigating mathematical procedures; it includes 

mastery of algorithms and strategies, but it also includes knowing when to use them” 

(Bay-Williams & San Giovanni, 2021, p. 25). However, procedural knowledge is 

perfected through “practice, and thus is tied to particular problem types” (Rittle-Johnson 

et al., 2015, p. 119), as mastery of procedures is key to developing this knowledge. As a 

result, repeated practice and guidance is one critical part of building procedural 

knowledge (Rittle-Johnson, 2017). Hence, procedural knowledge development is 

characterised first by being guided, then by mimicking and then through experience, 

adapting procedures to other complex familiar problems as part of procedural fluency.  

 

Students who operate at high levels of procedural fluency are more likely to integrate and 

modify familiar procedures to solve complex unfamiliar problems (Blöte et al., 2001). 

However, in Queensland, simple familiar problems constitute 60% of examination 

questions and require use of procedures identified in the questions (QCAA, 2018).  
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In such cases, students have to identify the most appropriate procedure and then apply it 

correctly and efficiently to pass the examination. Therefore, procedural fluency plays a 

key role in success in mathematics. This study focused on how procedural flowcharts can 

support students’ procedural fluency in the Mathematical Methods subject. 

 

9.3 Procedural Flowcharts 

A flowchart is the most efficient and concrete method with which to illustrate a procedure 

or multiple procedures to solve a problem (Toyib et al., 2017). The importance of 

flowcharts in developing procedural knowledge is supported by the definition of 

procedure established by Rittle-Johnson et al. that it is “a series of steps, or actions, done 

to accomplish a goal” (p. 588). In addition, a flowchart is effective in a class where 

students are operating at different levels of prior knowledge, being more advantageous to 

those at the very low level as it helps in decision-making and provides problem-solving 

skills (Hooshyar et al., 2015). Importantly, flowcharts play a significant role in promoting 

independent learning as students can refer to them after encountering a familiar 

mathematics problem (Marzano, 2017). Apart from showing contradictions and 

contrasting procedures, flowcharts promote representations of steps and procedures from 

different perspectives (Andrej, 2018). In procedural knowledge, relationships are 

sequential, that is, steps follow each other (Hiebert & Leferve, 1986). Consequently, 

flowcharts are an important tool for a mathematics teacher to teach procedural knowledge 

because they guide students through a process, allowing learning to be student-centred 

and to accommodate different levels of understanding among students. 

 

It is a common experience for mathematics teachers to witness students applying 

procedures inappropriately just because they have memorised them (DeCaro, 2016) and 

minimising this problem will improve students’ participation and achievement. When 

procedures are taught using flowcharts, decisions are taken at every step. This is because 

“flowcharts represent a sequence of decision making and information processing” 

(Marzano et al., 2017, p. 57). They are an “aid to thought” that help in analysing a problem 

and planning the solution (Ensmenger, 2016, p. 328). Consistent use of flowcharts helps 

students to develop skills in identifying suitable methods for solving mathematical 

problems and to become more sophisticated in approaching complex problems (Newton 

et al., 2020). Superficial procedural knowledge might be limited to accurate and efficient 

use of one procedure, but deep procedural knowledge involves several approaches and 
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knowing when to apply a particular strategy (Bay-Williams, 2020). As students apply a 

flowchart, decisions are made depending on how the processes, steps and solution being 

followed align with the flowchart. Due to the checks and balances provided by the 

flowchart, students can then determine the most relevant procedures needed to solve a 

particular problem. 

 

Applying tools that promote multi-solution strategies enhances students’ capacity to solve 

a variety of problems (Siegler, 2003). Teachers can use flowcharts to represent multiple 

ways or choices to a solution (Marzano, 2017), thus promoting procedural flexibility. 

Flowcharts guide students through processes, steps and decision-making, all of which are 

critical for procedural fluency (Marzano, 2017). “When students achieve procedural 

fluency, they carry out procedures flexibly, accurately and efficiently” (QCAA, 2018 p. 

1). Thus, procedural flowcharts are a visual representation of available procedures and 

corresponding steps, showing all stages of evaluation and alternative paths to a desired 

result or solution. This study explored teachers’ perceptions of the use of procedural 

flowcharts, based on the research question: “What are teachers’ perceptions on how 

flowcharts can support teaching and learning of procedural fluency in the Mathematical 

Methods subject?” 

 

9.4 Method 

The mixed-methods study informed by constructivism focused on teachers’ perceptions 

on how procedural flowcharts can support the teaching and learning of Mathematical 

Methods. Quantitative and qualitative data were collected and analysed to gain further 

insights into participating teachers’ perspectives (Creswell, 2015). Ethical approvals 

were obtained from the Department of Education, Queensland: Reference number: 

550/27/2383 and James Cook University Human Research Ethics Committee: Approval 

number: H8201. The same 16 senior secondary Mathematical Methods teachers who 

participated in the study described in Chapter 7 participated in this study as well, and 

watched a 10-minute video presentation based in this instance on procedural flowchart 

tools developed from a section on Functions in Unit 1 of the Mathematical Methods 

syllabus. Figure 9.1 is an example of one of the procedural flowcharts used in the 

presentation. 
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Figure 9.1: Procedural Flowchart on Distinguishing Functions and Relations 

 

Using Figure 9.1, teachers asked the students to determine if a polynomial graph or set of 

ordered pairs was a function or a relation. The decision was reached after applying the 

mathematical procedures. As the mathematical procedures were being implemented, they 

allowed the choices given in the flowchart to be justified. This allowed students to work 

through independently and be reminded of the steps and procedures that were critical to 

solving the problem. Students were also expected to learn about features of quadratic 

functions. 

 

A procedural flowchart on features of quadratic functions in Figure 9.2 shows the 

procedures needed to determine different features that students are expected to learn in 

Year 11 was collaboratively developed with participants. Effective teaching of quadratic 

functions helps students understand how different forms of algebraic representations 

relate to how features of the functions are determined (Wilkie, 2016), so this was included 

in the flowchart of quadratic functions. The relationships between these features, as 

shown in Figure 9.2, help students to build and broaden their understanding of the 

concept. They also remind students of the key mathematical steps and procedures to solve 

problems related to the concept. Thus, procedural flowcharts are key in highlighting the 

vocabulary expected in a concept, such as “intercepts”, “turning points” and 

“discriminant’, which are important in developing mathematical fluency. 
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9.5 Data collection and analysis 

The participants in this study were given a school term to embed the procedural 

flowcharts in their teaching and learning of mathematics programs at their schools. They 

were also asked to respond to the five-point Likert scale questions and the open-ended 

questions to give this researcher a deeper understanding of their insights from using the 

procedural flowcharts in the teaching and learning of mathematical methods. The 20-

minute semi-structured interviews were conducted with eight participants (the same eight 

teachers who participated in the study described in Chapter 7) who completed the surveys. 

The responses to the open-ended questions and semi-structured interviews were then 

analysed thematically and coded (Creswell, 2015). 

 

9.6 Results 

The themes agreed upon after the independent thematic analysis, collaborative reviewing 

and revision were as follows: (1) procedural flowcharts can foster a classroom 

environment that stimulates procedural fluency when learning mathematics, and (2) 

procedural flowcharts can support student-centred teaching and learning of mathematics 

procedures. 

 

The survey data collected using the five-point Likert scale was analysed as shown in 

Table 9.1. 
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Table 9.1: Likert Scale Responses showing Participants Perceptions of how Procedural 

Flowcharts can Support Teaching and Learning of Mathematical Methods. 

Questions Strongly 
Agree Agree Not 

Sure Disagree Strongly 
disagree 

1. Visual representation of mathematical 
knowledge enhances teaching and 
learning of mathematics. 

15 
 94% 

1 
6% 

0 
0% 

0  
0% 

0 
0% 

2. Procedural flowcharts (showing steps 
and procedures) plays an important role 
in developing students’ mathematical 
skills. 

9 
56% 

5 
31% 

1 
6% 

1 
6% 

0 
0% 

3. Procedural flowcharts promote 
fluency and recall. 

11 
69% 

2 
13% 

3 
19% 

0 
0% 

0 
0% 

4. Procedural flowcharts can be used to 
highlight critical vocabulary 

11 
69% 

3 
19% 

2 
13% 

0 
0% 

0 
0% 

5. Procedural flowcharts are a reference 
resource that can also be used for 
revision. 

13 
81% 

3 
19% 

0 
0% 

0 
0% 

0 
0% 

6. Procedural flowcharts focus on 
students’ learning. 

11 
69% 

3 
19% 

3 
13% 

0 
0% 

0 
0% 

7. Procedural flowcharts promote 
independent or collaborative learning. 

11 
69% 

2 
13% 

3 
19% 

0 
0% 

0 
0% 

8. Procedural flowcharts can help 
evaluate or give feedback to students on 
their understanding and correct use of a 
procedure. 

10 
63% 

5 
31% 

1 
6% 

0 
0% 

0 
0% 

 

The results show 15 participants strongly agreed that visual representations of 

mathematical knowledge enhance teaching and learning of mathematics. At least 13 

participants in the survey agreed or strongly agreed that procedural flowcharts support 

learning of procedural fluency in mathematics. Results show “strongly agree” and “5” 

were both the mode and median for questions 2-8. Importantly, 11 participants strongly 

agreed that procedural flowcharts support fluency and recall, highlight critical 

vocabulary, support student-centred learning and promote independent and collaborative 

learning. Moreover, 13 of participants strongly agreed that procedural flowcharts are a 

tool that can play a critical role in revision. Above all, the data shows that 15 of 

participants agreed or strongly agreed that they can help evaluate or give feedback to 

students on their understanding and correct use of procedures. Therefore, this study 

strongly supported procedural flowcharts as a resource that can support teaching and 

learning of mathematics procedural knowledge. 
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9.6.1 Theme 1: Procedural Flowcharts can Foster a Classroom Environment that 
Stimulates Procedural Fluency when Learning Mathematics. 
 

The participants agreed that procedural flowcharts stimulated procedural fluency and the 

open-ended survey questions showed that participants supported the use of procedural 

flowcharts in enhancing procedural fluency. These included: (ⅰ) teacher-created 

procedural flowcharts for students to use during explicit teaching phases or targeting 

students who have not achieved fluency or for students with identified learning needs, (ⅱ) 

class-generated procedural flowcharts during collaborative teaching phases to show the 

processes that were applied, and (iii) student-generated procedural flowcharts to show 

common mistakes or misconceptions. These results demonstrate the flexibility of 

procedural flowcharts in enhancing fluency.  

 

Feedback from the semi-structured interviews gave greater detail on how procedural 

flowcharts created a wide range of opportunities for developing procedural fluency in 

mathematics. Participants’ perceptions after applying them as a teaching and learning 

resource provided some insight into how this resource can help develop students’ 

procedural knowledge and skills.  

 

Participants noted that students were more comfortable with visual representations than 

just worded steps. In fact, they appreciated that most students were visual learners who 

responded better to diagrammatical representations than to written steps.  

For example, Participant 8 said, “Because it’s a diagrammatic representation, students 

look at it favourably because it’s easier to process and, like I said, most students are 

visual learners.” Importantly, during participants’ check-in sessions the researcher 

collaboratively developed procedural flowcharts with participants. Participants 2, 7 and 

8 collaboratively developed a procedural flowchart in Figure 9.2 with the researcher 

which they then used during teaching and learning. Participant 7 went to give an 

advantage of a procedural flowchart by saying, “It is steps in diagrammatic form which 

is easy to process and easy to understand.” Thus, students can follow easily and use the 

steps to answer problems with minimum help. Participant 2 noted, “If you had steps just 

written down in the book, it's hard to flip back through and find the information you're 

looking for, whereas if it's a diagram, it's easy to find.” Participant 2 then said, “They 

enhance students’ memory”. Therefore, flowcharts that are easy to navigate and use 
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provide a better opportunity to recall and accurately apply information, which assists in 

the development of procedural fluency. They can help solve most problems in 

mathematical methods examinations, as indicated by Participant 8 when he said, “It is 

very handy for simple familiar questions which are mostly recall and fluency questions, 

but which are the majority in mathematics examinations.”  

 

 

As students follow the steps on the procedural flowchart, they work towards developing 

their procedural knowledge and fluency. Participant 2 made this point when she said, 

“Really good how it organises the steps and explains where you need to go if you're at a 

certain part in a procedure.” In addition, Participant 7 said, “The cycle approach, the 

feeding back in, feeding back out, that type of stuff, that’s when we are starting to teach 

students how to think.” Likewise, Participant 8 observed, “Complex procedural 

flowcharts guide students in making key decisions as they work through solutions which 

is key to critical thinking and judgement and these two are very important in maths.”  

Thus, procedural flowcharts support students’ efficiency and flexibility in solving 

problems, deepening their understanding through reasoning and justification, which are 

part of mathematics proficiency strands.  
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Figure 9.2: Procedural flowchart on features of Quadratic functions. 

 
The flowchart in Figure 9.2 provides an overview of features of quadratic functions in 

Mathematical Methods. Firstly, students have to match the given equation which will 
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guide the student on steps to follow to determine the coordinates of turning point. 

Secondly students determine the nature of the turning point by matching the coefficient 

of the square of the variable with the procedure that has been provided. Finally, students 

have to determine the value of the discriminant to determine properties of the roots of 

the function. The value will inform students if the function has two solutions, one 

solution, or no solutions. Similarly, the procedural flowchart on Transformations in 

Figure 9.3 was developed by participant 8 and provided different types of 

transformations needed in Mathematical methods. The flowchart identifies how the 

transformations can be represented in function notation. It can be noted that the 

procedural flowchart guides students through procedures, acting as a scaffolding 

resource. As a diagrammatic representation they can summarise key steps and 

procedures that are essential to solving a problem.  They can be used in assisting 

students in identifying the most suitable solution as they navigate through the flowchart 

and match their thinking and proposed solutions with steps in the procedural flowchart. 

The steps can also help students recall procedures that are needed, for example in Figure 

9.2 students have to recall how to determine the discriminant as the formula is not 

provided. 
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Figure 9.3 Procedural flowchart on Transformation developed by a participant. 

 
 
Procedural flowcharts provide teachers with the opportunity to determine students’ 

procedural competencies and misconceptions. Participant 8 said, “I went further to ask 

my students to create their own procedural flowcharts … so that I can evaluate if they 

understand and represent their fluency on the chart.” Participant 1 included procedural 

misconceptions: “I use it to identify the potential students’ misconceptions and I'll use it 

to identify student’s competencies” therefore, enhancing procedural fluency. 

 

9.6.2 Theme 2: Procedural Flowcharts can support Student-centred Teaching and 

Learning of Mathematics Procedures. 

The participants agreed that the use of procedural flowcharts encourages and facilitates 

independent and student-centred learning. The open-ended survey responses highlighted 

the use of: (ⅰ) student-generated procedural flowcharts after explicit teaching, and (ⅱ) 

student-generated procedural flowcharts at the end of the lesson as part of lesson 

consolidation. Participants shared procedural flowcharts in Figures 9.4 and 9.5 that were 
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developed by their students as an alternative way of assessing students’ understanding of 

procedures. The procedural flowchart in Figure 9.4 shows a students’ understanding of 

determining an arithmetic and geometric sequence. It can be the key to solving a question 

where the sequence is not identified by type, hence the testing so as to identify the 

sequence given. Such a procedural flowchart shows that a student understands the 

fundamentals of the sequences section in Mathematical Methods. Likewise Figure 9.5 

shows a students’ understanding of solving quadratic equations using factorisation. The 

student’s interesting and accurate procedural flowchart shows deeper understanding of 

the concept. Importantly, the procedural flowcharts can support students’ deepening 

understanding.  
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Figure 9.4: Student developed procedural flowchart on Sequences 
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Figure 9.5: Student developed procedural flowchart on factorising quadratic expressions. 

 

The use of procedural flowcharts by participants in the teaching and learning of 

mathematical methods made the participants realise that the flowcharts promoted 

independent and student-centred learning. The response from Participant 8 was, “They 

promote individual learning and learning which is student-centred.” Participant 6 said 

that capable students “can teach themselves without even a teacher.” The teacher 

developed procedural flowcharts in Figure 9.2 and 9.3 can be used for students’ 

independent learning.  Importantly, independent learning by students can provide a 

teacher with the opportunity to help struggling students. This view was supported by 

Participant 5 when he said, “It gave me the opportunity to work with slower kids as they 

[the flowcharts] promote individual learning.”  
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Participant responses also indicated that procedural flowcharts encouraged student 

engagement. When asked about the role of the flowcharts on the development of  

students’ procedural knowledge, Participant 8 said, “I have witnessed more students 

engaging more in the YOU DO (student-centred) phase.” The participant went on, “I was 

so impressed because students engaged more with the task.” A similar but more detailed 

observation was also made by Participant 7, who said, 

“Mathematics goes from being very dry and dusty to being something which is 

actually creative and interesting and evolving, starting to get kids actually 

engaging and having to back themselves, and having to be less passive and more 

active as learners.”  

 

Moreover, participants noted that the flowcharts helped students understand the 

importance of procedures if they were to engage effectively with mathematics. Participant 

3 shared her observation that procedural flow charts, “allow the students to move in both 

directions and it makes them see that the actual responses that they have to give are 

minimised, rather than seeing every question as separate.” This was very important, 

especially for questions that require procedural steps rather than in their most usual form 

or representation.  

The participants agreed that procedural flowcharts play an important role in supporting 

procedural fluency and engagement in mathematics. 

 

9.7 Discussion 

One interpretation of these findings is that participants noted procedural flowcharts can 

support the development of procedural knowledge and fluency. As highlighted 

previously, procedural knowledge is knowledge of steps and procedures to reach a 

solution (Braithwaite & Sprague, 2021). Thus, procedural flowcharts represent a series 

of steps and procedures that may include several approaches to reach a desired solution 

to a particular type of mathematics problem. Results of this study show that at least 13 

participants agreed or strongly agreed that procedural flowcharts support the development 

of mathematics skills and promote fluency and recall. Fluency includes an understanding 

of vocabulary and 14 participants acknowledged that procedural flowcharts highlight the 

criticality of vocabulary in mathematics procedures. Participants concurred that the 

flowcharts not only provided steps to be followed but facilitated decision-making through 

reasoning as students evaluated the correct procedures to follow. Kilpatrick (2001) 
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posited that procedural skills are central to students’ learning of mathematics. Thus, 

practice in solving problems using sequenced steps and procedures promotes accuracy. 

