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5 Abstract

Mathematics is central to science, technology, engineering and mathematics (STEM), which
is a core agenda for many governments (Siemon, 2021). In Australia, calculus-based
mathematics subjects are a prerequisite for STEM university courses. In Queensland, better
and more diverse career opportunities are available to high school students who graduate with
Mathematical Methods or Specialist Mathematics. However, the decline in student
participation and the high dropout rate in calculus-based mathematics options in Australia
(and consequently Queensland) has been a cause for concern for researchers and policy
makers. The Australian Mathematical Sciences Institute [AMSI] (2022) report called for
urgent action to address the declining trends. This doctoral study investigated trends in
student enrolment in calculus-based mathematics in Queensland and mathematics teachers’

perceptions on planning and teaching resources that can support student participation.

This study was conceptualised within a constructivist epistemology and has four phases. In
Phase One, the study used quantitative data from the Queensland Curriculum and Assessment
Authority (QCAA) to investigate the trends in enrolment of Year 11 and Year 12 students in
calculus-based mathematics. The study went on to investigate (1) the effects of socio-
economic indices for areas (SEIFA) from the Australian Bureau of Statistics (ABS); (2) the
schools’ index of community socio-educational advantage (ICSEA) values from the
Australian Curriculum, Assessment and Reporting Authority (ACARA), and (3) the effect of
schools’ transfer ratings from the Queensland Department of Education (DoE) on student
enrolment in calculus-based mathematics. In Phase Two, the study investigated and
developed a planning framework and associated pedagogical resources (procedural
flowcharts and concept maps) to sequence content from the Australian Mathematics
Curriculum (Years 7 to 10) to the Senior Queensland Mathematical Curriculum (Years 11 to
12) [QCAA, 2018], using the Mathematical Methods Unit 1 on Functions that is taught in
Year 11. In Phase Three, the study investigated teachers’ perceptions on the effectiveness of
the planning framework and associated pedagogical resources in mathematics teaching.
Sixteen purposefully sampled senior high school mathematics teachers participated in
workshops and completed surveys that included Likert scaled and open-ended questions.
Eight of these teachers were available for in-depth interviews. The quantitative data from the

Likert scale items was analysed using descriptive statistics in Excel and thematic analysis
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was used to analyse the qualitative data. In Phase Four, the study investigated how procedural
flowcharts could support problem solving in the Mathematical Methods subject. Data for this
final phase was obtained from an in-depth follow-up interview with a teacher and from
student-generated artefacts. Analysis of the data was informed by the stages of problem

solving (QCAA, 2018).

There are four main findings from this study. First, the trends analysis showed a high dropout
rate in calculus-based mathematics options as students progressed into their initial course/s of
study. The trends also showed that the SEIFA indices, the ICSEA indices and the schools’
transfer ratings correlated positively with the student dropout rate. Second, the study
developed a framework on content sequencing on how prior knowledge can be linked to new
knowledge during mathematics planning. The step-by-step systematic sequencing of
mathematics content using the framework can promote interlinking, coherence and spiralling
of concepts between the Australian Mathematics Curriculum (Years 7 to 10) and the recently
introduced Senior Queensland Mathematical Curriculum: Mathematical Methods. The study
identified that, depending on the level of assumed prior knowledge and the skills that students
can recall and apply, teachers can start teaching from any level of the sequenced content.
Third, the study revealed that the use of the pedagogical resources developed during the study
(procedural flowcharts and concept maps) can support students in mathematics because of
their visual nature. In particular, the pedagogical resources can be used to represent key
procedural and conceptual mathematics knowledge. Additionally, procedural flowcharts can
support student-centred teaching of mathematics procedures while concept maps can support
the interconnection of mathematical concepts, consolidation and assessment of mathematics
knowledge. Fourth, the study revealed that procedural flowcharts can support mathematics

problem solving through organising and communicating the proposed problem solutions.

One major outcome from this study is the development of the planning framework on content
sequencing and associated pedagogical resources (procedural flowcharts and concept maps).
The study suggests that using the framework on content sequencing can play an important
role in planning and teaching new mathematical knowledge by building on prior
mathematical knowledge. In the same way, procedural flowcharts and concepts maps can
play a significant role in representing mathematical knowledge that can support teaching of
mathematics. The study suggests that these tools can be adapted to all mathematics subjects

and levels, can help identify relationships between lower-level and upper-level topics,
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concepts and skills, can link the two levels and can provide opportunities of building and

organising mathematical knowledge in familiar and unfamiliar contexts.

This study emphasises that to address the high dropout rate and declining enrolment and to
promote participation in calculus-based mathematics, system-wide professional learning is
imperative to support teachers with content sequencing that can foster effective teaching of
mathematics. The content sequencing can be developed from prior knowledge and provide
gradual knowledge development as students build from what they already know. Thus, the
study advocates the use of concept maps and procedural flowcharts as visual representations
of mathematics conceptual and procedural knowledge and recommends the use of procedural

flowcharts to support problem-solving in mathematics.
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Chapter 1: Introduction and Background

1.1 Chapter Introduction

Mathematics is central to Science Technology Engineering and Mathematics (STEM),
which is a core agenda for most governments (Siemon, 2021). The ability to apply
mathematics in real-life situations and make predictions is vital in STEM (Office of the
Chief Scientist, 2012). Mathematics plays a central role in innovation, scientific,
technological, economic and social knowledge development (Watt et al., 2017), making
modern life heavily dependent on mathematics (Australian Academy of Science [AAS],
2016). Furthermore, mathematics is an enabler of innovation, scientific and technological
development, all of which are considered prosperity drivers and central to jobs of the
future (Black et al, 2021; Watt et al., 2017). In Australia, “innovation and digital
technologies have the potential to increase Australia’s productivity and raise GDP by
$136 billion in 2034, and create close to 540,000 jobs” (PwC, 2013, p. 13); hence,
mathematics is pivotal in reshaping the future (Chubb, 2012). Australia needs graduates
with advanced mathematics skills to promote science, innovation, engineering, data
synthesis and technology if it is to remain competitive in the global scenario, and this

study uses Queensland as a representative case.

Enhancing students’ participation and achievement in advanced or calculus-based
mathematics in schools is a focus of most governments all over the world (Noyes &
Adkins, 2016; Treacy et al., 2020). As the Australian Council of Deans of Science (2006)
noted, “Calculus-based mathematics school graduates are essential for a strong science,
research and innovation capacity. The statistics at hand indicate that enrolment numbers
are shrinking in these areas and students are instead electing to take elementary
mathematics” (p. 2). Similarly, Australia’s former Chief Scientist, Professor Ian Chubb,
has expressed concern about the lack of students studying higher levels of mathematics
in the last two years of high school (The Guardian, 2014). In a report by the Education
Council (2018), another former Australian Chief Scientist, Dr Alan Finkel, went further,
pointing out that more students are choosing low-level mathematics at upper secondary
school, but opt for STEM courses at university, although they would need advanced

mathematics skills to graduate in such degrees. This was supported by the Australian
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Mathematical Sciences Institute’s [AMSI](2021) 2020 report, which confirmed a shift by
students from calculus-based mathematics subjects to basic mathematics. Importantly,
another report by the AMSI (2022) raised an alarm that participation rates in calculus-
based mathematics have reached a critical point and called for action to be taken. These
reports also suggest that teachers can support students’ participation in calculus-based
mathematics if those teachers are supported and use research-informed resources, which

is the focus of this study.

1.2 Background to the Project

The structure of high school mathematics across Australia offers two diverging pathways,
one calculus-based and the other not (Maltas & Prescott, 2014). The senior mathematics
subjects in Queensland schools between 2008 and 2019 comprised Mathematics B and C
as calculus-based options and Mathematics A and Prevocational Mathematics as non-
calculus options. When the new curriculum was introduced in 2019, Mathematical
Methods and Specialist Mathematics were offered as calculus-based options and General
and Essential Mathematics as non-calculus options. Calculus-based options are regarded
as advanced mathematics options because they play an enabling role for STEM careers,
especially at tertiary level (Adelman et al., 2003; Carnevale et al., 2011; Long et al., 2012;
Rasmussen et al., 2011). Importantly, they offer broader and more diverse career
opportunities for high school graduates. Thus, students’ participation in these options
have implications for their future prosperity at both the personal and societal levels. To
bring to light these implications in depth, this study investigated trends in students’
participation in calculus-based mathematics in Queensland. It also investigated
mathematics teachers’ perceptions of planning, teaching and learning resources that could

support students’ participation in calculus-based mathematics.

Phase One of the study investigated trends in students’ participation in calculus-based
mathematics in Queensland, in both the phased-out and recently introduced curricula.
Trends are important as they can be considered the most basic indicator of educational
progress. “In competing economies, they are often used as an index of educational
strength and they are a strong predictor of the future educational achievement of a country”

(Wilson & Mack, 2014, p. 35). Importantly, trends in students’ participation can help
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evaluate progress and inform policy makers considering the huge expense involved in
delivering education (Kelly, 2013). There has been significant but conflicting media
coverage on student participation trends in advanced mathematics in Australia, which
shows the public’s interest in the subject (Kennedy et al., 2014). However, the state of
Queensland has been lagging behind other states such as New South Wales in terms of
the literature on such trends (Jaremus et al., 2018). When the central role of advanced
mathematics as enabler of several disciplines and key to success in STEM courses at
university means that participation in it can be an indicator of national educational
progress and workforce projections, student participation trends can be used to identify

areas that need improvement.

In Phase Two of this study, a planning framework and associated pedagogical resources
(procedural flowcharts and concept maps) were investigated and developed for content
sequencing from the Australian Mathematics Curriculum (Years 7 to 10) to the Senior
Queensland Mathematical Curriculum (Years 11 to 12) [QCAA, 2018] focusing on the
Mathematical Methods Unit 1 on Functions that are taught in Year 11. Several
mathematics subjects are on offer at senior secondary level in Queensland; however, this
study focused on Mathematical Methods, which is a calculus-based subject. In Phase
Three, the study investigated mathematics teachers’ perceptions of the effectiveness of
the planning framework and associated pedagogical resources. In Phase Four, the final
phase, the study investigated how procedural flowcharts can support problem-solving
skills in mathematics. Mathematics teachers are curriculum deliverers and thus their
perceptions after applying planning, teaching and learning resources during teaching and
learning to support students’ participation is of significant importance. “The primary
focus of the classroom teacher is on the planning, preparation and teaching of programs
to achieve specific student outcomes. The classroom teacher engages in critical reflection
and inquiry in order to improve knowledge and skills to effectively engage students and
improve their learning” (Victoria Department of Education and Training, 2017, p. 4).
Similarly, according to the Australian Institute for Teaching and School Leadership
(AITSL), teachers are expected to plan for and deliver effective teaching and learning
(2011). The mathematics teachers’ feedback after using the resources developed in this

study represents their views, observations and experience during teaching and learning.
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1.3 Research Focus and Questions

This study was conceptualised according to a constructivist epistemology. Constructivists
believe that new knowledge is attained and tested when people purposefully interact to
exchange ideas, beliefs, views, skills and experiences (Garbett, 2011; Taber, 2019). In
fact, “knowledge is attained when people come together to exchange ideas, articulate their
problems from their own perspectives, and construct meanings that make sense to them”
(Gordon, 2008, p. 324). During knowledge development, learners compare the new ideas
presented to them with their prior experience and ideas and during this process they may
either reject the new knowledge if there is a contradiction or update their previous
knowledge (Tomljenovic & Vorkapic, 2020). The filtering of new insights through the
lens of prior experience helps to make sense of what is presented and thus makes learning
an active process (Garbett, 2011). Therefore, the purposive and active interaction between
the researcher and senior school mathematics teachers and the sharing of experiences,
views, beliefs, observations and ideas were key in developing and evaluating the planning

and teaching resources in this study.

The focus of this study was not only to provide insight into the trends in students’
participation in calculus-based mathematics in Queensland but also to develop resources

that could be used by teachers to support the teaching and learning of the subject.
Therefore, the overarching research questions were:

1. What are the trends in Queensland senior students’ enrolment in calculus-based
mathematics subjects?
2. What pedagogical resources support the planning, teaching and learning of

Mathematical Methods for Queensland senior students?

As stated earlier, this study was divided into four phases. Phase One of the study
investigated the enrolment trends of Year 11 and 12 students in calculus-based
mathematics. The research question addressed in this phase was: What are the trends in
Queensland senior students’ enrolment in calculus-based mathematics subjects? An
additional study was undertaken in this phase to provide further insights into the impact

of other external factors such as socio-economic status and school location on student

4
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enrolment in calculus-based mathematics. The sub-question addressed in the additional
study was: What is the relationship between students’ enrolment in calculus-based
mathematics in the new Queensland curriculum and school level indicators such as socio-

economic status, school location and transfer rating?

Phase Two of the study investigated and developed a planning framework and associated
pedagogical resources (procedural flowcharts and concept maps) for content sequencing
from the Australian Mathematics Curriculum (Years 7 to 10) to the Senior Queensland
Mathematical Curriculum (Years 11 to 12) [QCAA, 2018], using the Mathematical
Methods Unit 1 on Functions that is taught in Year 11. This phase involved interacting
with teachers to exchange ideas, experiences and collaboratively trial the teaching and

learning resources. The sub-questions addressed in Phase Two were:

e What framework for content sequencing can support transition from junior to
senior mathematics?
e What teaching and learning resources can support students’ participation in

senior mathematics?

Phase Three of the study investigated mathematics teachers’ perceptions of the
effectiveness of the planning framework and associated pedagogical resources that were

developed in Phase Two. The sub-questions addressed in this phase were:

e What are teachers’ perceptions of a planning framework on content sequencing
for the teaching and learning of mathematics?

e What are senior secondary teachers’ perceptions of how concept maps support
the teaching and learning of mathematics at senior secondary school?

e What are senior secondary teachers’ perceptions of how procedural flowcharts
support teaching and learning of procedural fluency in the Mathematical

Methods subject?

Phase Four of the study investigated use of procedural flowcharts in supporting problem-
solving in mathematics. The questions addressed in this phase were:
o What are teachers’ perceptions of how procedural flowcharts support students’
problem-solving skills in the Mathematical Methods subject?
5
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This study focuses on supporting the teaching and learning of mathematics.
“Mathematics teaching and learning practices range from practising essential
mathematical routines to developing procedural fluency, through to investigating
scenarios, modelling the real world, solving problems and explaining reasoning”
(QCAA, 2018 p. 1). Importantly, the study aims to support teachers with resources to
develop students’ mathematics proficiencies which are understanding, fluency, problem
solving and reasoning (ACARA, 2010). Supporting students in making connections
between related concepts and progressively applying the familiar to develop new ideas
is key in developing mathematical understanding (ACARA, 2010; QCAA, 2018).
Moreover, when teachers provide students with the opportunity to develop the capacity
to select appropriate procedures, and carry them out flexibly, accurately and efficiently,
it can support fluency (ACARA, 2010; QCAA, 2018). Problem solving as a critical 21st
century skill can be supported through enabling students to plan a solution to a problem
through interpreting, formulating, modelling and investigating problem situations, and
communicating solutions effectively (ACARA, 2010; QCAA, 2018). Furthermore,
students are supported to develop reasoning skills when they explain their thinking,
deduce and justify strategies that thy have used and conclusions that they have reached
during problem solving. Similarly, QCAA identified building new knowledge from
prior knowledge and the ability to represent mathematical knowledge from one form to
another as vital for mathematical teaching and learning, which is also a major focus of

this study.

The teachers’ perceptions in this study are their observations, experiences and opinions
after using the resources developed that were in the study. The extent and depth of the
support that the resources offered teachers and students during teaching and learning of
mathematics at senior secondary was key in understanding the significance of the
resources and evaluating them. The perceptions sought from senior mathematics
teachers in this study were centred on how the resources supported the teaching and
learning environment and promoted students’ development of mathematics
proficiencies. In summary, the perceptions allowed teachers to provide in-depth
feedback on how they used the resources that were developed in this study to support
students’ mathematical development during teaching and learning of mathematics at

senior secondary level.
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1.4 Significance of the Study

This study investigated trends in Queensland students’ enrolment in calculus-based
mathematics subjects. The findings are significant because they can be used to evaluate
different programs, plan for the future and inform policy makers and interested groups.
Identification of the latest trends allows comparisons to be made between Queensland
and other states or jurisdictions in Australia. The main findings from the trends analysis
are the high dropout rate and continued decline in students’ enrolment in calculus-based

mathematics.

This study makes a significant contribution to mathematics education through the
development of a planning framework and associated pedagogical tools. The framework
links junior to senior level mathematics content, with an emphasis on building new
knowledge from prior knowledge. In Australia, the states and territories are responsible
for developing the senior curriculum (Year 11 to 12) while the junior curriculum is
developed by the federal government. Thus, the framework provides a crucial tool for
linking the two curricula. In Queensland there are currently limited resources that teachers
can use to link them and to develop a scope and sequence during planning. The framework
is not limited to calculus-based mathematics subjects but can be applied to any other

mathematics subjects to articulate the hierarchical nature of the discipline.

Lastly, the study developed and explored pedagogical resources (concept maps and
procedural flowcharts) that can support the teaching and learning of calculus-based
mathematics. Concept maps were developed and explored to support the development of
webs of concepts that link prior concepts to new concepts, thus emphasising the
importance of developing new knowledge from prior knowledge. Furthermore, using
concept maps in this way also support students’ conceptual knowledge, teacher
consolidation and assessment of students’ mathematical knowledge. Procedural
flowcharts were also developed to support students’ mathematics procedural fluency and
these serendipitously played an important additional role in supporting mathematics
problem-solving. Similar to the framework described above, these resources are not
limited to use in calculus-based mathematics only but may be applied to mathematics in

general.
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1.5 Structure of the Thesis

This thesis comprises 12 chapters. Chapter 2 reviews trends and factors influencing
students’ enrolment in calculus-based mathematics, planning for mathematics teaching
and learning, mathematical representations and how representations support problem
solving. Furthermore, the chapter reviews constructivism as a learning theory in
mathematics education and argues that although constructivism is strongly encouraged in
mathematics teaching and learning, cognitivism and behaviourism can also enrich the
learning environment. The chapter goes on to discuss these approaches and their impact
on instruction at the senior secondary level. These three learning theories are discussed
in Chapter 2 in order to explore areas where the resources can complement different

instructional models.

Chapter 3 outlines the theoretical framework for the study along with the methodology,
research design, data collection and analysis procedures. Chapter 4 analyses the trends in
Year 11 and Year 12 students’ enrolment in mathematics subjects from 2010 to 2019,
using data from the Queensland Curriculum and Assessment Authority (QCAA). This
analysis focuses on the phased-out Queensland senior certificate mathematics subjects

and was published in the journal PRISM: Casting New Light on Learning, Theory and

Practice, 2022. The Chapter 5 analyses the impact of social and economic factors on
trends in students’ enrolment in calculus-based mathematics in the new Queensland
Certificate in Education (QCE) from 2019 to 2020. This work was published as a research
paper in the conference proceedings of the /nternational Conference of Education in

Mathematics, Science and Technology, Antalya; Turkey 24 - 27 March 2022.

Chapter 6 argues for effective sequencing of mathematics content from junior (Years 7
to 10) to senior-level (Years 11 and 12) concepts and introduces a framework for
(re)conceptualising and sequencing the mathematics content. Unit 1 on Functions in the
Mathematical Methods subject is used as an example to demonstrate the framework.
This chapter was published in the Eurasia Journal of Mathematics, Science and

Technology Education, 2022.



https://openjournals.ljmu.ac.uk/index.php/prism/article/view/446
https://openjournals.ljmu.ac.uk/index.php/prism/article/view/446
https://researchonline.jcu.edu.au/76298/
https://researchonline.jcu.edu.au/76298/
https://www.ejmste.com/download/a-framework-for-content-sequencing-from-junior-to-senior-mathematics-curriculum-11930.pdf
https://www.ejmste.com/download/a-framework-for-content-sequencing-from-junior-to-senior-mathematics-curriculum-11930.pdf
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Chapter 7 investigates teachers’ perceptions of the utility of the content sequencing
framework developed in the previous chapter after they had used the framework in the
planning, teaching and learning of mathematics in Queensland, Australia. This chapter
was published in the Eurasia Journal of Mathematics, Science and Technology

Education (EJMSTE).

The following two chapters focus on teachers’ perceptions of the pedagogical resources
that were developed as part of this research, namely, the concept maps and the
procedural flowcharts. Chapter 8 explores teachers’ perceptions on the utility of concept
maps as a resource to link junior (Years 7 to 10) concepts to senior (Year 11 and 12)
concepts and how they support the teaching and learning of conceptual knowledge in
senior secondary mathematics. This chapter has been published in the /nternational

journal of innovation in science and mathematics education (IJISME).

Chapter 9 discusses mathematics teachers’ perceptions of the utility of procedural
flowcharts for developing procedural fluency and supporting student-centred teaching
and learning of mathematics. This chapter was published as a paper in the conference
proceedings for MERGA 44, 2022.

Chapter 10 examines how procedural flowcharts can support problem-solving in
Mathematical Methods which is a senior secondary calculus-based mathematics subject.

This chapter is under review in the Mathematics Education Research Journal (MERJ).

Chapter 11 is a synthesis of the overall findings, starting with the analysis of student
enrolment trends in calculus-based mathematics and thus highlights the main research
problem. The rest of the discussion focuses on teachers’ perceptions on how the
pedagogical resources that were developed in this study can support teaching and learning
of calculus-based mathematics to address the high dropout rates and declining enrolments
in this discipline. Finally, Chapter 12 presents the conclusions along with the implications

for the teaching of calculus-based mathematics.


https://www.ejmste.com/article/teachers-perceptions-of-the-effectiveness-of-a-planning-framework-on-content-sequencing-for-the-13108
https://www.ejmste.com/article/teachers-perceptions-of-the-effectiveness-of-a-planning-framework-on-content-sequencing-for-the-13108
https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.30722%2FIJISME.31.01.003&data=05%7C01%7Cdavid.chinofunga%40my.jcu.edu.au%7Ce83587e109474984bd2f08db7697464e%7C2eba4cf8af764db3bcaf81b5592535ef%7C0%7C0%7C638234164322588590%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=qmO8NBWkKKZR9lN%2BxLgojHrgaxoqmVfghIMe2qI7kaU%3D&reserved=0
https://aus01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.30722%2FIJISME.31.01.003&data=05%7C01%7Cdavid.chinofunga%40my.jcu.edu.au%7Ce83587e109474984bd2f08db7697464e%7C2eba4cf8af764db3bcaf81b5592535ef%7C0%7C0%7C638234164322588590%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=qmO8NBWkKKZR9lN%2BxLgojHrgaxoqmVfghIMe2qI7kaU%3D&reserved=0
https://merga.net.au/common/Uploaded%20files/Annual%20Conference%20Proceedings/2022%20Annual%20Conference%20Proceedings/Research%20Papers/Chinofunga%20RP%20MERGA44%202022.pdf
https://merga.net.au/common/Uploaded%20files/Annual%20Conference%20Proceedings/2022%20Annual%20Conference%20Proceedings/Research%20Papers/Chinofunga%20RP%20MERGA44%202022.pdf
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Chapter 2: Literature Review

2.1 Introduction
This chapter begins with a brief discussion of the importance of calculus-based

mathematics in senior high school and its role in future career opportunities. It then goes
on to review the trends and factors that influence students’ enrolment in calculus-based
mathematics. A discussion of the research on recommendations to support student
enrolment in calculus-based mathematics follows. The role of the mathematics teacher
emerges as highly influential in student participation. An effective mathematics teacher
not only possesses requisite subject content knowledge but also needs a thorough
understanding of methods and skills to effectively deliver the content, known as
pedagogical content knowledge. Furthermore, pedagogy that is collaboratively planned
and underpinned by appropriate learning theories has important implications for
mathematics teaching and learning. This leads into a review of the role of collaborative
planning and learning theories in the teaching and learning of mathematics. Finally,
specific pedagogical resources such as mathematical representations and their role in

supporting problem solving are explored.

2.2 Importance of Senior Secondary Advanced (Calculus-based) Mathematics
High school advanced mathematics has been labelled as a critical filter of future

opportunities (Watt et al., 2017). Across the world student enrolment in advanced
mathematics have been a focus of researchers (Kennedy, 2014; Hine, 2019; Hodgen,
2010; Noyes & Adkins, 2016) as the benefits of enrolling in the subjects go beyond
personal prosperity (Adkins & Noyes, 2016; Gijsbers et al., 2020). In Australia and
Queensland, in particular, advanced mathematics subjects are the preferred prerequisites

for high impact mathematics intensive programs such as engineering and medicine.

Furthermore, advanced mathematics plays an important role in the economic growth,
research and innovation, and the general competitiveness of a country. Advanced
mathematics subjects are generally those that enable students to further their
participation in Science, Technology, Engineering, and Mathematics (STEM) fields
(Wilkie & Tan, 2019) as well as develop students’ logical thinking and reasoning skills
which are 21st century skills (Attridge & Inglis, 2013; O’Meara et al., 2023). Wolf

(2002) notes that studying advanced mathematics at senior secondary level positively
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influences future earnings. Advanced mathematics offers interdisciplinary skills needed
to be successful in other mathematics related courses (Kennedy et al 2014; Ker, 2013).
Moreover, its key enabling role in STEM helps to develop a scientifically literate
workforce (Chinnappan et al., 2007; Maass et al., 2019).

In Australia, advanced level mathematics subjects can be referred to as calculus-based
mathematics subjects and are now regarded as an ‘endangered species’ (Maltas and
Prescott, 2014) because many senior students are avoiding them (Wienk & O’Connor
2020). Determining trends in students’ participation in calculus-based mathematics at
senior secondary levels in Australia has been a focus for researchers for a long time (see
Malone et al., 1993; Dekkers & Malone, 2000; Forgasz, 2006; Kennedy, 2014; Hine,
2019; Jennings, 2022). McPhan et al., (2008) suggest that these trends can inform a
country on its preparedness to supply the Science, Technology, Engineering and
Mathematics sectors with students possessing the necessary prerequisites and can be
used to evaluate the future economic competitiveness of Australia in the technologically
advancing world. Although different factors that influence student enrolment and
participation in advanced mathematics have been identified by researchers (Hine, 2019;
Kirkham et al., 2020; McPhan et al., 2008), limited resources have been developed for
teachers to support student participation. Thus, investigating the participation trends in
calculus-based mathematics can provide valuable insight into what factors influence the

trends as well as identify areas that need intervention.

2.3 Factors that influence student participation in calculus-based mathematics at
senior secondary.
Researchers have identified an assortment of personal, educational, social, economic

and demographical reasons that impact student participation in calculus-based
mathematics. Generally, students are influenced by low levels of perceived competence
in mathematics (Nagy et al., 2010; Kirkham et al., 2020; Sikora & Pitt 2019); students’
dissatisfaction with Mathematics (Hine, 2019); prior experiences of mathematics (Li
2019; Ng, 2021; Fullarton & Ainley 2000; McPhan et al. 2008) perceived level of
difficulty of the subject (Hine, 2019), parents, siblings and teacher influence (Jennings,
2022; Kirkham et al., 2020) and the excessive amount of time that the subject requires

in order to succeed (Jaremus et al. 2019; Kirkham et al., 2020; McPhan et al. 2008).
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In addition, most Australian universities have removed Mathematics as a prerequisite
for many courses and instead offer bridging courses resulting in students regarding
calculus-based mathematics as unnecessary as they can catch up after senior secondary
school (Hine 2023). Importantly, students aim to achieve a high Australian Tertiary
Admission Rank (ATAR) score to be accepted in highly sought-after courses so
avoiding calculus-based mathematics gives them a better chance to achieve a high score
(Kirkham, 2020). Thus, students with good prior results in calculus-based mathematics
choose to opt out of these subjects because they perceive them as possible threats to
achieving a high ATAR at senior secondary school. Furthermore, many students pursue
some undergraduate programs without the requisite mathematical knowledge required
to be successful in the courses (Nicholas et al., 2015). However, students who enter
university to pursue mathematics intensive courses without required mathematics

knowledge and skills have a low attainment rate (Jennings, 2011).

Research indicates that the most common reason that students opt out of advanced
mathematics is the perceived level of difficulty of the subjects (see Brown et al., 2008;
Hine, 2019; Kirkham et al, 2020; McPhan et al., 2008; O’Meara et al, 2020). Students
hold the perception that there is a level when mathematics starts to be difficult, for
example as they transition from junior to senior secondary school (Brown et al., 2008).
Similarly, students feel calculus-based mathematics is too challenging and the
knowledge and skills they have is not adequate as they perceive themselves not to be
“really smart” (Hine 2019, 2023). However, a recent study by Jennings (2022) noted
that students in Queensland do not consider their ability and skills as a factor in
choosing a mathematics subject at senior secondary level but rather the usefulness of the
subject post-secondary. This is important because students choosing subjects based on
future interests may result in diverse ability groups of students in the different
mathematics options which might put pressure on the teacher on how to best engage the

students during teaching.

Students’ perceptions point to the notion that if they did not understand some junior

mathematics concepts well, then they would not understand senior advanced
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mathematics, hence there was no need to pursue such options (Brown et al., 2008).
Additionally, lack of an engaging and challenging pedagogy may lead to students
choosing not to pursue mathematics subjects perceived as difficult (Goss, 2010). Some
students also identified that they experienced poor teaching of mathematics and as a
result they lost interest in the subject Easey (2019). Easey went further to note that the
teaching of students by out-of-field teachers at junior level might contribute to students
not choosing advanced mathematics at senior secondary level. Whilst Brown et al.,
(2008) posit that students feel they need to have obtained high grades at junior level for
them to do well in advanced mathematics at senior level. Conversely, Mujtaba and
colleagues (2014) find no relationship between prior attainment and the decision to
pursue senior advanced mathematics. This finding is also true for Queensland (Jennings,
2022). Thus, senior Advanced Mathematics classes consist of students with diverse

mathematics experiences which may influence their perception of the subject.

The economic and social variability of a nation is significantly influenced by the extent
to which students from diverse backgrounds (that include educational, economic,
linguistic, cultural, racial) are empowered to sustain their aspirations in mathematics
(Ng, 2019). Ng (2019) emphasised that in Australia students from socially,
economically and educationally disadvantaged backgrounds are overrepresented among
those who obtain poor results in national and international benchmark assessments.
Similarly, schools in regional and remote areas are highly impacted by the decline in
student enrolment in calculus-based mathematics compared to metropolitan schools
(Lynos et al., 2006). They went further to note that schools in regional areas are twice as
likely, and those in remote areas are six times as likely as their metropolitan colleagues
to report high annual staff turnover rates in mathematics. Furthermore, most schools in
non-metropolitan areas resort to composite classes because of shortage of teachers, for
example, combining Year 11 and 12 Mathematical Methods classes. Lynos and
colleagues posit that the majority of teachers of Mathematics outside metropolitan areas
indicated a significantly higher unmet need for teaching and learning resources that can
cater for student diversity and ability levels. Consequently, at university level, students
from rural and remote areas are underrepresented in mathematics intensive programs

(Thomson & De Bortoli, 2008). The following section considers some
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recommendations to support student enrolment and participation in calculus-based

mathematics.

2.4 Recommendations to support student enrolment and participation in calculus-
based mathematics
To increase student enrolment, research has recommended providing incentives to

students in the form of bonus points (Hine, 2023; O’Meara et al., 2020, 2023) and
engaging with mathematics extra-curricular activities (Mujtaba et al., 2010). Other
researchers suggest that universities should have unambiguous prerequisites for courses
that are mathematics intensive (Maltas & Prescott, 2014; McPhan et al., 2008) and seek
new and effective ways to deliver information of the importance of Advanced
Mathematics at an earlier age (Kaleva et al., 2019). Of key importance to my study is a
call by Mujtaba and colleagues (2014) for support to be provided to in-service teachers
to meet the demand for high quality mathematics teachers if participation in Advanced
Mathematics is to be boosted. This is because access to mathematics resources for
teachers has important implications for their classroom practice which in turn can

influence student participation (Mujtaba et al., 2010).

Research shows that there is no greater influence on student participation and
achievement than the teacher (Stronge, 2013). Although there are many factors that can
affect student achievement - choices, learning, attitudes and beliefs - an effective
teacher is the greatest asset in making a positive difference (Hattie, 2012). For example,
Hattie argues that an expert teacher can identify the best and most effective ways in
which to represent the subject they teach. Teaching effectiveness is the single most
important school related factor influencing student engagement, experiences, and
achievement (Hattie 2013; Leigh, 2010; Rivkin et al., 2005; Rowe, 2003). To clarify, it
is what teachers know and do that has the greatest influence on students’ learning and
achievement (Hattie, 2003). “The nature of classroom mathematics teaching
significantly affects the nature and level of students’ participation” (Hiebert & Grouws,
2007 p. 371). In mathematics, teachers can be effective by focusing on building upon
what students know, employing different forms of representations, making connections,

building procedural fluency and fostering communication (Sullivan, 2011).
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Similarly, developing teacher capacity in teaching mathematics is identified as one of
the key strategies to increase student participation in Advanced Mathematics. Hine
(2018) posits that there is a need to develop teaching and learning practices that support
the mathematics curriculum. Quality teachers supported by appropriate resources are a
significant factor that can assist in the teaching of mathematics and thus have a positive
impact on student achievement (Hoyles, 2009). Ngu (2019) notes that a significant
number of socially and economically disadvantaged students are motivated to pursue
Advanced Mathematics and it is important for teachers to develop pedagogical practices
to sustain the students’ motivation and aspirations to learn advanced mathematics.
Maltas and Prescott (2014) recommend the development of teachers’ resources that they
can use to support student engagement in calculus-based mathematics if Australia is to
increase enrolment in the subjects. Outside of the Australian context, a review
conducted by Smith (2017) of the status of mathematics education at senior secondary
level in England, recommends the need to support senior mathematics teachers in their

teaching through professional development and research informed resources.

Lynos and colleagues (2006) also suggest that research informed resources and
strategies can support teachers in schools outside metropolitan areas thus having a
positive impact on student participation in Advanced Mathematics. Importantly, Murray
(2011) notes that students emphasised mathematics teaching should concentrate more
on ways that can help students understand mathematics at every level. Additionally, the
focus should not only be linked to boosting enrolment but retaining students in the

subjects.

Retention of students in calculus-based mathematics should be a focus for all
stakeholders (Rasmussen & Ellis, 2013). “Instructional variables such as actively
engaging students, having students explain their reasoning, etc. may make a difference
in retaining STEM majors” Rasmussen & Ellis, 2013 p. 463). Students who are less
engaged in mathematics at lower levels are more likely to drop out from Advanced
Mathematics subjects at upper levels (Ellis et al., 2014). There is a high chance of
dropping out of the subject when students are not confident that the skills that they
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obtained from lower levels are adequate for them to engage meaningfully with content
at the higher level (Rasmussen & Ellis, 2013). It is important for teachers to build new
knowledge from prior knowledge to support students’ understanding of mathematics.
Therefore, sequencing concepts in a manner that allows students to use their prior
knowledge to make sense of new knowledge has important implications for
mathematics teaching and learning. Collaborative planning can support teachers in such
sequencing. The following section discusses the role of planning in mathematics

teaching.

2.5 Role of planning in mathematics teaching.
The planning and teaching of mathematics is complex as teachers are faced with ever-

increasing demands to cater for students’ cognitive diversity, and supporting students’
engagement and understanding (Davidson, 2019; Sullivan et al; 2013). Teachers
consider planning as the core of teaching (Akyuz et al., 2013), therefore planning is a
fundamental step in the mathematics teaching cycle (Davidson, 2019). However,
planning is a broad activity and much of the focus has been on the time teachers spend
preparing and designing activities for students (Superfine, 2008). But when teachers
know and plan what they hope students will learn, they are better placed to support
them in the learning process (Sullivan et al., 2012). The sequence of knowledge and
skills fostered by a teacher during planning influences student engagement and learning
in mathematics (Kilpatrick et a., 2001). However, there is limited research on how to
support teachers during planning in developing mathematics content sequencing that

can support teaching and student engagement (Roche et al., 2014).

Prior research on content sequencing indicates that this process has many benefits in
teaching and learning of mathematics. Identifying prerequisite concepts that underpin
new knowledge supports instruction planning (Panasuk et al., 2002). To clarify,
sequencing of content in a unit is more than ordering content but is informed by the
relationships and connections between the concepts, and the deeper understanding that

the sequence allows students to access (Howard & Hill, 2020).

“The curriculum in many subjects is dependent on a deliberate approach to the
sequencing of concepts because one concept often relies on the understanding of

what has come previously and what will come next. Effective sequencing
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provides a way of embellishing and unifying what may otherwise seem like

disconnected fragments of knowledge” (Howard & Hill, 2020, p. 3).

They went further to posit that sequencing content requires a systematic, streamlined
approach to explicitly demonstrate connections between what has been learnt and what
is to come next so that these connections strengthen students’ cognitive architecture,
rather than act as an extraneous distraction. Given the above, content sequencing during

planning plays an important role in mathematics teaching.

Mathematics teachers are responsible for selecting and sequencing mathematics tasks,
responding to students’ misconceptions, catering for the cognitive diversity of students,
engaging students, using different representations of mathematics in their teaching and
determining learning progressions. Therefore, it is critically important to support
teachers in the planning and teaching process if effective teaching is to be realised
(Galant, 2013; Roche et al., 2014). “Learning progressions mean an evidence-based
sequence of key concepts in mathematics, supported by suggested approaches to
learning and teaching that are tailored to different stages of the sequence” (Callingham
et al., 2021, p. 334). Teaching that starts from prior knowledge can address
preconceptions which might interfere with learning new content (Hodgen et al., 2018;
McGoven & Tall, 2010). When students are constructing new knowledge, the form in
which prerequisite concepts are presented affect how the new knowledge is constructed
(Panasuk et al., 2002). Importantly, Australian mathematics teachers are expected to
plan mathematics sequences that promote student engagement, flexibility, creativity and
problem solving to develop deeper understanding (Davidson, 2019). Davidson went
further to note that mathematics teachers in Australia are expected to plan (and teach)
mathematical sequences and experiences that encourage students to think flexibly and
creatively about concepts to allow them to develop “big picture” thinking. Thus, content
sequencing is a key first step when planning for mathematics teaching. Additionally,
use of pedagogical resources to support student engagement, flexibility, creativity and

problem solving is essential for deep understanding.

Mathematics teaching should focus on providing students with opportunities to engage,

reflect and demonstrate understanding. Teaching that allows students to reflect, build
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upon, transform and restructure their prior knowledge support the development of
mathematics competences (Donovan & Bransford, 2005). Emphasising meaningful
relationships between concepts and prompting students to search for connections
provide better opportunities for student understanding and achievement (Panasuk et al.,
2002). Teachers should plan for time and support for students to make mathematical
connections (Davidson, 2019). In fact, when teaching for understanding, students
should be supported and given time to explore, make connections, build meaning and
understanding (Black, 2007; Davidson, 2019). Similarly, the ability to recognise
interconnections between mathematics concepts and to develop different representations
of mathematics concepts demonstrates a deeper level of mathematics understanding
(Galant, 2013). During teaching for understanding, visual representations can be used as
tools for manipulation and communication and conceptual understanding of
mathematical ideas (Zazkis & Liljedahl, 2004). Similarly, research indicates that
teachers who develop and organise content knowledge in an integrated manner are
positioned to be expert teachers (Hattie, 2012). Additionally, mathematics teachers have
to appreciate the importance of learning theories in informing practice in educational

settings. This is discussed at greater length in following section.

2.6 Importance of Learning Theories in Mathematics Education.
Learning theories may contribute immensely to the current learning environment

through offering solutions (Ertmer & Newby, 2013). Knowledge of learning theories
allows practitioners to understand and know when to apply these theories to encourage
student participation (Ertmer & Newby, 2013; Garbett, 2011). Theories of learning and
instruction in mathematics education are tools for either transmitting knowledge to
learners or directing them to construct their own knowledge (Cobb, 1988). However,
calls for more student participation opportunities during learning have been amplified
(NCTM, 2000) if learning outcomes are to improve (Eronen & Kéarnd, 2018), if students
are to appreciate the value, relevance and importance of mathematics (Riegle-Crumb et
al., 2019) and to enjoy learning mathematics (Noyes, 2012). Thus, the contribution of
learning theories to shaping classroom practice and supporting students’ participation is
at the centre of effective teaching and learning of mathematics. Constructivism has
emerged as the most advocated learning theory in mathematics education because it is

student-centred (Confrey & Kazak, 2006).
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2.7 Constructivism
Constructivism emerged as a learning theory when scholars started realising the limits

of the notion that “knowledge is independent of the knower” and began advocating for
problem posing and interconnection of ideas (Glasersfeld, 1995). Bruner, Dewey, Piaget
and Vygotsky are credited as the main scholars who laid the foundation of
constructivism (Kumar, 2006; Bada & Olusegun; 2015). The pillars of constructivism
include Piaget’s (1953) views on how learners construct knowledge, Bruner’s (1973)
cognitive structures, Dewey’s inquiry learning (real-world problems) and Vygotsky’s
social view of acquiring learning (Brau, 2018; Perkins 1992). Although there are many
different types of constructivism, it can be broadly divided into mainly two; cognitive

(individual) and social constructivism (Powell & Kalina, 2009, Stewart, 2021).

2.7.1 Cognitive and Social Constructivism
Constructivism broadly focuses on how knowledge is constructed or how people

acquire knowledge and learn. Specifically, cognitive constructivism was developed by
Piaget (1953) who focused on individual construction of knowledge through a personal
process. According to Piaget, the knowledge people interact with is added to schemas of
prior knowledge wherein learners construct knowledge only in their minds (Alanazi,
2016; Stewart, 2021). The schemas are developed through the process of assimilation
and accommodation (Powell & Kalina, 2009). Piaget (1953) noted that humans cannot
be given information, which they immediately understand and use; instead, humans

must construct their own individual knowledge.

In contrast, social constructivism is when knowledge is constructed through interaction
in a social setting (Powell & Kalina, 2009). Vygotsky is regarded as one of the main
proponents of social constructivism when he questioned Piaget’s views that focused
mainly on cognitive development as an individual and not as a collaborative process
(Martinez, 2010). Vygotsky went from focusing on the internal processes of learning
that Piaget focused on to include external forces such as society and the environment
(Alazani, 2016). Social constructivists believe reality is constructed through interaction
in a social setting, and knowledge is socially and culturally constructed as people

interact with each other and the environment they live in, while learning is a social
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process that occurs when learners engage in social activities (Kim, 2001). What makes
constructivism unique and appealing is the understanding that students have a greater

contribution in the learning process compared to teacher-centred learning theories.

2.7.2 Learning informed by constructivism
Constructivists view learning as a process of constructing new knowledge from

learners’ (or students’) beliefs, skills and prior experience; as a result, learners are
simultaneously creators of knowledge (Garbett, 2011; Bruning et al., 2004).
Constructivism is generally regarded as a theory of learning or meaning making, that
emphasises individuals creating new knowledge on the basis of the interaction between
prior knowledge, beliefs, ideas and any new knowledge with which they come into
contact (Richardson, 2003). This means that, learners’ beliefs, skills, experiences and
attitudes are an important factor in their learning (Agarkar, 2019), as they test the

viability of anything new presented to them (Bodner et al., 2001).

The knowledge learners have about any subject (phenomenon) of interest is determined
by their experiences (Ertmer & Newby, 2013). Learners’ prior understanding is central
to their understanding of new concepts, while for educators it directs design and
implementation of learning instructions (Simon, 1995). Constructivism is a learning
theory that is based on the premise that learning is the result of mental construction
where new knowledge is examined through what someone already knows (Dennick,
2016). Similarly, in constructivism, knowledge is constructed based on the existing
knowledge in learners’ minds (Hmelo-Silver et al., 2007). The prior knowledge that
each learner holds based on their unique experiences helps them to develop meaning of
the world and construct representations, therefore each learner’s construct is unique
(Begg, 1999). Thus, learners come to learning with knowledge from their prior

experience, which forms the foundation of any future learning.

In constructivism, learning is about creating knowledge rather than just receiving,
understanding and applying it, recalling, thinking about and examining it or just
gathering and memorising it (Gordon, 2008). When students are exposed to new

knowledge, their minds filter it and create their own meaning based on their prior
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experience, ideas and attitudes (Agarkar, 2019). When the mind has evaluated the new
phenomenon, it may either accept it and alter the existing knowledge or discard it as
peripheral or unrelated; thus, learners constantly update their knowledge as they engage
with new experiences (Bada & Olusegun, 2015). According to Brau (2018), the central
role of learners is to reflect on their prior experiences and consider variables that might
limit the assimilation of new knowledge. When they do need to accommodate new
knowledge, “this cognitive reconstruction is called reflective abstraction, as it involves
reflecting the existing cognitive structures to a higher plane of thought and applying
these structures to new stimuli” (Faulkenberry & Faulkenbury, 2006, p. 18). As a result,
content should be presented in a spiral form so that new knowledge is built upon what
learners already know (Bruner, 1973). Thus, constructivism involves applying, testing,
reflection, evaluation, drawing conclusions from findings and linking new knowledge

with prior knowledge.

Glasersfeld (1995) notes that as learners link new knowledge to prior knowledge, they
build conceptual understanding and emphasises that “concepts cannot simply be
transferred from teachers to students — they have to be conceived” (p. 2). As a result,
drilling students to answer standard questions does not result in competence when
responding to unfamiliar questions. Constructivists focus instead on the learners’
knowledge construction processes and how knowledge is acquired. Knowledge is
constructed not just through remembering facts or perceived universal truths but as a
process of sense making (Hein, 1991). In constructivism learners are at the centre of

knowledge creation because they are actively involved in the learning process.

Learners are active participants in their learning as they interpret the meaning of new
knowledge and reference it to prior experience (Garbett, 2011). Guided by the teacher,
learners create knowledge actively, rather than acquiring it passively from the teacher or
any other medium (Ertmer & Newby, 2013). Constructivists assert that learners
construct knowledge rather than acquire new knowledge; therefore, learning is an active
process throughout the learners’ experiences and the environment in which they are
learning (Alanazi, 2016). Constructivism emphasises active learner participation and
engagement with content which in turn promotes attentiveness and effective learning

(Hyslop-Margison & Strobel, 2007). Hyslop-Margison and Strobel nonetheless posited
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that a teacher’s role remains critical and unrivalled, as learners depend on their
guidance, feedback and support in creating and enabling an environment that promotes
knowledge creation. Constructivists emphasise that learners must be active participants
in the learning process and a teacher’s role involves facilitation of learning (Fernando &
Marikar, 2017). Interactions in the learning environment within a constructivist setting

is central to knowledge development.

Knowledge, meaning and understanding are developed collaboratively by learners as
they interact among themselves and with their environment; thus, learning is also a
social process (Kim, 2001). At the same time, Ertmer and Newby (2013) see learners as
unique individuals and how they interact among themselves and with learning resources
and educators is at the centre of constructivism. Within a social setting, learners have to
relate with a problem for them to make sense of it and construct knowledge (Roth,
2000). Roth went further to posit that when learners collaborate, that is, when reality
and knowledge are socially constructed, the learning is a social process. Constructivists
emphasise that focus should be on learners and on creating collaborative, interactive
environments (Alanazi, 2016). However, Ertmer & Newby note that in the social
process, guidance can come from the educator and/or capable peers as they collaborate,

which results in skills exchange and deeper understanding.

Vygotsky looked at learning as a collaborative process, thus introducing the social
aspect of constructivism. The social environment plays an important role in knowledge
construction as learners may test each other’s knowledge and provide alternative views,
thereby questioning the viability of existing knowledge (Thomas et al., 2014). The
interaction between learners and an adult or more advanced peers is necessary for
knowledge construction and development and it requires the active involvement of all
participants (Begg, 1999). Thus, a teacher can intentionally nurture and teach children
only in collaboration with them. The process requires the teacher to move ahead of

development into what Vygotsky called a zone of proximal development (Howe, 1996).
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Vygotsky’s zone of proximal development (ZPD) emphasises that the level of
understanding that individual learning provides might not match skills that are gained
through peer learning or when learning is guided by an adult (Fani & Ghaemi, 2011).
ZPD can be defined as “the distance between the actual developmental level as
determined by independent problem solving and the level of potential development as
determined through problem solving under adult guidance or in collaboration with more
capable peers” (Vygotsky, 1978 p. 86). Vygotsky noted that a learner who can
understand something with guidance now will be able to do it independently in the
future. Thus, learners need guidance to create meaning during the learning process,
especially of complex phenomena (Kirchner et al., 2006). Vygotsky emphasised that
learners can successfully imitate concepts at their developmental level, but solutions of
high-level mathematics problems may not be understood no matter how many times the
teacher repeats the solution. Hence, it is important that learners are exposed to problems
slightly above their developmental level so that they see the need to work
collaboratively or with experts such as teachers in order to solve the problem
(Roosevelt, 2008). Consequently, teachers, peers, learning instructions and any other
media should guide learners to develop their skills base, not just to consolidate what

they already know.

However, some teachers feel that constructivist approach to tasks and activities are
difficult to implement as they require more time which is not feasible for teachers faced
with pressures such as completing the syllabus and preparing students for assessments
(Teong, 2002). From this perspective, constructivism is viewed as vague and having
different meaning and interpretation to different people while some scholars have
reservations about what it represents (Powell & Kalina, 2009). Constructivism
challenges conventional approaches such as behaviourism and cognitivism but it is
“notoriously slippery and difficult to pin down” as it means different things to different
authors and covers a multitude of differing positions as it lacks a clearly stated set of
core claims (Hay, 2016 p. 520). Thus, constructivism has been a popular but contested

approach to learning.
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Other critics of constructivist approaches say it focuses on promoting group knowledge
construction even though education systems promote mostly individual assessments
(Alanazi, 2016). Some psychology scholars criticise constructivism because there is a
chance a dominant group might control interactions within their social learning
environment during collaborative knowledge construction, making other students feel
ignored (Gupta, 2011). Gupta went further to posit that dominant learners may end up
driving the whole group towards their thinking and overlooking the knowledge

construction and experience of others.

Similarly, some critics of the Piagetian concept of constructivism suggest that it focuses
mainly on cognitive factors, ignoring other contributing environmental and
technological factors (Alanazi, 2016). Piagetian concept of constructivism overlooks
important contextual factors in learning environments such as available educational
resources, the need to integrate media into learning environments, and the affordance of
individual learner thinking (Ackermann, 2001). They emphasise that such resources
make a significant contribution to learning and thus should not be ignored. Similarly,
the different ways in which learners interpret the world based on their diverse and
unique experiences makes instruction less effective because curriculum components
might not be commonly constructed (Jonassen, 1991). Moreover, common curricula
will be ineffective, inefficient and not applicable if learners are to apply their different

thinking with minimum guidance (Carlson, 1992).

In addition, the idea of learning with minimum guidance goes against proponents of
structured learning. Kirschner and colleagues (2006) suggest that constructivism
promotes a teaching style with minimal guidance for students which they say might
result in students feeling “lost and frustrated” (p. 6). They also noted that teaching
approaches based on minimal guidance, as practiced through constructivist approaches,
ignore empirical studies that have shown that unguided instructions are not effective in
learning environments. For example, they pointed out that instruction based on minimal
guidance ignores the importance and structure of working memory during learning.

However, the emphasis placed on construction of new knowledge from prior experience
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in constructivism is also supported by the cognitive load theory proposed by Sweller in

1988, one of the critics of constructivism.

2.7.3 Cognitive Load Theory
As students move from a junior to senior level in education, there is an escalation in

cognitive demand. The cognitive load theory focuses on prior knowledge playing a
central role in lessening the cognitive burden. It emphasises the importance of
foundational knowledge in acquiring new knowledge (Sweller et al., 2011). Prior
knowledge that is relevant and related to new knowledge makes learning the new
knowledge less difficult (Paas & Sweller, 2012). Students who have acquired the
necessary schema (foundational knowledge) have a better chance of deriving meaning
from new knowledge and can use it as a building block to master a skill (Moreno &
Park, 2010), thus learning follows a constructivist approach. Moreover, automation of
lower level (foundational knowledge) schemas is critical for developing higher level
(new knowledge) schemas (Sweller, 2010). Sweller (2010) went further to note that
students who possess the relevant lower-level schemas in their long-term memory can
learn and retain new knowledge effectively. Therefore, students who are highly skilled
and can readily learn new knowledge have acquired enormous stores of schematic

knowledge in their memory.

The long-term memory and working memory affect the cognitive load. Changes in the
long-term memory store, that is, knowledge that has been learnt from others or through
problem solving, happens slowly and gradually (Sweller, 2010). The working memory
is activated when students are exposed to new information which enable them to
transfer available information from long term memory and keep it to support problem
solving. However, the working memory has limited capacity when dealing with novel
information and does not have the capacity to process more than 4 items (Cowan,
2001). Thus, burdening the working memory can impede learning (Martins & Evans,
2020). When familiar information is involved, few working memory resources are
utilized. This freeing up of working memory increases the opportunity to learn and store
information in existing schemas in long term memory (Rosenshine, 2009). Thus, the

cognitive load theory can complement the main ideas of constructivism. Therefore, if
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constructivism is to be fully adopted, teachers should be supported with resources to

reinforce its implementation.

2.7.4 Constructivism in Mathematics Education

Direct instruction has been the default way of teaching mathematics for a very long
period (Kaur, 2019; Faulkenberry & Faulkenberry, 2006). In this case, the educator is
regarded as the centre of knowledge and expected to transmit knowledge to students
during the lesson (Ampadu & Danso, 2018). Lecturing is still considered applicable and
viable in some mathematics classes, but from the 1970s there has been a consensus that
constructivism offers students a better opportunity to gain a deeper understanding of the
subject, to solve problems and to develop critical thinking (Ampadu & Danso, 2018;
Boaler, 2009). Similarly, “critical thinking, problem-solving approach and analytical
skills are the most important skills that are developed in the process of mathematics
education and are also the cornerstones of sustainability” (Vintere, 2018, p. 6). This is
critically important, especially at senior secondary school as students” mathematics

subject choices at this level directly influence their future careers.

At senior secondary level, students’ prior knowledge from junior levels can provide a
foundation for developing better conceptual understanding. A mathematics teacher’s
planning must be anchored on learners’ prior experience which is preceded by a
systematically planned teaching sequence with the aim of developing learners who can
solve complex problems (Garbett, 2011). This is because the prior knowledge and skills
students bring as they interact with new knowledge will determine how successfully
they interpret and assimilate the new knowledge (Lambert, 1995). Including prior
knowledge in planning also provides an opportunity to correct student misconceptions.
Taylor and Kowalski (2014) also advocate that planning by teachers must consider
students’ prior knowledge and skills because it will allow students to develop new
knowledge from junior level concepts, thus enhancing the likelihood of engaging

successfully with the learning activities with minimum assistance from the teacher.

Constructivism sees the role of the teacher as a facilitator and moderator rather than a

source of facts, rules and principles (Fernando & Marikar, 2017).). Learners engage in
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activities and/or assessment tasks for the educator to evaluate whether they can apply
new knowledge that they have constructed (Garbett, 2011). Constructivist teachers
continually assess how an activity is helping learners reach the intended success criteria
while continuing to reflect, deepen their understanding and expanding their knowledge
(Shah, 2019). Teachers should provide students with opportunities to construct their
meaning and interpretations as they engage with the learning (Airasian, & Walsh,
1997). Moreover, teachers should encourage students to explore different methods to
solve a problem as they develop new knowledge (Ampadu & Danso, 2018). Ampadu
and Danso further posit that teachers should provide minimum guidance and promote
students’ independent learning. However, a teaching approach that involves moderate
teacher involvement but leads to greater learner engagement and understanding requires
teacher confidence, content knowledge, experience and resources that help students
focus on their learning (Garbett, 2011). Finally, Holmes (2019) emphasises that
constructivist teachers both pose questions and prompt learners to ask questions, that
they allow alternative explanations or options and they guide students to find their own

solutions.

The teaching approach in a constructivist class should foster knowledge creation and
making informed decisions about proposed solution(s). Constructivists design learning
instruction and strategies that help learners to explore complex phenomena as experts in
that field (Ertmer & Newby, 2013). Modelling problems are a good example of this in

senior mathematics in Queensland.

The role of instruction in the constructivist view is to show students how to
construct knowledge, to promote collaboration with others to show the multiple
perspectives that can be brought to bear on a particular problem, and to arrive at
self-chosen positions to which they can commit themselves, while realizing the

basis of other views with which they may disagree. (Cunningham, 1991, p. 14)

As architects of learning instruction, teachers have a responsibility to make sure their
instruction guides students to create meaning, apply knowledge and experience,
evaluate, interact collaboratively and be productive and come up with an acceptable

solution.
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Problem-solving and inquiry-based activities that encourage students to formulate and
test their ideas, come to conclusions and make inferences and then share their
knowledge in a collaborative learning environment are ideal for constructivists
(Holmes, 2019). Projects and open-ended problem solving fit well with constructivism
as teachers can track progress, probe and understand how learners think as teaching and
learning progresses (Ahtee et al., 1994). For example, Assessment 1 in QCAA
Mathematics general subjects (General, Methods and Specialist) in Years 11 and 12 is
an open-ended problem-solving assessment where teachers are required to offer
minimum support but allow students to explore and apply prior knowledge. Lesh and
Doerr (2003) posited that by applying prior knowledge and real-life experiences to test
facts and rules, learners draw conclusions and evaluate solutions that allow deeper
understanding and greater participation. Similarly, meaningful learning includes
reflecting and systematic linking of concepts from known to unknown, or from the
simple familiar to the complex unfamiliar (Muirhead, 2006). Organisation tools such as
concept maps, flow charts and other visual aids, including PowerPoint slides to show
facts, flow and organisation of ideas, are important for guidance and redirection
(Melrose, 2013). Moreover, knowledge representation maps are key in providing
educators with mental models of what learners regard as mathematical realities
(Thompson, 2013). Thus, constructivism in mathematics education produces a reflective
learner who is not only good at applying mathematical facts but also makes informed
decisions based on processes and outcomes of the learning process, which is central

when sharing ideas during collaborative learning.

Mathematics teachers who are constructivists promote cooperation and collaborative
learning because they believe knowledge is socially constructed. The learning of
mathematics has moved from “passive and decontextualised absorption of mathematical
knowledge and skills ... towards the active construction in a community of learners of
meaning and understanding on the modelling of reality” (Corte, 2004, p. 280). Other
studies have demonstrated that collaborative mathematics learning in small groups
produces better outcomes than individual learning, again because, according to
Davidson and Kroll (1991) and Schreiber and Valle (2013), knowledge is socially
constructed through collaborative activities. Activities in such communities of learning

should promote problem solving, reasoning, evaluating and communicating (Goos,
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2004). Knowledge sharing within the group results in sharing that will reorganise
existing knowledge and make sense of new knowledge, learnt from each other (Plass et
al., 2013; Retnowati et al., 2017). However, teachers need to be aware that besides
constructivism, there are other learning theories that impact teaching and learning in
mathematics (Airasian & Walsh, 1997), and that teaching and learning methods are also
informed by learning goals (Hiebert & Grouws, 2007). In other words, other learning
theories, such as cognitivism and behaviourism, also contribute to teaching and learning

of mathematics.

2.8 Behaviourism

Behaviourists regard learning as a process of reinforcing expected responses to a
stimulus (Ertmer & Newby, 2013). Pavlov (classical conditioning), Thorndike
(association, reinforcement and incremental growth) and Skinner (instrumental
conditioning) are among the founders and proponents of the behaviourist perspective
(Stewart, 2012). Pavlov referred to the process of changing behaviour by repeatedly
pairing stimuli with conditioning, thus advancing our understanding of learning by
association (Stewart, 2021). Experimental work on simple paring of stimuli grew in the
United States, deepening the understanding of learning through association,
reinforcement and incremental growth in desired outcomes (Thorndike 1898). Stewart
(2021) went further to note that by modifying tasks and using a series of positive
rewards and negative reinforcers, Skinner demonstrated how behaviours could be

shaped and reinforced towards specifically target outcomes.

Behaviourists focus on “learning as a change in behaviour which takes place through
connecting actions with outcomes, reacting to feedback and strengthening repeated
actions” (Stewart, 2012 p. 4). Behaviourists emphasise that learning occurs by
environmental conditioning, connecting actions with outcomes, reacting to feedback
and strengthening through repeated action (Stewart, 2021). Skill and drill or practice are
associated with behaviourism. Steward (2021) posited that it also stresses the
importance of specifying clear learning targets and structuring learning tasks to achieve
these. Thus, in behaviourism the teacher is in charge, connecting actions with outcomes,

structuring the learning, setting learning targets and making sure there is repeated action
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until a change in behaviour is witnessed. Consequently, this can be attributed as a
weakness as it gives rise to a teacher-centred approach and outcome-based view of
learning where the teacher is the owner of knowledge, controller of the learning
environment, with students as passive recipients and empty vessels to be filled with
knowledge. Stewart (2021) noted that it emphasises rote learning which is effective at

achieving results in the short term, but its long-term effectiveness is questionable.

2.8.1 Behaviourism in Mathematics Education

Skill and drill in mathematics education is viewed as a means to develop procedural
knowledge that focuses on mastering steps needed to accomplish a goal. It is important
to note that “in more advanced levels of mathematics learning, procedural skills can
also include higher level cognitive processes, for example focusing on relations between
different parts of the procedures or evaluating the effectiveness of a particular procedure
for a given task” (Lehtinen et al., 2017, p. 3). Skill and drill are viewed as a way of
developing students’ fluency in the basic mathematics skills needed for more advanced
problems (Klinger, 2009). One of the teacher’s key responsibility is to develop and use
instructional designs that facilitate step-by-step attainment of increasingly complex
competencies and skills (Stewart, 2021). Thus, behaviourism places educators at the
centre of the teaching and learning process as they facilitate, determine and control the

environment and resources that influence the process.