Additionally, information processing and decision-making help in evaluating how the 

path to a solution aligns with the available procedures, thus enhancing “efficiency”. This 

study highlighted that multi-solution procedural flowcharts provided an option for 

students to discover more than one solution, thus enhancing their “flexibility”.  Using 

mathematics steps accurately, effectively and efficiently develops fluency (Bay-Williams 

et al., 2022). Therefore, efficient use of procedural flowcharts helps students develop 

procedural knowledge and assists in the development of procedural fluency. As a 

resource, it can also support explicit teaching, which is one of the main pedagogies in 

Queensland. 

 

The results of this study also show that developing a procedural flowchart during any 

stage of explicit teaching is beneficial. First, teachers can develop the charts during the “I 

DO” (teacher-centred) stage by teaching students how to organise the steps, processes 

and loops for decision-making. The artefacts show the step-by-step presentation of 

procedures and key stages that require students to decide on which direction to take 

depending on how the solution is shaping up. Second, the charts can be developed as a 

class during the “WE DO” (collaborative) stage and, lastly, students can develop them 

during the “YOU DO” (student-centred) stage. The participants’ responses show that 

having students develop their procedural flowcharts can be an efficient way of checking 

students’ procedural understanding and misconceptions and evaluating their learning. 

These results are consistent with Raiyn (2016), whose work concluded that visual 

representations require less time and are easier to process than text. Furthermore, 

presenting information in different, for example, verbal, numerical and diagrammatical 

forms, helps students comprehend the phenomenon (Murphy, 2011). When students are 

given the opportunity to create their own procedural flowcharts, they represent their 

procedural knowledge and fluency diagrammatically. The artefacts from students 

demonstrated that procedural flowcharts developed by students can be used by teachers 

to gain an insight into students’ understanding of a procedure. Procedural flowcharts are 

also a tool that can be used to promote engagement and student-centred learning. 

 

The quantitative data analysis in this study indicated that at least 13 of participants agreed 

or strongly agreed that procedural flowcharts support independent and student-centred 
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learning, while the qualitative data highlighted the importance of procedural flowcharts 

during the “YOU DO” stage when using the explicit teaching approach. This is the stage 

when students are expected to interact and solve familiar problems to what they were 

taught and practiced as a class in the “I DO” and “WE DO” stages. This is because 

“routine practice is an extremely powerful instructional tool that not only helps students 

learn and retain basic skills and facts in a fluent fashion, but has positive outcomes when 

students attempt higher-order strategies” (Archer & Hughes, 2010, p. 21). The artefacts 

demonstrated that procedural flowcharts that include more than one simple procedure 

(system of procedures) may emphasise the ‘bigger picture’ which plays an important role 

in the development of conceptual understanding. Importantly consistent use of flowcharts 

helps develop mastery as they are an aid to thinking (Ensmenger, 2016). The participants’ 

perceptions in this study were consistent with Marzano’s (2017) conclusion that when 

students come across familiar problems, they can refer to procedural flowcharts as they 

independently solve them. Likewise, in student-centred learning, students develop 

knowledge and experiences they have acquired by further exploring using tools and 

resources as scaffolds (Lee & Hannafin, 2016). When answering the open-ended and 

interview questions in this study, the participants emphasised that students could use 

procedural flowcharts during the “YOU DO” stage, providing them with an opportunity 

to engage with learning using the procedural flowchart as a scaffolding resource and with 

minimum teacher assistance. 

 

9.8 Chapter Conclusion 

This study highlighted that teachers view the use of procedural flowcharts as a resource 

that can help develop students’ procedural fluency and participation in mathematics and 

suggests that this approach can be extended to other mathematics subjects at different 

levels. The present research, therefore, contributes to a growing body of evidence 

suggesting that representation of mathematical knowledge and processes in non-linguistic 

forms such as diagrams support participation and achievement. However, the main 

limitation of this study was the small number of mathematical methods teachers who 

participated. In terms of future research, it is hoped that this study has provided a basis 

for further research in use of procedural flowcharts in mathematics teaching and learning. 

The next chapter outlines the utility of procedural flowcharts in developing problem-

solving skills. 
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Chapter 10: How can Procedural Flowcharts support Mathematics 
Problem-solving Skills? 

 

A version of this chapter is under review for publication in the 

Mathematics Education Research Journal. 

10.1 Chapter Introduction 

This chapter starts with a review of the literature on problem solving as well as the use 

of visual representations such as procedural flowcharts in mathematics education. It 

then goes on to discuss the importance of visual representations in learning 

mathematics, and a Problem Solving and Modelling Task (PSMT) approach from 

QCAA which provides the context of the study.  This is followed by an exploration of a 

teacher’s perceptions of the use of procedural flowcharts in supporting mathematics 

problem solving skills.  An in-depth interview with the senior mathematics teacher and 

four artefacts produced by her students informed the discussion of the use of procedural 

flowcharts during a PSMT. The analysis is informed by the stages of problem solving.  

 

Problem solving plays an important role in the teaching and learning of mathematics 

(see Cai, 2010; Lester, 2013; Schoenfeld et al., 2014). However, research is still needed 

on tools that teachers can use to support students during problem solving (Lester & Cai, 

2016). Although research in mathematics problem solving has been progressing, it has 

remained largely theoretical (Lester, 2013). Schoenfeld (2013) suggests that researchers 

should now focus on exploring how ideas grow and are shared during problem solving. 

Similarly, English and Gainsburg (2016) and Maaß (2010) identified that the 

development of problem-solving competency in students is an area that researchers 

should focus on. 

 

A key area that would benefit from further research is the identification of strategies 

that support students’ ability to construct and present their mathematical knowledge 

effectively during problem-solving, particularly if complex processes such as 

integration and modification of several procedures are involved (Vale & Barbosa, 

2018). Similarly, students face challenges in connecting or bringing all the ideas 

together and showing how they relate as they work towards the solution (Reinholz, 
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2020). Research indicates that problem-solving in mathematics is challenging for 

students (Ahmad et al., 2010) and therefore supporting students’ problem-solving skills 

needs urgent attention (Schoenfeld, 2016). Furthermore, Mason (2016) posits that the 

crucial yet not significantly understood issue for adopting a problem-solving approach 

to teaching is the issue of “when to introduce explanatory tasks, when to intervene and 

in what way” (p. 263). Therefore, teachers also need resources to support the teaching 

of problem-solving skills, often because they were not taught these skills and 

approaches when they were school students (Sakshaug & Wohlhuter, 2010). 

 

The purpose of this chapter was to explore, through a teacher’s perceptions on the utility 

of procedural flowcharts in supporting the development of students’ problem-solving 

skills in mathematics. The aim was to investigate if use of procedural flowcharts could 

support students in planning, logically connecting and integrating mathematical 

strategies and knowledge and to communicate the solution effectively during problem 

solving. “Mathematics is the science of patterns, it is natural to try to find the most 

effective ways to visualise these patterns and to learn to use visualisation creatively as a 

tool for understanding” (Zimmermann & Cunningham, 1991, p. 3). The use of 

flowcharts in this study was underpinned by the understanding that visual aids that 

support cognitive processes and interlinking of ideas and procedures influence decision-

making, which is vital in problem-based learning (McGowan & Boscia, 2016). 

Moreover, flowcharts are effective tools for communicating the processes that need to 

be followed in problem-solving (Krohn, 1983).  

 

10.2 Problem-Solving Learning in Mathematics Education 

The drive to embrace a student-centred problem-solving approach has been a priority in 

mathematics education (Koellner et al., 2011; Sztajn et al., 2017). In the problem-

solving approach, the teacher provides the problem to be investigated by students who 

then design the strategies to solve it (Colburn, 2000). To engage in problem-solving, 

students are expected to use concepts and procedures that they have learnt (prior 

knowledge) and apply them in unfamiliar situations (Matty, 2016). Teachers are 

encouraged to promote problem-solving activities as they involve students engaging 

with a mathematics task where the procedure or method to the solution is not known in 
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advance (National Council of Teachers of Mathematics [NCTM], 2000), thus providing 

opportunities for deep understanding as well as providing students with the opportunity 

to develop a unique solution (QCAA, 2018). Using this approach, students are given a 

more active role through applying and adapting strategies to solve a non-routine 

problem and then communicate the method (Karp & Wasserman, 2015).  During 

problem-solving, they engage with an unfamiliar real-world problem, develop strategies 

in response, justify mathematically through representation, then evaluate and 

communicate the solution (Artigue & Blomhøj, 2013).  

 

The process of problem-solving in mathematics requires knowledge to be organised as 

the solution is developed and then communicated. Polya introduced the use of heuristic 

strategies as the basic tool to use when developing a problem solution (Klang et al., 

2021). Students need to understand the problem, plan the solution, execute the plan and 

reflect on the solution and process (Polya, 1971). It is therefore guided by four phases: 

discover, devise, develop and defend (Makar, 2012). Makar expanded on each phase as 

follows: “discover - connecting context to mathematics, devise – mathematisation of 

problem, develop - modelling and representational fluency and defend - communicating 

the process linking purpose to question then evidence and conclusion” (p. 74). When 

using a problem-solving approach, students can pose questions, develop way(s) to 

answer problems (which might include drawing diagrams, carrying calculations, 

defining relationships and making conclusions), interpret, evaluate and communicate 

the solution (Artigue et al., 2020; Dorier & Maass, 2020). Importantly, the Australian 

Curriculum, Assessment and Reporting Authority notes that during problem-solving: 

Students solve problems when they use mathematics to represent unfamiliar 

situations, when they design investigations and plan their approaches, when they 

apply their existing strategies to seek solutions, and when they verify that their 

answers are reasonable. Students develop the ability to make choices, interpret, 

formulate, model and investigate problem situations, and communicate solutions 

effectively. (ACARA, 2014, p. 5)  

Therefore, during problem solving students have to plan the solution to the problem and 

be able to communicate all the key processes involved.  
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Similarly, mathematical modelling involves problem identification from a 

contextualised real-world problem, linking the solution to mathematics concepts, 

carrying out mathematic manipulations, justifying and evaluating the solution in relation 

to the problem and communicating findings (Geiger et al., 2021). Likewise, in 

modelling Galbraith and Stillman (2006) suggested that further research is needed in 

fostering students’ ability to transition effectively from one phase to the next. 

“Mathematical modelling is a problem-solving process that requires students to interpret 

information from a variety of narrative, expository and graphic texts that reflect 

authentic real-life situations” (Doyle, 2005 p. 39).  Thus, mathematical modelling is part 

of problem-solving but has additional aspects. Figure 10.1 identifies the main stages 

that inform mathematics problem-solving from the literature. 

 

 

Figure 10.1: Stages of Mathematics Problem-Solving 

However, although problem-solving is highly recommended in mathematics education, 

it presents several challenges for teachers in terms of how they can best support students 

to connect the processes and mathematics concepts into something coherent that can 

lead to a meaningful solution (Hacker, 1998). Therefore, relevant tools that support 

problem-solving and decision-making can make a difference for both mathematics 

teachers and students (McGowan & Boscia, 2016).  

 

Students can solve problems better if they can think critically (Kules, 2016). Problem-

solving requires their active engagement in analysing, conceptualising, applying 

concepts, evaluating, comparing, sequencing, synthesising, reasoning, reflecting and 

communicating, which are skills that are said to promote critical thinking (Kim et al., 

2012; King, 1995; Moon, 2008); QCAA, 2018). Similarly, the ability to undertake 
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problem solving is supported when students are provided with the opportunity to 

sequence ideas logically and evaluate the optimal strategy to solve the problem 

(Parvaneh & Duncan, 2021). However, finding tools that can support problem-solving 

has been a focus for researchers for a long time but with very limited breakthroughs 

(McCormick et al., 2015). This study explored how procedural flowcharts as visual 

representations can support teaching students to organise ideas, executing strategies, 

justifying solutions and communicating their solution. 

 

10.3 Importance of Visual Representations in Mathematics Learning 

As indicated above, visual representations show thoughts in non-linguistic format, 

which is effective for communication and reflection. “Visual representations serve as 

tools for thinking about and solving problems. They also help students communicate 

their thinking to others” (NCTM, 2000, p. 206). In mathematics, visual representation 

plays a significant role in structuring a problem-solving approach and showing the 

cognitive constructs of the solution (Owens & Clements, 1998), a view echoed by 

Arcavi (2003), who said that visual representations can be appreciated as a central part 

of reasoning and as a resource to use in problem-solving. More importantly, they can be 

used to represent the logical progression of ideas and reasoning as the solution develops 

(Roam, 2009). Therefore, use of visual representations such as flowcharts can support 

problem analysis, problem understanding and solution generation, while communicating 

the whole process effectively.  

 

 

Flowcharts have been used to solve problems in different fields for a long time. 

Significant research (Carlisle et al., 2005; Hooshyar et al., 2018) has noted their use in 

solving information technology problems in such fields as robotics and programming. 

They have been used to support independent problem-solving in familiar and unfamiliar 

situations in vocational training for people with developmental disabilities (Villante et 

al., 2021), while in health sciences, flowcharts have been used to help appropriate 

decision-making within given options, which minimises errors and plays a significant 

role in problem-solving in the field (McGowan & Boscia, 2016). Importantly, in 

schools, Norton and colleagues (2007) noted that “planning facilitated through the use 
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of flow charts should be actively encouraged and scaffolded so that students can 

appreciate the potential of flow charts to facilitate problem-solving capabilities” (p. 15). 

This was because the use of flowcharts in problem-solving provided a mental 

representation of a proposed approach to solve a task (Jonassen, 2012). The success of 

flowcharts in problem-solving in different fields can be attributed to their ability to 

facilitate deep engagement in planning the solution to the problem.  

 

Flowcharts support the process of problem-solving. Creating a flowchart during 

problem-solving facilitates understanding, thinking, making sense of the problem, 

investigating and communicating the solution (Norton et al., 2007). Flowcharts can also 

be used when a logical and sequenced approach is needed to address a problem 

(Cantatore & Stevens, 2016). Identifying the most appropriate strategy and making the 

correct decision at the right stage is key to problem-solving. “One of the greatest 

advantages of a flowchart is its ability to provide for the visualization of complex 

processes, aiding in the understanding of the flow of work, identifying nonvalue-adding 

activities and areas of concern, and leading to improved problem-solving and decision-

making” (McGowan & Boscia, 2016, p. 213). Teaching students to use visual aids like 

flowcharts as part of problem-solving supports the ability to easily identify new 

relationships among different procedures and assess the solution being communicated 

faster as visuals are more understandable (Vale et al., 2018). Norton and colleagues 

(2007) posited that using a well-planned and well-constructed flowchart in problem-

solving results in a good-quality solution. Flowcharts can also be a two-way 

communication resource between a teacher and students or among students 

(Grosskinsky et al., 2019). These authors further noted that flowcharts can help in 

checking students’ progress, tracking their progress and guide them. They can also be 

used to highlight important strategies that students can follow during the process of 

problem-solving. 

 

Another aspect of flowcharts is that they can be used to provide a bigger picture of the 

solution to a problem (Davidowitz & Rollnick, 2001), as teachers can provide ready-

made flowcharts to guide students in the problem-solving process. Flowcharts help 

students gain an overall and coherent understanding of the strategies involved in solving 
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the problem as they promote conceptual chunking (Norton et al., 2007). Importantly, 

“they may function to amplify the zone of proximal development for students by 

simplifying tasks in the zone” (Davidowitz & Rollnick, 2001, p. 22). Use of flowcharts 

by students reduces the cognitive load which then may help them focus on more 

complex tasks (Berger, 1998; Sweller et al., 2019). Indeed, development of problem-

solving skills can be supported when teachers introduce learning tools such as 

flowcharts, because they can influence the process of problem solving (Santoso & 

Syarifuddin, 2020). Therefore, the use of procedural flowcharts in mathematics 

problem-solving has the potential to transform the process. 

 

As stated at the beginning of this chapter, procedural flowcharts are a visual 

representation of procedures or strategies, corresponding steps, and stages of evaluation 

of a solution to a problem (Chinofunga et al., 2022c). These authors noted that 

procedural flowcharts developed by the teacher can guide students during the inquiry 

process and highlight key strategies and stages for decision-making during the process 

of problem-solving. This is because “a procedural flowchart graphically displays the 

information   decision   action sequences in the proposed order” (Krohn, 1983, p. 573). 

Similarly, Chinofunga and colleagues (2022c) emphasised that procedural flowcharts 

can be used to visually represent procedural flexibility as more than one procedure can 

be accommodated, making it easier to compare the effectiveness of different procedures 

as they are being applied. They further posited that student-developed procedural 

flowcharts provide students with the opportunity to comprehensively engage with the 

problem and brainstorm different ways of solving it, thus deepening their mathematics 

knowledge. Moreover, a procedural flowchart can be a visual presentation of an 

individual and group solution during problem-solving. 

 

Research has identified extended benefits of problem-solving in small groups (Laughlin 

et al., 2006). Vale and colleagues encouraged visual representation of solutions with 

multi solutions as a tool to teach students problem solving (2018). Giving groups an 

opportunity to present a solution visually can be a quicker way to evaluate a group 

solution because visuals can represent large amounts of information (even from 

different sources) in a simple way (Raiyn, 2016). For example, students can be asked to 
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develop procedural flowcharts individually then come together to synthesise different 

procedural flowcharts.  

 

The research questions in this study were informed by the understanding that limited 

resources are available to teachers to support students’ problem-solving abilities. In 

addition, the literature indicates that visual representation can support students’ 

potential in problem-solving. Therefore, the research described in this chapter addressed 

the following research question: What are teachers’ perceptions of how procedural 

flowcharts support students’ problem-solving skills in the Mathematical Methods 

subject?  

 

10.4 Method 

The active involvement of a mathematics teacher in the research described in this 

chapter brought a wealth of knowledge through their feedback that the researcher could 

tap into. The interaction between researchers and teachers through workshops and semi-

structured interviews promoted an exchange of ideas, while the interaction between 

teachers and students and the use of procedural flowcharts in teaching and learning 

provided new insights and opportunities for this research. The method for this study is 

provided in more detail in Chapter 3 of this thesis. 

 

10.5 Research Context of Phase Four of the Study 

 

In the state of Queensland senior mathematics students engage with three formal 

assessments (set by schools but endorsed by QCAA) in Year 12 before the end of year 

external examination. The formal internal assessments consist of two written 

examinations and a problem-solving and modelling task (PSMT). The PSMT is 

expected to cover content from Unit 3 (Further Calculus). The summative external 

examination contributes 50% and the PSMT 20% of the overall final mark, 

demonstrating that the PSMT carries the highest weight among the three formal internal 

assessments. 
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The PSMT is the first assessment in the first term of Year 12 and is set to be completed 

in four weeks. Students are given three hours of class time to work on the task within 

the four weeks and write a report of up to 10 pages or 2000 words. The four weeks are 

divided into four check points, one per week with the fourth being the submission date. 

On the other three checkpoints, students are expected to email their progress to the 

teacher. Of particular importance is checkpoint two where students are required to email 

their draft reports for a general class feedback from the teacher. However, teachers are 

expected to have provided students with opportunities to develop skills in undertaking 

problem-solving and modelling task before they engage with this formal internal 

assessment. These play an important role in developing students’ problem-solving skills 

as they prepare for the formal internal PSMT. The QCAA has provided a flowchart on 

how a PSMT should be presented (Appendix A). 

 

10.6 Phase Four of the Study 

In Phase Four, a teacher’s shared experience and observations prompted an in-depth 

interview with Ms Simon (pseudonym). Ms Simon had explored the use of procedural 

flowcharts in a problem-solving and modelling task (PSMT) in her Year 11 

Mathematical Methods class. This included an introduction to procedural flowcharts, 

followed by setting the students a task whereby they were asked to use the flowchart to 

plan how they would approach a problem-solving task.  Importantly, procedural 

flowcharts were used by the students to provide an overview and structure of their 

proposed solution to the problem. The students were expected to first develop the 

procedural flowcharts independently then to work collaboratively to develop an 

alternative solution to the same task. The students developed procedural flowcharts 

(artefacts) and the in-depth interview with Ms Simon, all of which were analysed.  As 

this was an additional study, an ethics amendment was applied for and granted by the 

James Cook University Ethics committee, approval Number H8201, as the collection of 

students artefacts was not covered by the main study ethics approval for teachers.  

 

10.6.1 Participants in Phase Four of the study 

Ms Simon and a group of four students were the participants in this study. Ms Simon 

had studied mathematics as part of her undergraduate education degree, which set her as 
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a highly qualified mathematics teacher. At the time of this study, she was the Head of 

Science and Mathematics and a senior mathematics teacher at one of the state high 

schools in Queensland. She had 35 years’ experience in teaching mathematics across 

Australia in both private and state schools, 15 of which were as a curriculum leader. She 

was also part of the science, technology, engineering and mathematics (STEM) state-

wide professional working group. Since the inception of the external examination in 

Queensland in 2020, she had been an external examination marker and an assessment 

endorser for Mathematical Methods with QCAA. The students who were part of this 

study were aged between 17 and 18 years and were from Ms Simon’s Mathematical 

Methods senior class. Two artefacts were from individual students and the third was a 

collaborative work from the two students.   

 

10.7 Phase Four Data Collection 

First, data were collected through a semi-structured interview between the researcher 

and Ms Simon. The researcher used pre-prepared questions and incidental questions 

arising from the interview. The questions focused on how she had used procedural 

flowcharts in a problem-solving and modelling task with her students.  The interview 

also focused on her experiences, observations, opinions, perceptions and results, 

comparing the new experience with how she had previously engaged her students in 

such tasks. The interview lasted 40 minutes, was transcribed and coded so as to provide 

evidence of the processes involved in the problem-solving. Some of the pre-prepared 

questions were as follows: 

1. What made you consider procedural flowcharts as a resource that can be used in 

a PSMT? 

2. How have you used procedural flowcharts in PSMT? 

3. How has the use of procedural flowcharts transformed students’ problem-

solving skills? 

4. How have you integrated procedural flowcharts to complement the QCAA 

flowchart on PSMT in mathematics? 

5. What was your experience of using procedural flowcharts in a collaborative 

setting? 

6. How can procedural flowcharts aid scaffolding of problem-solving tasks?  
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Second, Ms Simon shared her formative practice PSMT task (described in detail 

below), and four of her students’ artefacts. The artefacts that she shared (with the 

students’ permission) were a critical source of data as they were a demonstration of how 

procedural flowcharts can support problem solving and provided an insight into the use 

of procedural flowcharts in a PSMT.  

 

10.8 Problem-solving and Assessment Task 

The formative practice PSMT that Ms Simon shared is summarised below under the 

subheadings: Scenario, Task, Checkpoints and Scaffolding (see Appendix A). 

Scenario 

You are part of a team that is working on opening a new upmarket Coffee Café. Your 

team has decided to cater for mainly three different types of customers. Those who: 

1. consume their coffee fast. 

2. have a fairly good amount of time to finish their coffee. 

3. want to drink their coffee very slowly as they may be reading a book or chatting.  

The team has tasked you to come up with a mode or models that can be used to 

understand the cooling of coffee in relation to the material the cup is made from and the 

temperature of the surroundings.  

Task 

Write a mathematical report of at most 2000 words or up to 10 pages that explains how 

you developed the cooling model/s and took into consideration the open cup, the 

material the cup was made from, the cooling time, the initial temperature of the coffee 

and the temperature of the surroundings. 

● Design an experiment that investigates the differences in the time of cooling of a 

liquid in open cups made from different materials. Record your data in a table.  

● Develop a procedural flowchart that shows the steps that you used to arrive at a 

solution for the problem. 

● Justify your procedures and decisions by explaining mathematical reasoning. 
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● Provide a mathematical analysis of formulating and evaluating models using 

both mathematical manipulation and technology. 

● Provide a mathematical analysis that involves differentiation (rate of change) 

and/or anti-differentiation (area under a curve) to satisfy the needs of each 

category of customers.  

● Evaluate the reasonableness of solutions. 

You may consider Newton’s Law of Cooling which states that the rate of change of the 

temperature of an object is proportional to the difference between its own temperature 

and the temperature of its surroundings. For a body that has a higher temperature than 

its surroundings, Newton’s Law of Cooling can model the rate at which the object is 

cooling in its surroundings through an exponential equation. This equation can be used 

to model any object cooling in its surroundings: 

  

Where:  

● y is the difference between the temperature of the body and its surroundings 

after t minutes,  

● A0 is the difference between the initial temperature of the body and its 

surroundings,  

● k is the cooling constant  

 

Checkpoints 

Week 1 - Students provide individual data from the experiment and create a 

procedural flowchart showing the proposed solution to the problem. Teacher 

provides individual feedback. 

Week 2 - Students provide a consolidated group procedural flowchart. Teacher 

provides group feedback. 

Week 3 - Students email a copy of their individually developed draft report for 

feedback.  
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Week 4 - Students submit individual final response in digital (PDF format) by emailing 

a copy to their teacher, providing a printed copy to their teacher and saving a copy in 

their Maths folder. 

Additional requirements/Instructions 

• The response must be presented using an appropriate mathematical genre (i.e., a 

mathematical report). 

• The approach to problem-solving and mathematical modelling must be used. 

• All sources must be referenced. 

 

10.9 Data Analysis 

The Phase Four interview with Ms Simon was transcribed and coded using the four 

phases of problem-solving identified from the literature review (Figure 10.1). An 

additional theme on the overarching benefits of procedural flowcharts in supporting 

problem solving was also used to include data that fell outside the stages of problem-

solving. The details of the thematic analysis are provided in Chapter 3 and results are 

found under Appendix A, B and C. 

 

The students’ artefacts in Figures 10.2, 10.3 and 10.4 were analysed based on how they 

responded to the different stages of problem-solving synthesised from the literature 

(Figure 10.1) and the QCAA flowchart that guides problem-solving and mathematical 

modelling tasks (Appendix D). The artefacts were shared between the researcher and his 

supervisors, the analysis was done independently then reviewed by the researcher and 

his supervisors. Very little discrepancies were observed except that some stages on the 

students’ procedural flowcharts overlapped between skills. 

 

10.10 Results  

This section presents results from the analysis of the interview data and student 

artefacts. The analysis of data also includes some observations that were made in Phase 

Three of the study. 
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10.10.1 Semi-structured Interviews 

The thematic analysis of interviews resulted in two themes: 

• The utility of procedural flowcharts in supporting mathematics problem-solving. 

• The utility of procedural flowcharts in supporting the integration of the four 

stages of mathematics problem-solving. 

 

In Phase Three, which prompted the targeted Phase Four study described in this chapter, 

teachers were asked the question, “How have you used procedural flowcharts to 

enhance teaching and learning of mathematics?” The question was not specific to 

problem-solving but the teachers’ observations and perceptions strongly related to 

problem-solving and student-centred learning.  

 

10.10.1.1 Theme 1  ̶The Utility of Procedural Flowcharts Generally Supports 

Mathematics Problem- Solving. 

The visual nature of procedural flowcharts was seen as an advantage to both teachers 

and students. For students, drawing a flowchart was easier than writing paragraphs to 

explain how they had arrived at the intended solution. For teachers, the flowchart was 

easier to process for timely feedback to students.  

They present steps in diagrammatic form which is easy to process and easy to 

understand and process… students prefer them more as its in diagrammatic 

form and I have witnessed more students engaging. (Participant 8, Phase Three 

study) 

I find it (visual) a really efficient way for me to look at the proposed individual 

students processes and provide relevant feedback to the student or for the 

student to consider. And, you know, once the students are comfortable with 

using these procedural flowcharts you know, I find it much easier for me to give 

them relevant feedback, and I actually find that feedback more worthwhile than 

feedback we used to give them, you know, that was just based on what they 

wrote in paragraphs,…students get to practice in creating their own visual 

display, which communicates their intended strategies to solve the problem, then 

they have opportunities to use it, and fine tune it as they work out the problem … 
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student developed procedural flow charts, they represent a student’s maths 

knowledge in a visual way. (Ms Simon). 

 

Identifying students’ competencies early was seen as central to successful problem-

solving as it provided opportunities for early intervention. Results showed that teachers 

viewed procedural flowcharts as a resource that could be used to identify gaps in skills, 

level of understanding and misconceptions that could affect successful and meaningful 

execution of a problem-solving task. Going through a student developed flowchart 

during problem solving provided the teachers with insight into the student’s level of 

understanding of the problem and the effectiveness of the procedures proposed to 

address the problem. 

I found it quite useful because I can identify what kids or which kids are 

competent in what, which sort of problem-solving skills. And I can identify 

misconceptions that students have or gaps in students understanding. 

(Participant 1, Phase Three study) 

It also to me highlights gaps in students’ knowledge in unique ways that students 

intend to reach a solution because the use of the procedural flow chart 

encourages students to explain the steps or procedures behind any mathematical 

manipulation that you know they're intending to use. And it's something that was 

much more difficult to determine prior to using procedural flow charts… I've 

also used you know, student developed procedural flow charts to ascertain how 

narrow or wide the students’ knowledge is and that's also something that wasn't 

obvious to make a judgement about prior to using procedural flow charts. (Ms 

Simon) 

 

Problem-solving was seen as student-centred. If procedural flowcharts could be used to 

support problem-solving, then they could facilitate an environment where students were 

the ones to do most of the work. The students could develop procedural flowcharts 

showing how they will solve a PSMT task using concepts and procedures they have 

learnt. The open-ended nature of the problem in a PSMT provide opportunities for 
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diverse solutions that are validated through mathematical justifications. The visual 

nature of procedural flowcharts makes them more efficient to navigate compared to text. 

Mathematics goes from being very dry and dusty to being something which is 

actually creative and interesting and evolving, starting to get kids actually 

engaging and having to back themselves. (Participant 7, Phase Three study) 

As a teacher, I find that procedural flowcharts are a really efficient way to 

ascertain the ways that students have considered and how they are going to 

solve a problem … It engages the students from start to finish, you know in 

different ways this method demands students to compare, interpret, analyse, 

reason, evaluate, and to an extent justify as they develop this solution. (Ms 

Simon) 

Similarly, results showed that procedural flowcharts could be used as a resource to 

promote collaborative learning and scaffolding. Students could be asked to 

collaboratively develop a procedural flowchart or could be provided with one to follow 

as they worked towards solving the problem. 

Sometimes, you know, I get students to work on it in groups as they share ideas 

and get that mathematisation happening. So, it's really helpful there … I looked 

at the PSMT and its Marking Guide, and develop a more detailed procedural 

flowchart for students to use as a scaffold to guide them through the process. So, 

procedural flowcharts provide a structure in a more visual way for students to 

know what to do next. (Ms Simon)  

Ms Simon shared her detailed procedural flowchart in Figure 10.2 that she used to guide 

students in PSMTs.  
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Figure 10.2: Ms Simon’s procedural flowchart on Problem-solving 
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The participants also observed that procedural flowcharts could be used to promote 

opportunities for solution evaluation which played an important role in problem-

solving. The loops that can be introduced in procedural flowcharts can promote 

reflection and reasoning as alternative paths are developed or considered as the solution 

to the problem is being developed. Below are participants’ comments referring to Figure 

9.1 in Chapter 9 which was shared with participants in the video presentation detailed in 

Chapter 3. 

The cycle approach, the feeding back in the feeding back out that type of stuff, y

ou know, that is when we starting to teach students how to think. (Participant 7, 

Phase Three study) 

Complex procedural flowcharts like the one you provided guide students in 

making key decisions as they work through solutions which is key to critical 

thinking and judgement and these two are very important in maths. (Participant 

8, Phase Three study) 

I also sincerely believe that procedural flowcharts are a way to get students to 

develop and demonstrate the critical thinking skills, which PSMTs are designed 

to assess. Students inadvertently have to use their critical thinking skills to 

analyse and reason as they search for different ways to obtain a solution to the 

problem presented in the PSMT …  the use of procedural flowcharts naturally 

permits students to develop their critical thinking skills as it gets their brain into 

a problem-solving mode as they go through higher order thinking skills such as 

analysis, reasoning and synthesis and the like … this visual way of presenting 

solution provides students with opportunities to think differently, which they're 

not used to do, and it leads them to reflect and compare. (Ms Simon) 

 

Problem-solving of non-routine problems uses a structure that should be followed. 

Resources that are intended to support problem-solving in students can be used to 

support the integration of the stages involved in problem-solving. 
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10.10.1.2 Theme 2  ̶The Utility of Procedural Flowcharts in Supporting the 

Integration of the Four Stages of Mathematics Problem-Solving. 

Procedural flowcharts can support the flow of ideas and processes in the four stages 

during problem-solving and modelling task in Mathematical Methods subject. Literature 

synthesis in this chapter identified the four stages as: 

• Identify problem.  

• Interpret problem mathematically. 

• Identify and execute mathematics strategies that can solve the problem. 

• Justify, evaluate solution and communicate. 

 

Similarly, QCAA flowchart on PSMT identifies the four stages as: formulate, solve, 

evaluate and verify, communicate. 

The logical sequencing of the stages of mathematics problem-solving is crucial to 

solving and communicating the solution to the problem. Procedural flowcharts play an 

important role in problem-solving through fostering the logical sequencing of processes 

to reach a solution. Procedural flowcharts show the flow of ideas and processes which 

provide an overview of how different stages connect into a bigger framework of the 

solution.  

Procedural flowcharts help students sum up and connect the pieces together… 

connect the bits of knowledge together. (Participant 4, Phase Three study) 

Really good how it organises the steps and explains where you need to go if 

you're at a certain part in a procedure. (Participant 2, Phase Three study) 

Potentially, it's also an excellent visual presentation, which shows a student's 

draft of their logical sequence of processes that they're intending to develop to 

solve the problem … So, the steps students need to follow actually flows 

logically. So really given a real-life scenario they need to solve in a PSMT 

students need to mathematise it and turn it into a math plan, where they execute 

their process, evaluate and verify it and then conclude … so we use procedural 

flowcharts to reinforce the structure of how to approach problem-solving … 

kids, you know, they really struggling, you know, presenting things in a logical 

way, because they presume that we know what they're thinking. (Ms Simon)  
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Procedural flowcharts provided students with opportunities to plan the solution 

informed by the stages of problem-solving. Teachers could reinforce the structure of 

problem-solving by telling students what they could expect to be included on the 

procedural flowchart. Procedural flowcharts can be used as a visual tool to all the 

critical stages that are included during the planning of the solution.  

I tell the students, “I need to see how you have interpreted the problem that you 

need to solve. I need to see how you formulated your model that involves the 

process of mathematisation, where you move from the real world into the maths 

world, and I need to see all the different skills you're intending to use to arrive 

at your solution.” (Ms Simon) 

 

Similarly, procedural flowcharts could visually represent more than one strategy in the 

“identify and execute mathematics strategies that can solve the problem” stage, thereby 

providing a critical resource to demonstrate flexibility. When there are multiple ways of 

addressing a problem, a procedural flowchart can show all possible paths or the 

relationship between different paths to the solution, thus promoting flexibility.  

Students are expected to show evidence that they have the knowledge of solving 

the problem using several ways to get to the same solution. So, it goes beyond 

the students’ preferred way of answering a question and actually highlights the 

importance of flexibility when it comes to processes and strategies of solving a 

problem … By using procedural flowcharts, I'm saying to the students, “Apart 

from your preferred way of solving the problem, give me a map of other routes, 

you can also use to get to your destination.” (Ms Simon) 

 

The results also indicated that procedural flowcharts could be used to identify strengths 

and limitations of strategies in the “evaluate solution” stage and thus demonstrate the 

reasonableness of the answer. Having more than one way of solving a problem on a 

procedural flowchart helps in comparing and evaluating the most ideal way to address 

the problem. 
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And I'm finding that, you know, as students go through, and they compare the 

different processes, you know, the strengths and limitations, literally stare them 

in the face. So, they don't have to. They're not ... they don't struggle as much as 

they used to in coming up with those sorts of answers … it's also a really easy 

way that once the students reach the next phase, which is the evaluating verified 

stage, they can go back to their procedural flow chart and identify and explain 

strengths and limitations of their model … It's a convenient way for students to 

show their reasonableness of their solution by comparing strengths and 

weaknesses of all the strategies presented on the procedural flowchart, 

something that they've struggled with in the past. (Ms Simon) 

 

The results from the interview show that the procedural flowcharts supported efficient 

communication of the steps to be followed in developing the solution to the problem. 