The teacher explains and demonstrates a concept and the students then practise the skills
and techniques to solve the problem, with the teacher now positively reinforcing success
and disapproving of failure (Klinger, 2009; Orton, 2004). In behaviourism, clear
learning targets should be developed and learning should be structured to promote the
competencies and skills needed to meet the targets (Stewart, 2012). Stewart notes that
constructivists accept behaviourism as one component of the learning process since for
a condition to be associated with a reward it must be incorporated with other concepts in
an active process of schemata development and moderation. Klinger posited that in
mathematics, cognitivism supplements behaviourism, especially when new concepts are
being introduced. Moreover, “behaviourism has generally been proven reliable and

effective in facilitating learning that involves discriminations (recalling facts),
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generalizations (defining and illustrating concepts), associations (applying
explanations), and chaining (automatically performing a specified procedure)” (Ertmer
& Newby, 2013, p. 49). In behaviourism knowledge is viewed as external and absolute
to the learner, teaching as instructional, while in cognitivism the learning process is

viewed as the act of internalising knowledge.

2.9 Cognitivism

Cognitivism focuses on internal mental processes as learners acquire knowledge and
emphasises knowledge acquisition, processing, storage, retrieval and activation during
learning (Clark, 2018; Yilmaz, 2011;-Pritchard, 2014). Internal mental processes such as
critical thinking, recalling, recognising, understanding, reasoning and problem solving
are the cornerstones of cognitivism (Clark, 2018; Hartsell, 2006). The brain is the centre
and processor of all human action, behaviour, memory and it plays a central role in
learning (Arponen, 2013; Ertmer & Newby, 2013; Watson & Coulter, 2008).
Furthermore, cognitivism places value on ascribing meaning to learners’ existing
knowledge and linking new knowledge to past experiences (Yilmaz, 2011). Some of the
key theorists who have contributed to cognitivism include Piaget (stages of cognitive
development), Vygotsky (social cognitive growth) and Gagne (conditions of learning)
(Clark, 2018; Yilmaz, 2011). Piaget’s (1953) stages of cognitive development laid the
foundation for cognitivism, namely, that mental growth develops in stages: motor skills,
verbal expressions through mental imagery, abstract concepts, and sequential and

logical reasoning (Zhou & Brown, 2015).

The extensive involvement of memory makes cognitivism relevant to learning complex
concepts that involve problem solving and reasoning (Ertmer & Newby, 2013; Schunk,
2004). Central to student learning are teacher explanations, demonstrations and matched
non-examples, all of which places the teacher at the centre of the learning process
(Clark, 2018; Ertmer & Newby, 2013). The teacher’s role is that of a coach in charge of
the learning process (Ertmer & Newby, 2013; McLeod, 2003). Similarly, observations,
practice, coaching, articulation and modelling can help learners acquire knowledge that

includes strategies, skills, attitudes and rules (or theorems, as in mathematics) (Schunk,
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2004; Yilmaz, 2011). As learners gain experience through active practice, their prior

knowledge is modified or updated (Simmons & Watson, 2014).

In cognitivism, learners are active participants in the learning process because
knowledge needs to be encoded, transformed, rehearsed, recalled and restructured
(Ertmer & Newby, 2013). According to Clark (2018), knowledge consists of units
called schema and several of these units form schemata or schemas which are stored in
the long-term memory. When students are exposed to new knowledge through reading,
observing, learning and experiencing, a new schema is formed, an old, related schema is
updated or, if there is a contradiction, the old schema is altered to accommodate the new
knowledge (Clark, 2018; Gillani, 2003). Schemas include misconceptions and
inaccuracies and provide a foundation on which to map expected results when new

knowledge is introduced (Clark, 2018; Gillani, 2003).

The main criticism of cognitive psychology which forms the foundation of cognitivism
is that it is abstract and not directly observable (Garnham, 2019). Moreover, it ignores
other reasons for behaviour such as environmental and social reasons (Stewart, 2021).
Thus, it fails to account for environmental, biological or genetic influences on cognitive
function. Importantly, Garnham (2019) posited that internal processes are not
measurable and instead a behaviour or external feature that is believed to be associated

with the internal process is measured without conclusive evidence of the connection.

2.9.1 Cognitivism in Mathematics Education

Teaching that considers prior knowledge does not only increase the chance of learners
understanding by providing a step-by-step building of concepts; it may also provide
opportunities of correcting students’ misconceptions. “Students who are accelerated in
their mathematics studies harbor misconceptions or knowledge in isolation that may
make future connectivity with advanced mathematics problematic” (Bell, 2017). Being
a teacher-centred approach, cognitivism demands that educators organise instructions in
such a way that learners can connect new information with prior knowledge to make the

learning meaningful and effective (Clark, 2018). Prior knowledge is critical for
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comparison purposes when learners are exposed to new knowledge and it provides
some form of mental scaffolding (Ertmer & Newby, 2013; Yilmaz, 2011). However, a
teacher’s assumptions that students have prior knowledge of a linked concept might
disadvantage those learners with only a limited schema to compare with stored memory.
This is because hierarchical relationships in learning material help link prior experience
to new knowledge (Ertmer & Newby, 2013). The stages of cognitive development are
hierachical; thus, they play a significant role in the teaching of mathematics, which is a

hierachical subject.

The stages of cognitive development play a central role in mathematics teaching and
learning especially at senior secondary school. Mathematics education has benefited
from understanding stages of cognitive development because new knowledge on how
children learn can support teaching (Ghazi et al., 2014). At senior secondary level,
students are expected to be at the formal operational stage where they can form
hypotheses, build their own mathematical understanding, evaluate options and use
abstract concepts to represent a mathematical thought (Ojose, 2008). Learners are
expected at this stage to solve problems involving application in real life, justifications,
generalisations and mathematical inferences (Anderson, 1990). Brain & Mukherji
(2005) go further to explain that at the formal operational stage, conceptual words or
symbols can replace the physical representation of objects. Teachers can benefit from

understanding what this stage entails as they prepare instruction.

Lessons based on cognitivist principles should include probing questions to gain
learners’ attention, a clear statement of lesson objectives, stimulation of prior
knowledge, well-organised content presentation, practice, clear instructions for learners,
corrective feedback, assessment and relating content to real-world problems (Clark,
2018; Ertmer & Newby, 2013; Yilmaz, 2011). A cognitivist educator’s main role is to
drive the learning process. Teachers have to break down information to make it easier
for learners to accommodate new information with their existing schema. Furthermore,
clear instructions and timely corrective feedback that guide mental processes can
maximise learning (Clark, 2018; Ertmer & Newby, 2013). Breaking down complex

problems into smaller parts can help students comprehend the problem better. Similarly,
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observing educators modelling complex skills can help learners acquire those skills,
while practice can help teachers give corrective feedback and provide a variety of
information sources that expand knowledge and inform and motivate learners (Schunk,
2004). Although practice is important, cognitivists put more value on observation
(Schunk, 2004). And as much as observation can help students identify and acquire
mathematical skills, practice is equally important as it provides an opportunity for

feedback that will eliminate misconceptions and result in deeper understanding.

2.10 Relationship between Learning Theories in Mathematics Teaching and
Learning

Mathematics education aims to promote the development of mathematical knowledge
that goes beyond just recalling mathematical facts and imitation (Thompson, 1985).
Thompson goes further, saying, “Constructing mathematical knowledge is the creation
of relationships, and creating relationships is the hallmark of mathematical problem
solving” (p. 3). Learning is effective when it is linked to real-life problems that create

meaningful context and insight for learners (Ertmer & Newby, 2013).

Effective learning must include students actively developing knowledge with the
assistance of resources that are not limited to an educator (Ertmer & Newby, 2013;
Stewart, 2012). Both constructivism and cognitivism acknowledge that students must be
active in the learning process. Moreover, the importance of prior knowledge in
developing new knowledge is key in fostering the active participation of students. This
is highlighted by Stewart’s (2012) work, which posited that learners do not come to the

learning process empty for the teacher to just fill them up with knowledge.

Tasks that involve mathematical facts, rules and their simple applications are more
suited to behaviourism and cognitivism, while those that demand advanced level
mathematical abilities, for example, investigative problem-solving tasks, to a large
extent require a constructivist mindset (Ertmer & Newby, 2013; Klinger, 2009).
Jonassen (1991a, cited by Ertmer & Newby (2013)) classified knowledge acquisition
into three stages: introductory, advanced and expert, with constructivism more

applicable in the advanced stage. The introductory level of new concepts in most
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mathematics lessons is the stage of acquiring mathematical facts, rules and basic skills,
which is better suited to cognitivism and behaviourism (Klinger, 2009; Stewart, 2012).
The expert level is when students have gained the knowledge to apply concepts in
complex unfamiliar or unstructured problems, to validate and evaluate solutions and
make generalisations. Constructivism may be more ideal at the stage when learners
would have mastered concepts so they can apply concepts to real-world problems, such
as problem-solving tasks that include extracting the mathematical meaning from word
problems and applying concepts to new situations. It is important to note that pedagogy
that is underpinned by appropriate learning theories has important implications for
mathematics teaching and learning. Pedagogical resources such as mathematical
representations and their role in supporting problem solving are explored in the next

section.

2.11 Visual representations in mathematics
A number of research studies explore the idea of representation in mathematics

education (e.g., Arcavi, 2003; Zazkis & Liljedahl, 2004; Stylianou, 2010). Teaching and
learning that include visual representations of mathematics concepts result in improved
performance in mathematics and lower cognitive load for students than learning without
visual representations (Yung & Paas, 2015). Clearly, the significance of visual
representations in mathematics is emphasised by Arcavi (2003):
“Mathematics, as a human and cultural creation dealing with objects and entities
quite different from physical phenomena (like planets or blood cells), relies
heavily (possibly much more than mathematicians would be willing to admit) on
visualisation in its different forms and at different levels, far beyond the

obviously visual field of geometry, and spatial visualisation” (pp. 216-217).

To mathematicians, diagrams may be most beneficial for exploration of unfamiliar
problems (Pantziara et al, 2009), and can be part of the creative process when used to
develop novel diagrammatic representations (Zahner & Corter, 2010). In fact,
“Structured diagrams are thought to be more comprehensible than just words, and a
clearer way to illustrate understanding of complex topics.” (Davies, 2011 p. 279).
Although mathematicians have been aware of the value of visual presentations as tools

for teaching and as heuristics for mathematical discovery, visual representation remains
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underutilised in both the theory and practice of mathematics (Barwise & Etchemendy,
1991). Importantly, creating, interpreting and reflecting on visual representations should
be encouraged in mathematics and mathematics education as it promotes the
development of previously unknown ideas and advances understanding (Arcavi, 2003;

Zimmermann & Cunningham, 1991).

Significant research (e.g., Diezmann & English, 2001; Friedlander & Tabach, 2001;
Lamon, 2001) identifies representation in mathematics as a tool for thinking, gaining
insight and demonstrating understanding. Understanding can be demonstrated through
the ability to develop or apply various representations and identifying the appropriate
representation for a problem situation (Zazkis & Liljedahl, 2004). Visual
representations have been found to be effective for supporting students’ learning of
content knowledge compared to text-based activities (Rau, 2017). Of importance is that
this effectiveness is particularly observed if students have low prior knowledge (Mayer
and Feldon 2014). Visual representation is recognised as a powerful teaching and
learning tool as it can be used to focus on relevant information, promote relational and
logical understanding, and support knowledge construction (Ainsworth & VanLabeke,
2004; Barmby et al., 2007; Yung & Paas, 2015), leading to deeper understanding.
Similarly, visual solutions to a problem may enable engagement with concepts and
meanings which could have been overlooked if a non-visual solution had been offered

(Arcavi, 2003).

Visual representations offer many opportunities for a rich mathematics classroom
experience. Availability and awareness of shared representations in a mathematics class
create a social backdrop for mathematical discourse (Zazkis & Liljedahl, 2004), which
can deepen mathematics understanding through reflection, meaning making and
exchange of knowledge. Also, visual representations may play a central role in inspiring
a complete solution, beyond the merely procedural (Arcavi, 2003). When students
include the appropriate type of visual representation during problem solving, higher
rates of solution success are observed compared to when they do not include
representations (Zahner & Corter, 2010). In addition, visual representations may
function as a guiding tool for situations in which students may be uncertain about how

to proceed as they solve a problem (Arcavi, 2003). Undoubtedly, visual representations
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are a useful communication tool in mathematics (Rodriguez et al., 2020), thus they are
key in promoting success in the field (Paoletti et al., 2022). Visual representations can
structure and modify mathematical activities in class as they can influence the course

and focus of a lesson and activities (David & Tomaz, 2012).

Importantly visual representations are tools that teachers can introduce to support
students’ learning in mathematics. Researchers (Ainsworth, 2006; Cobb, 2003; Dreher
& Kuntze, 2015; Kaput et al., 2008) emphasise that representations are an essential and
delicate issue for mathematics teaching and learning as it is a vehicle for capturing
mathematics concepts. “The use of a variety of representations in a flexible manner has
the potential of making the learning of mathematics more meaningful and effective”
(Stylianou, 2010, p. 327). In fact, teachers should be aware that students learn more
through multiple representations when they are provided with an opportunity to self-
explain the relationship between the different representations (Rau et al., 2009) thus
providing a multi-faceted concept image (Dreher & Kuntze, 2015). When visual
representations are developed by students, they become an assessment tool to gain
insight into students’ thinking, reasoning and understanding (Stylianou et al., 2000).
The representation that a teacher chooses to use in class can impact classroom
discussion and facilitate students’ attention to particular mathematics connections and
concepts (Stein et al., 2008). Contrastingly, some research found that visual presentation
serves a peripheral and limited role in teacher instruction, because teachers have limited
knowledge of their role and how best to use the different forms (Dreher & Kuntze,

2015; van Garderen et al., 2018; Stylianou, 2010; Sullivan et al., 2019).

Representational competencies (knowledge about how visual representation represent
information about the content) are required for visual representations to be effective
during teaching and learning (Rau, 2017). “Teachers’ conception of representation as a
process and a mathematical practice appears to be less developed, and, as a result,
representations may have a peripheral role in their instruction as well” (Stylianou, 2010,
p- 325). However, every time students are introduced to a new representation; they must
learn how it is used and interpreted (Rau, 2017). Therefore, visual representations
should be fostered explicitly so as not to impede learning (Dreher, 2012; Renkl et al.,

2013). Research identifies multiple benefits for students’ learning; however,
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representations may fail to support students’ learning if they are not used in the “right”
way (Rau & Matthews, 2017). For example, they have to clearly represent the
information they intend to convey, otherwise they will confuse students. With the
increased push to include mathematics representations in class, this may place
tremendous pressure on teachers as there is little evidence that necessary support is in
place to implement such a move (Stein et al., 2008; Stylianou, 2010). Thus, teachers
may have limited expertise in the use of visual representations when teaching
mathematics (Izsdk, & Sherin, 2003). Research (see Ball 1993; Dreher & Kuntze, 2015)
notes a lack of awareness amongst mathematics teachers that the use of visual
representations can support the development of mathematical thinking, hence deeper
understanding of mathematical knowledge. Although, research demonstrates several
benefits of including representation in mathematics education, teachers still find it
challenging as how to incorporate them in the curriculum is not well articulated
(Stylianou, 2010). Teachers might have a narrow view that representation is a tool for a
selected few students, therefore it is the responsibility of those who support or prepare
teachers to demonstrate and support the expansion of teachers’ use of representation
across the mathematics curriculum (Morris, 2008; Smith et al., 2009; Stylianou, 2010).
This study will develop visual representation tools and support teachers on how they

can be incorporated in teaching and learning of mathematics including problem solving.

2.12 Problem solving and Visual Representation.
Problem solving is seen as a key and significant aspect of mathematics and mathematics

education. It permeates mathematics curricula across the world resulting in calls for the
teaching of problem solving as well as the teaching of mathematics through problem
solving growing louder (Liljedah et al., 2016). However, there is no agreed definition of
problem solving (see English & Gainsburg, 2016). This study will use Hegedus’s
(2013) definition, which stipulates that: “problem solving is not just about solving a
specific problem, which has a specific answer or application in the real world, but rather
it is an investigation that might have multiple approaches and where students can make
multiple observations” (p. 89). Importantly, the process should allow construction of
meaning in open-ended, non-procedural tasks which will have been carefully developed
to have mathematical purpose (Hegedus, 2013; Mamona-Downs & Downs, 2013). The

problem-solving process is a dialogue between the prior knowledge the problem solver
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possesses, the tentative plan of solving the problem and other relevant thoughts and
facts (Schoenfeld, 1983). Research in problem solving provides deeper understanding

on the subject and offers insight into directions for future research.

For decades, research in mathematics problem solving, including special issues from
leading mathematics education journals (see, Educational Studies in Mathematics, (Vol.
83, no. 2013); The Mathematics Enthusiast, (Vol. 10, nos. 1-2); ZDM, (Vol. 39, nos. 5—
6)), have offered significant insights but struggled to produce well-articulated guidelines
for educational practice (English & Gainsburg, 2016). This could possibly be the reason
why mathematics teachers’ efforts to improve students’ problem-solving skills have not
produced the desired results (Anderson, 2014; English & Gainsburg, 2016). Despite
Polya’s (1945) list of steps and strategies being so valuable in successful problem
solving, there appear to be limited success when translated into the classroom
environment (English & Gainsburg, 2016). English and Gainsburg went further to posit
that one of the issues to be addressed is how to support problem-solving competency.
However, use of visual representation as a tool that can support problem solving is well
documented (see Krawec, 2014; Stylianou, 2008). This study will explore how visual
representations such as procedural flowcharts can help to build problem-solving

competency.

Research on how visual representations support mathematics discovery and structural
thinking in problem solving has come a long way (see Hadamard, 1945; Krutetskii,
1976; Polya, 1957). Visual representations can be used as a tool to capture mathematics
relations and processes (van Garderen et al., 2021) and used in many cognitive tasks
such as problem solving, reasoning, and decision making (Zhang, 1997). Indeed,
representations can be modes of communicating during concepts exploration and
problem solving (Roth & McGinn, 1998). Likewise, visual representations can be a
powerful way of presenting the solution to a problem, including self-monitoring on how
the problem is being solved (Kingsdorf & Krawec, 2014; Krawec, 2014). Using
visualisations created by teachers or students in mathematics can support students’
problem-solving abilities (Csikos et al., 2012). Furthermore, visual representations can

be used to facilitate different subtasks during problem solving, for example, as a tool to
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facilitate exploration of concepts (Stylianou, 2008; Stylianou & Silver, 2004). They can
be used to illustrate the problem-solving process and to create connections among

concepts (Stylianou, 2010).

2.13 Chapter Conclusion

The literature reviewed in this section shows that students are influenced by intrinsic
and extrinsic factors when enrolling in calculus-based mathematics. The effectiveness
of mathematics teachers is one of the main contributing factor that influences
enrolment, participation and achievement in calculus-based mathematics. Importantly,
in this chapter, literature has identified the scope of resources that can be used to
support teachers in the teaching and learning of mathematics. Understanding of learning
theories that are used by mathematics teachers is critical so as to explore ways the

resources can be more effective in supporting teaching and learning.

Teaching and learning of mathematics are informed by learning theories with a focus on
maximising the impact of the teacher and other resources in influencing the learning
process. Importantly, it considers how students develop mathematical knowledge and
how they can represent that knowledge for educators to determine changes.
Undoubtedly, teachers might benefit with increased access to resources that are
underpinned by such theories. Moreover, for teachers to guide learning they need to be
supported by resources that can promote student-centred learning and the gradual
development of new knowledge from prior knowledge. Such resources can facilitate
active participation of students in the learning process, both individually and
collaboratively. On the contrary, lack of such resources may have a negative impact on
student participation in mathematics, leading students to view mathematics as a difficult
subject, with unrelated concepts and uninteresting calculations that need to be
committed to memory. In this study, constructivism informed the conceptual

framework.

When senior high school mathematics teachers are exposed to new knowledge, they can
relate it to their own experiences, ideas and skills in teaching, evaluate it and then

discard it, accept it or modify their practice, thus constructing new knowledge. The
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active participation of teachers in developing, applying and evaluating resources though
workshops, surveys and interviews brought different perceptions together to guide this

study.
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Chapter 3: Methodology

3.1 Chapter Introduction
This chapter outlines the theoretical position that frames the research questions and the

methodology used to address them. It then describes the specific research methods used
within this methodology. The primary focus of this study was to investigate, develop
and explore pedagogical resources (framework on content sequencing, concept maps
and procedural flowcharts) for mathematics teachers that will support students’
participation in calculus-based mathematics, drawing examples from the topic of
functions. This researcher holds the view that teaching and learning play an important
role in influencing participation in calculus-based mathematics and that teachers as
classroom practitioners need to be supported through research-informed resources to be
more effective in delivery. Since their input to and perceptions of such resources is
central to their effectiveness and possible adoption, teachers, inferring from their
experience, beliefs and skills, were at the centre of this study no how new knowledge
can be constructed. Choosing the appropriate research methods consequently played a

significant role in deepening knowledge and validating findings.

3.2 Theoretical Framework
This study was conceptualised within a constructivist epistemology. The researcher

holds a constructivist view that individuals construct knowledge when they purposefully
interact, share and reflect on beliefs and experiences and several other researchers, such
as Cahyono (2018), Cobb (1994) and Mita et al. (2017), have used constructivism to
underpin their research in mathematics education. Constructivists believe that
knowledge is constructed by the learner, not just transmitted from the educator to the
learner (Narayan et al., 2013). From a constructivist viewpoint, learning is about
creating knowledge, not just receiving, about understanding and applying, not just
recalling, and about thinking and examining, rather than just gathering and memorising
(Gordon, 2008). This study used constructivism as a theoretical framework because
mathematics teachers as participants were involved in constructing knowledge that
informed their daily practice of teaching. Involvement of mathematics teachers provided
them with the opportunity to be actively involved in drawing from their experience and

creating new knowledge.
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Constructivists strongly believe that during learning, individuals are expected to be
actively involved, and not passive recipients of knowledge (Lew, 2010). As Jenkins
(2000, p. 601) states, “If there is common ground among constructivists of different
persuasion it presumably lies in a commitment to the idea that the development of
understanding requires active engagement on the part of the learner.” As a result, the
teacher’s role is that of a facilitator or organiser who indirectly encourages and manages
learners to “research, discover, and make conclusions” (Tomljenovic & Tatalovic
Vorkapic, 2020, p. 15). Active participation of senior mathematics teachers in this study
brought diverse experiences, which then facilitated the development of teaching and
learning resources. Mathematics teachers were given the opportunity to apply the
pedagogical resources and then evaluate the resources as active research participants.
The researcher was a facilitator of meetings and workshops, working with mathematics
teachers as practitioners on strategies to support teaching and learning of mathematics.
In summary, participants were actively constructing new knowledge using their relevant

existing knowledge.

Constructivists view learning as a process of building new knowledge from beliefs,
ideas, skills and prior experience (Garbett, 2011; Bruning et al., 2004; Taber, 2019). In
constructivism, it is the learners who are the creators of knowledge, as they make sense
of new knowledge using their existing knowledge and cognitions (Taber, 2019).
Constructivism is “an approach to learning that holds that people actively construct or
make their own knowledge and that reality is determined by the experiences of the
learner” (Elliott et al., 2000, p. 256). During the process of learning, “new insights are
compared with previous experiences and ideas, whereby old beliefs may be altered, or
new information may be dismissed as irrelevant” (Tomljenovic & Tatalovic Vorkapic,
2020, p. 15). Hence, learners are active participants in their learning as they interpret the
meaning of new knowledge and reference it to what they already know (Garbett, 2011).
In other words, the mind filters everything that it is exposed to and creates its own
meaning which results in new knowledge being developed. The researcher holds the
view that mathematics teachers’ beliefs, experiences, perceptions and skills are

resources that can be used to create and evaluate new knowledge. Exposing
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mathematics teachers to new ideas and resources provided them with the opportunity to
compare them with previous ideas, resources, beliefs and experiences which resulted in
them rejecting or adopting new ideas. Constructivism in this study provided the basis to
actively involve teachers to interpret meaning of the new knowledge and how best the

pedagogical resources could be utilised to benefit teaching and learning processes.

Interactions between this researcher and teachers around the sharing of opinions and
experiences and evaluating a program provided an opportunity to construct new
knowledge. Constructivists emphasise that “knowledge is socially constructed through
interaction of the researcher with research participants” (Tavakol & Sandars, 2014, p.
747). When individuals interact within a social setting, they have an opportunity to
generate knowledge (Kim, 2001). Hence, “the individual mind becomes collective mind
through social phenomena such as relationships, participations, negotiations, and
sharing” (Belbase, 2011, p. 3). Collaboration among individuals with varied experiences
provide the opportunity to co-create new knowledge (Powell & Kalina, 2009). The
coming together of the researcher and senior mathematics teachers on different
platforms that included a mathematics teachers’ conference, workshops and check-in
sessions created a social engagement that facilitated an exchange of knowledge.
Constructivism emphasises the importance of co-creating new knowledge and this co-
creation of knowledge informed this research. Participants brought their different
experiences and qualifications which constructivism identifies as a strength in
supporting knowledge development. Therefore, the active interaction between the
researcher and senior mathematics teachers and the sharing of experiences, beliefs and
ideas was crucial in developing and evaluating the planning and teaching resources in

this study.

3.3 Methodology
It is important to clarify the use of the terms ‘methodology’ and ‘methods’ before

providing a description of the methodology used in this study. Research methodology
incorporates all the steps involved in the study starting with research design, data
collection and analysis as well as the social, ethical and political viewpoints that the
researcher brings to the study. According to (Kothari, 2004, pp. 7-8), “research methods

may be understood as all those methods or techniques that are used for conduction of
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research while research methodology is a way to systematically solve the research
problem”. During this study the methodology explained the logic behind the method or
technique and contextualised it to the study. In this case, research methods are part of

the overall research methodology of this study.

The research methodology directs and guides activities involved in the research.

Importantly,

“A research methodology is like a strategy encompassing principles, processes,
procedures and techniques to seek a solution to an identified research problem.
In some sense, the methodology provides an architecture for the entire research
exercise that determines the research methods to be applied in a given research
exercise, developed to proceed from an understanding of the research

question(s) and oriented towards providing direction and guidance to the whole

effort to seek the answer(s) to the question(s)” (Mukherjee, 2020, p. 20).

Furthermore, the research methodology provides directions for designing and executing
evidence-based research that include quantitative and qualitative data (Acharyya &
Bhattacharya, 2020). Therefore, knowledge of research techniques and procedures and
where they can be best applied plays an important role in formulating an effective
research methodology considering there are two basic research approaches in

educational research: quantitative and qualitative.

Quantitative research is used on a phenomenon that can be expressed in numeric data. It
is influenced by the positivist paradigm that suggests reality is concrete or singular and
must be independent to the opinion and influence of the researcher (Tavakol & Sandars,
2014). Moreover, quantitative research is ideal for use when the sample or population
size is significantly large (Kaplan, 2004). It involves testing relationships between
variables to determine patterns and correlations with the primary purpose of explaining
and evaluating (Leavy, 2017). Undertaking statistical calculations on numeric data to
draw conclusions that answer a research question is central to quantitative research
(Habib et al., 2014). Therefore, it was ideal to use quantitative research to investigate
trends in students’ participation in Queensland as enrolment data is numerical and
covers all students in years 11 or 12 state-wide. Moreover, correlation between different

factors that may affect enrolment can also be investigated. “The fundamental goal of
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quantitative research is to make a convincing argument based on numerical data in
response to a research question” (Hjalmarson & Moskal, 2018, p. 179). Research that
involves collection of numeric data mostly requires quantitative analysis. However, if

non-numeric data is involved, qualitative analysis is more appropriate.

Qualitative research is more concerned with the individual’s personal experiences of the
problem under study. It aligns with post-positivist paradigm or constructivist beliefs that
several individually formulated realities exist, and knowledge and participants cannot be

separated. It is defined as

“the study of the nature of phenomena’s quality, different manifestations, the
context in which they appear or the perspectives from which they can be
perceived without involving their range, frequency and place in an objectively

determined chain of cause and effect” (Philipsen & Vernooij-Dassen, 2007 p. 5).

Similarly, qualitative research is the collection, analysis, and interpretation of data using
observation and what participants say through interviews (Habib et al., 2014). In fact,
“the actual words of people in the study, offer many different perspectives on the study
topic and provide a complex picture of the situation” (Creswell, 2014, p. 535).
Qualitative research is used to unpack and explore meaning people attribute to
activities, situations, events, or artefacts (Leavy, 2014). Moreover, it focuses upon
drawing meaning from the experiences and opinions of participants (Cohen et al.,
2011). Therefore, qualitative research was used in this study for teachers to share their
individual experiences, opinions, and context to gain a deeper understanding of the
phenomenon. It is used to explore and explain people’s subjective experiences and
meaning-making processes and acquiring a detailed and in-depth understanding which

is ideal even with a small sample (Leavy, 2017).

Quantitative and qualitative designs have their own weaknesses. The main limitation of
quantitative research is its lack of detail and context that might help to provide deeper
understanding of the phenomenon (Griffin & Museus, 2011; Johnson & Onwuegbuzie,
2004). Similarly, a key limitation of qualitative research is that it might be influenced
by the researcher and because personal experiences differ, the findings may not be

generalisable to other contexts (Griffin & Museus, 2011). Importantly, the weaknesses
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of both quantitative and qualitative research can be offset by the strengths of both as
words (from the qualitative approach) can add meaning to numbers (from the

quantitative approach) and numbers can add clarity to words (Johnson & Onwuegbuzie,

2004).

Mixed methods approach involves both quantitative and qualitative research. A mixed
methods approach provides the platform to optimise the opportunities offered by
quantitative and qualitative research as well as address the limitations of both (Johnson
et al., 2007). It is used mostly where use of either the quantitative or qualitative
approach will not be sufficient to gain a deeper understanding of the problem (Creswell,
2014), as it integrates the two (Creswell & Zhang, 2009). More, importantly qualitative
data can be used to support or validate findings from quantitative data (Fetters et al.,
2013). It is important to note that mixed methods research is:
“the type of research in which a researcher or team of researchers combine
elements of qualitative and quantitative research approaches (e.g., use of
qualitative and quantitative viewpoints, data collection, analysis, inference
techniques) for the broad purposes of breadth and depth of understanding and
corroboration” (Johnson et al., 2007, p. 123).

Therefore, this study adopted a pragmatic approach as it spanned the middle ground
between quantitative and qualitative research because both numeric and textual data

were collected and analysed to address the same problem (Griffin & Museus, 2011).