Student developed procedural flowcharts allowed the teacher to have an insight and 

overview of the solution to the problem earlier in the assessment task. In addition, they 

provided an alternative way of presenting their solution to the teacher. 

I expect students to use the procedural flowchart as a way to communicate to me 

how they're planning to solve the scenario in the PSMT…It's also one of the 

parts that students are expected to hand in to me on one of the check points, and 

I find it a really efficient way for me to look at, you know, a proposed individual 

students processes, and provide relevant feedback to the student to consider in a 

really efficient way…I just found that it helps students communicate their 

solution to a problem in lots of different ways that challenges students to 

logically present a solution. (Ms Simon) 

She went on to say,   

Students also found it challenging to communicate their ideas in one or two 

paragraphs, when more than one process or step was required to solve the 

problem. So, I found that, you know, procedural flowcharts, have filled this gap 

really nicely, as that provides students with a simple tool that they can use to 

present a visual overview of the processes they've chosen to use to solve the 

problem. And so, for me, as a teacher, procedural flowcharts are an efficient 

way for me to scan the intended processes that an individual student is 
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proposing to use to solve the problem in their authentic way and provide them 

with valuable feedback. 

In summary, the teacher’s experiences, views and perceptions showed that procedural 

flowcharts can be a valuable resource in supporting students in all four stages of 

problem-solving. 

Students’ Artefacts 

The student-generated flowcharts in this part of the research gave an insight into 

students’ thinking as they planned how to solve the problem presented to them. Students 

were expected to use their metacognitive skills to successfully develop solutions to 

problems. Their de-identified procedural flowcharts are shown in Figures 10.2 and 10.3. 
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Figure 10.3: Procedural Flow Chart Developed by Student 1 
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Figure 10.4: Procedural Flowchart Developed by Student 2 

 

Students 1 and 2 also collaboratively developed a procedural flowchart, shown as 

Figure 10.4.  
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Figure 10.5: Collaboratively-Developed Procedural Flowchart 

 

 

        



Supporting the teaching of calculus-based senior mathematics in Queensland. 

234 
 

Table 10.1: Analysis of Students’ Procedural Flowcharts on Problem-Solving Stages 

Problem- 
solving stages 

Formulate Solve Evaluate and verify Communicate 

What is 
involved? 

Involves problem identification and 
interpreting the problem 
mathematically. At this stage, task 
analysis and planning is key. 

Involves application of 
mathematics strategies in 
solving the problem.  

Evaluate if findings can address the 
problem. This is done by referring 
the solution (s) to the problem that 
need to be solved. Sometimes 
adjustments should be made to better 
respond to the problem.  

Sharing the problem 
solution. 

Student 1 Differentiation -rate of change of 
temperature against time.                                                                
How to collect data- experiment.                                                    
How to formulate models-
technology                         
How to apply concept of rate of 
change-Rate of change at a point.     
Average rate of change (intervals). 

Rate at 5, 15 and 30 
minutes for each cup.                                 
Average rate at 5-15, 5-
30, 5-60 minutes for each 
cup.                 Taking 
note, it’s a decreasing 
graph (cooling). 

Checking if rate at a point can solve 
the problem.  
Checking if average rate of change 
of an interval can solve the problem.  
Checking if the strategies converge 
to the same conclusion. If not, then 
which one is the best (help 
determining strengths and 
limitations)?  

Flowchart shows a 
reasonable 
development of steps 
to solving the 
problem that includes 
how mathematics 
concepts will be used 
and how different 
solutions will inform 
key results and 
justify the solution. 
Final report. 
 

Student 2 Integration- area under a curve. 
How to collect data- experiment.                                                    
How to formulate models-algebra 
and technology                        How 
to apply concept of integration-
definite integration. 

Definite integration 
intervals 0-10, 0-20,0-30 
minutes for each cup.                                        
Area size determines 
cooling rate. 

Check if definite integration 
addresses the problem.   

Flowchart shows a 
reasonable 
development of steps 
to solving the 
problem that includes 
how mathematics 
concepts will be used 
and how different 
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solutions will inform 
key results and 
justify the solution. 
Final report. 

Students 1 and 
2 
(collaboration) 

Differentiation (rate of change of 
temperature against time) and 
Integration (area under a curve). 
How to collect data- experiment.                                                    
How to formulate models-
technology and algebra                        
How to apply concept of rate of 
change-Rate of change at a point.     
Average rate of change (intervals). 
How to apply concept of 
integration (area under a curve)-
trapezoidal rule and definite 
integration. 

-Rate at 5, 10 and 15 
minutes for each cup.                                 
Average rate at 0-10, 0-
20, 0-30 minutes for each 
cup.                 Taking 
note, it’s a decreasing 
graph (cooling). 
-Trapezoidal rule applied 
between 0-30 minutes. 
-Definite integration 
intervals 0-10, 0-20, 0-30 
minutes for each cup.                                        
Area size determine 
cooling rate. 

Checking if rate at a point can solve 
the problem.                             
Checking if average rate of change 
of an interval can solve the problem.   
Checking if trapezoidal rule can 
solve the problem. 
Checking if definite integration can 
resolve the problem.                         
Checking if the strategies converge 
to the same conclusion. If not then 
which one is the best (help 
determining strengths and 
limitations). 
 

Flowchart show a 
reasonable 
development of steps 
to solving the 
problem that include 
how mathematics 
concepts will be used 
and how different 
solutions will inform 
key results and 
justify the solution. 
Final report. 
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The procedural flowchart in Figure 10.6 was extracted from a PSMT report (see Appendix E) 
provided by one of Ms Simon’s students. The two artefacts provide a complete example of 
how procedural flowcharts have been used to support problem solving at senior secondary by 
Ms Simon. 

 

 

Figure 10.6: Procedural flowchart extracted from a student’s PSMT. 

The procedural flowchart does not show that the student’s calculation of cooling constant was 
part of evaluating the solution, although the cooling constant was included in the final report 
as one of the procedures used in reaching the optimal solution. The procedural flowchart may 
have provided the teacher with the opportunity to remind the student of the significance of 
the cooling constant. Development of the procedural flowchart provided the student with an 
opportunity to hypothesise the proposed solution and define how mathematics procedures 
would contribute to developing and evaluating the solutions. It provided an overview of the 
solution. The report was developed guided by the procedural flowchart as it includes all the 
procedures shown in Figure 10.6. However, it went further to provide the different 
mathematical justification and application of technology in the solution development. 
Importantly, the procedural flowchart signposted how each procedure will help evaluate and 
develop the conclusion by providing what the student considered was key to identifying the 
best solution. In this task, it was the ranking of different cup materials according to customer 
type. 
 



Supporting the teaching of calculus-based senior mathematics in Queensland. 

237 
 

10.11 Discussion 

This discussion is presented as three sections: (1) How procedural flowcharts can support 

mathematics problem-solving and (2) How procedural flowcharts support the integration of 

the different stages of mathematics problem-solving. This study highlighted how procedural 

flowcharts can support mathematics problem-solving, can reinforce the structure of the 

solution to a problem and can help develop metacognitive skills among students. The 

different stages involved in problem-solving inform the process of developing the solution to 

the problem. The focus on problem-based learning has signified the need to introduce 

resources that can support students and teachers in developing and structuring solutions to 

problems. Results from this study have also provided discussion points on how procedural 

flowcharts can have a positive impact in mathematics problem-solving. 

 

10.11.1 Procedural Flowcharts can Support Mathematics Problem-Solving 

Procedural flowcharts help in visualising the process of problem-solving. The results 

described in this chapter show that student-generated flowcharts can provide an overview of 

the proposed solution to the problem. The study noted that students preferred developing 

procedural flowcharts rather than writing how they planned to find a solution to the problem. 

The teachers also preferred visual aids because they were easier and quicker to process and 

facilitated understanding of the steps taken to reach the solution. These results are consistent 

with the findings of other researchers (Raiyn, 2016; McGowan & Boscia, 2016). The results 

are also consistent with Grosskinsky and colleagues’ (2019) findings that flowcharts break 

complex information into different tasks and show how they are connected, thereby 

enhancing understanding of the process. Consequently, they allow teachers to provide timely 

feedback at a checkpoint compared to the time a teacher would take to go through a written 

draft. Procedural flowcharts connect procedures and processes in a solution to the problem 

(Chinofunga et al., 2022c). Thus, the feedback provided by the teacher can be more targeted 

to a particular stage identified on the procedural flowchart, making the feedback more 

effective and worthwhile. The development of a procedural flowchart during problem-solving 

can be viewed as a visual representation of students’ plan and understanding of how they plan 

to solve the problem as demonstrated in Figures 10.3, 10.4, 10.5 and 10.6. 
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In this study, Ms Simon noted that procedural flowcharts represented students’ knowledge or 

thinking in a visual form, which is consistent with Owens and Clements’ (1998) findings that 

visuals are cognitive constructs. Consequently, they can facilitate evaluation of such 

knowledge. This study noted that procedural flowcharts can provide opportunities to identify 

gaps in students’ understanding and problem-solving skills. It also noted that the use of 

procedural flowcharts may expose students’ misconceptions, the depth and breadth of their 

understanding of the problem and how they plan to solve the problem. This is supported by 

significant research (Grosskinsky et al., 2019; Norton et al., 2007; Vale & Barbosa, 2018), 

which identified flowcharts as a resource in helping visualise and recognise students’ 

understanding of a problem and communication of the solution. Thus, providing teachers 

with opportunities to have an insight into students’ thinking can facilitate intervention early 

in the process. The results in this study showed that when students develop their own plan on 

how to respond to a problem, they are at the centre of their learning. However, scaffolding 

and collaborative learning can also support problem-solving. 

 

Vygotsky (1978) posited that in the Zone of Proximal Development, collaborative learning 

and scaffolding can facilitate understanding. In this study, the results indicated that a teacher-

developed procedural flowchart can be used to guide students in developing a solution to a 

problem. These results are consistent with Davidowitz and Rollnick’s study that concluded 

that flowcharts provide a bigger picture of how to solve the problem. In Queensland, the 

QCAA has developed a flowchart (see Appendix A) to guide schools on problem-solving and 

modelling tasks. It highlights the significant stages to be considered during the process and 

how they relate to each other. Teachers are encouraged to contextualise official documents to 

suit their school and classes.  In such cases, a procedural flowchart acts as a scaffolding 

resource in directing students on how to develop the solution to the problem. The findings are 

consistent with previous literature that flowcharts can give an overall direction of the process, 

help explain what is involved, may help reduce cognitive load and allow students to focus on 

complex tasks (Davidowitz & Rollnick, 2001; Norton et al., 2007; Sweller et al., 2019).  

 

In addition to being a scaffolding resource, results showed that procedural flowcharts can be 

developed collaboratively providing students with an opportunity to share their solution to the 

problem. Being a scaffolding resource or a resource to use in a community of learning 
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highlights the importance of procedural flowcharts in promoting learning within a zone of 

proximal development, as posited by Davidowitz & Rollnick (2001).  Scaffolding students to 

problem solve and develop procedural flowcharts collaboratively provides students with the 

opportunity to be at the centre of problem-solving.    

 

Research has identified problem-solving as student-centred learning (Ahmad et al., 2010; 

Karp & Wasserman, 2015; Reinholz, 2020; Vale & Barbosa, 2018). The process of 

developing the procedural flowcharts as students plan for the solution provide students with 

opportunities to engage more with the problem. Results showed that when students developed 

procedural flowcharts themselves, mathematics learning transformed from students just being 

told what to do or follow procedures into something creative and interesting. As students 

develop procedural flowcharts, they use concepts they have learnt to develop a solution to an 

unfamiliar problem (Matty, 2016), thus engaging with learning from the beginning of the 

process until they finalise the solution. The results indicated that procedural flowcharts 

promoted students’ ability to not only identify strategies to solve the problem but also 

determine how and when the conditions were ideal to address the problem, providing 

opportunities to justify and evaluate the strategies that were used. 

 

Deeper understanding of mathematics and relationships between concepts plays an important 

role in problem-solving and the results from this study showed that different procedures can 

be integrated to develop a solution to a problem. The participants observed that procedural 

flowcharts could support the brainstorming ideas as they developed the flowchart, as ideas 

may interlink in a non-linear way. Moreover, students are expected at different stages to 

make key decisions about the direction they will need to take to reach the solution to the 

problem, as more than one strategy may be available. For example, Student 1 planned on 

using only technology to develop the models while Student 2 considered both technology and 

algebra. This showed that Student 2 applied flexibility in using alternative methods, thus 

demonstrating a deeper understanding of the problem.  Equally important, Ms. Simon 

observed that as students developed their procedural flowcharts while planning the steps to 

reach a solution, they were required to analyse, conceptualise, reason, analyse, synthesise and 

evaluate, which are important attributes of deeper understanding. Fostering deeper 

understanding of mathematics is the key goal of using problem solving (Kim et al., 2012; 
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King, 1995; Moon, 2008; QCAA, 2018). The results are additionally consistent with findings 

from Owens and Clements (1998) and Roam (2019), who posited that visual aids foster 

reasoning and show cognitive constructs.  Similarly, logical sequencing of procedures and 

ways to execute a strategy expected in a procedural flowchart can support deeper 

understanding, as posited by Parvaneh and Duncan (2021). In a procedural flowchart, 

students are required to link ideas that are related or feed into another, creating a web of 

knowledge. Students are also required to identify the ways in which a concept is applied as 

they develop a solution, and this requires deeper understanding of mathematics. Working 

collaboratively can also support deeper and broader understanding of mathematics. 

 

The procedural flowchart that was developed collaboratively by the two students 

demonstrated some of the skills that they did not demonstrate in their individual procedural 

flowcharts. Like Student 2, the collaboratively-developed flowchart included use of 

technology and algebra to determine the models for the three different cups. The students 

considered both rate of change and area under a curve in the task analysis. Apart from 

planning to use rate at a point, average rate and definite integration, they added the 

trapezoidal rule. Both average rate and definite integration were to be applied within the same 

intervals, building the scope for comparison. The trapezoidal rule would also compare with 

integration. The complexity of the collaboratively-developed procedural flowchart concurred 

with Rogoff and others (1984) and Stone (1998), who suggested that a community of learning 

can expand current skills to higher levels than individuals could achieve on their own. It 

seems the students used the feedback provided by the teacher on their individually-developed 

procedural flowcharts as scaffolding to develop a much more complex procedural flowchart 

with competing strategies. Their individually-developed flowcharts might have acted as 

reference points, as their initial plans were still included in the collaboratively-developed plan 

but with better clarity. This observation is consistent with Guk and Kellogg (2017), Kirova 

and Jamison (2018) and Ouyang and colleagues (2022), who noted that scaffolding involving 

peers, teacher and other resources enhances complex problem-solving tasks and transfer of 

skills. 

 



Supporting the teaching of calculus-based senior mathematics in Queensland. 

241 
 

10.11.2 Supporting the Integration of the Different Stages of Mathematics Problem-

Solving. 

Procedural flowcharts support the logical sequencing of ideas from different stages into a 

process that ends with a solution. Problem-solving follows a proposed order and procedural 

flowcharts visually display decision and/or action sequences in a logical order (Krohn, 1983). 

They are used when a sequenced order of ideas is emphasised, such as in problem-solving 

(Cantatore & Stevens, 2016). This study concurs with Krohn, Cantatore and Stevens, as the 

results showed that procedural flowcharts could be used to organise steps and ideas logically 

as students worked towards developing a solution. Students’ procedural flowcharts are 

expected to be developed through the following stages: problem identification, problem 

mathematisation, planning and execution and finally evaluation. Such a structure can be 

reinforced by teachers by sharing a generic problem-solving flowchart outlining the stages so 

that students can then develop a problem-specific version. Importantly, students’ artefacts in 

Figures 10.3 to 10.6 provided evidence of how procedural flowcharts support the different 

stages of problem-solving stages to create a logical and sequential flow of the solution (see 

Appendix A). Similarly, Ms Simon noted that while her students had previously had 

problems in presenting the steps to their solution in a logical way, she witnessed a significant 

improvement after she introduced procedural flowcharts. Further, the results are consistent 

with Chinofunga et al.’s (2022c) work that procedural flowcharts can support procedural 

flexibility, as they can accommodate more than one strategy in the “identify and execute 

mathematics strategies that can solve the problem” stage. Thus, stages that require one 

procedure or more than one procedure can all be accommodated in a single procedural 

flowchart. Evaluating the different strategies is also a key stage in problem-solving. 

 

As students develop the solution to the problem and identify strategies that can address the 

problem, they also have to evaluate the strategies, reflecting on the limitations and strengths 

of the solutions they offer. Ms Simon observed that her students had previously struggled 

with identifying strengths and weaknesses of different strategies. However, she noted that the 

introduction of procedural flowcharts gave students the opportunity to reflect and compare as 

they planned the solution. For example, students could have the opportunity to reflect and 

compare rate at a point, average rate and integration so they can evaluate which strategy can 

best address the problem. The artefacts identified the different strategies the students used in 

planning the solution, enabling them to evaluate the effectiveness of each strategy. Thus, 
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enhancing students’ capacity to make decisions and identify the optimal strategy to solve a 

problem aligns with the work of McGowan and Boscia (2016). Similarly, Chinofunga and 

colleagues’ findings noted that procedural flowcharts can be effective in evaluating different 

procedures as they can accommodate several procedures. The different stages that need to be 

followed during problem-solving and the way the solution to the problem is logically 

presented are central to how the final product is communicated. 