Quantitative and qualitative research have the potential to provide concrete analysis;
however, individually they have limitations especially in intersectional research analysis
(Griffin & Museus, 2011). Despite the limitations, “qualitative methods are, for the
most part, intended to achieve depth of understanding while quantitative methods are
intended to achieve breadth of understanding” (Palinkas et al., 2013, p. 534). A mixed
methods approach was adopted in this study to allow the generation of valuable data
from senior mathematics teachers on the teaching of calculus-based mathematics
options. The study positioned itself on exploiting the strength of both qualitative and
quantitative research approaches. The approach aligns with Rocco and colleagues

(2003) who noted that research is more robust when it mixes research paradigms, as a

47



Supporting the teaching of calculus-based senior mathematics in Queensland.

fuller understanding of the phenomenon can be gained. Similarly, Creswell and Plano
(2011) posited that mixed methods enables a greater degree of understanding to be
formulated than if a single approach were adopted to specific studies. Thus, mixed
methods approach is ideal for the purposes of breadth and depth of understanding and
corroboration (Greene, 2007). The collection of both quantitative and qualitative data
can provide a more complete picture and better understanding of the research questions

compared with using either one of the methods alone (Guetterman et al., 2015).

A mixed methods approach is generally appropriate when the purpose is to describe,
explain or evaluate phenomenon (Leavy, 2014). In this study senior mathematics
teachers as participants explained their views and experiences as well as evaluated the
pedagogical resources developed in the study. Importantly the mixed methods approach
allows triangulation of data, meaning “collecting and converging or integrating different
kinds of data bearing on the same phenomenon” (Creswell, 2014, p. 536). Triangulation
provides opportunities for convergence and corroboration of results that are derived
from different research methods which enhances validity of data (Creswell & Plano,

2018).

Similarly, mixed methods help to deepen and broaden the understanding of the
phenomenon under study, hence providing opportunities for future research (McKim,
2017; O’Cathain et al., 2010). The study’s focus on a relatively less researched area of
teaching of calculus-based mathematics at senior secondary level provides insight into
what teachers view as important in the delivery of this subject at this level. Therefore,
the methodology in this study employed both qualitative methods, involving semi-
structured and in-depth interviews, and quantitative methods such as survey
instruments. These data collection methods were the most appropriate for addressing the
research questions outlined below and thus the methodology of this study is a mixed

methodology.

3.4 Research Design
A research design explains how a study seeks answers to the research questions. It is a

conceptual layout that guides how the research will be conducted (Dubey & Kothari,
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2022; Kothari, 2004). A research design is a plan that recognises the processes and
procedures to be followed during data collection and analysis (Creswell, 2014; Habib et
al., 2014). This study comprised four phases to address the overarching research

questions, outlined below:

1. What are the trends in Queensland senior students’ enrolment in calculus-based
mathematics subjects?
2. What pedagogical resources support the planning, teaching and learning of

Mathematical Methods for Queensland senior students?

3.4.1 Phase One
The research question addressed in this phase was:
e What are the trends in Queensland senior students’ enrolment in mathematics

subjects?

The intention of Phase One was to investigate Queensland senior students’ mathematics
enrolment in different mathematics curricula options from 2010 to 2020.

Until the end of 2018, the mathematics options at senior level in Queensland were
Mathematics A, B, C and Prevocational. In 2019, these were changed to Essential,
General, Methods and Specialist Mathematics. This new curriculum brought some
changes to the mathematics options that were offered as well as to the assessment policy
because Queensland introduced an external examination at the end of Year 12. An
additional study was undertaken in this phase to further understand trends in enrolment
and some of the external factors that influence students’ participation in calculus-based
mathematics under the new curriculum. The sub-question addressed by this additional
study was: What is the relationship between students’ enrolment in calculus-based
mathematics in the new Queensland curriculum and school level indicators such as

socio-economic status, school location and transfer rating?

Quantitative methods were used to analyse data from the Queensland Curriculum and
Assessment Authority (QCAA) to identify trends in student enrolment in different
mathematics options. This method was most appropriate because “quantitative research

identifies a research problem based on trends in the field or on the need to explain why
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something occurs” (Creswell, 2014, p. 13). Permission was sought from the QCAA and
consent was given to use publicly available data on students’ mathematics enrolment at
senior secondary level from 2010 to 2020. Likewise, quantitative data from the
Australian Bureau of Statistics’ Socio-Economic Index for Areas (SEIFA), Schools
Index of Community Socio-Economic Advantage (ICSEA) and schools transfer ratings
were used to determine their influence on students’ enrolment in calculus-based
mathematics options. Data was analysed using Excel suite and Statistical Package for
the Social Sciences (SPSS). SPSS was used to analyse correlation between the different
factors that affect enrolment in calculus-based mathematics. Excel can be used to
analyse data in quantitative research and SPSS is ideal for developing comparative

graphs especially on trends (Davis & Davis, 2016; Kolluri et al., 2016).

3.4.2 Phase Two

The sub-questions addressed in Phase Two were:

e What framework for content sequencing can support linking of concepts from
junior to senior mathematics?
e What teaching and learning resources can support students’ participation in

senior mathematics?

The aim of this phase was to develop pedagogical resources that could support
planning, teaching and learning of calculus-based mathematics with a special focus on
functions in mathematical methods. Indeed, pedagogical decisions and resources
teachers use during teaching can play an important role in influencing student
participation and achievement (Little, 2020; Witterholt et al., 2016). Furthermore,
pedagogical resources can be used to; support teacher capacity, build concepts from
prerequisites and experimenting, supporting deeper understanding of concepts (Larson
& Murray, 2008). Thus, this phase will focus on developing, and identifying
pedagogical resources that can support mathematics teachers in the delivery of calculus-

based mathematics.

Planning is key to effective teaching and learning as it can be used to link resources to

the content and the teaching method. The study therefore argued first for content
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sequencing in the planning and teaching of mathematics to aid transition from junior to
senior mathematics. A coherent sequencing of content supports meaningful reflection
on concepts and the nature of mathematics (Conner et al., 2011), which is important for
mathematics teachers and students. To this end, the literature was synthesised to
develop an original mathematics planning framework on content sequencing. Synthesis
involves pulling various sources together into some kind of harmony so that the sources
combine clearly and coherently with your own (Clevenger, 2011, p. 1). This provided
the opportunity to build on previous findings, integrate existing findings and identify
gaps (Grant & Booth, 2009). Creating a learning environment in which students’
participation is anchored on creating skills and knowledge based on prior experience is
one of the most effective pillars of a robust and effective teaching methodology
(Hailikari et al., 2008). The planning framework for this study emphasised the
importance of prior knowledge and the hierarchical and spiral nature of mathematics

and mathematics teaching respectively.

This phase laid the foundation of a framework on how content sequencing in schools
play a significant role in effective linking of prior knowledge to new knowledge. A
framework specifies the relationships between the constructs within a phenomenon
(Johnson & Morgan, 2016) and advocates planning that focuses more on how new
knowledge is developed from relevant concepts that students have been exposed to in
previous levels. The relevant prior concepts should be clearly linked to the new

knowledge using the framework on content sequencing.

Second, the development of tools that can be used by teachers to promote procedural
and conceptual knowledge in mathematics was equally important. Such tools would
play a critical role in supporting the teaching and learning of mathematics. The
involvement and input of teachers in the development of the pedagogical resources is
important because the sharing of their experience, skills and ideas makes them active
participants in the process. Teachers as architects of planning, teaching and learning

were active participants in this study.
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The regional Association of Mathematics Teachers conference for the Cairns region
held on the 28" of May 2021 presented an opportunity to share the initial draft of the
pedagogical resources with the region’s mathematics teachers. The resources included
associated examples from the Functions section in Unit 1 to demonstrate how the
resources were applied in Mathematical Methods. The researcher conducted an
interactive presentation with mathematics teachers at this conference and teachers
provided feedback verbally and through survey questions. The survey consisted of
Likert scale items and open-ended questions. A more detailed description of these
instruments is provided in the data collection section below. The teachers’ feedback and
contributions were used to improve the pedagogical resources. The planning tool also
provided teachers with an opportunity to brainstorm concept development, thus
deepening their understanding. The understanding that complex unfamiliar questions
are developed from simple familiar concepts was enhanced, demystifying mathematics
by demonstrating the importance of every level in learning the subject. Vocabulary
development was also prioritised in the planning tool to keep pace with the development

of the students’ mathematical knowledge.

The outcomes of Phase Two included development of a framework on content
sequencing and associated pedagogical resources to support teaching and learning of
mathematics. It was important to evaluate the framework and pedagogical resources
with a sample of senior mathematics teachers in Queensland; this was undertaken Phase

Three, which is described below.

3.4.3 Phase Three

The sub-questions addressed in Phase Three were:

e What are teachers’ perceptions of a planning framework on content sequencing
for the teaching and learning of mathematics?

e What are senior secondary teachers’ perceptions on how concept maps support
the teaching and learning of mathematics at senior secondary school?

e What are teachers’ perceptions on how procedural flowcharts support teaching

and learning of procedural fluency in the Mathematical Methods subject?
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This third phase of the study generally focused on evaluating the framework and
pedagogical resources that were developed in Phase Two with a sample of senior
mathematics teachers in Queensland, as described above. It used both quantitative and
qualitative research to enable triangulation of results from both types of data and
increase the validity of the findings (Yin, 2009). The inclusion criteria for participant
selection were teachers currently teaching or who had taught mathematics, especially
calculus-based options at senior high school level, that is, Years 11 and 12 in
Queensland. Purposive sampling was used to select the 16 participants. Purposive
sampling involves identifying and selecting knowledgeable participants or those who
have experienced the phenomenon of interest and are available and open to share their
experiences and opinions (Bernard, 2011; Cresswell & Plano, 2011). Purposive
sampling was used because participants are selected by virtue of their capacity to
provide richly- textured information about the phenomenon being investigated (Patton,
2002; Vasileiou et al., 2018). Purposive sampling has shown greater efficiency
compared to random sampling in research that involve qualitative data (van Rijnsoever
et al., 2017). The collection of both quantitative (Likert-scale survey items) and
qualitative data (open-ended surveys questions and interviews) from the teachers after
they had engaged with the framework and pedagogical resources provided a more
complete picture and better understanding of results compared with using either one of

the methods alone (Creswell, 2015).

Table 3.1 Demographic Information for Participants

Participant | Gender | Data collection | Qualifications | Schooling Number of
method system years teaching
mathematics
1 Female Survey and Masters Public 31
Interview
2 Female Survey and Bachelors Private 10
Interview
3 Female Survey and Bachelors Public 25
Interview
4 Female | Survey and Bachelors Public 17
Interview
5 Male Survey and Bachelors Private 19
Interview
6 Male Survey and Bachelors Public 11
Interview
7 Female | Survey and Masters Public 15
Interview
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8 Male Survey and Masters Public 19
Interview
9 Female Survey Bachelors Public 11
10 Female Survey Bachelors Public 15
11 Male Survey Bachelors Public 7
12 Male Survey Bachelors Public 9
13 Male Survey Bachelors Private 10
14 Female Survey Bachelors Public 13
15 Male Survey Masters Public 5
16 Female Survey Bachelors Private 11

A half hour video presentation was developed to articulate the framework and
pedagogical resources (concept maps and procedural flowcharts) with associated
examples. This video presentation was used during a workshop with teachers to train
them in how to apply the framework and pedagogical resources in their classroom

practice.

3.4.3.1 The Presentation to participants
The video presentation started by explaining to participants that the research developed

resources that can support mathematics teachers during planning for content sequencing
and representation of mathematics knowledge. The participants were invited to apply
the resources in their teaching and learning for a full school term then share their
opinions, feedback and experiences on the level of support the resources offered in their
practice. Firstly, the presentation focused on the framework on content sequencing by

unpacking its four pillars:
1. What exactly do students need to know and be able to do in this unit?

2. What prerequisites, conceptual understanding and skills are necessary for

students to effectively learn new knowledge?
3. How do the concepts identified as prior knowledge link with new knowledge?
4. What do we expect students to retain?

A demonstration was given on how the framework on content sequencing is used to
sequence mathematics content using an extract from a section of the QCAA

Mathematical Methods syllabus document. The extract is on Functions.

In this sub-topic, students will:
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e understand the concept of a relation as a mapping between sets, a graph and as a

rule or a formula that defines one variable quantity in terms of another

e recognise the distinction between functions and relations and use the vertical

line test to determine whether a relation is a function.

¢ use function notation, domain and range, and independent and dependent

variables.

e cxamine transformations of the graphs of f(x), including dilations and
reflections, and the graphs of y=af(x) and y=f(bx), translations, and the graphs
of y=f(x+c) and y=f(x)+d; a,b,c,d€ R

e recognise and use piece-wise functions as a combination of multiple sub-

functions with restricted domains.

¢ identify contexts suitable for modelling piece-wise functions and use them to

solve practical problems (taxation, taxis, the changing velocity of a parachutist).

(QCAA, 2018 p. 20)

During the presentation the presenter went through the processes advocated by the
framework on content sequencing in addressing the first pillar: identifying key words
then combine related key words to determine main conceptual connections. For the
second pillar teachers were shown how to develop a concept break-down table by
identifying the synonym of key words, defining key words, identifying prior knowledge
of concepts through backward mapping and identifying conceptual connections. An
example of a concept break-down table developed from the section on functions in

Table 1 was shared with the teachers.
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Table 3.2: Concept break-down table shared with participants during video presentation

Keyword

Definition of
keywords (were

possible)

Assumed prior
knowledge
concept linked

to keyword

Vocabulary

transition

How assumed
prior
knowledge link
with new

knowledge

Relations (Sets,
domain, range,
independent and
dependent
variables, rule,
functions,
mapping,
piecewise,
vertical line,
graph and
restricted

domain)

Domain -set of all
the first (x)
coordinates of
ordered pairs-
independent

variable.

Range — set of all
second (y)
coordinates of

ordered pairs-

dependent variable.

-a relation defines
the relationship bet
ween sets of values

of ordered pairs

Cartesian Plane,
ordered pairs,
sets, tables of
values of graphs,
inequalities,
linear and non-
linear equations

and graphs.

-x-values that
satisty a graph —

Domain.

-y-values that
satisfy a graph —
Range.

-inequalities —
restricted

domain

-Combination of
linear and non-
linear equations

1S piecewise.

-Ordered pairs —

Relations.

-In ordered pairs
the set all x
(first)
coordinates
represent the
domain
(independent
variable) and the
set of y (second)
coordinates is
the Range
(dependent
variable). A
vertical line is a
line parallel to
the y-axis. (Yr 7
& 8). The
relationship
between the x
and y is the rule,
formula,
equation or
mapping, arrow
diagrams.
Represent linear

and non-linear
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equations
graphically after
using general
substitution
(start Yr7) to
create a table of
values.
Represent
quadratic
equations
graphically (Yr 9
&10).
Inequalities
solutions makes

a statement true.

Transformatio
ns (Dilation,
reflection and

translation)

Transformation-
Changing a shape
using turn, flip,

slide and resize.

Flip, slide, resize

Flip- Reflection

Slide-

Translation

Resize- Dilation

Rules of
translation-
translating
horizontally or
vertically.
Reflection about
the x and y axis
(Yr 7).
Enlargement and
reduction as a
form of dilation

(Yr9).

The third pillar focused on identifying essential concepts through synthesising concepts

under the keywords’ column in the concept break-down table. In this example the

essential concepts were functions, relations and transformations. The fourth and last

pillar developed the sequence guided by conceptual connections, prior concepts and
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hierarchical nature of mathematics. Using the three guiding principles, a hierarchical
table for the identified content on a section on functions in Table 2 was shared with the

participants.

Table 3.3: Hierarchical table shared with participants during video presentation

Domain & Range Relations (mapping and Transformations
graphing)
Cartesian plane Rule (general substitution into Flip- reflection

linear and non-linear equations)

Ordered pairs Slide- translation
Ind dent and d dent

Sets naependent and dependen Resize — dilation
variable.

Table of values combinations

Sketch graphs from tables of

Domain and range values

Inequalities Vertical line test

Restricted domain Piecewise functions

Using all the pillars of the framework on content sequencing the final sequence for

teaching the content under consideration was presented as follows:

Cartesian Plane

Ordered pairs.

Sets

General substitution

Relations, rule, mapping- linear and non-linear functions
Tables of values

Domain and range

Inequalities

Restrict domain.

Graph linear and non-linear

Vertical line test

O 0O 0O o O o o o o o o o

Piecewise
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0 Flip (reflection), slide (translation), resize (dilation) and combination of

transformations.

Participants were encouraged to use the framework on content sequencing
collaboratively with colleagues who were teaching the same year level as well as across
different levels so as to also gain feedback from them. In concluding this section of the
presentation, the researcher identified key concepts at junior level which are critical for
the teaching and learning of functions in Mathematical Methods at senior secondary

level.

The second section of the presentation focused on representations of mathematical
knowledge focusing mainly on conceptual knowledge, procedural knowledge and
fluency. Firstly, the researcher introduced procedural flowcharts as a resource that can
be used to represent mathematics procedures. The flexibility of procedural flowcharts
was illustrated through the representation of more than one procedure on a single
flowchart. Their ability to guide decision making during problem solving and
communicating the solution to the problem was highlighted and participants were
encouraged to explore how they could adopt the flowcharts more broadly in their
practice. Importantly the researcher discussed the different ways that procedural

flowcharts could be used:

e Procedural flowcharts could be used as a resource by teachers as they outlined

the procedure to solve a problem.

e Students could use them to communicate the procedure as they solved a

problem.

In summary the researcher explained to teachers that this resource was mainly
developed to support teaching and learning of procedural knowledge and developing
procedural fluency. An example of a procedural flowchart in Figure 9 (see Chapter 9)

was shared with the participants.

In the second part of the presentation, the researcher started by emphasising that

concept maps can be used to create a web of connections, thus leading to conceptual
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understanding. However, in this study the main focus was to use concept maps in
linking junior concepts to senior concepts and showing how prior knowledge connects
or supports the construction of new knowledge. The researcher referred participants to
the important role of the content sequencing framework in identifying prior concepts in
developing new concepts. Using the results from the section on functions, the researcher
emphasised the importance of junior concepts in teaching functions at senior level. For
example, the Cartesian Plane, and flip, slide and resize are the basis of transformations
in functions. The researcher also emphasised that when concept maps are used in this
way, they can be used to introduce a topic, knowledge construction, assessment or as a
consolidation resource. The researcher encouraged participants to explore how this
resource could support their practice. The concept map in Figure 7 (see Chapter 8) was
shared with the participants. Finally, the researcher informed the participants that after
the implementation period, they would be asked to respond to survey questions and an

interview that will provide them with the opportunity to share their feedback.

Teachers were given a full term to use the resources before data collection began. They
were then asked to assess how the planning framework and pedagogical resources with
a focus on Functions in Mathematical Methods had worked. The teachers were also
asked to reflect on possible improvements to both the planning framework and the

pedagogical resources.

3.4.4 Phase Four

The question addressed in Phase Four was:
e What are teachers’ perceptions of how procedural flowcharts support students’

problem-solving skills in the Mathematical Methods subject?

This phase involved an in-depth follow up interview with a teacher who had applied
flowcharts in a problem-solving task. Semi-structured in-depth interviews focus
participants’ attention on the phenomenon being investigated as they elicit data from
participants’ experiences and the relationship of the experiences with existing constructs
within the area of focus (Galletta & Cross, 2013). Thus, this study used an in-depth

interview to elicit a mathematics teacher’s experiences and observations when applying
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from the students involved in the problem-solving task were also collected. In this
study, students’ artefacts provided insight into how procedural flowcharts supported
their problem solving in the task. Importantly, students generated artefacts can be linked

to knowledge, beliefs, and logic expected within the domain (Risan, 2020). Figure 3.1
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below illustrates the four phases in the research design.

Phase 1

Phase 2

Phase 3

Phase 4

In summary, Table 3.2 provide an overview of the phases involved in the study, the

study timeline and data source used to address the research questions. The research

Quantitative
data

16 participants

Qualiatative
data {Semi
structured
interviews

8 participants

Indepth
Interview

1 participant

Figure 3.1: Phases in the research design
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phases coincided with COVID 19, hence physical access to schools and face to face

contact with teachers was limited.

Table 3.4: Research phase timeline, questions and data source

Phase Research Question Data Source
What are the trends in Queensland e Quantitative (QCAA
1 senior students’ enrolment in enrolments data)
mathematics subjects?
School Terms 2 | What is the relationship between e Quantitative (QCAA
& 32020 students’ enrolment in calculus-based enrolments data,
mathematics in the new Queensland ICSEA values, SEIFA
curriculum and school level index and school
indicators such as socio-economic transfer ratings).
status, school location and transfer
rating?
What framework for content e Literature synthesis
2 sequencing can aid linking of
concepts from junior to senior
School Term 4 | mathematics?
2020 to term 2 | What teaching and learning resources | e Literature synthesis
2021 can support students’ participation in
senior mathematics?
What are teachers’ perceptions of a e (Quantitative (Likert
planning framework on content Scale items)
sequencing for the teaching and e Qualitative Data (Open
learning of mathematics? ended questions and
semi structured
3 interviews).
What are senior secondary teachers’ | ¢ Quantitative (Likert
School Term 3 | perceptions on how concept maps Scale items)
and 4 2021 support the teaching and learning of | ¢  Qualitative Data (Open
mathematics at senior secondary ended questions, semi
school? structured interviews
and artefacts).
What are teachers’ perceptions on e Quantitative (Likert
how flowcharts support teaching and Scale items)
learning of procedural fluency inthe | e Qualitative Data (Open
Mathematical Methods subject? ended questions and
semi structured
interviews and
artefacts).
What are teachers’ perceptions of e Qualitative data (semi
4 how procedural flowcharts support structured interviews,
School Term 1 | students’ problem-solving skills in in-depth interview and
and 2 2022 the Mathematical Methods subject? students’ artefacts).
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3.4.5 Ethics

Initially, James Cook University Human Research Ethics Committee conditionally
approved the researcher’s ethics application on the condition that approval was gained
from the Queensland Department of Education. Since the research covered more than
one site (school), approval was required from the state Department of Education. The
COVID-19 pandemic presented new challenges as the Department of Education wanted
a clear outline on how the research could be done safely. To limit exposure, the
researcher proposed to present to participants remotely and follow latest Queensland
Health guidelines for face-to-face interviews. Ethical approval was gained from the
Department of Education, Queensland: Reference number: 550/27/2383. Following this,
James Cook University Human Research Ethics approval was also gained: Approval

number: HR201.

To ensure confidentiality and privacy of all respondents, several measures were
undertaken to make participants aware of the nature of the study and their rights. The
principals of identified schools and their senior secondary mathematics teachers as
participants were provided with detailed information regarding the purpose of the study,
methods of data collection, rights to privacy, confidentiality and the ability to withdraw
at any point during the research. As the study evolved, an ethics amend from the
university was obtained so as to include students’ artefacts in the study. Detailed
information about the study, and students’ rights to terminate consent on use of their
artefacts at any point in the study was made available. Information was shared through
information sheets and consent forms that were prepared for the various participants
involved in the study. Contact details of the researcher, advisory panel members and
university ethics committee were made available on the documents in case participants

had concerns they wanted to raise.

3.5 Research Tools

Research has indicated that identification of student prior knowledge (Bringula et al.,
2016; Fyfe et al., 2012), professional collaboration among teachers (Boyle & Kaiser,
2017; Fernandez & Cannon, 2005) and social learning groups (Ashman & Gillies, 2003;
Garcia-Carrion & Diez-Palomar, 2015) support students’ participation. Creating a

learning environment in which students’ participation is anchored on creating skills and
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knowledge based on prior experience is one of the most effective pillars of a robust and
effective teaching methodology (Hailikari et al., 2008). The planning framework and
pedagogical resources with associated examples developed in Phase Two are research
instruments that were shared with the senior mathematics teachers participating in this

study.

The introduction of summative evaluation in 2020 (QCAA, 2018) in Queensland's
senior secondary schools brought challenges and pressures both to teachers and
students, as students had to retain their mathematical knowledge for longer. The
external examination covers two years of learning, with most of the questions based on
concepts taught in Further Calculus (Unit 3) and Further Functions and Statistics (Unit
4). Thus, strategies that provide opportunities for students’ independent learning, skills
development and deeper conceptual understanding are required to support their
participation in these subjects. The framework developed in Phase Two proposed the
use of visual tools as a way of helping students attain the necessary skills and
comprehend conceptual connections faster, based on the understanding that procedural
flowcharts are critical in promoting fluency and skills development. Above all, they
promote students’ independent or self-paced learning. Similarly, concept maps help
students visualise their mathematical knowledge and clearly demonstrate conceptual
connections. Importantly, procedural and conceptual knowledge depend on students’
prior skills, knowledge and mathematical facts. Therefore, development of procedural

and conceptual knowledge depends on the sequencing of concepts.

The aims of the framework and associated pedagogical resources that were developed in

this study were:

e to emphasise the value of content sequencing during planning

e to highlight the importance of concept maps in concept development in
mathematics

e to highlight the importance of prior knowledge in students’ participation and
minimisation of misconceptions

e to draw attention to the importance of flowcharts in teaching procedural

knowledge and fluency
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e to propose ways of checking for understanding in a mathematics class that are
learner centred.
e to explore how procedural flowcharts support problem solving in Mathematical

Methods subject.

3.6 Data Collection Methods

Surveys and semi structured interviews were used to collect data from timetabled senior
mathematics teachers to evaluate the effectiveness of the planning framework and
pedagogical resources in teaching and learning of mathematics. Data collection was
done after the teachers had spent a term utilising the resources. The importance of
research instruments such as surveys is that it can add more detailed information about
the research problem under consideration (Habib et al., 2014). The surveys took
approximately 20 minutes to complete. Surveys provide opportunities to collect
responses from each participant which helps in identifying different viewpoints or
experiences (Giirbiiz, 2017). Moreover, surveys are used with the aim of determining
the attitudes, beliefs, opinions, and expectations of participants (Kelley-Quon, 2018). In
this study, surveys were used to determine the opinions, viewpoints, and experiences of
senior mathematics teachers in the teaching of calculus-based mathematics. The surveys
were sent via email, which has been identified as a better way of providing participants
with more time to answer the questions carefully and minimises the researcher’s
influence on participants hence allowing more accurate data to be obtained (islamoglu

& Almagik, 2014).
The survey instruments comprised of open and closed response items.

“Quantitative approaches use more closed-ended approaches in which the
researcher identifies set response categories, whereas qualitative approaches use
more open-ended approaches in which the inquirer asks general questions of
participants, and the participants shape the response possibilities” (Creswell,

2014, p. 19).

The study used open response questions because they require participants to develop
their own response while closed response questions provide participants with the
opportunity to select from the responses provided. Open responses provided participants

with the opportunity to share their thinking unlike closed response questions.
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Importantly, the advantage of using both types of items were that closed response items
focused participants’ responses to issues important to the study while open response
items may provide an opportunity to gain unforeseen responses (Johnson & Morgan,

2016).

The closed response questions were in the form of Likert scale items. Likert items are
used to measure participants’ attitudes, opinions or beliefs to a particular question or
statement (Johnson & Morgan, 2016). The study used a 5-point Likert scale to explore
participants’ perceptions of pedagogical resources as it can accommodate a “neutral
anchor, to allocate equal psychological distance between the neutral category and the
adjacent side categories” (Wakita et al., 2012, p. 534). Likert scales are more suitable to
use when evaluating an intervention (Sullivan & Artino, 2013). Thus, the study used the
Likert scale items for the participants to evaluate the pedagogical resources developed
in the study. Importantly, a 5-point scale is regarded as reliable, enough to pick a
category fairly fast and provide a good range of choices (Wakita et al., 2012). However,
closed response items may limit participants’ responses as they are required to read and

write or select responses.

Semi structured interviews were also conducted with the senior mathematics teachers.
On average the interviews took 15 minutes. Semi-structured interviews were conducted
to gain a deeper understanding of how teachers used the framework on content
sequencing, concept maps and procedural flowcharts in their teaching of mathematics.
The study used semi structured interviews as they are adjustable and adaptable and
provide opportunities for the interviewer to ask follow-up questions based on the
interviewee’s responses (Galletta & Cross, 2013; Kallio et al., 2016). To gain a deeper
understanding of teachers’ experiences within the study, semi structured interviews
“offer a focused structure for the discussion during the interviews but should not be
followed strictly” (Kallio et al., 2016, p. 2955), allowing complementarity between
interviewer and participant (Galletta & Cross, 2013). This allowed the researcher to
prompt questions that allows for further elaboration or follow-up on a participant’s
response. Similarly, it provides the interviewer with the opportunity to restructure
questions and might obtain spontaneous responses as well as obtain supplementary

information (Kothari, 2004). In this study, semi-structured interviews were used to
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provide opportunities for participants to further expand on their answers and to share
other important feedback that the researcher might have overlooked. Questions in the
research instruments were adapted from Truxaw et al. (2008) and Abdeljaber (2015).
The semi structured interview questions were pre-tested with 2 randomly selected

teachers to establish flow and clarity of questions.

As senior mathematics teachers were using the pedagogical resources in their teaching,
different artefacts were developed. An artefact is a purposeful and intentional object
made by humans and is commonly used in critical and qualitative or interpretive
research (Czerwinski, 2017). In fact, artefacts can be presented as arguments that
embody the response to a research question (Biggs, 2002). Mikeld (2007) emphasised
that “the works created during the research process can be conceived as answers to the
posed research questions” (p. 163). Firstly, artefacts were developed during check in
sessions with the researcher as consultations and collaboration resulted in jointly
developed procedural flowcharts. Secondly some participants also shared artefacts they
developed during the implementation stage. Lastly, student developed artefacts were

also collected during the teaching and learning using the pedagogical resources.

3.7 Data analysis

Quantitative data collected in phase one from QCAA, ABS, schools ICSEA values and
schools transfer rating was analysed using means, frequency counts, percentages, and
correlation tests. Descriptive statistical analysis was done using excel suite and
inferential statistics using SPSS. Descriptive Statistics (means, frequency counts and
percentages) form a major component of all quantitative data analysis when coupled
with several graphics’ analysis as it summarises raw data from a sample or population
(Yellapu, 2018). This study combined descriptive statistics with graphs to offer a
comprehensive insight into the data on trends analysis. Yellapu (2018) went further to
note that in most cases it is used to break down huge amounts of data into a simpler
form or describe the behavior of a sample. The dataset in phase one was large as it was
drawn from school enrolments across the state of Queensland and from other
institutions. Thus, descriptive statistics provided a general overview of the trends.

Importantly, as part of good research practice, it is essential that one report the most

67



Supporting the teaching of calculus-based senior mathematics in Queensland.

appropriate descriptive statistics using a systematic approach to reduce the likelihood of
presenting misleading results (Huebner et al., 2016). In summary this study used
descriptive statistics because it provided an overview of the general trends (Peace &
Hsu, 2018). Descriptive data analysis was done using Excel suite which also provided
opportunities to present the data graphically. Calculating descriptive statistics represents
a vital first step when conducting research and should always occur before making

inferential statistical comparisons (Kaur et al., 2018).

Inferential statistics complements descriptive statistics and involves coming up with a
conclusion drawn from the existing data. In this study the Spearman’s rank correlation
coefficient was used to measure the strength and direction of a monotonic association
between a range of variables and students’ enrolment. A monotonic association is
observed when the value of one variable increases the other value also increases or as
one variable increases the other decreases (Sedgwick, 2014). The Spearman’s rank
correlation coefficient was used to analyse the statistical relationship between ICSEA,
SEIFA and transfer ratings on students’ enrolment and dropout rate in calculus-based
mathematics. Use of SPSS also allowed development of comparative diagrams as it

offered diverse resources for complex displays.

During phase 3 both quantitative and qualitative data was collected. The quantitative
data was collected using Likert scale survey items. For Likert Scale data, “computing
means and standard deviations are considered to be inappropriate, but use of
nonparametric statistics is encouraged” (Wu & Leung, 2017, p. 528). This is because,
Likert scale data are generally ordinal in nature and are best analysed using modes,
frequency, and medians (Stratton, 2018). Therefore, mode and median which are

descriptive statistics were used to analyse this data.

Qualitative data constituted open-ended questions in surveys and recordings of
interviews with mathematical methods teachers. After transcribing the semi structured
interviews, member check was done with participants to verify accuracy of the
transcribed scripts. Data analysis of survey open-ended questions and interviews
followed a thematic analysis. Thematic analysis aims to identify, investigate, and reveal
patterns found in a data set (Braun & Clarke, 2006). In this study, a thematic analysis

was used to identify, analyse, and report patterns in the qualitative data. Braun and
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Clarke went further to posit that thematic analysis is a fundamental method for any
qualitative analysis, and that it provides researchers with core skills that are useful for
conducting most forms of qualitative analysis, as most of them are essentially thematic.
This process entails a search for themes that are important to the description of the
phenomenon and its relation to the study focus (Daly et al., 1997). The study used
thematic analysis to identify the themes that best described the qualitative data collected

in the study.

Thematic Analysis (TA) is widely used in qualitative research to identify and describe
patterns of meaning within data (Braun & Clarke, 2006; Ozuem et al., 2022). It is key
for examining the perspectives of different research participants, identifying similarities
and differences and generating unpredictable insights (King, 2004). As a foundational
method for any qualitative analysis, a TA provides the researcher with critical skills that
are useful for conducting different forms of qualitative analysis, as many of them are

essentially thematic (Braun & Clarke, 2006). Importantly, a TA offers:

“Flexibility in terms of research question, sample size and constitution, data
collection method, and approaches to meaning generation. It can be used to
identify patterns within and across data in relation to participants’ lived
experience, views and perspectives, and behaviour and practices; ‘experiential’
research which seeks to understand what participants’ think, feel, and do”

(Clarke & Braun, 2017, p. 297).

Moreover, another key advantage of a TA is the flexibility of the method to identify
constructs (Lawrence, 2012). TA follows an accessible and systematic approach that
identifies, analyses, organises, interprets and reports patterns of meaning (themes)
(Braun & Clarke, 2006; Clarke & Braun, 2017). Themes are patterns of shared meaning
fostered by a core concept and informed by the research questions (Braun & Clarke,
2006, 2019). Through coding the data, a TA develops ideas, meaning and understanding
(Ozuem et al., 2022). The researcher plays an active role in coding and theme
development following a clear and usable framework for doing TA (Maguire &

Delahunt, 2017), shown in Table 3.1.

Theme development is an active process involving the researcher and the qualitative

data available (Braun et al., 2022), and is the goal of a TA (Maguire & Delahunt, 2017).
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During a TA, data is analysed without engaging pre-existing themes, which makes it
ideal for any research that relies primarily upon participants’ responses and
clarifications (Alhojailan, 2012). Braun and Clarke identified two levels of themes:
semantic and latent. Semantic level can be identified within the explicit meanings of the
data and the analyst is not looking beyond what participants have provided. However,
analysis transcends beyond just what is provided in the data by interpreting and
explaining it (Maguire & Delahunt, 2017). Contrastingly, latent level looks beyond
what participants said “to identify or examine the underlying ideas, assumptions, and
conceptualisations — and ideologies - that are theorised as shaping or informing the
semantic content of the data” (Braun & Clarke, 2006, p. 84). A semantic level was
adopted for this study because it explored teachers’ perceptions on how pedagogical

resources developed in the study supported the teaching of calculus-based mathematics.

The emergence of themes can be developed using deductive or inductive analysis.
When themes are developed deductively the researcher brings theoretical concepts to
the research and when developed inductively the themes emerge from the raw data
(Jofte, 2012), thus is data driven (Bonner et al., 2021). The study adopted the inductive
approach which produce codes that solely reflective of the contents of the data (Byrne,
2022). Participants shared their perceptions on how the pedagogical resources
developed in the study have supported their teaching of mathematics. As participants
are practicing mathematics teachers, their opinion after using the pedagogical resources
is key in how the resources supported their teaching. Existing research and theory
provide a lens for analysing and interpreting the data in TA (Braun & Clarke, 2021).
Moreover, the inductive approach ensured that themes were connected strongly to the
data and did not use an existing coding frame or the researcher’s pre-existing ideas
(Braun & Clarke, 2006; Patton, 1990). Importantly, the themes were linked closely to
the responses and meanings obtained from participants. The researcher’s interpretations
and findings should be clearly derived from the data and then inform conclusions and
interpretations for confirmability (Tobin & Begley, 2004). Table 3.1 below outlines the
phases of thematic analysis as informed by Braun and Clarke (2006, 2019, 2021).

Table 3.5: Phases of Thematic Analysis (Braun & Clarke, 2006, 2019, 2021).

‘ Phase | Description
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Data familiarisation and writing
familiarisation notes.

Transcribing data, reading and re-reading
the data, highlight initial ideas.

Systematic data coding

Coding interesting features of the data
systematically across the entire data set,
categorise data relevant to each code.

Generating (initial) themes from coded
and collected data

Organising codes into potential themes,
collect all data relevant to each potential
theme.

Developing and reviewing themes.

Checking whether the data supports the
themes in relation to the coded extracts
and across the data set; generating an
initial map of themes.

Refining, defining and renaming themes

Continuous refining of the specifics of
each theme, and the overall story the
analysis tells, generating clear definitions
and names for each theme.

Reporting

Selecting vivid, compelling extract
examples, analysis of selected extracts,
relating back to the research question and
literature.

3.7.1 Data analysis using Thematic Analysis
The six phases of Thematic Analysis proposed by Braun and Clarke (2006, 2019) in

Table 3.1 was followed during analysis. In qualitative research, trustworthiness can be

achieved if a clearly detailed account of how the data was analysed is available and all

assumptions made are included (Nowell et al., 2017). Providing a step-by-step process

of analysis is a method of demonstrating transparency of how the researcher formulated
the overarching themes from the participants’ data (Fereday & Muir-Cochrane, 2006).
Indeed, “the analytic process involves immersion in the data, reading, reflecting,
questioning, imagining, wondering, writing, retreating, returning” (Braun & Clarke,
2021, p. 332). Although the Thematic Analysis was informed by Braune and Clarke’s
stages of analysis this study also adopted and referred to Maguire & Delahunt (2017)
and Nowell and colleagues (2017) examples of using Braun and Clarke’s Thematic
Analysis. Importantly, Bree & Gallagher (2016) recommended that Excel can be used in
Thematic Analysis as a tool to assist in coding and developing themes because it can
identify duplicate entries, can be used to colour code cells and changes can be tracked
across different spreadsheets in a workbook. A research team of the principal researcher

and two supervisors met every Thursday for three months during this thematic analysis.
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3.7.1.1 Phase 1
Data management and understanding the data is key in any credible data analysis.

Firstly, the raw data files were issued participants codes as file names. The researcher
and supervisors (research team) read and re-read the open-ended questions and the
interview transcripts to familiarise themselves with the entire body of data corpus. As
the transcripts were read, early impressions were noted. A spreadsheet was created with
column headings of open-ended survey questions and rows with participant names.
Responses were populated in the spreadsheet for easy navigation through questions and
responses. Another spreadsheet was created with column headings of research questions

to be addressed by the study.

3.7.1.2 Phase 2

The researcher and supervisors met as a team for the initial coding of the data. From the
start of the thematic validity was ensured using theory triangulation. It involves sharing
qualitative responses among colleagues at different status positions in the field then
comparing findings and conclusions (Guion et al., 2011). Firstly, as a team we coded
two participants’ open responses and two interviews transcript. As data was being coded
the team kept revisiting the research questions to identify each segment of data that
captured something interesting about the research questions. The coding process
involves identifying and recognising an important moment within the data and encoding
it prior to a process of interpretation (Boyatzis, 1998). Moreover, a code is something of
interest to the researcher, which they view as of significance in answering the research
question (Swain, 2018). Coding involves taking qualitative text data apart to see what
they yield before putting the data back together in a meaningful way (Creswell, 2015)
“Coding allows the researcher to simplify and focus on specific characteristics of the
data” (Nowell et al., 2017, p. 6), with the goal of attaining clarity in organising and
interpreting the data (King, 2004). Coding was done with no pre-set codes and line-by-
line coding was used as this was mainly an inductive analysis. At the conclusion of step
1, initial ideas on codes were discussed as a team to give team members a background
and clarity on the process. Notes were recorded on initial observations about interesting
aspects of the data items and emerging impressions. Separately, we went further to code
another set of open-ended survey questions and interview transcript. A discussion,

comparison and collating of codes followed the initial independent coding. This was
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done to moderate and modify our coding before we went to code the rest of the data
separately. Peer debriefing helped the team to debrief on how their thoughts were
evolving as they engaged deeply with the data and the coding process. During this step
2 of coding, codes were copied and pasted under specific research questions in the

spreadsheet (see Appendix A).

3.7.1.3 Phase 3
Codes are the building blocks for themes, which are patterns of meaning with a shared

core idea (Clarke & Braun, 2017). A code is viewed as something shorter, or basic
(Braun & Clarke, 2006), which can be combined or connected to form a much broader
understanding referred to as a theme (Fereday & Muir-Cochrane, 2006). A theme is
determined through the sound judgement of the researcher which should be applied
consistently through the analysis considering that a theme can be judged on whether it is
essential to addressing the overall research question (Campbell et al., 2021). The data
covered a wide variety of concepts so initially the different concepts that grouped the
research questions as ‘conceptual themes’ were utilised to organise the data. The
research team examined the codes, checking on their meaning and relationships to
determine which ones were underpinned by a central concept. In Excel, codes that
shared a core idea from the initial phase that used data from the open-ended responses
and interview transcripts were colour coded (see Appendix B). This is supported by
King (2004) who suggested that when searching for themes it is best to start with a few
codes to help guide analysis. After the independent thematic analysis, the filter function
in Excel was used to sort the codes using cell colour. Moreover, Excel provided the
opportunity to identify duplicates as codes were collated from the three researchers.
Same coloured codes were synthesised to develop a general pattern of meaning, which
we referred to as candidate themes (see Appendix C). The code that did not belong to
any of the candidate themes were listed under miscellaneous theme for further analysis
and review. At this stage, data or codes which do not fit under any of the candidate
themes should not be abandoned as without further review during the fourth phase of
thematic analysis, it is uncertain whether the themes will hold, be combined, refined,
separated, or discarded (Braun & Clarke, 2006). Thus, the sorting and collation
approach would bring together all codes under each theme which then would facilitate
further analysis and review (Bree et al., 2014). Independent thematic analysis among the

team members ended at this stage as codes and candidate themes had been.
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3.7.1.4 Phase 4
This phase focused on reviewing, modification and refinement of the candidate themes

identified in stage 3. In this phase, the researcher should conduct a recursive review of
the candidate themes in relation to the coded data items and the entire dataset (Braun
and Clarke 2012, 2021). The team went back to review the themes and codes
independently coded and evaluated the meaning and association within and across
themes. We were guided by the questions developed by Braun and Clarke (2012 p. 65)

on how to review themes:

e s this a theme (it could be just a code)?

e I[fitis atheme, what is the quality of this theme (does it tell me something

useful about

e the data set and my research question)?

e What are the boundaries of this theme (what does it include and exclude)?

e Are there enough (meaningful) data to support this theme (is the theme thin or

thick)?

e Are the data too diverse and wide ranging (does the theme lack coherence)?
The researcher and supervisors went on to review the relationship of the data and the
codes that informed the themes. Moreover, the coded data extracts for each theme was
reviewed to check for coherence. Importantly, if the codes form a coherent and
meaningful pattern the theme makes a logical argument and may be representative of
the data (Nowell et al., 2017). Furthermore, the team also reviewed the themes in
relation to the data. This is because Nowell and others posited that themes should
provide the most accurate interpretation of the data. Importantly, the focus of this stage
is to check inadequacies in the initial coding and themes which may require some
changes, for example new codes or subcodes can be developed (King, 2004). As a
result, we vetted, reviewed and cross analysed the coded data for each theme and
subthemes to ascertain coherence. This also involved going back to the data to make
sure participants’ voices were reflected. During the review, whenever new themes, old
themes were integrated or codes were moved to another theme, a new spreadsheet was
created so that if further review was necessary the old data and layout would still be

available. Braun and Clarke emphasised that at the end of this phase, researchers should
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have a good idea of the themes developed, their relationship and the overall story they

tell about the data.

3.7.1.5 Phase 5
This phase is considered the final theme refinement stage. Braun and Clarke noted that

the aim of the phase was to “...identify the ‘essence’ of what each theme is about” (p.
92). Each theme or sub-theme should be expressed in relation to the dataset and the
research question(s) (Byrne, 2022). As a team the researcher and supervisors discussed
and wrote detailed analysis for each candidate theme identifying the main story behind
each theme and how each one fit on the overall story about the data through the lens of
the research questions. Each meeting focused on one theme and each member was given
the opportunity to share their understanding and evaluation and other team members
had opportunities to ask questions. Data was read and codes scrutinised and reviewed to
ensure credibility. We only moved to the next theme when consensus was reached about
the theme names, codes and themes as representational of the data. Finally, in this phase
we also linked quotes to final themes reached during the analysis. Illustrating findings
with direct quotations from the participants strengthen the face validity and credibility

of the research (Bryne, 2022; Patton, 2002; Nowell et al., 2017).

3.7.1.6 Phase 6
This phase is the end point of the research when all themes and subthemes have been

finalised. The writeup provided a concise, coherent and logical cogent narrative of the
data within and across themes (Braun & Clarke, 2006; Byrne, 2022). Researchers
should show the significance of the patterns and their broader meanings, implications
and how the findings relate to literature (Braun & Clarke, 2006; Nowell et al., 2017;
Starks & Trinidad, 2007). Importantly, more direct quotes from participants were
included in the analytical narrative to connect readers with the raw data (King, 2004;
Nowell et al., 2017), hence enhancing the validity and merit of the analysis (Braun &
Clarke, 2006). The principal researcher was the one responsible for writing all the
research reports that emanated from the data. However, all the reports were shared with
the supervisors for feedback and validation. Credibility can be obtained through peer
debriefing which provide an opportunity for external check on the research process, as
well as examining referential adequacy as a means to check preliminary findings and

interpretations against the raw data (Lincoln & Guba, 1985). The report of the analytical
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narrative was shared with participants for them to check if the results represented their
responses. Member check in was used to validate participants’ responses to a
researcher’s transcription or conclusions about them (Cutcliffe & McKenna, 2002).
Furthermore, part of the results were presented at the Mathematics Education Research
Group of Australasia (MERGA) conference for peer feedback. Conference
presentations of the researcher’s data interpretation can allow opportunities for further

comment from peers and experienced researchers (Fereday & Muir-Cochrane, 2006).

During phase 4 qualitative data were collected using an in-depth interview and her
students’ artefacts. The stages of problem solving in mathematics (Artigue et al., 2020;
Geiger et al., 2021; Polya, 1971; QCAA, 2018) were used in analysing the in-depth
interview with the teacher. Interpretation of artefacts overcomes its muteness and gives
it a voice and meaning (Mékeld, 2007). Students’ artefacts were analysed using the
QCAA’s (2018), problem solving and modelling task flowchart (see Appendix A). The
stages of problem solving were used in the analysis because the phase was focused on

supporting students’ problem-solving skills using procedural flowcharts.

3.8 Data Storage

Data were stored using the university data storage protocols. Data was saved offline,
replicated three times and saved on different platforms immediately after collection. A
data record was created with a link to the master copy used in the active stage of the
research and the copy was uploaded onto the university data repository after the data

was de-identified. The data will be retained for five years.

3.9 Chapter Conclusion

This chapter has outlined the two main questions this study intended to address, along
with the theoretical position that frames them. It has justified the methodology used in
the design of the study and detailed the methods within the design that were used for
data collection in the four phases involved. Chapter 4 is an analysis of trends in student

participation in calculus-based mathematics in Queensland.
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Chapter 4: Senior High School Mathematics Subjects in Queensland:
Options and Trends of Student Participation

A version of this chapter was published as a research paper in the
PRISM Casting New Light on Learning, Theory and Practice.

https://openjournals.ljmu.ac.uk/index.php/prism/article/view/446

4.1 Chapter Introduction

Mathematics has been described as a critical filter for future academic and career
options and enrolment in Advanced Mathematics subjects in high school paves the way
for high-status careers (Watt et al., 2017). Furthermore, Advanced Mathematics is
central to the study of many university courses, including science, technology,
engineering and mathematics (STEM) courses. “Mathematics is a key science for the
future, through its enabling role for science, engineering and technology. This is
illustrated by dramatic advances in communications, bioinformatics, the understanding
of uncertainty, and dealing with large data sets” (Lemaire, 2003, p. 1). Students need a
strong foundation of mathematical skills, especially at secondary school, to make a
successful transition from school to studying STEM disciplines at university (Lyakhova
& Neate, 2019). Consequently, government programs often target mathematics as one
important part of STEM education that will lead to better jobs, innovation, improved
economy and greater global leadership (Peters et al., 2017). Importantly, the post
COVID-19 economic reboot will require students with advanced mathematics skills as
demand for skilled STEM professionals will increase (Vernon, 2020). The important
contribution that mathematics makes towards STEM-based careers means it is essential
to understand students’ choices in different options that the subject offers, especially

options that are prerequisites for STEM courses.

The technology-driven modern world requires a deep understanding of mathematics,
hence equipping citizens with advanced mathematics skills becomes a right (Centre for
Curriculum Redesign, 2013). Students who take calculus-based or Advanced
Mathematics in countries such as Australia, The USA and the UK are better positioned
to enrol in STEM-related courses at tertiary level (Carnevale et al., 2011; Lyakhova &
Neate, 2019). Advanced mathematical knowledge, skills and understanding of distinct
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concepts are important for further study in fields where mathematics plays a key
enabling role (Maltas & Prescott, 2014). Calculus-based or Advanced Mathematics as
prerequisites of tertiary STEM courses have a direct impact on university enrolments
and the diverse opportunities students have after high school. Therefore, it is essential to
look at the enrolment rates of senior students in different mathematics curricula.
Analyses of student enrolment trends in different mathematics options can be
confounded by the diverse classifications of mathematics subjects. The following
sections discuss how mathematics is classified internationally and the classifications
used in Australia. This will be followed by a discussion of global and Australian trends
in student enrolment in senior school mathematics, with a final focus on trends in the

state of Queensland, which is the context of this study.

4.2 Mathematics Classifications Internationally

Senior high school mathematics curricula differ from country to country. Some
countries follow a national curriculum where all students engage with the same
mathematics curriculum. In the UK, students who progress to A-level studies and opt
for mathematics have the option of obtaining AS (Advanced Subsidiary) qualifications
after a year, the full A-level (A2) or Further Mathematics (FM) at the end of two years
(Noyes & Adkins, 2016). New core mathematics qualifications were introduced in 2015
as an alternative pathway for students who have passed GCSE mathematics but want to
pursue courses that do not demand advanced mathematics (Lee, 2016). Countries that
have a national curriculum classify all mathematics options under a common
nomenclature. This eliminates complications in defining subject classifications when

undertaking analysis of national trends in student enrolment.

Federal countries with autonomous states that determine their own curricula may have
no consistent framework for naming mathematics subjects. For example, in the USA,
some states allow the education structure to be decided at local level. As nomenclature
is not consistent between state jurisdictions, compiling data into nationally consistent
and coherent information is problematic. For example, subjects with very similar course
content can have different titles and possibly be classified as belonging to different

learning areas. The National Centre for Education Statistics [NCES], (2007), cited in
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Rasmussen et al. (2011), classified different mathematics subjects in order of
complexity, as follows: Algebra I or Plane Geometry, Algebra II, Algebra
ITI/Trigonometry or Analytical Geometry, Pre-calculus, Calculus and Advanced
Placement (AP). Clarity around the categorisation of mathematics options offered in
different states is an important prerequisite for an informative analysis of student

enrolment trends in this subject, as the criteria used for categorisation can be contested.

4.3 Mathematics Classification in Australia

In Australia, senior school curricula are the responsibility of states and territories. This
means that the classification and scope of the mathematics subjects can be different
from one jurisdiction to another. In addition, researchers in Australia have differing
views on the way that mathematics subjects ought to be classified. Some take into
consideration only the opportunities that the subject offers post-secondary school, while
others use only subject content as the basis for their classification. This prompted some
scholars to meet in 2004, when they resolved that the categorisation of subjects and
compilation of enrolment data be listed alongside each other (Barrington & Brown,
2014). Table 4.1 shows the different classifications researchers have since used in
analysing mathematics subjects. Mathematics subjects are classified into three
categories: basic, elementary or low-level, intermediate, and advanced or high-level
(Kennedy et al., 2014). Basic Mathematics covers basic mathematics skills and is not
considered for any future educational purposes, intermediate mathematics is considered
useful in pursuing courses in which mathematics content is minimal, while Advanced
Mathematics is a prerequisite for university courses in which mathematics plays an
integral role (Dekkers & Malone, 2000). Thus, entry level (see Table 4.1) is part of
elementary mathematics which include mathematics subjects that are considered as a

numeracy option for tertiary admission (Kennedy et al., 2014).
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Table 4.1: Researchers’ Classifications of Australian High School Mathematics

Subjects

General Course Content

Dekkers, Barrington & Kennedy, Lyons
DeLacter & .
Brown & Quinn

Malone . . . )
Classification Classification Classification
(2000). (2004) (2014)

Background
Low-Level Elementary

Entry

Intermediate Intermediate  Intermediate

High-Level Advanced Advanced

Terminal mathematics courses that
are not designed for further tertiary
study and do not contribute towards
tertiary admissions rankings.
Terminal mathematics courses that
are not designed for further tertiary
study yet do contribute to
calculated tertiary admissions
ranking.

Mathematics courses that provide a
satisfactory knowledge base for
tertiary courses requiring minimal
mathematics knowledge.

Mathematics courses that provide a
specialised knowledge base for
tertiary studies in STEM courses or
in courses in which mathematics is
an integral part.

(Kennedy et al., 2014 p. 36).

The curriculum diversity and options offered in different countries reinforces the idea

that mathematics should prepare students for different career choices, highlighting the

‘critical filter’ tag that has been used to describe the subject (Watt et al., 2017). As

countries adjust or change mathematics curricula, their objective should be to increase

students’ enrolment, especially in advanced or calculus-based options, as these provide

students with more diverse and better career opportunities. Increased mathematics

choices naturally means that different subjects compete for students. As a result, an

analysis of the trends in student choices may shed some light on the distribution of

students among subject options.
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4.4 International Trends in Student Participation in Mathematics Subjects
Global trends in student enrolment in senior school mathematics indicate that student

enrolment in calculus-based mathematics subjects is either declining or has reached a
stagnation point. For example, enrolment in Advanced Mathematics in countries such as
Germany, Ireland, Netherlands, Russia and Spain is 15% or less of the total student
cohort (Hodgen et al., 2010a). Correspondingly, South African enrolment in calculus-
based mathematics declined by 16% between 2015 and 2019 (Businesstech, 2020). On
the other hand, in Japan, South Korea, New Zealand, Singapore and Taiwan,
approximately 31% of upper secondary students chose to study Advanced Mathematics
between 2005 and 2010 and these countries had the highest share of students’ enrolment
in Advanced Mathematics worldwide (Hodgen, 2013; Hodgen et al., 2010b). The USA
showed a general increase in Advanced Mathematics enrolments until 2005 when
calculus and AP (Advanced Placement) had a combined rate of 23% enrolment, but
enrolments stagnated thereafter (Hodgen et al., 2010b; National Science Board, 2018).
Following the introduction of Curriculum 2000 in the UK, a steady increase in students
opting for mathematics for their A-level was noted between 2006 (7.9%) and 2015
(12.7%) (Hodgen et al., 2010b; Noyes & Adkins, 2016); however, mathematics still
remains a minority subject and females are less represented in A2 (Hodgen et al.,

2010b).

4.5 Trends in Student Participation in Mathematics Subjects in Australia
Available national trends in Australia focus on Year 12 enrolment statistics from all

states and territories and are generally categorised as elementary, intermediate and
advanced. Concerns have been raised about student enrolment in intermediate and
Advanced Mathematics options. For example, Australia’s former Chief Scientist,
Professor Ian Chubb, expressed his concerns about the lack of appetite by students to
study higher levels of mathematics in Years 11 and 12 (Evershed & Safi, 2014).
“Intermediate and, especially Advanced Mathematics students are essential for a strong
science, research and innovation capacity. The statistics at hand indicate that enrolment
numbers in these areas are shrinking and students are instead electing to take

Elementary Mathematics” (Australian Council of Deans of Science, 2006, p. 2).
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4.5.1 Elementary/Entry-level/Low-Level Mathematics

In Australia, student enrolment in elementary mathematics has maintained a significant
and steady growth in enrolments from 1990 to 2012, with the exception of 2001
(Barrington & Brown, 2014). By 2010, 51% of all mathematics enrolment was in the
elementary level, increasing to 52% in 2011, where it stayed until 2015 (Barrington &
Evans, 2014; Barrington & Evans, 2016). In 1990, around 51,855 students opted for
low-level mathematics but by 2015 about 117, 000 students were enrolled in the subject,
a 125.6% increase (Dekkers & Malone, 2000; Barrington & Evans, 2016). Kennedy et
al. (2014) also reported an increase in enrolment rates in entry level mathematics
between 1994 (38%) and 2012 (49%). The differences in participation rates in
elementary mathematics reported by the various researchers can be attributed to the
different categorisations used in their analyses. However, it is clear from both trends
that there was a significant increase in enrolment in elementary mathematics. Using
other criteria, female dominance in elementary mathematics declined between 1990
(56.7%) and 1999 (52.4%) and again to almost parity with male students after 2000
(Dekkers & Malone, 2000; Forgasz, 2006b). The female-to-male ratio of enrolment by
2012 was 11 females to 10 males (Kennedy et al., 2018) and in 2015 the percentage was
approximately 51% to 49% in favour of females (Barrington & Evans, 2016). From the
different categorisations presented, these trends show that enrolment in elementary
mathematics between males and females became fairly balanced from early to mid-

2000.

4.5.2 Intermediate Mathematics

Nationally, slight variations in participation rates in intermediate mathematics have
been reported by different researchers due to their differing categorisation of this option.
For example, according to Barrington & Brown (2014), Barrington and Evans (2014;
2016) and Forgasz (2006a), student enrolment rates in intermediate mathematics
declined during the period 1995 (27.3%) to 2015 (19.2%), with the exception of 2002
and 2014. However, Ainley et al. (2008) report slightly different enrolment rates
between 2001 (34.7%) and 2007 (30.6%) and Kennedy et al. (2014) report different
rates of decline again, between 1994 (38%) and 2012 (27%). However, the findings

from the various researchers do evince a similar trend of a steady decline in students’
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enrolment in intermediate mathematics from the mid-1900s to 2012. These trends also
show that males dominated enrolment in intermediate mathematics, although females

were not far behind (Kennedy et al., 2014; Barrington & Brown, 2014).

4.5.3 Advanced/High-level Mathematics

Participation rates in Advanced Mathematics declined between 1990 (24%) and 1999
(16%) (Dekkers & Malone, 2000). Kennedy et al. (2014) reported a similar decline
between 1994 (16%) and 2012 (9%). The period 2001 to 2007 saw student enrolment
numbers in Australia declining from 26,216 to 22,999 respectively (Ainley, 2008).
Since 2007, raw enrolment data have been fairly static, between 20,000 to 21,000 until
2012 (Kennedy et al., 2014). One in 10 students in 2013 studied Advanced Mathematics
in Year 12 (Mater et al., 2014). With the exception of 2003, 2008 and 2014, enrolment
rates between 1995 and 2015 continued to decline until they stabilised at around 9.5%
from 2012 (Barrington & Evans, 2014; 2016). Though researchers used different
classification categories for mathematics subjects, their findings that Advanced
Mathematics enrolment had declined over the last few decades were consistent. Female
enrolment rates in Advanced Mathematics also showed a steady decline from 41.1% in
1990 to 38.9% in 1999 (Dekkers & Malone, 2000). The ratio of male and female
enrolment in the late 1990s was six females to 10 males, which declined to 14 females
to 25 males by 2012 (Kennedy et al., 2014). The trend continued in 2013, when the rate
of female enrolment was 6.7% compared to 12.7% of boys (Barrington & Brown,
2014). By 2015, the female participation rate was at 6.9% while the male rate was
12.6% (Barrington & Evans, 2016). Just 6.6% of girls enrolled in Advanced
Mathematics in 2013, a 23% decline from 2004 (Mater et al., 2014). Thus, a clear

dominance by males characterised enrolment in Advanced Mathematics.

Research indicates that in Australia, calculus-based mathematics is becoming less
popular with most students, as indicated by the low number and proportion of Year 12
students studying this option in 2013 compared to 1995 (Barrington & Brown, 2014). In
fact, student participation rates in both intermediate and Advanced Mathematics steadily
declined to around 19.2 % and 9.6% respectively in 2015. On the other hand, the

elementary mathematics enrolment rate has shown a steady increase from 2005 to 2015,
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stabilising at 52% from 2010. These trends were consistent in the majority of states in
Australia, especially for calculus-based subjects, and this decline in enrolment rates in

calculus-based mathematics is a cause for concern (Engineers Australia, 2016).