 

In this study, procedural flowcharts were used to communicate the plan to reach the solution 

to a problem. The length of time given to students to work on their problem-solving tasks in 

Queensland is fairly long (four weeks) and students may struggle to remember some keys 

processes along the way. Developing procedural flowcharts to gain an overview of the 

solution to the problem and share it with the teacher at one of the early checkpoints is of 

significant importance. In this study, Ms Simon expected her students to share their 

procedural flowcharts early in the process for her to give feedback, thus making the 

flowcharts a communication tool. The procedural flowcharts developed by the students in 

Figures 10.3 to10.5 show how students proposed to solve the problem. This result lends 

further support to the NCTM (2000) findings that visual aids can help students communicate 

their thinking before applying those thoughts to solving a problem. Ms Simon also noted that 

before the introduction of procedural flowcharts, students did not have an overall coherent 

structure to follow, which presented challenges when they wanted to communicate a plan that 

involved more than one strategy. However, the students’ artefacts were meaningful, clearly 

articulating how the solution to the problem was being developed, thus demonstrating that 

flowcharts can provide the structure that supports the coherent and logical communication of 

the solution to the problem by both teachers and students (Norton et al., 2007). The visual 

nature of the students’ responses in the form of procedural flowcharts is key to 

communicating the proposed solution to the problem. 

 

Visual representations are a favourable alternative to narrative communication. Procedural 

flowcharts can help teachers to check students’ work faster and provide critical feedback in a 

timely manner. Ms Simon noted that the use of procedural flowcharts provided her with the 

opportunity to provide feedback faster and more effectively earlier in the task because the 

charts provided her with an overview of the whole proposed solution. Considering that 
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students are expected to write a report of 2000 words or 10 pages on the task, the procedural 

flowchart provides the opportunity to present large amounts of information in just one visual 

representation. Ryan (2016) noted that visual representations can be a quicker way to 

evaluate a solution and represent large amounts of information. 

 

10.12 Chapter Conclusion 

Procedural flowcharts have demonstrated the ability to support problem-solving. Including 

procedural flowcharts in problem-solving may support teachers and students in 

communicating efficiently about how to solve the problem. For students, it is a plan that 

provides the solution overview, while teachers will consider it as a mental representation of 

students’ thinking as they plan the steps to reach a solution. Procedural flowcharts may 

represent how a student visualises a solution to a problem after brainstorming different 

pathways and different decision-making stages.  

 

Moreover, the visual nature of procedural flowcharts may make it easy to process and 

provide timely feedback that in turn might help students engage with the problem 

meaningfully. Procedural flowcharts may also provide a structure of the problem-solving 

process and guide students through the problem-solving process. Navigating through stages 

of problem-solving might be supported by having students design procedural flowcharts first 

and then execute the plan. The ability of procedural flowcharts to represent multiple 

procedures, evaluation stages or loops and alternative paths helps students reflect and think 

about how to present a logically-cohesive solution. Procedural flowcharts have also been 

identified as a resource that can help students communicate the solution to the problem. They 

have been noted to support deeper understanding as they may facilitate analysis, logical 

sequencing, reflection, reasoning, evaluation and communication. Although the in-depth 

study involved one teacher and three artefacts from her students, it identified the numerous 

advantages that procedural flowcharts bring to mathematics learning and teaching, 

particularly in terms of supporting the development of problem-solving skills. The study calls 

for further investigation on how procedural flowcharts can support students’ problem-

solving. The next chapter provides an integrated discussion that weaves together the findings 

from the previous chapters. 
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Chapter 11: The state of calculus-based mathematics in Queensland and 
the teaching of mathematics.  

 

11.1 Chapter Introduction 

The general discussion chapter in a thesis by publication provides an opportunity to further 

analyse, reflect and integrate the thesis findings and highlight their implications (Smith, 

2015).  Following Lewis and colleagues’ work on how to write an integrated discussion in an 

article-based thesis, this chapter weaves together the findings across individual articles, 

interpreting them, presenting arguments and then giving explanations in relation to existing 

knowledge (Lewis et al., 2021). In this chapter, I demonstrate the cohesion of the results to 

supports the teaching of calculus-based mathematics and the discussion points across the 

thesis, then showcase the new knowledge developed and its contribution to the field (Grant, 

2011; Merga, 2015).  

This chapter responds to the overarching research questions that informed this research 

project:    

1. What are the trends in Queensland senior students’ enrolment in calculus-based 

mathematics subjects?  

2. What pedagogical resources support the planning and teaching of Mathematical 

Methods for Queensland senior students? 

 

Senior secondary students in Queensland who want to study mathematics can choose either 

calculus-based or non-calculus-based subjects in mathematics. Research question 1 addressed 

the trends in students’ enrolment in calculus-based subjects from 2010 to 2020. To gain a 

deeper understanding of the trends and the distribution across the state, the study investigated 

trends at education district level, incorporating socio-economic status and teacher turnover. 

As indicated in previous chapters, the trends gave an insight into the declining student 

enrolment in calculus-based mathematics, the issue that research Question 2 went on to 

address.   

 

The study developed a planning framework for senior mathematics teachers to use in content 

and lesson sequencing.  Planning is a critical component of teaching; the more effective the 

planning, the greater the chances of improved teaching. The planning framework in this 
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research took into consideration the interconnection of mathematics content and the 

hierarchical nature of the subject. The study also focuses on supporting student participation 

in mathematics through the use of visual representations (concept maps and procedural 

flowcharts). Similarly, supporting the development of important 21st century skills such as 

problem solving is vital in teaching and the study provided evidence that procedural 

flowcharts can support problem-solving in mathematics. The study progressed from 

understanding trends in student participation in calculus-based mathematics to introducing 

resources that could support that participation. 

 

The overall purpose of the study was to provide insight into the trends in students’ enrolment 

in calculus-based mathematics in Queensland and then to develop resources that teachers can 

use to support the teaching and learning of this subject. The quantitative trends analysis in 

Chapter 4 was conducted to investigate students’ enrolment in senior mathematics subjects 

from 2010 to 2019 under the Queensland Senior Certificate, which was phased out in 2019. 

Trends showed a high dropout rate in calculus-based options, especially in Mathematical 

Methods, and a decline then stagnation in students’ enrolment in these subjects. Trends also 

showed a steady increase in students choosing to study non-calculus mathematics subjects. 

Chapter 5 was also a quantitative study which went further by analysing trends in calculus-

based subjects in the new curriculum, which was introduced in 2019. To gain a broader 

understanding, trends were analysed per education district, taking into consideration socio-

economic factors and teacher turnover. The findings showed that districts that were socially 

advantaged had the highest number of students who selected calculus-based options and the 

lowest dropout rate. This was in contrast to economically disadvantaged districts where 

student dropout increased by 45% higher than before the introduction of the new syllabus. 

The high dropout rate in calculus-based subjects, especially Mathematical Methods, 

confirmed the problem that this study was addressing through developing pedagogical 

resources that can help teachers in the teaching of Mathematical Methods. 
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In Chapter 6, a framework on mathematics content sequencing was developed to guide 

teachers on how to link junior to senior mathematics. The framework could be used by 

teachers to help students draw from prior knowledge in their planning at senior secondary 

level, fostering the developing of new knowledge from prior knowledge. Feedback from the 

teachers on the framework on content sequencing was included in Chapter 7. The findings 

from this mixed-methods study indicated that senior secondary mathematics teachers found 

the framework useful for the logical sequencing of content during their planning.   

 

Chapter 8 was another mixed-methods study that introduced concept maps as a resource for 

linking prior concepts to new concepts. In this study, teachers viewed concept maps as a 

resource that can support teaching and learning at senior secondary through developing 

students’ conceptual understanding and as a visual representation of the hierarchical nature of 

mathematics concepts.  Similarly, Chapter 9 was a mixed-methods study that developed 

procedural flowcharts as a resource to support teaching and learning of mathematics.  The 

resulting perceptions of senior secondary mathematics teachers were that procedural 

flowcharts can support mathematics procedural fluency. Chapter 10 expanded the use of 

procedural flowcharts to problem-solving. This qualitative study involved an in-depth 

interview with a senior mathematics teacher and an analysis of students’ artefacts. The 

findings showed that the use of procedural flowcharts in open-ended problem-solving 

exercises can support problem solving. 

 

11.2 Trends in Student Enrolment in Senior Mathematics in Queensland 

Where there are choices, trends develop based on how individuals choose available options. 

Trends in senior secondary calculus-based subjects have been a focus of researchers across 

the western world for a long time (Hodgen et al., 2010b; 2013; Kennedy et al., 2014; Noyes 

& Adkins, 2016). The importance of calculus-based subjects as preferred prerequisites for 

STEM courses at tertiary level and drivers of jobs of the future that include data analysis and 

innovation (Black et al., 2021; Carnevale et al., 2011; Lemaire, 2003; Lyakhova & Neate, 

2019; PwC, 2013) has been a focus of most governments (Peters et al., 2017) for some time. 

In this study, trends were analysed to get a better understanding of student enrolment in 

calculus-based mathematics.  
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In the Queensland curriculum from 2010 that was phased out in 2019, students needed to 

choose from Mathematics A, B, C and Prevocational Mathematics as they entered senior 

secondary. Mathematics A and Prevocational were non-calculus-based subjects, while 

Mathematics B and C were calculus-based. However nationally, Mathematics B was 

classified as intermediate and Mathematics C as advanced and an average of 30% of all 

mathematics students chose Mathematics B while only 8% chose Mathematics C. As a result, 

Queensland, the Australian state chosen as the focus for this research, was lagging behind 

countries like Japan, Singapore and South Korea, with only 30% of senior students studying 

Advanced Mathematics which is equivalent to Mathematics C in Queensland (Hodgen, 

2010). However, under the phased-out curriculum, Queensland was in a better position than 

some states in Australia, which averaged only 27% enrolment in intermediate level 

mathematics. The general trend across Australia was that senior high school student 

participation in intermediate and Advanced Mathematics had been in decline for more than a 

decade (Kennedy et al., 2014). The sharpest decline in calculus-based subjects in Queensland 

was witnessed when the new curriculum was introduced, and the national average plummeted 

by 10% (AMSI, 2022). Australia, and Queensland in particular, have to respond to the 

decline in calculus-based subjects so that they remain competitive and prepare for the future 

as both calculus-based options are preferred pre-requisites for tertiary STEM courses. This 

study expanded the trends analysis to include dropout rates, schools’ socio-economic and 

educational status, enrolment per educational district and schools offering or not offering 

calculus-based subjects. This provided a better insight into the trends in student enrolment in 

calculus-based mathematics in Queensland.  

 

11.3 Student Dropout from Calculus-based Mathematics Subjects 

Trends analysis of students’ participation in the phased-out curriculum in Queensland showed 

that more students chose calculus-based subjects in Year 11 than in Year 12. This showed a 

substantial drop in student participation in calculus-based mathematics as students 

transitioned from Year 11 to 12. The dropout rate was higher in Mathematics B than 

Mathematics C. From 2010 to 2019, the average dropout rate was 3.76% in Mathematics B 

and 2.25 % in Mathematics C. In terms of raw numbers every year, 688 students dropped out 

of Mathematics B and 108 in Mathematics C across Queensland from 2010 to 2019.   
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When the new Queensland Certificate of Education curriculum was introduced in 2019, 

Mathematical Methods replaced Mathematics B and Specialist Mathematics replaced 

Mathematics C. The new curriculum also involved an external examination at the end of the 

year that constituted 50 % of the overall mark. At Year 11 in 2019, 7207 students in 

Queensland state schools chose to study Mathematical Methods but only 4495 were still 

enrolled for Unit 4 in 2020, a 37.63% dropout rate. Similarly, participation statistics in 

Specialist Mathematics in state schools dropped from 1961 in 2019 to 1465 in 2020, 

representing a dropout rate of 25.29%.  

 

Students choose subjects as they transition from junior level at Year 10 to senior level at Year 

11. Dropping out means a student then decides to leave the subject of first choice. Results 

show that a large number of students opted out of calculus-based options. Thus, support for 

mathematics teachers through pedagogical resources is needed if Queensland is to reverse 

these declining trends. Moreover, teachers will have more resources to draw from when need 

arises. Resources that can support linking of junior concepts to senior concepts can go a long 

way towards building students’ confidence in mathematics. When students opt for calculus-

based mathematics at Year 11 they might be basing their decision on their junior level 

mathematics understanding. However, if the links between junior and senior concepts are not 

well established, it might make students doubt their capacity and be less confident of passing 

calculus-based options. McPhan et al. (2008) emphasised that teachers have to introduce 

more engaging resources and target mathematical knowledge development if students are to 

build confidence in their capacity to study mathematics. This supports the development of a 

planning framework that links students’ prior knowledge with new knowledge in their 

learning of mathematics. 

 

Another trend analysis, per education district, provided an insight into how school location 

and socio-economic status impacted student enrolment in calculus-based mathematics and 

dropout rate. Schools located in areas with high socio-economic status had a high number of 

students in calculus-based mathematics and a lower dropout rate than the state average.  
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Even though economically and educationally disadvantaged districts might have an equal or a 

greater number of schools offering the calculus-based subjects compared to socio-

economically advantaged districts, their enrolments were far lower than their wealthier 

counterparts. This was exemplified by Brisbane Central, which had the highest number of 

students enrolled in calculus-based options but the lowest dropout rate in Queensland. 

However, schools in areas that were economically and educationally disadvantaged, such as 

in Mackay, had few students in calculus-based mathematics and a high dropout rate 

compared to the state average.  

 

These findings are supported by similar findings from ACARA (2014), Bornstein and 

Bradley (2014) and Broer et al. (2019), who noted that socio-economic status is related to 

better resources in education and high achievement. Schools in areas regarded as socially 

advantaged are more likely to be well resourced and more likely to retain experienced 

mathematics teachers compared to schools in socially disadvantaged areas. In socially 

disadvantaged areas, there might be fewer opportunities for subject collaboration as the 

schools are normally small. Moreover, students’ choices of mathematics subjects are 

positively correlated with socio-economic status (Hascoët et al., 2021; Valero et al., 2015), 

thus schools with low socio-economic status might struggle to engage students in calculus-

based options. To get a better understanding of how school choices and location affected 

enrolment in calculus-based subjects, the study also looked into the distribution of schools 

that offered the subjects. 

 

11.4 Distribution of Schools Offering Calculus-based Mathematics Subjects 

Not all schools in Queensland offer calculus-based mathematics subjects. In the phased-out 

curriculum, the number of schools that did not offer Mathematics B had been steadily 

increasing until the subject was terminated in 2019. The number of schools not offering 

Mathematics C was fluctuating around 80 during the period of interest, although they were 

still offering the two non-calculus-based mathematics subjects. The trends in the new 

curriculum provided more detail, as school enrolment in calculus-based mathematics was 

found to be correlated to district socio-economic and educational advantage. All schools in 

socio-economically and educationally advantaged districts offered Mathematical Methods. 

These districts also had the highest number of schools that offered both Mathematical 
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Methods and Specialist Mathematics. Conversely, districts that were socio-economically and 

educationally disadvantaged showed the biggest difference between the number of schools 

offering Mathematical Methods and those offering Specialist Mathematics. Moreover, these 

districts also had schools that did not offer both options. These results support the work of 

Perry (2018), whose findings pointed out that limited educational opportunities and 

experiences for students from low socio-economic areas resulted in social inequality and less 

confidence in taking on demanding subjects. Thus, schools not offering calculus-based 

subjects may indicate that there were no students interested in pursuing the subjects or that 

resources, both human and/or material, were not available to facilitate teaching and learning 

of these subjects.  

 

Districts with socio-economic and educational disadvantages covered mostly regional, rural 

and remote areas. Such areas had a significant population of indigenous communities, which 

might explain why the majority of indigenous students opt for non-calculus subjects at senior 

secondary. Moreover, schools in low socio-economic areas may find it difficult to retain 

teachers as they have high transfer ratings that only attract teachers to serve a minimum of 

three years and request a transfer to go to schools in urban areas. Schools in socio-

economically and educationally advantaged areas had qualified mathematics teachers and did 

not face the recruitment challenges experienced by regional, rural and remote schools. These 

results were consistent with an AMSI (2014) report that noted that schools in socially and 

economically disadvantaged areas may struggle to employ qualified teachers. The same 

report pointed out that in Queensland, 40% of mathematics teachers in rural, regional and 

remote were out-of-field teachers. Therefore, most of the students in such schools ended up 

being taught by non-specialist teachers who probably needed support through resources that 

could support the teaching and learning. This highlights the need to develop planning 

frameworks that teachers can use to support the teaching of mathematics. 

 

The high dropout rate, especially in Mathematical Methods, which reached alarming levels 

when the new curriculum was introduced, and the uneven enrolments and distribution of 

calculus-based subjects across Queensland is what this thesis has addressed through 

developing pedagogical resources. With research noting that student engagement is key to 

participation and achievement, this study developed pedagogical resources that could support 
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the teaching and learning of mathematics (Kilpatrick et al., 2001; Lee & Hannafin, 2016; 

Varsavsky, 2010). The resources include pedagogical tools that support the development of 

conceptual and procedural knowledge. These resources were also expanded to support 

problem-solving at senior level. 

 

11.5 Pedagogical Resources to Support Teaching of Calculus-based Mathematics 

Supporting the teaching and learning of calculus-based mathematics must take an all-

encompassing approach by addressing planning, developing resources to facilitate teaching 

and students’ participation in the learning and addressing how mathematical knowledge can 

be developed and represented. Planning informs delivery and delivery can be supported by 

resources that make learning student-focused and, in this research, help develop mathematical 

knowledge. This study developed pedagogical resources that started with the creation of a 

framework that could be used during planning to sequence content logically.  Additional 

resources were then created to support development of mathematical knowledge, with 

associated examples from Mathematical Methods subject.  

 

11.5.1 Planning: Content Sequencing 

Content sequencing is one of the key stages of planning that prompt teachers to think about 

how they can sequence topics in a way that promotes student understanding. In Queensland, 

it is the responsibility of a teacher to sequence content during planning as “educators must 

select the best sequence for students to learn the skills” (Willingham, 2020, p. 44). Effective 

content sequencing supports student participation and understanding in the learning process. 

This view is supported by Kilpatrick et al. (2001) and the QCAA (2018), who noted that 

content sequencing promotes student engagement with mathematics content and gradual 

development of mathematics knowledge. 

Content sequencing is central to planning as it informs how teachers can develop students’ 

knowledge as they engage with the subject matter. At senior secondary level, mathematics 

teachers are expected to develop teaching and learning plans, unit plans and term planners or 

lesson sequences. In all these documents, teachers are required to identify the order of topics 

and concepts to be taught within a unit. This places content sequencing at the centre of any 

mathematics teacher planning and the order in which content is sequenced has an impact on 

the effectiveness of the teaching and learning process. When teachers are sequencing content, 
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they are ipso facto hypothesising how students will develop new knowledge during the 

learning process. These views are supported by the findings of Simon (1995) and Lowrie et 

al. (2018) that planning hypothesises students’ current understanding and provides 

opportunities to gradually expand and deepen mathematics knowledge. This study developed 

a framework on content sequencing to support mathematics teachers in linking junior to 

senior level mathematics concepts. The framework can also be used to collaboratively 

sequence mathematics content in any mathematics subject. 

 

The framework of content sequencing from junior (Years 7 to 10) to senior high school 

mathematics (Years 11 to 12) developed in this study supports logical and sequential 

mathematics knowledge development. The framework links the Australian Curriculum: 

Mathematics (P-10) and Senior Mathematical Methods subjects, demonstrating that students 

need to have a good understanding of mathematics concepts (as designated in the Australian 

curriculum) if participation is to be supported at senior secondary level.  Teachers’ 

experience of the framework when tested during this research made them to note that prior 

knowledge was at the centre of effective planning, teaching and learning of mathematics. 

These views are supported by an ACARA (2014) report that emphasised that effective 

planning and teaching should provide students with the opportunity to reflect and link their 

experiences to new knowledge because this promotes engagement, participation and 

achievement. The framework emphasises the inclusion of prior knowledge during planning 

which then informs how concepts will be developed during teaching. Thus, effective content 

sequencing is key to enhancing teaching and learning of mathematics as students are not fast-

tracked into new knowledge that they may not understand.  

 

In recent years, there has been significant calls to move away from traditional teacher centred 

approaches to constructivism. Constructivists believe that new knowledge is constructed from 

students’ prior knowledge (Garbett, 2011; Bruning et al., 2004; Taber, 2019). The 

pedagogical framework on content sequencing from junior to senior concepts builds from this 

understanding and emphasises the need to include relevant prior knowledge in knowledge 

development during planning. This can support teaching and learning, as relevant concepts 

and skills that are foundational to the development and understanding of a particular senior 

level mathematics concept can be mapped and included in planning.   
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Results from this study showed that teachers who participated in the study strongly believed 

that the four pillars of the framework support content sequencing from junior to senior 

concepts. The four pillars were: identify key words, backward mapping using a concept 

breakdown table, identify essential concepts and hierarchical mapping of concepts. Teachers 

believed that the pillars facilitated identification of prior concepts and skills that were 

foundational to learning of new concepts (Hailikari & Nevgi, 2010). Identification of 

essential concepts can help teachers to emphasise and focus on the key concepts that students 

need to retain from the content being taught to support the learning of future content. Schuhl 

(2020) identified essential concepts as the key ideas in a unit that help students build 

conceptual understanding as well as ideas that link across concepts. 

 

The framework was informed by the hierarchical nature of mathematics, which informs how 

new knowledge builds on prior knowledge. This understanding sets the grounds for 

collaborative planning across levels, since student participation at senior secondary level 

depends on understanding of junior level concepts. The effectiveness of teachers at senior 

schools in developing new knowledge in their students depends on the effectiveness of junior 

level teachers in teaching the essential concepts needed at senior level. The framework seeks 

to provide a basis for a systematic and structured way of sequencing mathematics content that 

include prior knowledge during the planning stage. In this study, the framework linked junior 

level concepts to senior level Mathematical Methods concepts. The teachers’ views in this 

study confirmed the findings of Reys et al. (2020) that prior knowledge should be included in 

developing sequenced programs as it demonstrates continuity and reinforces the importance 

of fundamental concepts in developing new concepts, thus demonstrating the hierarchical 

structure of mathematics. Importantly, it also helps students understand that every level 

contributes to future mathematics learning. At the same time, junior level mathematics 

teachers will be reminded of the importance of mathematics at that level to senior level 

mathematics.  This reinforces how, since the Queensland mathematics curriculum is spiral in 

nature, new concepts build on concepts taught earlier. Mathematics teachers in Queensland 

are expected to develop spiral and sequenced content (QCAA, 2014) that gives students 

opportunities to revisit concepts even as they develop their knowledge (Harden, 1999). The 

framework is developed to support teachers during this stage in their planning. The 
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framework for content sequencing of mathematical content from junior to senior level further 

highlights that mathematical knowledge is developmental as knowledge develops from the 

familiar to the unfamiliar.  In this way, the framework on content sequencing can be informed 

by the structure of the subject and the curriculum needs. This can support mathematics 

teaching and learning in Queensland. 

 

Effective teaching in mathematics is informed by planning that focuses on students’ 

conceptual and procedural knowledge development. This study focuses on teachers so that 

they can help students to view mathematics as a web of connected concepts. The 

understanding that junior mathematics concepts are the foundation of and link to senior 

calculus concepts will help students appreciate the interconnectedness of mathematics 

concepts. To this end the framework on content sequencing provides a foundation of this 

understanding and how teachers can include this understanding during planning. Moreover, 

the framework on content sequencing showcases the connectedness of concepts at any level. 

Thus, procedures and skills that students engaged with at junior secondary level remain 

relevant at senior level and beyond. It reinforces the view that mathematics is a connected 

system rather than independent concepts that are grasped by rote learning only to be forgotten 

after a short period. Planning that fosters mathematical knowledge can inform the 

development of resources that support the building of knowledge during teaching and 

learning. 

 

11.5.2 Mathematical Knowledge Development 

Mathematics knowledge can be divided into two main categories: conceptual and procedural, 

and these two can be orchestrated when it comes to problem solving tasks. Effective teaching 

and learning must develop both and integrate them as this will give students deeper 

mathematical knowledge overall. Rittle-Johnson (2017) reported that the development of 

conceptual knowledge, procedural knowledge and fluency are central to the development of 

students’ mathematical knowledge and competency. This study emphasised the use of visual 

representations to develop mathematical knowledge; this is because such representations are 

easy to understand and retain, simple to show connections, can represent large amounts of 

information and require less time to process than text (Birbili, 2006; Raiyn, 2016; 

Shabiralyani, 2015).  The literature on the advantages of visual representations in teaching 
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and learning helped this study explore ways of incorporating visuals to support teaching and 

development of students’ mathematical knowledge at senior secondary.  

 

Providing students with the opportunity to present mathematical knowledge in non-linguistic 

but unfamiliar ways such as visual representations, is key to students’ engagement and 

understanding. Instead of just stating the connection, steps and procedures, visual 

presentations provide an alternative way of presenting mathematics ideas. This view supports 

Bay-Williams and San Giovanni’s (2021) findings that representing mathematics 

relationships in a visual form supports the teaching of mathematics. Presenting information in 

alternative forms, for example non-verbal ways such as maps, helps students comprehend the 

phenomenon (Murphy, 2011). It prompts students to think about what they are doing and 

where thinking is involved, learning is taking place. 

 

Student-developed visual representation of mathematical processes are a visual representation 

of their mathematical knowledge. Results from this study showed that teachers found visual 

representation in the form of concept maps and procedural flowcharts provided insight into 

students’ mathematical knowledge (see representations in Chapter 8, 9 and 10). Concept 

maps and procedural flowcharts can therefore be used to represent students’ mathematical 

understanding and can thus be an assessment resource, as posited by Ho et al. (2017) and Bell 

(2017). Students can develop concept maps to show how concepts interlink and in so doing 

teachers can identify common errors and misconceptions in their understanding (see students’ 

artefacts in Chapter 8). Likewise, as an alternative to the actual use of a procedure to solve a 

given mathematics problem, students can create a procedural flowchart to provide a 

generalised way of solving a particular problem (see students’ artefacts in Chapter 9). A 

procedural flowchart can thus also expose students’ errors and misconceptions involving a 

particular mathematics problem. Teachers can also provide concept maps and procedural 

flowcharts with gaps for students to complete as an assessment. Results of this study showed 

that concept maps and procedural flowcharts can be easy and faster way for teachers to 

provide feedback compared to the written exercises that most teachers use. The degree to 

which student-generated concept maps and procedural flowcharts can vary in sophistication 

and depth of mathematical knowledge can thus also demonstrate the range of students’ 

knowledge and thinking skills. 
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11.5.2.1 Concept Maps: Conceptual Knowledge and Beyond 

The understanding that mathematics is a web of concepts that are related and that senior level 

concepts develop from junior concepts is key in teaching students conceptual understanding. 

The development of concept maps at senior secondary level supports students’ understanding 

of how mathematics concepts are interlinked, supporting the view of Novak (2010), Hartsell 

(2021) and Watson et al. (2016) that concept maps provide a visual representation of how 

concepts are interlinked.  Concept maps deepen students’ understanding as they reflect and 

determine how concepts are connected. In this study, senior secondary mathematics teachers 

identified concepts maps as a resource that can be used for unit consolidation, that is, of how 

concepts related to and within a unit interconnect, which can support understanding, simply 

because as visual representations are easy to process and retain. 

 

Effective teaching should enable students to integrate concepts during problem solving. 

Participants in this study identified that concept maps can be used to demonstrate how 

solving a complex problem may involve bringing together different concepts. This finding 

aligns with Beat (2015), Fonteyn (2007) and Kinchin et al. (2019), whose work found that 

concept maps facilitated the integration of concepts and new ideas to form complex ideas and 

relationships. Understanding the interlinking of concepts can support students’ ability to 

integrate them, thus deepening their mathematical understanding. Likewise, artefacts 

provided by teachers and students in Chapter 8 show concept maps can be used to break 

down a topic into a connected web of concepts that might be easier to understand and 

manipulate.  

 

In this study, teachers found that the visual nature of concept maps could support the linking 

of prior knowledge to senior concepts, thus supporting mathematical knowledge 

development.   In this study, concept maps were also used to support the framework on 

content sequencing, as they linked junior to senior level concepts, thus reinforcing the 

hierarchical nature of mathematics (see concept maps in Chapter 8).  The teachers involved in 

this study also noted that concept maps could be used to identify essential concepts in a unit, 

and identifying key concepts is one of the key pillars of the framework on content 

sequencing. The findings in this study are supported by Llinas et al. (2018) and Groffman and 
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Wolfe (2019), who posited that concept maps provide opportunities to connect fundamental 

and other related concepts. In summary, the concept maps in this study complemented the 

framework on content sequencing from junior to senior concepts. Importantly, the conceptual 

and procedural knowledge complemented each other as they developed and this plays an 

important role in supporting student participation. 

 

11.5.2.2 Procedural Flowcharts: Procedural Knowledge and Beyond 

Teachers are expected to help students develop procedural knowledge.  When students know 

the steps in key mathematics procedures and can apply them flexibly, efficiently and 

accurately, they acquire procedural fluency. Operating at high levels of procedural fluency 

enhances modification of procedures to solve complex problems (Blöte et al., 2001). This 

study explored the use of procedural flowcharts in supporting procedural fluency. 

 

Senior secondary mathematics teachers who participated in this study noted that procedural 

flowcharts can support mathematics procedural knowledge and fluency.  They identified 

procedural flowcharts to represent procedure(s) and corresponding steps to solve a particular 

mathematics problem. This finding is in line with the definition of procedural knowledge 

reported by Braithwaite and Sprague (2021). The teachers in this study noted that procedural 

flowcharts provided the opportunity to visually present different methods or procedures, thus 

supporting flexibility.  The steps to the solution in a procedural flowchart are sytematically 

ordered and, when followed correctly, would result in a specific solution being reached, thus 

enhancing accuracy. Procedural flowchats are also meant to eliminate steps and decisions that 

lead to undesired solutions.  The teachers in this study noted that procedural flowcharts 

offered opportunities to evaluate given procedures to a solution, thereby supporting students’ 

capacity to determine the optimal procedure to solve a given problem and thus supporting 

efficiency (see procedural flowcharts collaboratively developed by teachers and from 

individual teachers in Chapter 8). All these views from senior mathematics teachers are 

supported by the work of Bay-Williams et al. (2022), which identified that procedural fluency 

involves using procedures flexibily, efficiently and accuractly. 
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Developing procedural flowcharts facilitates the deepening of mathematical knowledge. 

Knowledge of the steps and procedures to solve a problem is needed and developing a 

meaningful and logical procedural flowchart visually involves deeper understanding of how 

procedures are used to solve problems. Teachers identified that procedural flowcharts can 

also be used to highlight and deepen mathematical vocabulary as the steps and procedures to 

a solution are developed. Additionally, procedural flowcharts may be useful in minimising 

and correcting common errors and misconceptions in mathematics procedures, as only the 

relevant steps and procedures are available to choose from. Success in developing a 

procedural flowchart, either collaboratively or individually, can also be a resource to measure 

understanding.  

 

The development of procedural flowcharts independently or collaboratively makes them a 

resource that can be used flexibly to engage students in the learning process. Artefacts 

developed by teachers and students included in Chapter 9 provide an alternative to 

representing procedural knowledge. Teachers emphasised the use of procedural flowcharts in 

any or all of the three stages of explicit teaching. When teachers use explicit instruction, they 

demonstrate the skill first (I DO stage); they then engage students by guiding them into using 

a skill or procedure (the WE DO stage) and finally release the responsibility to the students 

through unprompted practice (the YOU DO stage) (Archer & Hughes, 2010).  Teachers in 

North Queensland and most other schools in the state are expected to use explicit instruction 

during teaching and learning. The teachers in this study identified that procedural flowcharts 

could support student engagement.  

 

During the I DO stage, the teacher can develop a procedural flowchart on how to solve a 

particular type of mathematics problem. This procedural flowchart will include all the 

necessary steps needed to develop the solution. The teacher can also introduce different 

procedures and their corresponding steps that can be added to the flowchart. During the WE 

DO stage, the class can develop a procedural flowchart using worked examples the teacher 

will have used during the I DO stage. The third and last option of using procedural flowcharts 

during explicit instruction is during the YOU DO stage, when students develop procedural 

flowcharts themselves on how they can solve or have solved a particular type of mathematics 

problem. The teachers participating in this study noted at this stage that students could also 
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use procedural flowcharts as a reference as they engaged with a particular type of 

mathematics problem. This allowed students to work through at their own pace, as procedural 

flowcharts can also be a scaffolding resource. Importantly, developing procedural flowcharts 

can deepen students’ understanding and provide opportunities for generalisation of 

mathematics procedures. However, the study noted that the use of procedural flowcharts was 

not limited to supporting procedural knowledge and fluency but could also support problem 

solving.  

 

Queensland’s problem solving and modelling task (PSMT) at senior secondary level provides 

students with an opportunity to write a report. Planning for the solution can be complex, as 

students are expected to analyse a real-world open-ended problem and develop a solution 

using mathematics concepts and procedures. Students are expected to engage with this task 

over four weeks and each week has a checkpoint that is used to determine the students’ 

progress and are expected to identify mathematics concepts and procedures to use in 

developing the solution. Senior secondary school teachers who participated in the study 

identified procedural flowcharts as a resource that students could use to communicate the key 

steps and procedures for solving the problem.  This finding supports Vale and Barbosa’s 

(2018) work that further research was needed on supporting students’ ability to construct and 

effectively present their mathematical knowledge during problem-solving. An insight into the 

overview on how students plan to solve a problem can be beneficial to students and their 

teachers in terms of checking if the student interpreted the question correctly. Procedural 

flowcharts were used at an early checkpoint in this study for students to provide an overview 

of how they plan to solve the given problem.  

 

Scaffolding represented as a flowchart on how to approach a PSMT is available to teachers 

and students (QCAA, 2018). This flowchart shows the key stages involved in the process. In 

this study a student-developed procedural flowchart can supplement the QCAA flowchart by 

providing more detail on how the solution will be developed. It can also demonstrate how the 

different stages link as the solution is being developed. Results from this study showed that 

procedural flowcharts can support the logical representation of the stages involved in the 

PSMT and the results help in addressing the finding by Galbraith and Stillman (2006) that 

students need help in linking the different stages involved in problem-solving.  Procedural 
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flowcharts can support how a solution to a problem is interconnected, even though more than 

one procedure is included. The flexibility of a procedural flowchart to accommodate more 

than one procedure and provide opportunities to justify and evaluate the different procedures 

is vital in demonstrating and accommodating the key elements of developing a PSMT 

solution. In a PSMT, students have to justify why they used their chosen mathematics 

procedures. This can be done by evaluating solutions developed by the procedures in relation 

to the problem identified. A procedural flowchart can reinforce the structure of the PSMT, 

which will help students when writing the report, thus supporting communication. 

Development of procedural flowcharts provides opportunities for students to analyse a 

problem and link it to mathematics concepts (mathematisation), identify procedures and their 

relationships in addressing the problem, evaluate how and what the procedures address and 

then synthesise the solution. To develop a logical procedural flowchart, students have to 

reflect on how the procedures they are proposing addresses the problem they have identified. 

Moreover, flowcharts are a visual representation of a sequence of steps or stages (Marzano, 

2017) in a complex system; thus, they support communication where different procedures, 

steps and stages are involved.     

11.6 Implications of the Study 
 

11.6.1 Trends Analysis 

Trends in student enrolment, especially in key subjects such as calculus-based mathematics, 

have implications for different sectors of society. Trends analysis is important for the 

education sector as, in this case, it provides an insight into the state of calculus-based 

mathematics in Queensland. Trends can also inform policy as policy makers need to have an 

insight of what is working and what is not. Importantly, stakeholders such as teachers, 

parents, industry, universities, education departments, politicians and the wider community 

can then dissect the implications of these trends to inform their planning. 

 

This study provided insight into the trends in student enrolment in the phased-out and current 

mathematics curricula in Queensland. Understanding trends between the two curricula help in 

determining changes, if any. This evaluation can be done by comparing trends in student 

enrolment in the two curricula and using the findings to inform future policy, considering 
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mathematics is compulsory in Queensland. The trends might inform targeted intervention and 

resource mobilisation or inform administrators what is working and what is not. 

 

This study was the first in Australia (and Queensland in particular) to track student enrolment 

in calculus-based mathematics at both levels (Year 11 and 12), including socio-economic 

indices for districts from the ABS, schools’ index of community socio-educational advantage 

values from ACARA and schools transfer ratings from the DoE. Most available studies have 

focused on enrolment at the end of Year 12. What this study offered was an insight into 

dropout rates in calculus-based mathematics from 2010 to 2020 across Queensland. 