4.6 Trends in Student Participation in Mathematics Subjects in Queensland

The latest literature of trends in students’ enrolment in Queensland was part of Ainley et
al’s (2008) research on national trends in Advanced Mathematics, which was 14 years
ago. This is in contrast to states such as New South Wales, where more recent research
has been undertaken to analyse trends in student enrolment in mathematics (Jaremus et
al., 2018). From 2008 to 2019, Queensland offered Mathematics A, B, C and
Prevocational Mathematics, which were replaced by General, Methods, Specialist and
Essential Mathematics respectively (Queensland Tertiary Admissions Centre [QTAC],
2018). Mathematics A is considered Elementary Mathematics, Mathematics B is
considered Intermediate and Mathematics C is Advanced (Forgasz, 2006b).
Mathematics C is a recommended companion subject to Mathematics B and offers more
diverse and better career opportunities (Queensland Studies Authority [QSA], 2014).
Although Mathematics C provides additional preparation, both Mathematics B and C
cater for students interested in university courses with high demands in mathematics,
such as science, medicine, mining, engineering, information technology, mathematics,
finance, business and economics (QCAA, 2008). This is different from the categories
that have been used in previous analyses of enrolment trends nationally, as only
Mathematics C was regarded as a prerequisite for such courses. Mathematics A is for
students who want to pursue studies and training in courses with moderate demand for
mathematics, such as carpentry, plumbing, auto mechanics, tourism, hospitality and
administration (QCAA, 2008). Prevocational Mathematics can be classified as
background elementary mathematics (Kennedy et al., 2014) as it does not prepare
students for any further tertiary studies; hence it is a terminal option. Nor was
Prevocational mathematics ever considered in any previous enrolment trends analysis,

hence there is no literature on the subject.
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The following section includes a discussion of raw data as well as percentages to
identify gaps in the literature on Queensland. Raw enrolment numbers of mathematics
enrolment in Year 12 increased marginally, from 46,517 in 2000 to 47,465 in 2004,
apart from a decline of 694 students in 2001 (Forgasz, 2006b). Between the early 1990s
and 2005, there was a significant decline in the proportion of Year 12 students studying
Mathematics B and C in Queensland. However, enrolment rates seemed to stabilise by

2013 after a marginal increase (QSA, 2014).

4.6.1 Elementary Mathematics

A marginal increase from 66.0% in 2000 to 67.5% in 2004 characterised students’
enrolment in elementary mathematics (Forgasz, 2006b). Raw Year 12 data show that
student enrolment increased from 26,298 in 2000 to 27,415 in 2004, which was an
increase of 4.2% (Forgasz, 2006b). Females dominated participation year by year from
2000 to 2006 (McPhan et al., 2008). Between 2000 and 2004, male enrolment rates
trailed females, increasing by 3.5% compared to 4.9% for females (Forgasz, 2006b). In
addition, female enrolment as a proportion of all Year 12 females increased from 67.3%
to 69.8%, while male enrolment as a proportion of all Year 12 males was stable at

around 65% in the same period (Forgasz, 2006b).

4.6.2 Intermediate Mathematics

A steady decline in enrolment in Intermediate Mathematics (Mathematics B) was
witnessed from 1992 to 2008, but this was followed by a steady but marginal increase
until 2013 (QSA, 2014). The mean percentage enrolment rate among the Year 12 cohort
was 41.5%; however, the Intermediate Mathematics (Mathematics B) participation rate
fell by 2.1% for the period 2000-2004 (Forgasz, 2006a, 2006b). From 2000 to 2004, the
female participation rate declined by 4.8% while the male enrolment rate increased by
0.3% (Forgasz, 2006a, 2006b). In the same period, both male and female enrolment
rates as proportions of their Year 12 gender declined, with the male rate falling from

46.2% to 44.7% and the female rate from 39.3% to 37.0% (Forgasz, 2006b).

85



Supporting the teaching of calculus-based senior mathematics in Queensland.

4.6.3 Advanced Mathematics

In Advanced Mathematics, a decline in enrolment was witnessed from the early 1990s
until 2000 (Ainley et al., 2008), falling from 15.8% in 1991 to 7.8 % in 2007, despite
marginal increases in 1995 and 2004 (Ainley et al., 2008). From year 2000 to 2003, the
raw data show a decline in enrolment from 3,242 to 3,175; however, a significant
increase to 3430 was welcome in 2004 (Forgasz, 2006b). The sum of all Advanced
Mathematics enrolments from 2000 to 2004 was only 8% of all Year 12 students
(Forgasz, 2006b). However, the increase in enrolment has been credited to the bonus
points system Queensland offered in 2008, which incentivised students to enrol (Maltas
& Prescott, 2014). The bonus points enabled a student with a pass in Mathematics C to
receive two adjustments to boost the selection mark for tertiary courses. Finally,
between 2000 and 2004, the female enrolment rate in Advanced Mathematics (5.5%)
was slightly lower than male enrolment rate (6%) (Forgasz, 2006b) and the male

dominance has not been challenged over that period (Forgasz, 2006b).

No analysis of trends in student enrolment in mathematics options involving Years 11
and 12 enrolment data has been undertaken for Queensland, the last comprehensive
study using Year 12 enrolment data having been carried out by Ainley et al. in 2008.
This constitutes a significant gap in the literature which this study aims to fill by
reporting on an analysis of student enrolment trends for the period 2010 to 2019 in the

Sunshine State.

4.7 Study Methods and Results

This study investigated students’ options and trends of enrolment in Mathematics A, B,
C and Prevocational mathematics between 2010 and 2019 using data from the
Queensland Curriculum and Assessment Authority (QCAA). Quantitative methods were
applied to analyse trends of student options. Consent to use the data in this study was
provided by QCAA. The data covered schools, gender, indigenous or non-indigenous
and the number of students in the various different options. Table 4.2 shows the raw

data of the student numbers in the year levels from 2010 to 2019.
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Table 4.2: Raw data showing student numbers

Year ?(ear Gender Non- Indigenous Total
evel Male  Female Indigenous
2010 11 30571 28856 56866 2561 59427
12 28534 28143 54666 2011 56677
2011 11 30600 29261 57243 2618 59861
12 29319 28444 55647 2116 57763
2012 11 30920 29769 57951 2738 60689
12 29728 29353 56821 2260 59081
2013 11 31770 30560 59278 3052 62330
12 30378 29724 57724 2378 60102
2014 11 32445 30581 59848 3178 63026
12 31132 30457 58829 2760 61589
2015 11 32520 30868 60112 3276 63388
12 31844 30519 59489 2874 62363
2016 11 33314 31556 61389 3481 64870
12 31964 31116 60005 3075 63080
2017 11 32090 31334 60019 3405 63424
12 33032 31829 61639 3222 64861
2018 11 24351 21494 43586 2259 45845
12 31613 31582 60016 3179 63195
2019 11 Introduction of new curriculum
12 24247 21868 43912 2203 46115

To perform the analysis, a descriptive quantitative method was employed using
Microsoft Excel. Microsoft Excel offers a suite of statistical analysis functions that can
be used to run descriptive statistics, to perform several different and useful inferential
statistical tests and process data using formulas (Abbott, 2011). Descriptive statistics
and graphical representations of data can be useful when making comparisons between
sets (Carr, 2008). Descriptive statistics (e.g., calculation of the measures of central
tendency such as the mean, mode and median) were used to describe the data using the
Microsoft Excel software. According to Aldrich and Rodriguez (2013), multiline graphs
can be used to identify trend changes in one or more variables over time. The following
section describes the trend changes in (1) average percentage enrolment; (2) schools not
offering calculus-based mathematics; (3) gender enrolment in Mathematics A, B and C;

(4) Indigenous students enrolment; and (5) dropout rates in Mathematics B and C.
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4.7.1 The Average Percentage Enrolment
An analysis of the average percentage of student enrolment in Mathematics A, B, C and
Prevocational mathematics between 2010 and 2019 was conducted. The analysis ranked
the mathematics enrolment in the different options as follows:
Mathematics A: 42.55% at Year 11 and 43.44% at Year 12
Mathematics B: 30.41% at Year 11 and 29.53% at Year 12
Mathematics C: with 7.82% at Year 11 and 7.62% at Year 12
Prevocational Mathematics (PVM): 19.22% at Year 11 and 19.21% at
Year 12

Figure 4.1 below is a graph of student enrolment in all the four mathematics options,
namely, Mathematics A, B, C and Prevocational mathematics between 2010 and 2019.
The Mathematics A, B, C and Prevocational syllabi terminated at the end of 2019,
hence Year 11 data ended in 2018.
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General enrolment (Mathematics A, B, C & PVM): Year 11 and 12
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Figure 4.1: Enrolment Summary from 2010 to 2019

4.7.2 Schools with no Students Participating in Calculus-based Mathematics
Figure 4.2 is a graph of the number of schools that did not register any student for
Mathematics B and C between 2010 and 2019. The yearly average number of schools
that did not have students’ enrolment in calculus-based mathematics, that is,
Mathematics B, is 13, and Mathematics C is 83. The difference in number between
schools offering Mathematics A, B or C gave the number of schools that did not have

students’ enrolment in calculus-based mathematics.
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Schools without students participating in calculus based mathematics
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Figure 4.2: Schools with no Students Enrolment in Calculus-based Mathematics from

2010 to 2019

4.7.3 Gender enrolment in Mathematics A, B and C
Table 4.3 shows the average percentage enrolment in Mathematics A, B and C from
2010 to 2019 in gender groups. It also shows the gender distribution in calculus-based

Mathematics B and C and non-calculus Mathematics A.

Table 4.3: Average Percentage Gender Enrolment in Mathematics A, B and C from

2010 to 2019
Year Subject Gender Average
Level Percentage
11 Mathematics Males 46.61
A Females 53.39
Mathematics Males 52.54
B Females 47.46
Mathematics Males 64.71
C Females 35.29
12 Males 46.30
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Mathematics Females 53.70
A

Mathematics Males 52.37
B Females 47.63

Mathematics Males 64.89
C Females 35.11

The results show that male enrolments in calculus-based mathematics was higher than
female enrolments. The average percentage of males enrolled in Mathematics B
compared to the total Mathematics B enrolment was 52.54% in Year 11 and 52.37% in
Year 12. This means for every 13 males enrolled in Mathematics B, there were 12
females. Similarly, in Mathematics C, males constituted 64.71% of the Year 11 cohort
and 64.89% in Year 12. For every 13 males enrolled in Mathematics C, there were 7
females. In contrast, females dominated enrolment in the non-calculus option of
Mathematics A where, in Year 11, females surpassed males by an average percentage of
6.78%, which increased to 7.4% in Year 12. There was a slight increase in the ratio

from every 12 males:13 females in Year 11 to 6 males:7 females in Year 12.

4.7.4 Indigenous Students Enrolment

Figure 4.3 shows trends in Indigenous students’ enrolment in the mathematics options.
A large number of Indigenous students enrolled in Pre-Vocational Mathematics but only
a very small percentage in Mathematics C. Table 4.4 below shows how Indigenous
students were distributed among the four options. The percentages were calculated as a

total of the state Indigenous student population.
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Percentage enrolment of Indigenous students as a proportion to Indigenous year level cohort

== Mathematics A %11

G0.00- Mathematics B v11

m— athematics C v11
PR Y 11

P Y = Wathematice A ¥12

. - = lath ematics B2

50007 e P = Nathematics C ¥12
PYM ¥1 2\"’._‘\I—|—-\:___. PR
* Mathematics A ¥11

Mathematics B Y11

E | .r-.-1atl'|ematics A 12 < pathematics C Y11
g 000 ® PYMY 11

r- Mathematics A %11 @ Mathematics A ¥12
E O Math ematics BY12
@ I Mathematics C ¥12
@ 3000 " OPYM Y2

=]

o

i)

[

@

o

R

@ 20.004

o

Mathematics B v12 H___'__.@.___P’___...@_-—-'—";"'---..__‘:l

TOODT] — p— o

Mathematics C 12
Il ﬁaiﬁ5|n§ics cvi1

00+

] I 1 I 1 ] | 1 | 1
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Year

Figure 4.3: Percentage Enrolment in Mathematics of Indigenous Students in Queensland

from 2010 to 2019

Table 4.4: Average Percentages of Distribution of Indigenous Students in Mathematics

in Queensland from 2010 to 2019

Year 11 Year 12

Mathematics A (39.05%) Mathematics A (40.58%)
Mathematics B (10.33%) Mathematics B (10.53%)
Mathematics C (1.70%) Mathematics C (1.76%)
Prevocational (48.91%) Prevocational (47.13%)

4.7.5 Dropout Rates in Mathematics B and C

Figure 4.4 shows the dropout rate in Mathematics B and C for all students, while Figure
4.5 shows the dropout rate according to gender. Figure 4.6 shows the percentage drop of
Indigenous versus non-indigenous students. Additionally, the trends of students’
movement between mathematics subject options can also be determined through data
analysis. The availability of both Year 11 and 12 data allowed changes in students’
enrolment as they moved from one year to the next to be tracked.
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Dropout rate Mathematics B and C
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Figure 4.4: Dropout rate in Mathematics B and C for all students from 2010 to 2019

Mathematics B had consistently more students than Mathematics C dropping out as they
moved from Year 11 to Year 12. On average, about 688 students dropped from
Mathematics B every year compared to 108 students in Mathematics C. This meant that
the dropout rate from Mathematics C, although averaging 2.35%, was calculated on a
smaller population than for Mathematics B with an average of 3.77%. For the period
under consideration, that is, 2010 to 2019, a total of 3372 females and 4582 males

dropped out of calculus-based mathematics in Queensland.
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Dropout rate males versus females: Mathematics B and C
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Figure 4.5: Dropout Rate According to Gender from 2010 to 2019

A larger percentage of males than females dropped out of Mathematics B and C, with
an average rate of 4.06% in Mathematics B and 2.38% in Mathematics C. By
contrasting, females were in the minority in both options but their dropout rate was

3.45% in Mathematics B and 2.32% in Mathematics C.
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Percentage dropout indigenous versus non-indigenous
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Figure 4.6: Dropout of Indigenous versus Non-Indigenous Students from 2010 to 2019

The average dropout rate for Indigenous students was 7.03% for Mathematics B and
3.71% for Mathematics C. This was despite the fact that Indigenous students comprise a
very small percentage of enrolments at any year level. In comparison, non-Indigenous
students had an average dropout percentage of 3.72% for Mathematics B and 2.24% for
Mathematics C. Raw data show a total of 225 indigenous students dropped out of

calculus-based mathematics from 2010 to 2019.

4.8 Discussion

Findings from this research indicate that more male students opted for Mathematics B
and C than female students in Years 11 and 12 in Queensland in the years 2010 to 2019.
As highlighted in the data, an average of 47.5 % and 35.2 % of all Mathematics B and C
respectively in Years 11 and 12 were females. This agrees with the earlier findings of
Ainley et al., (2008), Forgasz, (2006a), Forgasz, (2006b) and indicates that fewer
females opted for calculus-based mathematics than males for the period 2010 to 2019.
The low percentage of females choosing Advanced Mathematics is a concern compared

to males. Against that, however, the dropout rates of females from these two subjects in
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the same period was 3.45% for Mathematics B and 2.31% for Mathematics C, which is
less than the dropout rates for males of 4.06% for Mathematics B and 2.38% for
Mathematics C. This suggests that the female dropout rate could be further reduced if
female enrolment was improved and that sustained improvements in female enrolments
could give female students the potential to surpass male students in their numbers in
Mathematics B and C. Female students must be encouraged to choose options that offer
more STEM opportunities and to perform well in those options. This supports the need
for educators to develop strategies that improve female enrolment in these subjects in
Year 11. While the results of trends analysis cannot explain why fewer females choose
Mathematics B and C, a closer focus on not only academic but also social and cultural
factors that support female students’ enrolment in Mathematics B and C is essential and

this could be a focus of future research.

Mathematics is compulsory in Queensland for all students to achieve a Queensland
Certificate of Education (QCE) and students decide on which option to pursue in Years
11 and 12. However, findings from this research indicate that not all schools offer all
options. As suggested earlier, the Australian Council of Deans of Science in 2006 found
that schools in more remote regions struggled to recruit qualified mathematics teachers.
While this study did not focus on this issue, the Australian Mathematical Sciences
Institute [AMSI] (2014) noted that this is a particular challenge for Queensland schools.
The results in this study exposed a worrying trend as a significant number of schools
across Queensland do not have student enrolment in Mathematics B and C, the yearly
average being only 13 and 83 schools respectively. This agrees with the AMSI (2014),
which suggests that the number of schools able to provide Advanced Mathematics
subjects at Years 11 and 12 is steadily declining and with this, the number of students
studying Advanced Mathematics. Additionally, the report suggests that shortages in
specialised mathematics teachers has meant that around 40 percent of classes are taught
without a qualified mathematics teacher. There is need to develop both material and
human resources to empower classroom practise, which may help address the decline in
student enrolment in Mathematics B and C. However, it is also important to target these
resources to schools that currently do not offer some of the mathematics options so that
they can do so in the future. Significantly, a declining trend of student enrolment in
Advanced Mathematics subjects may also lead to fewer qualified mathematics teachers

for the future.
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Results from the study showed that Indigenous students opted mostly for Mathematics
A and Prevocational mathematics. Although Indigenous students constitute a very small
percentage of enrolments at any year level, the average dropout rate is worth noting
7.03% for Mathematics B and 3.71% for Mathematics C. In addition, schools in remote
regions have difficulty recruiting qualified mathematics teachers (Australian Council of
Deans, 2006), which may impact Indigenous students more than other student groups.
The study argues for an urgent focus to redress these trends and imbalances. The data
does not include socio-economic status or cultural factors that might also be at play
within such settings. Additionally, lack of local STEM career opportunities in remote
and regional areas might also play a part in the mathematics subjects students opt. This
is because graduating from high school may not necessarily translate to starting a high-
status career. It would be worthwhile to conduct further research that investigates the
views of indigenous students in remote and regional schools to shed further light on
their experience of learning mathematics. However, this is beyond the scope of this

study as the aim here is to identify broad trends purely from a statistical viewpoint.

Arresting the dropout rates in calculus-based mathematics can be one way to improve
the participation rate in the subjects. Results show that a significant number of students
who opted for the calculus-based mathematics subjects in Year 11 dropped the subject
and enrolled in non-calculus-based mathematics in Year 12. Mathematics B particularly
showed more students than Mathematics C dropping out as they moved from Year 11 to
Year 12. Data from 2010 to 2019 also shows that more students opted for Mathematics
B or Cin Year 11 than in Year 12, which was the opposite for Mathematics A and
Prevocational. As suggested by McPhan et al. (2008), schools can arrest the decline and
the high dropout rates in calculus-based mathematics if they implement classroom
practises that engage students and focus on improving student understanding of
important concepts at every level of learning. Arresting this decline becomes imperative

to support students’ future enrolment in STEM-related careers.

Research is needed to develop teaching and learning strategies that increase student
enrolment in calculus-based mathematics subjects. More needs to be done to increase
enrolment in calculus-based mathematics to satisfy the demand in STEM-related

careers. One way of doing this would be to focus on improving enrolments in
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Mathematics B (now called Mathematical Methods in Queensland’s new syllabus),
which has an average percentage enrolment of 30.41% and offers almost the same
opportunities as Mathematics C, now called Specialist Mathematics. It is also important
for teachers to engage resources that may increase the chances of students’ engagement
and success in mathematics which can play an enabling role increasing student
enrolment. Thus, Queensland has the potential to have more than 31% of all Year 12

enrolments eligible for the STEM tertiary program and becoming STEM champions.

4.9 Chapter Conclusion

This chapter investigated Years 11 and 12 students’ options and trends of enrolment in
calculus-based and non-calculus-based mathematics subjects between 2010 and 2019,
using data from the Queensland Curriculum and Assessment Authority. It also looked at
the central role that mathematics plays as an enabler of STEM-related courses and
careers. It found out that the mathematics trends in Year 12 in Queensland are
consistent with previous research at national level. Males dominated in Mathematics B
and C and fewer female students opted for calculus-based mathematics. Indigenous
students opted mostly for Mathematics A and Prevocational mathematics. However, a
significant number of schools do not offer calculus-based mathematics options and
consequently have no student enrolment in the subject. The study argued for an urgent
focus to redress these trends and imbalances and calls for further research that focuses
not only on academic factors, but social and cultural factors to support all students’
participation in calculus-based mathematics. The next chapter provides an analysis of
student participation in calculus-based mathematics using data from the Queensland
Curriculum and Assessment Authority (QCAA), Socio-Economic Indexes for Areas
(SEIFA) from the Australian Bureau of Statistics (ABS); schools’ Index of Community
Socio-Educational Advantage (ICSEA) values from the Australian Curriculum,
Assessment and Reporting Authority (ACARA); and schools transfer ratings from the
Department of Education (DoE).

98



Supporting the teaching of calculus-based senior mathematics in Queensland.

Chapter S: Trends in Calculus-Based Mathematics in the New Senior
Secondary Queensland Certificate of Education

A version of this chapter was presented at the International
Conference on Education in Mathematics, Science and Technology,
Antalya, Turkey, March 24-27, 2022.
https://researchonline.jcu.edu.au/76298/

5.1 Chapter Introduction

Mathematics plays a central role in innovation, scientific, technological, economic and
social knowledge development (Watt et al., 2017). The sciences digital technologies
and innovation in particular are regarded as the economic drivers and main jobs of the
future (Black et al., 2021; PwC, 2013), and mathematics is regarded as a significant
enabler of these fields (Australian Academy of Science, 2016). In Australia, “innovation
and digital technologies have the potential to increase Australia’s productivity and raise
GDP by $136 billion in 2034, and create close to 540,000 jobs” (PwC, 2013, p. 13),
hence mathematics is pivotal in reshaping the future (Chubb, 2012). Australia in
general, and Queensland in the context of this research, needs graduates with Advanced
Mathematics skills to promote innovation, data synthesis and technology if it is to

remain competitive globally.

Indeed, promoting enrolment and achievement in Advanced Mathematics in schools is a
focus of most governments all over the world (Noyes & Adkins, 2016; Treacy et al.,
2020), because mathematics drives STEM (Shaughnessy, 2013). Similar to other
countries such as the United Kingdom, Australia offers bonus points at university entry
for students who pass Advanced Mathematics as an incentive to encourage students to
study Advanced Mathematics at senior secondary level (Prendergast et al., 2020; Treacy
et al., 2020). The distinct advantage of studying Advanced Mathematics in high school

is not only to achieve individual goals but because of its recognised value to society.

Developing Advanced Mathematics skills results in high economic value, since “strong
mathematical skills are critically important for a thriving and competitive knowledge-
based economy” (Adkins & Noyes, 2016, p. 94). Studies have shown that students who

pursue Advanced Mathematics are interested in pursuing high-impact jobs (Gijsbers et
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al., 2020). Indeed, people with advanced mathematics skills progress to earn about 11%
more than those without by the time they reach 34 years of age (Adkins & Noyes,
2016). Similarly, choosing Advanced Mathematics is generally regarded as a pathway
to high-paying jobs (Light & Rama, 2019). The link between economic development,
prosperity and Advanced Mathematics makes mathematics a key transformational focus
for governments and understanding trends in students’ enrolment in Advanced

Mathematics can inform policy makers.

The purpose of this chapter was to determine trends in enrolment in calculus-based
mathematics under the new curriculum introduced in Queensland in 2019. The chapter
built on Chapter 4 which focused on students’ enrolment in calculus-based mathematics
in the phased-out curriculum in Queensland (Chinofunga et al., 2021). This chapter
expanded the focus further to the relationship between enrolment, dropout rates, SES,
school location and teacher mobility and transfer ratings and contributes to the limited
literature available on the impact of social and economic factors and school location on

enrolment in calculus-based mathematics.

5.2 Importance of Calculus-based Mathematics

Calculus is built on the foundations of the analysis of changing phenomena. Therefore,
“calculus is essential for developing an understanding of the physical world”
(Queensland Curriculum and Assessment Authority (QCAA), 2018 p.1). Calculus-
based mathematics introduces differentiation and integration at high school, which
provides students with the opportunity to model quantities that undergo change and a
portal for deeper theoretical growth (Maltas & Prescott, 2014). In Queensland,
graduates with either Specialist Mathematics and or Mathematical Methods have a
pathway to pursue tertiary courses that are mathematics-intensive, such as natural
sciences, health sciences and engineering (QCAA, 2018). However, students who opt
for Specialist Mathematics also have to study Mathematical Methods but have a distinct
advantage at tertiary level as Specialist Mathematics is regarded as more advanced.
Thus, studying these subjects is critical as students prepare for careers in a competitive

world.

Several scholars have highlighted the importance of Advanced Mathematics in

providing better and more diverse career opportunities, (Chinnappan et al., 2008;
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Chinofunga et al., 2021; Maltas & Prescott, 2014; Noyes & Adkins, 2017) and
facilitating skills for the STEM workforce (Kennedy et al., 2014). Moreover, calculus-
based mathematics is critical in “developing students’ logical thinking and reasoning
abilities” (Prendergast et al., 2020, p. 753). A country’s economic status and social
wellbeing is enhanced by having a workforce that possess Advanced Mathematics skills
as these skills are critical for research, industry and business to thrive (Black et al.,
2021). A projected increase in school enrolments of 20.4% by 2026 in Queensland must
prompt policy makers to find ways of boosting calculus-based graduates by the same
margin (O’Connor & Oam, 2019). Calculus-based mathematics offers distinct
advantages for graduates as it supports critical thinking and decision-making which is
central to problem solving, thus preparing them for individual growth and flexible but

critical career options.

High school calculus-based mathematics increases the chances of entry into highly
sought-after courses in higher education (Cogan et al., 2019). Hence,
Students need a good measure of rigorous, formal mathematics in order to be
literate, prepared for whatever career path students choose upon completion of
their secondary education whether they choose to enter immediately the work
force; to enter a technical, trade or vocational career path, or to continue their
formal education at a college or university” (Cogan et al., 2019, p. 531).
Furthermore, studying calculus-based mathematics at senior secondary level enhances
the chances of success in STEM courses at tertiary level (Cohen & Kelly, 2020;
Gottfried, 2015; Nicholas et al., 2015; Redmond-Sanogo et al., 2016). Research also
indicates that students who graduate from high school with Advanced Mathematics
subjects do well in health sciences at university with a high-grade average (Ryan et al.,
2017). High school graduates with non-calculus options who want to pursue tertiary
courses where calculus-based mathematics is a pre-requisite are required to take up
bridging or remediation courses (Nicholas et al., 2015; Redmond-Sanogo et al., 2016;
Varsavsky, 2010). Undoubtably, the role that calculus-based mathematics plays in
STEM tertiary courses cannot be underestimated (Maass et al., 2019).
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5.3 Socio-economic Background and Participation in Calculus-based Mathematics
Social and economic background largely determines access to resources. Students from
high SES families and/or schools have access to better resources that can provide
opportunities for success compared to those from lower socio-economic backgrounds
(Bornstein & Bradley, 2014). Consequently, students’ enrolment and achievement are
significantly influenced by “school characteristics such as location and socio-economic
background of the students it serves.” (ACARA, 2013 p.1). Additionally, differences in
student achievement are often influenced by students’ SES (Broer et al., 2019). “In
Australia, the magnitude of the socio-economic gap in mathematics achievement at age
10 is about 65% as large as the gap observed among 15-year-olds, and about 58% as
large as the gap in numeracy proficiency among 25-29-year-olds” Organisation for
Economic Co-operation and Development [OECD, 2018, p. 2]. Consequently, students
from low SES are more likely to encounter limited educational opportunities and social
inequality (Perry, 2018). Moreover, financial and human capital complemented by
resources accessed through networking play an important role in shaping students’
choices and beliefs (Bradley & Corwyn, 2002). The better and more diverse
opportunities that calculus-based mathematics offer are skewed towards students from

high SES families or who go to high SES schools.

Socio-economic factors also influence students’ mathematics subject choices and
achievement (Valero et al., 2015). Consequently, students from a high SES background
are more likely to enrol in and achieve well in mathematics, especially in advanced
options, than those from a low SES background (Valero et al., 2015). Moreover, parents
of students from high SES background have high expectations and encourage their
children to take Advanced Mathematics (Hascoét et al., 2021). In contrast, students
from lower SES communities may not interact much with knowledgeable and
experienced adults who can act as role models and provide stimulating and motivating
experiences, thus limiting the opportunities and options for such students (Bradley &
Corwyn, 2002). This is because the immediate social network around students,
including parents, teachers, siblings and friends, plays a key role in influencing
students’ mathematics choices (Kirkham et al., 2019). The critical role that parents and
social background play in influencing students’ mathematics choices emphasises the
importance of school location, school choice and the social network to which a student

is exposed.
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On average, a student who attends a higher SES school enjoys higher educational
outcomes compared to a student from a similar social background who attends a lower
SES school (Perry & McConney, 2013, p. 125). This is because high status peers are
significantly influential to other peers within a social group (Choukas-Bradley et al.,
2015). Schools with a high SES are strongly associated with high academic
expectations, competition and achievements (Perry & McConney, 2013), hence
students’ mathematics choices are influenced by the school environment, which is
expected to be highly stimulative, productive and positive (Willms, 2010). Clearly, the
interaction between students from different levels of SES in high SES schools provides
an opportunity for networking among peers that will boost mathematics achievement,
especially for those from a low SES (Perry & McConney, 2013). Hence, school SES
plays a critical role in students’ mathematics choices regardless of the students’ family

SES.

A school reflects the demography of the community within its catchment area and those
located in communities with low SES have students who are in some way
disadvantaged (Hernandez, 2014). In fact, “schools that are in the same district, but
located in neighbourhoods of differing SES display a large disparity in opportunities
and quality of education offered to students” (Hernandez, 2014, p1). Students who
attend schools in high SES neighbourhoods have access to relevant information and
experiences that help them set high expectations and above all better educational
resources (Ireneusz, 2020; Pritchett, 2001). Schools in affluent areas have better
physical and material resources that differentiate them from other schools. As Broer et
al. (2019) said, differences in educational opportunities are influenced by accessibility
to well-resourced schools. Similarly, “It is not just the relative wealth of parents that
holds large numbers of bright kids back: it is postcode inequality too. What part of the
country a child grows up in has a real impact on their life chances” (Nick Clegg, former
leader of the UK Liberal Democrats, 2016). In contrast, students from low SES areas
who attend high SES schools score 86 points higher than their counterparts in low SES
schools (OECD, 2018). Students from low SES families and communities have limited
options to pursue because of the social and financial capital that is needed to attend

reputable and well-resourced schools.
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Student enrolment and achievement in Advanced Mathematics is linked to school
resources that include discipline-trained teachers and family social economic status
(Chiu, 2010). Importantly, it is the mathematics teachers’ expertise in teaching the
subject and making it more engaging and understandable to students that plays a critical
role in student enrolment and participation in calculus-based mathematics (Kirkham et
al., 2019). As Chinnappan (2008) says, “the likelihood of a student pursuing further
studies in mathematics would be influenced by their experiences in mathematics classes
at secondary school” (p. 33). For example, past mathematics achievement directly
influences students’ attitude towards mathematics (Birgin et al., 2010; Hascoét et al.,
2021; Sikora et al., 2019). Clearly, “attitudes concerning mathematics show significant
impact on one’s decisions about the amount and nature of mathematics one will study in
the future” (Recber et al., 2017). As a result, students’ choice of schools influences the
mathematics options they select (Sikora et al., 2019). Students from low SES families
have limited options in terms of school choices as they are more likely to enrol in

schools within their communities.