Comparing dropout rates from the phased-out curriculum to the new curriculum provided a 

new understanding on how student enrolment is changing, namely, that the dropout rate has 

increased at an alarming rate. 

 

In Australia, and in Queensland in particular, calculus-based mathematics subjects are the 

preferred prerequisites for STEM courses at tertiary level. Students’ enrolment in calculus-

based subjects at senior secondary level have a direct impact on tertiary entry.  The trends can 

provide a basis for comparing Queensland with other jurisdictions in Australia and beyond. 

Furthermore, since mathematics is a key subject in Queensland education, understanding 

students’ enrolment at post-compulsory level can help in evaluating the state’s STEM 

education implementation in which mathematics, especially calculus options, plays a central 

role.  

 

STEM is a critical area of focus for most education departments as individual and societal 

prosperity depends on it. The trends can inform educational stakeholders in areas that need 

attention to align with the vision of Australia of being an economic powerhouse. The trends 

can be used to project Queensland’s future STEM workforce and tertiary enrolment growth in 

relevant sectors. Moreover, the trends can also inform parents, teachers and the education 

department about areas where students need more support.  One of the key trends observed in 

this study was high dropout rate in calculus-based mathematics, especially in Mathematical 

Methods, which demonstrates calculus-based subjects are losing students and require key 

stakeholders to intervene and work together.   
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This study proposes resources to help address the problem of high dropout rates. It offers 

concrete steps that span planning, teaching and learning of calculus-based mathematics and 

with a focus on supporting student participation. The resources used in this study are key 

foundational tools that require more research and focus at senior mathematics level in order 

to support every student who chooses to study this subject. Retaining all students who choose 

to study calculus-based options is a key first step before pushing for more students to study 

the subject. 

 

11.6.2 Pedagogical Resources (Framework on Content Sequencing) 

In Australia, the junior curriculum is national and the senior curriculum is state developed. 

The framework on content sequencing developed in this study is a novel approach that 

provides cohesion between the two systems, thus allowing teachers and students to make a 

smooth transition from junior to senior mathematics. The framework on content sequencing 

in mathematics is a pioneer framework that focuses on such a key sector of mathematics 

planning. The framework, in which the development of complex concepts is linked to 

familiar concepts, can help teachers in their planning and in their understanding and teaching 

of senior mathematics concepts. Importantly, the framework emphasises the importance of 

every year level, and every mathematics teacher’s responsibility and understanding that for 

their students to progress to mathematics at a higher level, they need to understand 

mathematics at the level they are teaching them.   

 

The framework on content sequencing from junior to senior mathematics also provides a 

guiding framework that can be used by teachers across different school levels to effectively 

sequence mathematics content.  This framework advocates for collaborative content 

sequencing across levels, thus providing opportunities to share pedagogical knowledge 

through identifying prerequisite concepts and how they can be used to develop new 

knowledge. Including prior knowledge and skills during planning means the plan will be 

readily available to be delivered whenever necessary. It will also help teachers think about 

how new knowledge can be effectively taught from prior knowledge before engaging 

students. Reflection and mapping play an important role in preparing teachers to have deeper 

content knowledge and think about how they will teach concepts. Ensuring that every student 
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has sufficient and required prior knowledge and skills to engage with new knowledge 

increases the chances of students engaging and understanding new knowledge. 

 

11.6.3 Pedagogical resources (Concept maps) 

Concept maps can help students build conceptual understanding and this study expanded the 

use of concept maps in senior secondary mathematics to support the linking of prior 

knowledge to new knowledge. In other words, concept maps can be used to link junior 

mathematics concepts to concepts at senior level. Use of concept maps at senior secondary, 

which has been limited (see Schroeder et al., 2018), needs to be encouraged as it provides a 

visual representation of how concepts are connected.  

 

Nor should the use of concept maps be limited to linking concepts in one unit or at a single 

school level but rather they should be used to link foundational concepts to new concepts. 

This study suggests that at senior secondary level in mathematics, concept maps can be a 

visual representation of how new concepts are developed from prior concepts. This is 

underpinned by the constructivist learning approach, which has grown in influence in the 

teaching and learning of mathematics. An additional advantage of student-drawn concept 

maps at senior secondary level is that they give teachers an insight into their students’ 

mathematical understanding. 

 

Another benefit of concepts maps in mathematics is that teachers can provide quick feedback 

because the maps are easier to process than calculations and text, they reinforce and provide 

an overall overview of the unit and they can be used by students during revision.    

 

11.6.4 Pedagogical Resources (Procedural Flowcharts). 

Procedural flowcharts are a versatile resource for supporting procedural fluency in 

mathematics teaching and learning. Developing students’ procedural fluency deepens 

students’ skills and use of procedures and steps to solve familiar problems. At senior 

secondary school level in Queensland, the QCAA requires 60% of the questions in any 

examination, be they formative or summative, to be familiar questions that mostly involve 
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fluency and application of known procedures. Thus, introducing procedural flowcharts at 

senior level may support students’ chances of solving familiar problems.  

 

This study expanded the use of flowcharts beyond just representing steps in a procedure. 

Instead, it advocates for procedures and steps to mathematics problems to be presented on a 

procedural flowchart instead of just writing steps. It suggests that teachers introduce 

development of procedural flowcharts as a tool for checking understanding instead of 

answering questions through calculations. Teachers can ask students to develop a procedural 

flowchart that generalises how a particular type of mathematics problems can be solved, 

thereby deepening students’ understanding through generalisation. This study also suggests 

that a class-or group-developed procedural flowchart can promote collaborative learning. 

Instead of marking-student developed procedural flowcharts, teachers can distribute the 

procedural flowcharts among students and ask them to first apply them to solve related 

questions then evaluate and discuss solutions. This strategy can also help identify and correct 

misconceptions and common errors among students. 

 

Engaging students to think independently in mathematics classes can sometimes be a 

challenge, as students are comfortable just following teachers’ examples in familiar 

problems. Including procedural flowcharts in mathematics teaching and learning provides 

students with the opportunity to reflect and think about the procedures and steps involved. To 

deepen students’ mathematical thinking, teachers can give students problems that require 

more than one procedure and ask them to develop a multi-solution procedural flowchart, thus, 

making students more engaged and active in their learning. When students are developing 

procedural flowcharts, they are using a lot of critical skills that are useful in problem solving. 

 

This study suggests that students should develop procedural flowcharts as an initial stage in 

solving open-ended mathematics questions, which will benefit both teachers and students. It 

will give teachers an insight into what their students are thinking and planning to include in 

the solution and will help students analyse the task, reflect, organise their thoughts, logically 

sequence the solution and then evaluate it. The procedural flowchart also gives teachers an 
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opportunity to check if students have understood the problem and if their planned solution is 

relevant. It is also a tool for timely feedback.  

 

Generally, the role of concept maps and procedural flowcharts in representing students’ 

mathematics knowledge and how these tools support critical skills should prompt a policy 

consideration on assessment. First, QCAA can emphasise the need for a flowchart in the 

PSMT report to give a visual overview of the solution.  Second, QCAA can introduce 

assessment methods other than short response and open response questions in senior 

mathematics. This change would be beneficial to visual learners as they can use visual 

representation instead of solving problems using calculations. 

 

These pedagogical resources have additional implications for research as use of visual 

representations in mathematics teaching and learning is gaining momentum. This study is 

among very few available studies focusing on developing both conceptual and procedural 

knowledge through the use of visual representations, but it is all the more timely as there 

have been repeated calls to support students’ participation in calculus-based mathematics. 

However, limited research has been conducted on how teachers and students can be 

supported by resources.  

 

The use of information technology in teaching and learning also supports the use of visual 

representation. Free application software programs such as GitMind and XMind are available 

for the development of concept maps and flowcharts, aligning these resources to the 21st 

century skills needed in education. The software allows online collaboration, which is 

important if a teacher wants students to work collaboratively on a task. The use of concept 

maps and procedural flowcharts does not limit teachers to explore any teaching and learning 

approach of their choice but supports effectiveness.  

 

11.7 Conclusion 

This chapter has discussed the overall study of trends in calculus-based mathematics as a 

senior secondary school subject choice, pedagogical resources to support teaching and 

learning and their implications for practice. Enrolment trends in calculus-based mathematics 
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in Queensland and pedagogical resources to support teaching and learning of mathematics 

were discussed. The key findings presented from the trends analysis include the high dropout 

rates and declining enrolment in calculus-based mathematics subjects, particularly in 

socially-disadvantaged districts. The pedagogical resources to address the declining trends 

include a framework on content sequencing from junior to senior concepts and visual 

representation of mathematics using concept maps and procedural flowcharts. Data collected 

from a sample of senior mathematics teachers show that teachers view the framework on 

content sequencing as central to developing new knowledge from prior knowledge. The 

pedagogical resources (concept maps and procedural flowcharts) were used to develop 

conceptual and procedural knowledge, which are the key constituents of mathematical 

knowledge. The participants also acknowledged that concept maps and procedural flowcharts 

could contribute to the development of mathematical knowledge, assessment, students’ 

engagement and participation in mathematics. Use of procedural flowcharts was also 

expanded to support problem-solving. The implications of the current trends and the 

pedagogical resources for education, policy and research are informed by the findings and 

literature in this study. Chapter 12 will articulate the study’s contribution to knowledge and 

provide recommendations to support teachers in enhancing the teaching and learning of 

mathematics. The limitations of the study will also be explored.  
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Chapter 12: Conclusion 
 

12.1 Chapter Introduction 

A conclusion chapter should clearly articulate factual, conceptual and secondary conclusions, 

the study’s original contribution to the discipline, recommendations and limitations of the 

study (Trafford et al., 2014). As all these attributes of the conclusion chapter are being 

explored, new questions will arise, providing opportunities for future studies (Lovitts, 2007). 

It is important to remind the reader that the major thrust of this thesis has been to analyse 

trends of student enrolment in calculus-based mathematics in Queensland and develop 

pedagogical resources that will support the teaching and learning of that subject. 

 
12.2 Trends in Student Enrolment in Calculus-based Mathematics in Queensland 

Analysis of trends can be used to measure progress, evaluate a program and determine areas 

of concern that might need intervention. The state of Queensland has been lagging behind 

other Australian states, like New South Wales, in investigations into trends in student 

enrolment in mathematics (see, for example, Jaremus et al., 2018), as the last analysis was 

done in 2008. The switch to a new senior secondary curriculum in Queensland in 2019 meant 

some changes in mathematics subjects, both in content and title, and the introduction of an 

external examination. Thus, trends analysis was ideal to evaluate if student enrolment in the 

phased-out curriculum persisted in the new curriculum.  However, available research had 

previously focused on student enrolment in Year 12 mathematics only. This study 

investigated the latest trends in student enrolment in calculus-based mathematics subjects in 

Queensland. The analysis included student dropout data, the distribution of calculus subjects 

in the state, the links between student enrolment and a school’s ICSEA value (see ACARA, 

2013), socio-economic indices for area (SEIFA) value (see ABS, 2018a) and a school’s 

transfer ratings (DoE, 2019, 2020). The study also undertook a comparative analysis of 

student enrolment in calculus-based mathematics at educational district level.  

 

The trends analysis in this study provided an insight into student enrolment in calculus-based 

mathematics at senior secondary level in Queensland between 2010 and 2020. Over the 

period, there were more students studying calculus-based subjects in Year 11 than in Year 12. 

Each year a substantial number of students (an average of 688) who chose Mathematical 

Methods at Year 11 were opting out by the time they got to Year 12.  The results showed that 
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when the new curriculum was introduced in 2019 the number of students who had left 

Mathematical Methods by 2020 was 2712 out of 7207, representing a dropout rate of 37.6%. 

Females had a slightly lower dropout rate than males, although males had consistently 

dominated the subject for the decade under study. The dropout rate was also high among 

Indigenous students compared to non-Indigenous students. Generally, there was a high 

dropout rate in calculus-based mathematics subjects and Mathematical Methods 

(Mathematics B) had higher dropout rate than Specialist Mathematics (Mathematics C) and 

this was consistent yearly. 

 

Enrolments and dropout rates were also influenced by socio-economic status, educational 

advantage or disadvantage and school transfer rating. Schools in areas with a low SEIFA 

index (less than 50) had lower enrolments and higher dropout rates than those in areas with a 

higher index. This trend was also witnessed in schools with low ICSEA values (less than 

1000), as they had lower enrolments and higher dropout rates than those with high values. 

Likewise, enrolments in schools with low teacher transfer ratings (rating of 1) were high and 

the dropout rate was low compared to schools with high transfer ratings (rating 2 to 7). 

Importantly, a higher percentage of schools in high socio-economic and educationally 

advantaged areas offered both calculus-based subjects compared to those in disadvantaged 

areas. The findings of this study indicate that enrolments in calculus-based mathematics 

subjects are influenced by socio-economic status, educational advantage and school transfer 

rating. Thus, it can be concluded that dropout rates are inversely correlated to the socio-

economic and educational advantage of a school. Therefore, availability of resources 

influences students’ choices and retention in calculus-based mathematics subjects.  

 
12.3 Pedagogical Resources 

Pedagogical resources that engage students are some of the key resources that teachers need 

to support teaching and learning of mathematics (Cook, 2008). Such resources can make a 

big difference in school settings as they help students engage with the learning process, 

which eventually encourages greater participation. This study was conceptualised within a 

constructivist epistemology. In constructivism, knowledge is not transmitted but is created 

through active interaction and new knowledge is developed from prior knowledge (Jenkins, 

2000; Lew, 2010; Narayan et al., 2013). Purposively sampled senior secondary mathematics 

teachers were presented with pedagogical resources for use during teaching for a full school 
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term. The teachers were actively involved in teaching Mathematical Methods as they used the 

resources to support their classroom practise. Moreover, participants’ teaching experiences of 

mathematics provided the opportunity for innovation as they used the resources to support 

delivery. Feedback and opinions from the participants were used in optimising the use, as 

well as improving and evaluating the pedagogical resources. This study developed 

pedagogical resources that included a planning framework on content sequencing from junior 

to senior content. The study also developed concept maps and procedural flowcharts to 

support students’ development of mathematical knowledge. Procedural flowcharts were also 

used to support problem solving in Mathematical Methods subject. 

 
12.3.1 Planning Framework on Content Sequencing 

The planning framework on content sequencing was developed through literature synthesis 

and was informed by the understanding that mathematics planning should support the 

development of new knowledge from prior knowledge. The framework was a critical tool and 

addressed a foundational section of mathematics planning that had previously received very 

little attention in mathematics education research. The framework addressed this gap and at 

the same time started the conversation on building a foundation for further research in content 

sequencing. The framework links the Australian Curriculum: Mathematics developed by 

ACARA (national) and the Queensland Senior Mathematics Curriculum developed by QCAA 

(state). The framework on content sequencing links concepts from junior levels, which are 

regarded as prior knowledge, to concepts at senior level, which would be new knowledge for 

students. 

 

The perceptions of the senior secondary school teachers on the framework on content 

sequencing was used in this study. The participants viewed the framework very positively as 

a resource that supported the process of identifying prior knowledge and mapping it to new 

knowledge during content sequencing in mathematics.  Furthermore, the framework 

promoted the hierarchical nature of mathematics, that is, foundational concepts that link to 

higher level concepts were identified first then mapped to senior concepts, which in turn 

provided the basis for collaborative planning by teachers across school levels.  
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12.3.2 Concept Maps 

Development of conceptual knowledge is key to success in mathematics as it is a discipline 

that explores and proves new relationships (Bingölbali & Coşkun, 2016). This study 

investigated the utility of concept maps in linking prior knowledge to new knowledge and the 

identification of essential concepts. Concept maps can be used to visually link prior concepts 

to new concepts. In this study concept maps were used to link prior mathematics concepts at 

junior secondary level to concepts at senior level. Therefore, concept maps can be used as a 

resource to deliver content after applying the framework on content sequencing, as concept 

maps complement the framework.  

 

Concept maps can enrich the learning environment. They can be used to deepen students’ 

mathematical understanding through integrating concepts, especially from simple familiar to 

complex unfamiliar or by breaking up a complex concept into several familiar concepts. This 

study’s findings also supported research (for example, Watson et al., 2016) that student-

developed concept maps can be used to assess students’ conceptual knowledge. Participating 

teachers indicated that consolidation of units or topics can be supported by using concept 

maps as they can provide an overview of how concepts are linked, and the mental 

representation of students conceptual understanding. From all this, it can be concluded that 

concept maps can support teaching and learning of mathematics.   

  

12.3.3 Procedural Flowcharts 

Procedural flowcharts are a visual representation of steps and procedures to solve a specific 

type of mathematics problem. The concept of procedural flowcharts was developed from the 

use of flowcharts in different areas of teaching and learning (see, for example, Marzano, 

2017). This study introduced procedural flowcharts in a diverse and flexible way to provide 

guidance and support communication of processes involved when engaging with mathematics 

at senior secondary level. The adaptation of procedural flowcharts by the participants in the 

mathematics teaching and learning positioned them as a key resource that could support 

student development of mathematical knowledge and skills.  
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Developing students’ mathematics procedural knowledge and fluency supports participation 

and engagement. Procedural flowcharts go beyond supporting the development procedural 

knowledge but can represent more than one procedure, thereby supporting flexibility. The 

opportunity of presenting more than one procedure supports efficiency, as students have to 

choose the optimal solution. The steps provided on procedural flowcharts can be used by 

students to solve problems, which requires identifying and using a procedure and thus leads 

to accuracy. Participants in the study noted that procedural flowcharts can promote flexibility, 

efficiency and accuracy, thus developing procedural fluency, confirming that this study 

produced a visual representation resource that can support both procedural knowledge and 

procedural fluency.  

 

Procedural flowcharts can be used flexibly during the teaching and learning of mathematics. 

Participants noted that teacher-developed procedural flowcharts could guide students to 

engage independently with mathematics questions, while class-developed procedural 

flowcharts can support collaborative learning and deeper understanding of steps and 

procedures involved in solving mathematics problems. When students develop procedural 

flowcharts, they engage in an unfamiliar way of representing their mathematical 

understanding; this requires reflection, which in turn develops a deeper understanding of 

mathematics (Murphy, 2011).  Participants also noted that student-developed procedural 

flowcharts can be a visual representation of students’ procedural knowledge, which can be 

used by teachers to assess their students’ understanding. Teachers who participated in this 

study observed that procedural flowcharts could support procedural fluency and student 

participation and engagement in mathematics. 

 

Problem-solving is increasingly an approach of choice in the teaching and learning of 

mathematics (Chan & Clarke, 2017; Russo & Minas, 2020). In Queensland, all students in 

Year 11 and 12 undertake tasks where they use concepts, procedures, and skills they have 

learnt to engage with problem-solving and modelling. They engage with an open-ended 

question to develop a unique solution by writing a report over a period of four weeks. 

Scheduled check points to assess students’ progress are a requirement. In relation to the 

question used in this study, procedural flowcharts were used to support the problem-solving 

structure and sequence the steps and procedures in a logical way.  
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Student artefacts and teacher feedback showed that students used procedural flowcharts to 

develop a visual representation of how they planned to solve the problem. Moreover, the 

flexible nature of procedural flowcharts allowed students to include several procedures they 

expected could solve the problem. Importantly, procedural flowcharts also provided 

opportunities to evaluate the procedures that were identified. Analysis of the students 

developed procedural flowcharts showed evidence that students analysed, planned, reflected, 

evaluated and communicated the solution through the visual representation. Given the above, 

procedural flowcharts can support mathematics problem-solving in mathematics.  

 
12.4 Limitations of the Study 

They were some limitations in this study. The number of participants involved was small 

which, while providing quality and valuable data, was limiting in terms of the generalisability 

of the results and the application of quantitative data analysis (Albers, 2017). Although there 

were diverse views from different participants in this study, involving more participants was 

going to be more representative of Queensland senior mathematics teachers and increase the 

chances of getting much more diverse perceptions. Including a bigger sample of mathematics 

teachers with diverse professional experience would have provided richer feedback, as this 

study focused on providing resources for teachers. The opinion of junior level teachers, 

particularly on the content sequencing framework, could also have helped, especially as 

junior mathematics level concepts form prior knowledge.  

 

Except for the artefacts produced by students, data was primarily collected from 16 teachers. 

More artefacts from students, who are key stakeholders in teaching and learning, could have 

provided more generalisable insight on how the resources impacted the teaching and learning 

from their perspective. Additionally, more student-developed artefacts could have provided a 

better insight into how students engaged with the pedagogical resources. Observation of 

classes where teachers used the pedagogical resources that were developed in this study 

might also have provided insight into the effectiveness of those resources. Moreover, the 

study focused only on Mathematical Methods, which is a calculus-based mathematics 

subject, although the pedagogical resources that were developed could benefit all 
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mathematics as a discipline. However, the limitations do not affect the value of this study in 

supporting teachers in their teaching of mathematics.  

 

12.5 Opportunities for Future Study and Recommendations 

Future research opportunities might arise mainly from expanding the methodological 

perspective. Validating the quantitative findings in the student enrolment trends analysis with 

qualitative data could have provided more detail and a broader view of the trends because it 

would have provided the opportunity of triangulating the data (Creswell, 2014). Collecting 

qualitative data from stakeholders such as teachers, students, parents and education officials 

could have provided a holistic picture of trends.  Involving different voices might also have 

helped in understanding how targeted interventions and research might bring about change. 

Expanding the trends analysis that involved all the data components involved in this study’s 

trends analysis to other jurisdictions in Australia and beyond will help in making a 

comparative analysis.  

 

The framework on content sequencing from junior to senior concepts is novel but more 

research is needed to validate the framework in other settings beyond the Queensland 

curriculum. The framework can also be validated in other mathematics subjects and at 

different levels, as content sequencing is not limited to secondary school settings.  While this 

study validated the framework constructs with the research participants, further research is 

needed with a larger group of participants. Observing teachers collaboratively using the 

planning framework on content sequencing might also help improve the framework. How the 

planning framework will influence unit planning, instruction during delivery and students’ 

achievement can be new areas to explore. 

 

Visual representation of mathematics has always shown potential for engaging students 

(Murphy, 2011; Raiyn, 2016).  There is need for further study in the use of concept maps and 

procedural flowcharts beyond the scope of this study, which aimed to provide resources for 

teachers. Research could also be instituted on instructional design where concept maps and 

procedural flowcharts are used. Studies that involve student feedback and observations on 

how students use concept maps and procedural flowcharts may present interesting and 
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relevant insights into participation, engagement and achievement. Research might also help 

to determine the optimal time to use concept maps and procedural flowcharts during teaching 

and learning.  

 

Further studies are needed on how to include procedural flowcharts as an alternative 

assessment resource and how to develop the associated marking rubrics. More research is 

needed into the use of procedural flowcharts to support different instructional approaches. 

Results from this study provide some insight into how development of procedural flowcharts 

can support problem solving skills but further research that involves a bigger sample size and 

more diverse students with different capabilities is needed.  This could help to determine if 

similar results can be obtained in different contexts. 

 

This study recommends the development of pedagogical resources to support teachers so that 

students who initially chose to study calculus-based mathematics are retained. This study 

contributes to the development of pedagogical resources, but more research is needed so that 

diverse students can be catered for. The study recommends collaborative planning during 

content sequencing as a way of upskilling and bringing uniformity to how new mathematics 

knowledge is developed. Moreover, planning that includes prior knowledge also caters for 

diversity in learning among students. The framework on content sequencing can help teachers 

be more effective in their teaching and in engaging students with learning, as mathematics 

knowledge will develop gradually.  

 

The study recommends the use of concept maps and procedural flowcharts to develop 

mathematical knowledge (conceptual and procedural knowledge). The use of concept maps in 

linking prior to new knowledge can help students’ understanding of mathematics because 

visual representations are easy to process. Development of procedural knowledge is very 

important as most familiar questions in formative and summative examinations require recall, 

fluency and comprehension of procedures. Thus, procedural flowcharts provide a resource to 

develop procedural fluency.  Finally, the study recommends the use of procedural flowcharts 

to help students plan how to develop a solution during problem-solving and assessment tasks. 

Although this study focused on developing resources for calculus-based mathematics, in 
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particular Mathematical Methods, these resources are recommended for any mathematics 

subjects at any level. 
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Appendix A: Thematic Analysis Results- initial codes 

 

 

Appendix B: Thematic Analysis- Categorising codes. 

 



Supporting the teaching of calculus-based senior mathematics in Queensland. 

336 
 

Appendix C: Thematic Analysis- Themes 
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Appendix D: An approach to problem-solving and mathematical modelling 

 (Adapted from QCAA, 2018, p.15). 
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Appendix E: Student 4: PSMT Response. 
  

 



Supporting the teaching of calculus-based senior mathematics in Queensland. 

339 
 

 



Supporting the teaching of calculus-based senior mathematics in Queensland. 

340 
 

 



Supporting the teaching of calculus-based senior mathematics in Queensland. 

341 
 

 



Supporting the teaching of calculus-based senior mathematics in Queensland. 

342 
 

 



Supporting the teaching of calculus-based senior mathematics in Queensland. 

343 
 

 



Supporting the teaching of calculus-based senior mathematics in Queensland. 

344 
 

 



Supporting the teaching of calculus-based senior mathematics in Queensland. 

345 
 

 

 

 

 

 
 



Supporting the teaching of calculus-based senior mathematics in Queensland. 

346 
 

Appendix F: Survey instrument. 
 
Feedback Activity 1: Planning Framework (content sequencing)-Mathematics 

To help us improve this framework, please give us feedback on the following: 

 

 Strongly 

Disagree 

Disagree Not 

Sure 

Agree Strongly 

Agree 

Collaborative content sequencing is a critical 
component of mathematics planning and 
teaching as it provides a clear link between 
relevant and significant assumed prior 
knowledge and corresponding new knowledge.  

1 2 3 4 5 

Collaborative content sequencing helps 
teachers to have a deeper understanding of 
concepts to be taught. 

     

Collaborative content sequencing enhances 
teachers content knowledge. 

     

Content sequencing places assumed prior 
knowledge, skills and conceptual connections 
at the centre of mathematics knowledge 
development. 

     

Content sequencing helps teachers in 
hypothesising effective delivery methods. 

     

Collaborative content sequencing reinforces 
teachers’ responsibility of effective teaching of 
mathematics concepts at every level. 

     

Collaborative content sequencing fosters a 
common agenda of focusing on how students 
develop mathematical knowledge. 

     

Collaborative content sequencing makes 
mathematics teaching a collective responsibility 
as students understanding and participation at 
higher levels depend on lower levels. 

     

 

(Write in the space provided) 

1. How can we enhance collaborative mathematics planning in schools? 

 

 

 

2. How do you identify assumed knowledge critical to new knowledge? 
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3. How do you identify essential concepts (concepts that students must return in a topic)? 

 

 

 

4. How do you sequence content in a Unit? 

 

 

 

5. Was the rationale for this framework realised? 
 
 
 

Feedback Activity 2: Teaching and learning resources- Mathematics 

 Strongly 

Disagree 

Disagree Not 

Sure 

Agree Strongly 

Agree 

Reteaching prior knowledge to students 
operating at low levels enhance students’ 
participation and achievement  

1 2 3 4 5 

Effective mathematics teaching involves linking 
prior knowledge and vocabulary to new 
knowledge. 

     

Visual representation of mathematical 
knowledge enhances teaching and learning of 
mathematics. 

     

Procedural flowcharts (showing steps and 
procedures) plays an important role in 
developing students’ mathematical skills. 

     

Procedural flowcharts promote fluency and 
recall. 

     

Procedural flowcharts can be used to highlight 
critical vocabulary 

     

Procedural maps are a reference resources 
that can also be used for revision. 

     

Procedural flowcharts focus on students 
learning. 

     

Procedural flowcharts promote independent or 
collaborative learning. 

     

Procedural flowcharts can help evaluate or give 
feedback to students on their understanding 
and correct use of a procedure. 
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Use of procedural flowcharts can help students 
identify relationships in mathematical concepts.  

     

Concept maps help students understand how 
mathematical concepts are related. 

     

Student or teacher developed concept maps 
can be used to link prior knowledge to new 
knowledge. 

     

Concept maps facilitate consolidation of 
learning. 

     

Concept maps facilitate a visual evaluation of 
students learning. 

     

Concept maps give an overview of a topic.      

Concept maps helps identify key concepts in a 
topic. 

     

Concept maps promote integration of concepts 
that deepen mathematical understanding. 

     

The hierarchical nature of mathematics make 
concept mapping central to teaching and 
learning of mathematics. 

     

 

(Write in the space provided) 

1. How do you activate your students’ prior knowledge in your class? 

 

 

2. How have you used procedural flow charts to teach steps/procedures and skills in your 
teaching? 

 

 

 

3. How have you used concept maps to link concepts in your teaching? 

 

 

4. What can be improved on this framework? 

 

 

5. Was the rationale for this framework realised? 
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Appendix G: Semi structured interview questions 
 

Semi structured Interview Questions 

Planning Framework (Content sequencing) 

1. How would you define/describe collaborative mathematics planning in your school? 
2. What informs content sequencing as you go through planning? 
3. How would/did the framework that is being proposed enhance content sequencing at your 

school? 

 

Teaching and learning resources 

1. How do you teach your students mathematics procedural knowledge (knowledge of 
procedures—steps to take to accomplish a goal)? 

2. How would/did procedural flowcharts enhance the teaching of mathematics procedural 
knowledge? 

3. How do you teach your students mathematics conceptual knowledge (knowledge of concepts 
or principles)? 

4. How would/did conceptual maps enhance the teaching of mathematics conceptual 
knowledge? 
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Appendix H: Information Sheet for Principals 
 

INFORMATION SHEET FOR PRINCIPALS 

PROJECT TITLE: An Investigation into supporting the teaching of calculus-based senior mathematics 
in Queensland. 

The study is being conducted by David Chinofunga and will contribute to the research project in Doctor 
of Philosophy (Research) at James Cook University. 

As a Principal of a school, if you agree to be involved in the study, you will be asked to give permission 
to the researcher to collect data from senior Mathematics teachers timetabled to teach Year 11 and/or 
12. The data will be collected through surveys that will comprise of rating scale, open answer questions 
and interviews for selected teachers. 

Your school taking part in this study is voluntary, and it can stop taking part in the study at any time 
without explanation or prejudice. 

Your teachers’ responses and contact details will be strictly confidential. The data from the interview 
will be used in research publications. You will not be identified in any way in these publications. 

If you have any questions about the study, please contact – David Chinofunga, Philemon Chigeza or 

Subhashni Taylor. 

 

Principal Investigator:  Primary Supervisor:      Secondary Supervisor: 

David Chinofunga                Dr Philemon Chigeza   Dr Subhashni Taylor 

PhD Candidate   College of Arts, Society and  College of Arts, Society and 

College of Arts, Society and Education    Education 

Education   James Cook University   James Cook University 

James Cook University  Phone:    Phone:  

Phone:             Email:philemon.chigeza@jcu.edu.au        Email :subhashni.taylor@jcu.edu.au 

Email: david.chinofunga@my.jcu.edu.au  

If you need counselling because of this research project, please contact: 

JCU Counselling Service 

Office hours: 9:00am - 4:00pm 

Phone:  

Level 1, Building B1 (Library) 

Headspace 

2/42 Grafton St, Cairns City QLD 4870 

Phone:  

If you have any concerns regarding the ethical conduct of the study, please contact: 

Human Ethics, Research Office 

James Cook University, Townsville, Qld, 4811 

Phone: (07) 4781 5011 (ethics@jcu.edu.au) 

mailto:philemon.chigeza@jcu.edu.au
mailto:subhashni.taylor@jcu.edu.au
mailto:david.chinofunga@my.jcu.edu.au
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Appendix I: Information Sheet for Teachers 
 

INFORMATION SHEET FOR TEACHERS 

PROJECT TITLE: An Investigation into supporting the teaching of calculus-based senior mathematics 
in Queensland. 

As a time-tabled senior mathematics teacher, you are invited to take part in a study being conducted 
by David Chinofunga and will contribute to the research project in Doctor of Philosophy (Research) at 
James Cook University. 

Your school principal has approved your participation, if you agree to be involved in the study, you will 
be invited to complete an initial survey and interview based on planning, teaching and learning in 
Mathematics. You will then be invited to take part in a webinar that will introduce and provide training 
in using a framework and associated pedagogical resources. The framework and associated 
pedagogical resources are a set of planning documents, teaching and learning resources and 
associated examples. A second survey and interview will be carried out after you have interacted with 
the framework and associated pedagogical resources. The surveys will be comprised of rating scales 
and open answer questions. The two surveys and interviews combined will take approximately 20 
minutes and 60minutes respectively, while the webinar will take only 30minutes to complete.  

Taking part in this study is voluntary, and you can stop taking part in the study at any time without 
explanation or prejudice.  

Your responses and contact details will be kept strictly confidential as the survey responses will be 
given pseudonym names and will not be shared by your school. The data from the study will be used 
in research publications. You will not be identified in any way in these publications. 

If you have any questions about the study, please contact – David Chinofunga, Philemon Chigeza or 

Subhashni Taylor. 

Principal Investigator:  Primary Supervisor:               Secondary Supervisor: 

David Chinofunga                Dr Philemon Chigeza              Dr Subhashni Taylor 

DEd Candidate   College of Arts, Society and             College of Arts, Society and 

College of Arts, Society and Education               Education 

Education   James Cook University              James Cook University 

James Cook University  Phone:               Phone: 

Phone:                Email:philemon.chigeza@jcu.edu.au      Email :subhashni.taylor@jcu.edu.au 

Email: david.chinofunga@my.jcu.edu.au  

 

If you have any concerns regarding the ethical conduct of the study, please contact: 

Human Ethics, Research Office 

James Cook University, Townsville, Qld, 4811 

Phone: (07) 4781 5011 (ethics@jcu.edu.au) 

 

 

 

mailto:philemon.chigeza@jcu.edu.au
mailto:subhashni.taylor@jcu.edu.au
mailto:david.chinofunga@my.jcu.edu.au
mailto:ethics@jcu.edu.au
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Appendix K: Information sheet for Students 
 

INFORMATION SHEET FOR STUDENTS 

PROJECT TITLE: An Investigation into supporting the teaching of calculus-based senior mathematics 
in Queensland. 

The study is being conducted by David Chinofunga and will contribute to a research project in Doctor 
of Philosophy (Research) at James Cook University. The study focuses on the teaching of calculus-
based senior mathematics and your mathematics teacher has agreed to participate. 

With your permission, your teacher would like to share artefacts that you have produced while engaging 
with the pedagogical resources developed in this study. If you agree for your artefact to be included in 
the study, you will be invited to sign a consent form.  

Releasing your artefact for this study is voluntary, and you can withdraw your consent at any time 
without explanation or prejudice. Whether or not you participate will not affect your relationship with 
your teacher in any way. 

Your responses and contact details will be strictly confidential. The artefact will be used in research 
publications such as a thesis and journal articles. You will not be identified in any way in these 
publications. 

If you have any questions about the study, please contact – David Chinofunga, Philemon Chigeza or 

Subhashni Taylor. 

Principal Investigator:               Primary Supervisor:                      Secondary Supervisor: 

David Chinofunga                Dr Philemon Chigeza      Dr Subhashni Taylor 

PhD Candidate   College of Arts, Society and     College of Arts, Society and 

College of Arts, Society and Education    Education 

Education   James Cook University      James Cook University 

James Cook University  Phone:       Phone:  

Phone:                 Email:philemon.chigeza@jcu.edu.au           Email :subhashni.taylor@jcu.edu.au 

Email: david.chinofunga@my.jcu.edu.au  

If you need counselling because of this research project, please contact: 

JCU Counselling Service 

Office hours: 9:00am - 4:00pm 

Phone:  

Level 1, Building B1 (Library) 

Headspace 

2/42 Grafton St, Cairns City QLD 4870 

Phone:  

If you have any concerns regarding the ethical conduct of the study, please contact: 

Human Ethics, Research Office 

James Cook University, Townsville, Qld, 4811 

Phone: (07) 4781 5011 (ethics@jcu.edu.au) 

mailto:philemon.chigeza@jcu.edu.au
mailto:subhashni.taylor@jcu.edu.au
mailto:david.chinofunga@my.jcu.edu.au
mailto:ethics@jcu.edu.au
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