The location of a school is a major factor in the resources and opportunities that school
can offer, not least in how it contributes to its teacher mobility and transfer rating.
Queensland state schools are allocated transfer ratings from 1 to 7 depending on their
remoteness, access to and level of amenities in the area, the complexity of the school
environment and staffing requirements (Department of Education [DoE], 2019).
Remoteness is determined by distance from Brisbane or Toowoomba or any coastal city
of more than 8000 people (DoE, 2019). In fact, school transfer ratings are the basis of
the transfer points teachers accrue (Department of Education, 2020). Therefore,
“teachers who elect to work for longer periods in schools of rating 3 to 7 increase their
prospects of securing a transfer to a preferred location where they choose to return,
while schools benefit from the greater stability and stronger community integration.”
(DoE, 2020, p. 5). Teachers who are attached to a school for a longer period perform
better than those who have a short stint at the school and this pattern is more apparent in
disadvantaged schools (Hanushek & Rivkin, 2010). Teachers at a school with a rating of
7 are due for transfer after two years while others are expected to serve three years at a
school to qualify (DoE, 2020). However, any other personal, social, professional
circumstances and transfers from a school with a lower rating to one with a higher

rating may also lead to approved transfers (DoE, 2020). The higher the school transfer
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rating, the more transfer points teachers accrue, which may result in unintended

consequences of high teacher turnover in such schools.

High teacher turnover in schools is also a key factor in hindering quality education and
better options for students in disadvantaged communities (Barbieri et al., 2011).
Teachers may target schools with high transfer ratings because they “are simply waiting
to move on to a desired location, putting low effort into their current work duties and
disregarding any longer-term plans for their students” (Barbieri et al., 2011, p. 1430).
Therefore, a substantial number of teachers tend to be more effective and more focused
on delivery after a voluntary transfer (Jackson, 2013). Contrastingly, teachers who teach
students who are keen to engage or are high achievers are less likely to transfer (Boyd et
al., 2011). This means that teachers in low transfer-rated schools may serve longer in a
school, which in turn provides stability, consistency and confidence for students to enrol
in calculus-based mathematics, if other factors like socio-economic disadvantages are

minimised.

5.4 Socio-economic Measures in the Study

A significant number of researchers (Anastasiou et al., 2020; Avan & Kirkwood, 2010;
Broer et al., 2019) have linked family and neighbourhood socio-economic status (SES)
with educational outcomes. SES differences mainly involve accessing material
(financial, assets) and social (community networking, neighbourhood) resources that
impact the wellbeing and development of individuals, families and neighbourhoods
(Bornstein & Bradley, 2014; Bradley & Corwyn, 2002). However, obtaining individual
family SES data is very difficult considering the sensitivity of the subject to society
(Broer et al., 2019). Nevertheless, the SES of an area can be determined using the
Socio-Economic Index for Areas (SEIFA), which indicates the relative advantage and
disadvantage of a neighbourhood (Australian Bureau of Statistics [ABS], 2018b). This
study sought to determine the correlation between the school districts” SEIFA indices,
schools’ Index of Community Socio-educational Advantage (ICSEA), teacher mobility
and transfer ratings with students’ dropout rates in calculus-based mathematics subjects

in Queensland state schools.
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The Australian Bureau of Statistics census data can be used to infer important school
information such as relative advantage and disadvantage of a neighbourhood (Gibson &
Asthana, 2000). The SEIFA index is developed after every census, the current index
being based on the 2016 census. The data includes SES index in percentiles and name
of area. This data was correlated with school data obtained from the QCAA, which
included the name of the district, the postcode, and enrolment per unit. The period under
study was of particular interest because Queensland changed to a new senior curriculum
in 2019 and the first external examination was in 2020. Importantly, the analysis would
help determine the impact of school postcodes and SES on enrolment in calculus-based

mathematics.

The SEIFA value was used to better understand the relationship between socio-
economic advantage and disadvantage and social and educational outcomes (ABS,
2018a). The ABS broadly defines “relative socio-economic advantage and disadvantage
in terms of people's access to material and social resources, and their ability to
participate in society” (2018a, p. 6). While the percentile value on the SEIFA index is
meant to indicate where each area sits in terms of SES within Australia as a whole
(ABS, 2018a), this study focused only on Queensland. The socio-economic status of an
area is mainly attributed to the collective income, education, employment and
occupation of people in a neighbourhood (ABS, 2018a). Thus, a low score on the index
indicates a high proportion of relatively disadvantaged people in an area (ABS, 2018a,

p. 6). This index was used comparatively in the trend analysis in this study.

To better understand the impact of socio-economic factors in relation to different
schools and their location, the Australian Curriculum, Assessment and Reporting
Authority (ACARA) developed an Index of Community Socio-educational Advantage
(ICSEA). ICSEA values are developed using students’ family background data, location
of school and demography of indigenous and non-indigenous students (ACARA, 2013).
It enables “comparisons between schools based on the level of educational advantage or
disadvantage that students bring to their academic studies.” (ACARA, 2013, p. 1).
Similarly, it can be used as a measure of socio-economic advantage in education
(Callingham, 2017). The ICSEA values range from 500, representing schools with
students from hugely underprivileged educational backgrounds, to 1,300 for schools

with students from very highly privileged educational backgrounds, and they have a
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benchmark average of 1,000 (ACARA, 2013). This study analysed trends in enrolment
in calculus-based mathematics using ICSEA values of all Queensland government
secondary schools to investigate if school location and socio-economic background

plays a role in students’ enrolment in the subjects.

5.5 Study Methods and Results

The study used data from a range of institutions (ABS, ACARA, DoE, QCAA) to
investigate the impact of social and economic factors on enrolment in calculus-based
mathematics. Quantitative methods were used to analyse trends from within and across
data sets to establish a comprehensive picture of how socioeconomic status and school
location affect enrolment. QCAA provided consent for the use of its data, which
included school name, subject name, postal code and enrolment per unit. Each school
and district were matched to their relevant SEIFA index (ABS), ICSEA value
(ACARA) and transfer points (DoE). Statistical Package for the Social Sciences (SPSS)
was used for inferential statistics as it involves coming up with conclusions drawn from
the existing data. The Spearman’s rank correlation coefficient was used to measure the
strength and direction of a monotonic association (Sedgwick, 2014) between a range of
variables (ICSEA, SEIFA and transfer ratings) and students’ enrolment across the state
of Queensland. The association was also tested on the variables and dropout rate. A
monotonic association is observed when there is dependence on variable changes

among two variables (Sedgwick, 2014).

Similarly, descriptive quantitative methods were applied to analyse trends using the
Microsoft Excel suite of functions because it “provides a comprehensive approach to
quantitative data analysis” (Johri, 2020, p. 4). Microsoft Excel is especially ideal for
descriptive quantitative statistical analysis and data management through its use of
functions and data organisation tools (Rubin & Abrams, 2015). Measures of central
tendency such as mean (average) and mode, together with Excel in-built functions (e.g
IF, COUNTIF, LOOKUP, graphics), were used to determine trends in students’
participation. Specifically, the data analysis explored (i) students’ enrolment and
dropout rates per district, (ii) school location SEIFA index and students’ enrolment, (iii)
school ICSEA value and students’ enrolment and (iv) transfer ratings and students’

enrolment. The next section describes the data analysis using the SEIFA index, ICSEA
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value, school transfer rating and student enrolment to determine trends in students’

enrolment in calculus-based mathematics.

5.5.1 Students’ Enrolment and Dropout Rates per QCAA district
First, an analysis was carried out of the average percentages of student enrolment in

Mathematical Methods and Specialist Mathematics in state schools per QCAA district
between 2019 and 2020. Distance education schools were considered separately because
their catchment area can span more than one district. In both Tables 1 and 2, enrolment
in Unit 1 was considered for 2019 because it is the first unit students engage with in
Year 11. Similarly, Unit 4 enrolment was considered in 2020 because it is the last unit
before students sit for the external examination, hence it indicates the number of

students who completed Year 12 calculus-based mathematics.

Table 5.1: Mathematical Methods Enrolment per QCAA District, 2019 to 2020

Unit 1 Enrolment Unit 4 Enrolment

QCAA District 2019 2020 Dropout % dropout
Brisbane-Ipswich 563 405 158 28.1
Brisbane Central 950 718 232 24.4
Brisbane East 619 405 214 34.6
Brisbane North 829 513 316 38.1
Brisbane South 625 334 291 46.6
Cairns 451 267 184 40.8
Gold Coast 731 457 274 37.5
Mackay 247 134 113 45.7
Rockhampton 337 179 158 46.9
Sunshine Coast 661 390 271 41.0
Toowoomba 388 223 165 42.5
Townsville 364 209 155 42.6
Wide Bay 354 208 146 41.2
Distance education 88 53 35 39.8
Total 7,207 4,495 2,712

Table 5.1 shows the raw data on enrolment and dropout rates in Mathematical Methods
in state schools per district at the beginning of Year 11 in 2019. The data shows that
7,207 state school students opted for Mathematical Methods in 2019 but those still
enrolled for Unit 4 in Year 12 in 2020 numbered 4,495, representing a percentage
dropout rate of 37.6%. This means that the total number of students in state secondary

schools who opted out of Mathematical Methods from the start of Year 11 to the end of
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Year 12 was 2,712. That is, for every 14 students who chose this subject, 5 did not
complete it. Brisbane Central and Ipswich were the only districts with a less than 30%
dropout rate, while Brisbane South, Mackay and Rockhampton were over 45%. Due to
the high dropout in Brisbane South, Mackay and Rockhampton districts, for every 20
students who chose Mathematical Methods in Year 11, about 9 of the students had

dropped out by the end of Year 12.

Table 5.2: Specialist Mathematics Enrolment per QCAA District 2019- 2020

Unit 1 Enrolment  Unit 4 Enrolment

QCAA District 2019 2020 Dropout % Dropout
Brisbane-Ipswich 113 88 25 22.1
Brisbane Central 330 280 50 15.2
Brisbane East 168 131 37 22.0
Brisbane North 225 170 55 24.4
Brisbane South 196 139 57 29.1
Cairns 101 67 34 33.7
Gold Coast 191 147 44 23.0
Mackay 33 23 10 30.3
Rockhampton 91 59 32 35.2
Sunshine Coast 191 141 50 26.2
Toowoomba 99 60 39 394
Townsville 68 49 19 27.9
Wide Bay 100 77 23 23.0
Distance education 55 34 21 38.2
Totals 1,961 1,465 496

Table 5.2 shows the raw data on enrolments and dropout rates in Specialist Mathematics
in state schools per district from 2019 to 2020. The total number of students who opted
to study Specialist Mathematics in Year 11 at the beginning of 2019 was 1,961 (Table
5.2), but only 1,465 enrolled for Unit 4; that is, 496 students, or 25.3%, dropped out.
Thus, for every 20 students who opted for Specialist Mathematics in Year 11,15
continued until the end of Year 12. Cairns, Mackay, Rockhampton and Toowoomba
districts had greater than 30% dropout rates. Similarly, distance education schools had a
38% dropout rate, the highest of all the jurisdictions under consideration. Brisbane
Central remained the district with the lowest percentage dropout rate (15.2%) followed
by Brisbane East and Brisbane- Ipswich at 22%. Mackay contributed the smallest
percentage of 2.28% of students studying calculus-based mathematics among all the

districts.
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An analysis of the number of schools offering calculus-based mathematics in each
district was also done. Figure 5.1 shows the distribution and number of schools offering

Mathematical Methods and Specialist Mathematics in the 13 districts.

Schools offering calculus based mathematics
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Figure 5.1: Schools Offering Calculus-based Mathematics per District 2019-2020

An analysis of Figure 5.1 and Tables 5.1 and 5.2 gives a deeper understanding of
enrolment and the number of schools offering the options per district. Figure 5.1 shows
Brisbane Central having only 10 and 9 schools respectively offering Mathematical
Methods and Specialist Mathematics, but the enrolment in this district was the highest
in Queensland. It also had the lowest percentage dropout rate (24.4%) than any other
district. Contrastingly, Brisbane East and Mackay districts each had 12 schools offering
Mathematical Methods, but Brisbane East had almost three times the enrolment of
Mackay and the dropout rate was significantly lower. This was also true if a comparison
i1s made between the Sunshine Coast and Toowoomba, Brisbane North and Cairns
districts in Mathematical Methods. The number of schools offering Mathematical
Methods and Specialist Mathematics in Mackay, Brisbane Ipswich, Brisbane South,
Cairns, Mackay, Rockhampton, Toowoomba, Townsville and Wide Bay was

significantly different.

5.5.2 School location SEIFA index and student enrolment
The first aspect was to investigate if the relationship between; enrolments in

Mathematical Methods and SEIFA, and dropout and SEIFA, was statistically significant
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or not. Correlation analysis in the form of Spearman correlation coefficient was used to

examine the nature and strength of the relationship under the following hypothesis.

Ho: There is no statistically significant relationship between enrolments/dropout

and SEIFA.

Versus

Hi: There is a statistically significant relationship between enrolments/dropout

rate and SEIFA.

Results in Table 5.3 were obtained from the analysis of the relationship between SEIFA

values and enrolment.

Table 5.3: Spearman’s rho correlation coeftficient SEIFA, enrolment and dropout

Enrolments [SEIFA Index
Correlation Coefficient]1.000 335
Enrolments Sig. (2-tailed) .001
N 88 88
Spearman's rho .
Correlation Coefficient].335 1.000
SEIFA Index Sig. (2-tailed) .001
N 88 88
Dropout SEIFA Index
Correlation Coefficient]1.000 3417
Dropout Sig. (2-tailed) .000
Spearmen’s rho N 201 201
Correlation Coefficient].341™ 1.000
SEIFA Index Sig. (2-tailed) .000
N 201 201

**, Correlation is significant at the 0.01 level (2-tailed).

The data from Table 5.3 indicate that there is a weak positive link between; enrolments

and the SEIFA Index, and dropout and SEIFA index with a Spearman's correlation

coefficient value of 0.335 and 0.341 respectively. Additionally, the probability value of

0.000, which is smaller than the threshold value of 0.01 for both, makes the connection

statistically significant at 1%. The alternative hypothesis, according to which there is a
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statistically significant correlation between; enrolments and the SEIFA Index, and
dropout and SEIFA is supported by these findings. Even though the correlation is modest,

it indicates that enrolments improve with increases in the SEIFA Index.

In addition, an analysis of student enrolment in Mathematical Methods and Specialist
Mathematics and school location based on their SEIFA index was undertaken on 203
schools. This excluded 4 distance education schools because their location had no
influence on students’ enrolment. Since the SEIFA data was presented as percentiles,
50% and upwards was considered as the upper half and thus designated areas with
economic advantage while below 50% was considered as areas that were economically
disadvantaged. Although there were 115 schools with students enrolled in Mathematical
Methods in the lower half, they constituted only 39.8% of the Unit 1 Mathematical
Methods cohort. Schools below the 50% percentile had an average percentage dropout
rate of 42%, while those above the 50% economic advantage percentile had a dropout
rate of 34.7%. Similarly, in Specialist Mathematics, the group in the 50% economic
advantage percentile had a dropout rate of 24% compared to 26.6% in the economic
disadvantage percentile. Although 49.7% (76 out of 153) of schools were considered to
have economic advantage, they contributed 63.1% of all students who studied Specialist

Mathematics in Unit 1.

5.5.3 School ICSEA value and student enrolment
A correlation analysis in the form of Spearman correlation coefficient was used to

examine the nature and strength of the relationship between; enrolments and ICSEA
values, ICSEA and dropout. Results of the analysis of the relationship are shown in Table

5.4.

Table 5.4: Spearman’s rho correlation coefficient ICSEA, enrolment and dropout

Enrolments ICSEA

Correlation Coefficient 1.000 613"
Enrolments Sig. (2-tailed) .000

N 39 39

Spearman's rho

Correlation Coefficient 613" 1.000
ICSEA Sig. (2-tailed) .000

N 39 39
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Correlation Coefficient
Dropout Sig. (2-tailed)
Spearman’s rho N
Correlation Coefficient
ICSEA Sig. (2-tailed)
N

Dropout
1.000

201
.496”
.000
199

ICSEA
.496™
.000
199
1.000

199

**, Correlation is significant at the 0.01 level (2-tailed).

The results in Table 5.4 results show a Spearman’s correlation coefficient value of 0.613

which suggests that there is a strong positive relationship between enrolments and ICSEA.

These results suggest a statistically significant relationship between enrolments and

ICSEA thus as ICSEA values increase enrolment also increase. Similarly, the results

suggest that there is a weak positive relationship between ICSEA and dropout rate as

supported by the correlation value of 0.496. The probability value of 0.000 which is less

than the threshold of 0.01, implies that the relationship is statistically significant at the

1% significant level. According to the findings, as ICSEA increases, dropout rate also

increases.

Similarly, descriptive statistical analysis of student enrolment in Mathematical Methods

and Specialist Mathematics according to school ICSEA index was undertaken and the

results indicated that dropout rates were influenced by school ICSEA index. Schools
with an ICSEA value of more than 1,100 had a dropout rate of 27%, those between

1,000 and 1,100 had a dropout rate of 29.2% and those with an ICSEA value of less
than 1,000 had a dropout rate of 43.4% in Mathematical Methods. The trend was the
same in Specialist Mathematics in schools with an ICSEA value of 1,000 and above

having a dropout rate of 20.3% compared to 29.2% of schools with a value less than

1,000.

5.5.4 School transfer ratings and student enrolment

Spearman’s correlation coefficient was used to determine the relationship between

enrolment and transfer ratings and also dropout and transfer ratings. Results of the

analysis are shown in Table 5.5.
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Table 5.5: Spearman’s rho correlation coefficient Transfer rating and enrolments.

Transfer Rating fEnrolments

Correlation Coefficient [1.000 -.505™
Transfer Ratings Sig. (2-tailed) . .000

N 207 202

Spearman's rho .

Correlation Coefficient |-.505 1.000
Year 11 enrolments Sig. (2-tailed) .000

N 202 202

**_ Correlation is significant at the 0.01 level (2-tailed).

Results show a weak negative correlation between enrolment and transfer rating as
evidenced by the correlation value of -0.505. The relationship is statistically significant
at 1% significant level since the p-value of 0.000 is less than the chosen threshold value
of 0.01. These results support the null hypothesis, which states that there is a
statistically significant negative relationship between enrolments and Transfer ratings.

Thus, as the transfer ratings decrease enrolment rises.

Lastly, an analysis of school transfer ratings and student enrolment in Mathematical
Methods and Specialist Mathematics was undertaken. In 2019, at the end of Unit 1,
there were 106 state secondary schools with transfer ratings of 1 and these schools had
an enrolment of 4,919 students in Mathematical Methods. There were 101 schools with
transfer ratings of 2 and above, but they had only 2288 students enrolled in the same
option. Only 31.7% of all students who studied Unit 1 of Mathematical Methods were
enrolled in schools with transfer ratings of 2 and above. Hence, the total enrolment of
all the other schools with a transfer rating of 2 and above was less than half of those
with a transfer rating of 1. Despite schools with a transfer rating of more than 2
enrolling 68.3% of all students studying Mathematical Methods, 1691 (34.4%) students
dropped out of the subject from schools with a transfer rating of 1, compared to 1,021
from schools with a transfer rating of 2 and above. In fact, 54.5% of the enrolled
students in schools with transfer ratings of 7 dropped out. Figure 5.2 shows the dropout

rates in relation to school transfer ratings.
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School transfer rating and percentage
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Figure 5.2: Dropout Rates and School Transfer Ratings 2019-2020

Fewer students in schools with a transfer rating above 1 chose to study Specialist
Mathematics. Out of 156 schools with students studying the subject, only 61 had a
transfer rating of 2 and above. This means less than half of schools with higher transfer
ratings offer Specialist mathematics as compared to those with a rating of 1. In addition,
only some schools with transfer ratings from 1 to 5 had any students who enrolled in

Specialist Mathematics, as shown in Figure 5.3.
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Figure 5.3: Schools Offering Specialist Mathematics and their Transfer Ratings 2019-
2020

5.6 Discussion
Education systems all over the world aim to support and nurture students to reach their
goals when they have chosen a career path. Hence, minimising dropout rates in
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calculus-based mathematics is fundamental. Undoubtedly, dropping out has
“considerable social and economic implications,” (Goss & Andren, 2014), especially
considering the importance of calculus-based mathematics as a key enabler of STEM
courses at tertiary institutions (Maltas & Prescott, 2014). In this study, enrolment in
calculus-based mathematics in all districts showed a high dropout rate. In fact, for
Mathematical Methods (about equivalent to the Mathematics B subject previously
offered), the dropout rate in state schools of 37.6% from 2019 to 2020 was 10 times the
average dropout rate of 3.77% of all Queensland secondary schools from 2010 to 2019
(Chinofunga et al., 2021). Similarly, in Specialist Mathematics (about equivalent to the
Mathematics C subject previously offered), the dropout rate of 25.3% from 2019 to
2020 was more than 10 times the average dropout rate of 2.35% of all secondary
schools in the state from 2010 to 2019 (Chinofunga et al., 2021). The substantial
increase in student dropout rates from calculus-based mathematics between 2019 and
2020 is alarming, in that it indicates that students who initially showed interest and

opted studying these subjects found it hard to continue.

Importantly, students who drop out from calculus-based mathematics options are not the
same as students who choose to avoid the options at senior secondary school (Hine &
Mathematics Education Research Group of Australasia, 2017). These are students with
an initial genuine interest in calculus-based mathematics options as they think about and
prepare for these options in Year 10 and then enrol in Year 11. If we are to increase the
number of students enrolment in calculus-based mathematics, then the focus should
start from retaining students who drop out. Disrupting this trend would reverse the
enrolment and enrolment numbers in these subjects which have been shown as tumbling
across Australia (Kennedy et al., 2014; Maltas & Prescott, 2014). Teachers as
facilitators of learning can help to retain these students through effective planning and
teaching that support student participation and engagement, thus increase the chances of
success. Calculus-based mathematics teachers’ planning must focus on enhancing
students’ confidence and their relationship with their chosen subject (Grundén, 2020)
through providing a coherent and spiral sequencing of mathematical concepts that are
anchored on student’s prior knowledge and interest to support student participation and
achievement (ACARA, 2015). In other words, effective mathematics teaching must
support the connection of prior knowledge to new knowledge, and build, interconnect

and expand knowledge and skills from familiar to unfamiliar contexts, (Novak, 2010;
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Stoll et al., 2012) increasing opportunities for success. Such an approach is likely to
arrest the dropping enrolment in calculus-based mathematics subjects. This approach
might call for new and innovative research focused on supporting mathematics content
sequencing and ways of promoting mathematics knowledge development at all levels in

the school curriculum to stop the decline in enrolment in calculus-based mathematics.

The economic advantage or disadvantage of a school location and students who attend a
school can be determined by the SEIFA index and ICSEA value. Inferential data
analysis using the Spearman’s rho correlation coefficient show a strong positive
correlation between ICSEA and SEIFA against enrolment. Thus, statewide as the
ICSEA and SEIFA values increases the enrolment also increases. Contrastingly, the
Spearman rho correlation coefficient show a weak correlation between SEIFA and
ICSEA against dropout rate demonstrating that statewide as the SEIFA or ICSEA
values increase the dropout rate decreases. This study also showed that, when
considering the initial uptake of Mathematical Methods, Brisbane Central district had
the highest enrolment. Importantly, all 10 schools in this district had a SEIFA value of
more than 92 and an ICSEA value of more than 1,000, demonstrating a high economic
advantage enjoyed by the student population. Although it was a district with the least
number of schools, it had the highest number of students enrolment in calculus-based
mathematics in Queensland. Similarly, the Brisbane North district had 10 school
locations out of 20 with a SEIFA value of more than 80 and 5 schools with an ICSEA
value of more than 1,000 and it had the second highest enrolment. Contrastingly, the
highest SEIFA value of a school location in the Mackay district was 74 and there were
only 4 out of 12 schools in areas with values above 50. There were no schools with an
ICSEA value of more than 1,000. Likewise, 6 school locations out of 13 in the
Rockhampton district had a SEIFA value of more than 50 but less than 72 and there
were no schools with an ICSEA value of 1,000 and above. The Wide Bay district had
17 schools offering Mathematical Methods and there was no school location with a
SEIFA value above 50 and ICSEA of 1,000 and above. In addition, Townsville and
Toowoombea districts had only up to two schools in the top SEIFA index or ICSEA
value band, with the rest below average. It was observed that all these districts had low
enrolments and a substantial difference between the number of schools offering

Mathematical Methods and Specialist Mathematics. This meant that potential students
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who had the interest and capability to enrol and achieve well in the calculus-based

mathematics subject did not have the option of enrolling in these subjects.

A proactive research agenda that supports teachers who teach in low SES areas and less
desired schools in relation to the teacher mobility and school transfer ratings must not
be limited to financial rewards. The focus should be on planning and pedagogical
resources that build a foundation that promotes knowledge and skills development and
facilitates independent learning. As argued by some researchers, it is “more meaningful
to study what educators can work with to improve students’ participation and
achievement” (Valero et al., 2015, p. 288). Thus, proactive research that focuses on
planning and developing such pedagogical resources should be a priority. These
pedagogical resources would need to include multiple representations, including visuals,
as they are easy for students to follow and understand (Raiyn, 2016). Thus exploring
how mathematical knowledge (procedures and concepts) can be visually represented
can support teaching and learning of mathematics as they promote information
processing. This proactive approach may also assist in promoting self-directed learning
in students. Importantly, a common framework that can be used by teachers in such
schools will help to bring stability to students’ learning because it would provide

uniformity in concept development and critical delivery resources.

The economic advantage or disadvantage of a school location can be determined by the
SEIFA value. The data analysis in this study showed that schools in the top half of
SEIFA indexes of 50 and above contributed more than 60% of all students enrolled in
calculus-based mathematics despite accounting for fewer than half of all state schools in
Queensland. This is because school location and economic advantage significantly
influence the knowledge, skills, experiences and other forms of capital students gain
(Ireneusz, 2020). Schools, parents and students located in economically advantaged
areas normally have high expectations, as modelled by the community (Pritchett, 2001).
Resources offered by schools differ mainly because of SES location (Broer et al., 2019).
Considering schools in the top half of SEIFA indexes of 50 and above, the data analysis
in this study showed that the dropout rate was less than the lower half of SEIFA
indexes, which reinforces the high expectations that schools in such locations foster. It
is particularly important to pay special attention to schools with lower ICSEA values.

The ICSEA value of a school provides a clearer indication of the economic advantage
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and disadvantage of students enrolled in that school. The relationship between the
average dropout rate and a school’s ICSEA value supports Perry and McConney’s
(2013) findings that schools with highly economically advantaged students are strongly
associated with high academic expectations and are competitive, compared to schools
with economic disadvantage. Thus, the high expectations and competition in schools
with high ICSEA values have a substantial influence on students to continue with the

subjects.

One of the most critical resource in any school is teachers. Teachers are attracted to
different schools based on a range of considerations. School location and resources are
key in attracting and retaining teachers, which is why schools’ transfer ratings are
mainly based on these factors. Results from the Spearman’s rho correlation coefficient
show a negative correlation between transfer rating and enrolment. Thus, as transfer
ratings decrease which is determined by school location and resources the enrolment
increases. In this study, almost 70% of the Mathematical Methods cohort were in the
schools that had a transfer rating of 1 and minimal teacher turnover, in other words,
schools that had stable and predictable environments. The schools with transfer ratings
of 1 also had a significantly lower dropout rate than schools with transfer ratings above
1. A similar trend was witnessed in Specialist Mathematics, where enrolment was
biased towards schools with ratings of 1, even if there were fewer of them than those
with transfer ratings above 1. Barbieri and colleagues (2011) concluded that teachers in
schools with high transfer ratings might not have long term plans to teach in those
schools, hence they might be less committed and wait for an opportunity to leave,

resulting further in less stable and predictable school environments.

The COVID-19 pandemic impacted education systems in different ways across the
world. It might have affected students physically and psychologically and might have
influenced to some extent the results obtained in this study. However, Queensland
experienced minimum disruptions in 2019 and 2020 and the dropout rate was much
higher in 2019, before COVID-19, than in 2020. A total of 3,117 students had dropped
out calculus-based subjects by the end of 2019, during which the state experienced no
lockdowns or restrictions at all. The introduction of external examinations, which
contributed towards 50% of the overall calculus-based subject result, might have had an

impact on students’ confidence and thus their participation.
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5.7 Chapter Conclusion

This paper investigated the numbers of senior secondary students enrolled in calculus-
based mathematics subjects between 2019 and 2020 in Queensland state schools from
different socio-economic districts. The QCAA data, which included subjects, unit
enrolments, school postcodes and districts, was matched to SEIFA index (ABS), ICSEA
value (ACARA) and transfer points (DoE). The high overall dropout rate in the new
calculus-based mathematics subjects is a concern and the state is consequently losing a
large number of students who could have pursued opportunities that are deemed to be
jobs of the future. This study showed that socioeconomic factors, school location and
transfer rating play a significant role in students’ participation in calculus-based
mathematics and dropout rates. Specifically, they showed that schools in low
socioeconomic locations that enrol students from low SES backgrounds and that have
high transfer ratings have both a low uptake in calculus-based options and high dropout
rates. Further research is recommended to identify proactive strategies on how
mathematics teachers can improve planning and delivery so as to promote participation
and achievement and retain more students in calculus-based subjects. Importantly, there
is urgent need for research that focuses on developing pedagogical resources that not
only build a foundation that promotes knowledge and skills development but facilitates
more structured learning for the students, thus, minimising the impact of school
location, family SES and teacher turnover. The following chapters focus on the
development of pedagogical resources to support the teaching of calculus-based

mathematics.
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Chapter 6: A Framework for Content Sequencing from the Junior
Secondary to the Senior Secondary Mathematics Curriculum

A version of this chapter was published as a research paper in the

Eurasia Journal of Mathematics, Science and Technology Education.

(2022) 18(4), em2100 DOLI: hitps://doi.org/10.29333/ejmste/11930.

6.1 Chapter Introduction

According to Roche et al.,
Given the complexity of mathematics teaching, including addressing
curriculum goals, engaging students, catering for the diversity of readiness,
connecting mathematics teaching to students’ experience, and assessing
student learning, to name just a few issues, it is difficult to imagine that
teachers of mathematics can perform their role without substantial planning.

(Roche et al., 2014, p. 854)

Effective planning provides direction and resources for quality curriculum delivery,
particularly in the context of mathematics teaching. Further, planning links curriculum
requirements in official curriculum documents and commercial and non-commercial
resources to how knowledge is developed in class (Li et al., 2009). This chapter argues
for and provides a framework for understanding and engaging in collaborative planning
for effective sequencing of mathematics content for the transition from the Australian
Mathematics Curriculum (Preparatory — Year 10) to the Senior Queensland Mathematical
Curriculum (Years 11 - 12) [Queensland Curriculum and Assessment Authority (QCAA),
2018]. The Mathematical Methods Unit 1 on Functions that is taught in Year 11 was used

as an example to illustrate the framework.

Planning plays a critical role in enacting the curriculum as it involves “activities related
to knowing what to teach and how” (Fernandez & Cannon, 2005, p. 485). What and how
teachers teach is critical to students’ participation and achievement. As Roche and
colleagues noted:
Planning for mathematics teaching is important at all levels from
sequencing of content and the structuring of lessons to the selection and

preparation of manipulatives and worksheets but despite its centrality to
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curriculum delivery research-based descriptions of the practises of

effective mathematics teachers do not emphasise planning. (Roche et al.,

2014, p. 854)
Planning by teachers directly influences the quality of learning that students receive
(Gonzalez et al., 2020; Grundén, 2020; Li et al., 2009; Roche et al., 2014). For teachers,
“planning is seen as an essential part of their work that has consequences for students’
learning as well as work situation — planning can cause stress as well as be a way to reduce
stress” (Grundén, 2020, p. 80). In fact, planning should focus on improving students’
relationship with mathematics through providing a platform that promotes active
engagement (Grundén, 2020). Planning is the foundation that sustains the whole
curriculum implementation, as it makes a difference in every aspect of curriculum
delivery, and consequently contributes to student participation and achievement as well

as determining teaching quality.

An effective mathematics teacher must be an exceptional planner. “Excellent teachers of
mathematics plan for coherently organised learning experiences that have the flexibility
to allow for spontaneous, self-directed learning” (Australian Association of Mathematics
Teachers (AAMT), 2006, p. 4). Australian teachers are expected to plan and teach
“mathematical sequences and experiences that encourage students to think flexibly and
creatively about concepts to develop ‘big picture’ thinking” (Davidson, 2019, p. 8).
Similarly, the Australian Institute of Teaching and School Leadership (AITSL) (2014)
expects teachers to design a teaching and learning sequence using curriculum knowledge,
content, students’ learning strategies and teaching pedagogies to increase student
participation and achievement. This is because, during planning, teachers predict and plan
the structure and conditions of the learning space (Conway & Munthe, 2017).
Consequently, to ensure that no child is left behind in learning mathematics, planning

must be the first port of call.

Supporting current teachers’ planning practises can be a starting point (Sullivan et al.,
2013). However, ways of improving the current planning in schools must be explored if
teaching and learning is to be enhanced (Attard, 2012). “The curriculum that students
experience in classrooms is the product of a complex web of decision-making which is
shaped, but not determined, by the formal curriculum documentation” (Sullivan et al.,

2013, p. 459). Therefore, curriculum planners such as teachers need to be supported on
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how to select and organise the crux of the curriculum (O'Neill et al., 2014). Mathematics
teachers’ understanding of the structure of the subject and how best content can be
presented for maximum student engagement can be key to effective planning and

consequently teaching and learning.

A critical aspect of effective planning is identifying and sequencing content and delivery
strategies to optimise acquisition of knowledge, understanding and skills among students
(QCAA, 2019). Content sequencing influences student engagement and helps them to
develop mathematical knowledge (Kilpatrick, et al., 2001). The “what” of planning
informs the “how”, thus teacher effectiveness and learner participation and understanding
is not only limited to classroom practice, but how the content is planned, sequenced and

taught.

6.2 Collaborative Planning

This study draws from intentional collaboration of teachers as defined by the Queensland
Department of Education. “Providing time and resources for staff to develop and plan
units together was suggested as a way of deepening understanding of the Australian
Curriculum” DoE, 2021, p. 7). Nevertheless, how teachers interrelate during
collaboration and how they interpret the curriculum has a strong influence on the planning
process (Grundén, 2020). Since teachers enact the curriculum, there is a strong correlation
between curriculum planning and delivery material (Superfine, 2008). Indeed, the
National Council of Teachers of Mathematics (NCTM, 2014 p. 12) states: “Effective
mathematics teaching begins with a shared understanding among teachers of the
mathematics that students are learning and how this mathematics develops along learning
progressions.” As a result, the level of engagement among teachers during planning
influences the quality of the output (Bieda et al., 2020). This chapter will develop a
framework on content sequencing that can support teachers on processes to be followed
as they plan sequencing of mathematics content. The chapter will advocate for a

collaborative approach to planning guided by a proposed framework.

Collaborative planning is not limited only to teachers teaching a year level but all
mathematics teachers within or across schools. Many teachers look to each other for
support during planning. Thus, school leaders must ensure that collaborative meetings are

scheduled for teachers to review and share their experiences and expertise (Clarke et al.,
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2012). Collaborative planning can present opportunities for teachers to learn from each
other, which results in the benefit of students (Gilbert & Gilbert, 2013). Especially, “when
whole grade levels are involved, they create a critical mass for changed instruction at all
levels; above all teachers serve as support groups for one another in improving practice”
(Darling-Hammond & Richardson, 2009 p. 46). Collaborative professional learning
brings teachers to work together, resulting in improvements to the whole school system
rather than just to the class or grade level (Darling-Hammond et al., 2009). Research also
indicates that effective professional learning is a contributing factor in differences in
school performance (Darling-Hammond et al., 2009). As Tricoglus (2000) states,
professional collaboration improves planning practice and teacher quality as teachers get
an opportunity to discuss, share and document important aspects of teaching and learning.
Collaboration of mathematics teachers within or across year levels can facilitate learning

from each other and improve effectiveness in delivery and resource utilisation.

Mathematics planning must support effective teaching and learning at every year level to
ensure students’ success. Many scholars (Kafyulilo, 2013; Konuk, 2018; Lynch, 2017;
Schuhl, 2020; Usha, 2010; Voogt et al., 2016) have noted that when mathematics
planning is done collaboratively:
e it reminds teachers that all levels/grades play a critical role in developing
mathematical knowledge
e it reminds teachers that skills taught at every level/grade are applicable to
subsequent levels
e it reinforces the notion that mathematical concepts are interlinked
e teachers develop a sense of ownership of the product
e it enhances teachers’ pedagogical and content knowledge
e it brings consistency across year levels
e it develops individual and team collective teacher efficacy
e it ensures consistent curricular priorities among colleagues
e it ensures students learn identified essential mathematics standards
e it enhances student learning
e teachers realise teaching is a shared responsibility

e it enhances the sense of community and revitalises enthusiasm towards teaching
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e teachers might consider issues that they might not have been considered
independently

Linking concepts across year levels demonstrates the hierarchical nature of mathematics
and shows that every mathematics teacher at different year levels contributes to building
students’ mathematical knowledge. This is especially important in Australia and
Queensland, where the mathematics curriculum transitions from a national curriculum
(junior level) to a state curriculum at senior secondary. It also justifies the importance of
collaborative planning within the cohort. Furthermore, students grasp that active

participation in lower grades contributes towards success in mathematics at higher levels.

6.3 Mathematics Planning in Queensland

Queensland mathematics teachers have a range of resources at their disposal during
planning. Apart from the official curriculum documents provided by the QCAA, non-
official resources that are commercial or non-commercial in nature, such as textbooks,
resources developed by colleagues or mathematics educators’ associations and school
documents, play an important role in planning, delivery and assessment (Roche et al.,
2014; Sullivan et al., 2013). Also, web-based resources have grown in influence and use,
especially multimedia video resources like YouTube and Khan Academy, as they are
readily available. The diversity of available resources provides dynamic options to
teachers as they can be useful in improving the quality of planning, be it individual or

collaborative.

Queensland schools and teachers are the drivers of the planning process. Undoubtedly
this is important because “curriculum planning is essential for contextualising curriculum
content” (QCAA, 2019, p. 1). Thus, different schools can contextualise content according
to students’ experiences which might not be shared across schools (Demski &
Racherbdaumer, 2017). Roche’s (2014) findings indicate that planning documents
produced by teachers within or across schools vary, with some teachers valuing aspects
of planning that others do not. Planning templates and samples from the federal
Department of Education and QCAA have been developed and distributed to schools.
However, it is important for teachers to understand the processes that underpin the
planning decisions that have led to the creation of such documents (Roche, 2014).
Therefore, a guiding framework is necessary to bring consistency and uniformity to the
process of planning. Ultimately, this study proposed that a more relational and contextual
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planning framework underpinned by constructivism that provides a step-by-step
systematic sequencing of curriculum content to promote interlinking, coherence and
spiralling of mathematics concepts between lower- level and upper-level topics.
Constructivism positions learning as a process of building new knowledge from the
learner’s prior knowledge, beliefs and skills (Garbett, 2011). Thus, the framework

supports planning that fosters the development of new knowledge from prior knowledge.

As part of their planning, Queensland mathematics teachers are required to create a
school-specific sequence of content; this is because the official syllabus document is not
regarded as a teaching sequence (Roche et al., 2014; QCAA, 2014, p. 8), which in turn
suggests that schools must take responsibility for developing “a spiralling and integrated
sequence”. Clearly, spiral sequencing deepens knowledge through revisiting concepts,
building on previous knowledge, creating new knowledge using prior knowledge and
dealing with increased conceptual complexity as learning progresses (Harden, 1999).
Above all, the manner in which content is structured in the curriculum facilitates how
students learn and understand complex phenomena (Bruner, 1977). For example, students
are taught fundamental concepts at a lower level of schooling and the concepts are then
revisited at a higher level to deepen understanding through application, comprehension

and interconnections with other concepts.

Queensland schools classify long-term planning on three levels: (1) whole school
curriculum and assessment plan, (2) year-level curriculum and assessment plan and (3)
unit overviews (QCAA, 2019). A unit is “a sequence of lessons with a coherent focus,
sometimes referred to as a topic sequence” (Roche et al., 2014, p. 854). A whole-school
curriculum plan “shows learning sequence within and across the year levels”, a year-level
plan “outlines the sequence of learning and reflects the development of knowledge,
understanding and skills within a level” and a unit overview “links prior and future
learning” (QCAA, 2019, p. 3-4). Each level of planning informs the other. Thus, effective
planning at all levels has the potential to improve curriculum delivery in Queensland

schools.

The Queensland State Schools Improvement Strategy (2022-2026) mentions intentional
collaboration as an improvement focus on curriculum delivery. It is defined as “the

deliberate actions we take to work together, learn together and improve together”
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(Department of Education [DoE], 2020, p. 1). Schools have the responsibility to
implement the strategy document, thus requiring them to put in place mechanisms for
collaboration among teachers. It is common practice in education departments the world
over to allocate planning time for teachers as a means of enhancing curriculum delivery
and student learning (Li et al., 2009). Queensland teachers are allocated five professional
collaboration days, which are not only limited to planning in subject areas but other
activities that the profession demands. Professional collaboration days at the beginning
of the year provide an opportunity for long-term planning. However, for secondary full-
time teachers, an additional 210 minutes a week is also allocated for planning, such as
short-term individual planning, preparation, correction and administrative work
(Queensland Teachers’ Union [QTU], 2020). In addition, schools are encouraged to set

time for staff curriculum meetings, which might involve all teachers or a sector.

6.4 Enhancing Student Participation and Understanding through Planning

Focusing planning on how students develop mathematical knowledge, skills and
understanding enhances participation, as teaching becomes student centred (Grundén,
2020). Therefore, planning should be informed by hypothesising students’ current level
of understanding and how to develop it further (Simon, 1995). It is important during
planning for teachers to be mindful of students’ abilities and learning needs, the goal
being for all students to participate and engage optimally (Attard, 2012). As a result,
planning that focuses on student learning indirectly develops teachers’ pedagogy, content
knowledge and practice (Darling-Hammond & Richardson, 2009; Garet et al., 2001;
Smith 2007). Because student-focused planning anticipates the learning process, it also

supports student understanding.

In enacting the curriculum, teachers have the responsibility to identify key topics and
provide students with the opportunity to deepen their understanding of such topics
(ACARA, 2009). As the QCAA emphasised, “To support the development of complexity
and independence of student learning, when planning units of work for a course of study,
teachers should consider a range of designing opportunities together with the sequencing,
content and interrelatedness of teaching strategies and learning experiences” (2013, p. 1).
Content that is coherently planned provides students with an opportunity to deepen their
mathematical knowledge, understanding and skills if they understand the fundamental

concepts.
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Planning for student understanding focuses on how students develop mathematical
knowledge. Procedural knowledge, conceptual knowledge and procedural flexibility are
critical for students to develop their mathematical knowledge and competency (Rittle-
Johnson, 2017). Procedural knowledge is defined as knowledge of sequences of steps or
operations, mathematical rules and facts that can be used to solve problems (Crooks &
Alibali, 2014; Rittle-Johnson et al., 2015). Conceptual knowledge is the “comprehension
of mathematical concepts, operations, and relations” (Kilpatrick et al., 2001, p.
5). Procedural flexibility involves knowledge, the use of varied procedures and the robust
application of these to a variety of conditions (Rittle-Johnson & Star, 2007). Conceptual
knowledge also plays an important role in flexible problem solving because
understanding the conceptual foundations of a procedure will lead to generalisations
when confronted with new but related problems. The relationship between conceptual
and procedural knowledge is bi-directional as they both support the development of the

other. However, both rely on students’ prior knowledge as a foundation on which to build.

Planning that builds on prerequisites helps a teacher to identify gaps in student
understanding that are likely to be encountered in class (Reys et al., 2020). A significant
number of teachers administer diagnostic tests and studies support the practice as they
may stimulate interest in learning and decode forthcoming lessons (John et al., 2013). At
the same time, diagnostic tests help teachers to gain understanding of students’ prior
knowledge, understanding and skills since in most cases students may be at different
levels. However, checking prior knowledge is insufficient on its own as teachers must
also ensure that the planning provides every student with the opportunity to acquire the
knowledge that is critical to engage with new knowledge meaningfully. When gaps in
student knowledge are identified, the teacher can start and build from the concepts
identified as prerequisites. Gaps in prior knowledge and skills impede students’
understanding of new knowledge (Hailikari, 2008). A comprehensive sequence of
learning provides flexibility in a class because students can start from varying levels of
competence. For this reason, and in the sequencing of content, an ideal framework must
develop a system of linking concepts and determine procedures that are involved in

solving problems within a concept.
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6.5 Content Sequencing in Unit 1 on Functions in the Mathematical Methods
Subject

Once students have finished Year 10 or reached the age of 16, they have the option to
remain in school or seek vocational traineeships. Students who choose to proceed to
senior secondary are expected to engage with a mathematics option of their choice. In
Queensland, students who plan on pursuing Advanced Mathematics are encouraged to
engage with the 10A curriculum for gifted students at Year 10. However, students who
choose to pursue the general Year 10 curriculum can still enrol in Advanced Mathematics
in senior school. The mathematics curriculum from primary school to Year 10 is governed
by the Australian curriculum while the Queensland curriculum, which is developed by
the QCAA, is followed at senior secondary level. This chapter describes how the
Australian mathematics curriculum (P-10) and the QCAA Mathematical Methods
curriculum documents were used to develop examples on how to apply the proposed

framework.

For the purpose of this study, prior knowledge will be defined as prerequisite concepts
from lower levels that interlink with concepts at upper levels. Assumed prior knowledge
is identified from the Australian Curriculum (P-10) that students have engaged with
before entering senior secondary school. New knowledge is outlined in the Mathematical
Methods syllabus. “To make decisions about the mathematical content in the planning
process, teachers reflect and have considerations in relation to students’ abilities and their
prior knowledge” (Grundén, 2020, p. 78). Correspondingly, prior knowledge is important
in developing quality programs and sequencing as it demonstrates continuity and
reinforces the importance of fundamental concepts and structure of mathematics (Reys et
al., 2020). The hierarchical nature of mathematics must be the basis of effective planning

and classroom practice.

Learning in mathematics is sequential, which means basic concepts presented in lower
levels must be mastered to enhance the chances of understanding new knowledge
(Brosvic & Epstein, 2007). Similarly, Hailikari and Nevgi (2010, pp. 2082-2083)
emphasise, “Concepts presented in the introductory courses are usually needed
throughout the academic career and should provide building blocks for more advanced
courses in the same subject.” During planning, teachers have the responsibility of

identifying relationships between lower-level and upper-level topics, concepts, and skills,

129



Supporting the teaching of calculus-based senior mathematics in Queensland.

linking the two levels and providing students with the opportunity to build from the

familiar to the unfamiliar.

Creating a framework to support and improve existing planning practices is of critical
importance (Superfine, 2008; Sullivan, 2012; 2013). Not only does a framework provide
transparency, accountability and evaluation of the process by stakeholders (O'Neill et al.,
2014), but frameworks that are flexible can accommodate adjustments during
implementation (Grundén, 2020). The proposed framework in Figure 6.1 will provide a
step-by-step systematic sequencing of curriculum content to promote interlinking,
coherence and spiralling of concepts. This will cater for mathematical methods students
at every level of their mathematics journey in Unit 1 of Year 11. Depending on the level
of assumed prior knowledge and skills students can recall and apply, teachers can start
teaching from any level of sequenced content. The framework can be adapted to all
mathematics options and levels, although for the purposes of this study, Queensland

Mathematical methods Unit 1 were considered.

130



Supporting the teaching of calculus-based senior mathematics in Queensland.
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Figure 6.1: Diagramatic Representation of a Framework on Content Sequencing

The foundation of the framework is coherence of content so that students can construct
new knowledge from assumed prior knowledge. Scholars (Schuhl, 2020; Usha, 2010)
have argued that for content coherence to be mastered, mathematics teachers should be
guided by the following questions during collaborative planning:

1. What exactly do students need to know and be able to do in this unit?

2. What prerequisite conceptual understanding and skills fluency are required for all

students to effectively learn new knowledge?
3. How do the concepts identified as prior knowledge link with new knowledge?

4. What do we expect students to retain?
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Tackling these questions collaboratively provides equity and consistency to students’
learning experiences from one teacher/class/level to the next (Schuhl, 2020). As a result,
“student learning improves because your entire team is working to ensure each student
learns the organised mathematics content from one concept to the next” (Schuhl, 2020, p.
13). The four questions guide the collaborative framework on concept sequencing being

applied to Unit 1 of the Mathematical Methods option discussed below.

6.5.1 Mathematical Methods Unit 1 Functions and Graphs (QCAA, 2018, p 20-21)
Unit 1

Firstly, identify key words from the syllabus document:

Functions

In this sub-topic, students will:

« understand the concept of a relation as a mapping between sets, a graph and as a rule or
a formula that defines one variable quantity in terms of another.

* recognise the distinction between functions and relations and use the vertical line test to
determine whether a relation is a function.

* use function notation, domain and range, and independent and dependent variables.

» examine transformations of the graphs of f(x), including dilations and reflections, and
the graphs of y=f(x) and y=f(bx), translations, and the graphs of y=f(x +c) and
y=f(x)+d; a,b,c,d€ R.

* recognise and use piece-wise functions as a combination of multiple sub-functions with
restricted domains.

+ identify contexts suitable for modelling piece-wise functions and use them to solve

practical problems (taxation, taxis, the changing velocity of a parachutist).
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Review of quadratic relationships

Recognise and determine features of the graphs of y = x2,y = ax?+bx+c,y =
a(x —b)?+c, and y = a(x — b)(x — ¢), including their parabolic nature, turning
points, axes of symmetry and intercepts.

Inverse proportions

In this sub-topic, students will:

* examine examples of inverse proportion

* recognise features of the graphs of y = % and y = including their hyperbolic

a
(x=b)’

shapes, their intercepts, their asymptotes and behaviour as x —oo and x ——oo.

Powers and polynomials

In this sub-topic, students will:

« identify the coefficients and the degree of a polynomial

» expand quadratic and cubic polynomials from factors

» recognise and determine features of the graphs of y = x3,y = a(x — b)3 + ¢ and

y =k(x —a)(x — b)(x — ¢), including shape, intercepts and behaviour as x — o and
X —>—00

* use the factor theorem to factorise cubic polynomials in cases where a linear factor is
easily obtained.

* solve cubic equations using technology, and algebraically in cases where a linear factor
is easily obtained.

« recognise and determine features of the graphs vy = a(x — b)* + ¢, including shape and
behaviour.

» solve equations involving combinations of the functions above, using technology where

appropriate.

Graphs of relations

In this sub-topic, students will:

« recognise and determine features of the graphs of x*+y? = r2? and (x — a)? + (y —
b)? = r2, including their circular shapes, centres and radii

» recognise and determine features of the graph of y? = x, including its parabolic shape

and axis of symmetry.
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Exponential Functions 1

Indices and the index laws

In this sub-topic, students will:

» recall indices (including negative and fractional indices) and the index laws
* convert radicals to and from fractional indices

» understand and use scientific notation

6.6 Applying the Framework to Functions and Graphs
6.6.1 Importance of Keywords

The Oxford Advanced Learner’s Dictionary (2000) defines a keyword (noun) as a main
idea or concept that is very important in a particular context. Keywords “provide
significant clues for the main points about the sentence” (Li et al., 2020, p. 8196).
Therefore, a keyword is one that is essential to the meaning of a sentence. Definitions of
some keywords help in identifying prerequisites of the concept as they provide more

detail about the key word. For example:

Question 1: What exactly do students need to know and be able to do in this unit?

Key words in the syllabus highlight critical skills and concepts as well as link
prerequisites to new concepts. When they are closely analysed by teachers, different
concepts not directly mentioned in the syllabus will emerge as prerequisites. An example
of a definition that can directly link to prerequisites is the definition of a relation. A
relation is a set of ordered pairs (Evans et al., 2019). Ordered pairs are points on a
Cartesian plane that are represented in the form (x, y). The definition helps to realise the
importance of a Cartesian plane in understanding relations and any other concepts related
to them. In the ordered pairs we derive the Domain and Range. It is critical to ensure that
every student understands a Cartesian plane and can identify all x and y values that
satisfy a graph represented on the plane. How x values will be manipulated to give

corresponding y values is called mapping.

Key words that are repeated or mean the same can be combined or expanded under one
unifying name.
Examples:

e Shapes and intercepts, asymptotes and shapes, behaviour and features, centre and

radii can all be features of graphs.
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e Coefficients, variables and formula can fall under algebra.

e Factors, factor theorem, factorise linear and non-linear functions (linear, quadratic
and cubic) can fall under factorisation.

e Mapping, domain, range, sets, independent and dependent variable come under
relations

e Index laws, negative and fractional indices fall under indices.

e Translation, reflection and dilation fall under transformations.

e Solving linear quadratic and simultaneous equations fall under solving equations.

6.6.2 Curriculum Mapping of Concepts

Curriculum mapping is a critical tool used to display the comprehensive coherence of the
curriculum (Levin & Suhayda, 2018), investigate the degree of how concepts in a
curriculum are interlinked (Vashe et al., 2020) and improve communication among
teachers on content, skills and teaching and learning (Koppang, 2004). Curriculum
mapping promotes long-term planning as it reflects topics or content, concepts to be
covered and skills both new and old to be mastered in a specific period (Koppang, 2004).
The investigation of content connectedness enables educators to identify gaps that might
be addressed during teaching to help students gain a deeper understanding (Vashe et al.,
2020). While curriculum mapping involves creating visual representation of linked
displays, it is not limited to a diagrammatic linking of curriculum content but also to

structure and assessments, which are beyond the scope of this study.

Mapping provides visual displays, which are quick to understand and easy to compare.
“Mapping is a visual representation of information and can be in the form of tables, flow
charts or textual information” (Ervin et al., 2013, p. 310). Undoubtedly, diagrams or
visual displays enhance explanatory power (Peterson et al., 2021). Tables and scope and
sequence charts provide a visual representation of knowledge. “Graphical displays are
more effective than text for communicating complex content because processing displays
can be less demanding than processing text” (Ioanna, 2002, p. 262). Concept breakdown
tables and flowcharts will be used in this study to present a diagrammatic representation

of how content is broken down and sequenced to realise coherent planning.
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The tables and flowcharts can also be used to demonstrate how content develops from
familiar to complex unfamiliar, that is, from prior knowledge to new knowledge.
Therefore, “a careful examination of such a chart reveals how the sequence of activities
related to a particular unit is organised in a spiral approach, giving students repeated
opportunities to develop and broaden concepts” (Reys et al., 2020, p. 55). Spiralling
involves building from assumed prior knowledge or from what is known and then

navigating through to complex phenomena.

Mapping a unit plays an important role in providing a visual representation of knowledge.
It provides resources to visualise how concepts are developed from foundational
principles to new or future developments, hence exposing the complications involved in
learning (Wilson et al., 2016). In this instance, a breakdown table formulated from the
syllabus document became a starting point. Collaborative mapping of mathematical
concepts bring together teachers’ knowledge and understanding of the topic or concepts
under consideration. Done collaboratively, the exercise will provide an opportunity for

teachers to have better insight on how prior knowledge can link with new knowledge.

A range of researchers (Gurupur et al., 2015; Novak, 2010; Reina, 2018) have identified
the following advantages of mapping:
e it breaks down concepts and link them to develop high cognitive skills
e it lays the foundation of how concepts will be developed.
e teachers share content knowledge as the map is being developed.
e it develops deeper conceptual understanding
e it showcases the importance of prior knowledge
e teachers become better prepared to teach
e other planning documents like unit plans and term planners can use it as a
foundation
e it gives teachers an opportunity to interrogate the syllabus
e it expands the knowledge and scope of key concepts, which enhance teaching and
learning
e pictorial representation of knowledge is easy to understand and adjust when need
arises.

e it helps create connection activities or tasks as a new concept is being introduced.
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6.6.2.1 Concept Breakdown Table
The concept breakdown table was instrumental in addressing the following questions:
Question 2: What prerequisite conceptual understanding and skills fluency are
required for all students to effectively learn new knowledge?
Question 3: How do the concepts identified as prior knowledge link with new

knowledge?

Concept breakdown tables explore how the key words link to prior knowledge. They
include defining key words, identifying similar assumed prior knowledge concepts and
linking assumed prior knowledge to new knowledge. This aspect of the proposed
framework is necessary because mathematical language is content specific (Harmon et
al., 2005). In addition, it is important to note that mathematics terminology increases in
complexity as students progress from lower to higher levels of school. “Students who
lack the formal language of mathematics have difficulties reasoning and communicating
about mathematics” (Ben-Hur, 2006, p. 67). In fact, mathematical language has been
identified as a hindrance to students as they engage with new concepts (Schuhl, 2020).
Including mathematical vocabulary in the proposed framework demonstrates how
language changes as concepts develop and reinforces the importance of terminology in

enhancing teaching and learning.

For example, at Year 9 and Year 10 levels, students learn about quadratic expressions and
equations which are key in understanding parabolas. Likewise ordered pairs on a
Cartesian plane in Year 7 is a mapping of x onto y. The concept breakdown tables can
be made available to students to dissuade their view of mathematics “as a series of
unrelated procedures and techniques that have to be committed to memory” (Swan, 2006,
p. 162). Their views are influenced by how they are taught and consequently how they
learn (Wong et al., 2001). Therefore, the planning process undertaken by teachers has a
strong impact on how students are taught. Lack of content coherence will promote
students’ memorisation of procedures if concepts are taught in isolation. Mathematics has
a highly connected web of concepts and skills; therefore, these must be firmly
consolidated to provide a basis for new learning (Australia Academy of Science, 2015, p.

17). Above all, concept breakdown tables provide “a clear line-of-sight for the
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development of students’ cognitive skills across year levels” (Department of Education

(DoE), 2021 p. 23).

Thus, a concept breakdown table will influence students’ views on mathematics as it will
demonstrate that mathematical concepts are interconnected and hierarchical and therefore
that procedures and skills are transferable. Table 6.1 shows the relationship between
assumed prior knowledge and new knowledge for Unit 1 of the Mathematical Methods

option in Year 11.

Table 6.1: Concept Breakdown Table: Linking junior concepts with senior

Mathematical Methods concepts for Unit 1: Functions

Keywords Definition of Assumed prior
(QCAA keys words .. Link between assumed prior
. knowledge of similar .
mathematical  where . knowledge from Australian
methods Unit applicable concep t (Australian Curriculum and key words
1) Curriculum)
On ordered pairs the set of x (first)
Ordered pairs coordinates represent the domain
which is also an independent variable
and the set of y (second) coordinates is
Relations the Range which is also a dependent
variable. A vertical line is a line
parallel to the y-axis (Years 7 & 8).
The relationship between the
Cartesian plane, x and y is the rule, formula, equation
ordered pairs or mapping, arrow diagrams.
Changing a Rules of translation- translating
Transformations shape using: horizontally or vertically. Reflection
(reflection, turn, flip, about the x and y axis (Yr 7).
translation & slide, or resize. Flip, slide and Enlargement and reduction as a form
dilation) enlargement of dilation (Yr 9).
Combination Distinguish linear and non-linear using
of multiple sub highest powers of variables
functions Combining linear and  (degree). Represent linear and non-
non-linear equations linear equations graphically (Years 9
Piece-wise and graphs & 10).
When one
value For direct proportion Increase in one
increases and variable result in an increase in another
Inverse the other variable (Year 9) which is opposite for
Proportion decreases Direct proportion inverse proportion.
Characteristics Calculate intercepts, increasing and
Features of the  of graphs Linear and non-linear  decreasing graphs. Distinguish

graphs

graphs
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(including
quartic)

Algebra

Expand

Factorisation

Solve equations

Indices

Scientific
notation

Rules to
manipulate
symbols

Multiply
factors
Express as a
product of
several factors

Find solutions
in a balanced
system
through
algebraic
manipulation.

Power or
superscript

When a
number
between 1 and
10 is
multiplied by
a power of 10

Distributive law

Factors

-Linear equations
-Quadratic equations
(factorisation,
quadratic formulae,
completing the square
& graphically)
Simultaneous equation
(substitution and
elimination)

Exponents

comparing shapes. Graph quadratic
equations, identify intercepts and
turning points (Yeasr 9 — 10A).
Identify coefficients (Year 7), group
and simplify like terms (Year 7),
general substitution (Years 7-9),
making one variable a subject of
formula (Years 9-10A).

Removing brackets using distributive
laws (Years 8-10A).

Factorise algebraic (Years 9 &10A)
and quadratic expressions (Year 10).
Factor theorem and remainder theorem
to find factors of polynomials (Year
10A).

Solve linear equations (Years 7 &8).
Solve quadratic equation using
quadratic equations (Year 9),
factorisation, and completing the
square (Years 10 &10A). Completing
the square can also be used to
standardise a quadratic function and
the equation of a circle to determine
coordinates of centre and radius.
Solve simultaneous equation (Year
10A)

Equations show the relationship
between variables (mapping) (Years 7-
10A).

Write surds in indicial notation, index
laws, negative indices, fractional
indices and solve simple indicial
equations (Years 8-10A).

Expressing numbers to scientific
notation (Year 9).

The next question after the concept breakdown table should emphasise identification of

the important concepts that must be learnt to prepare students.

Question 4: What do we expect students to retain?
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Essential Concepts represent the most critical content from the content domains — the
deep understandings that are important for students to remember long after they have
forgotten how to carry out specific techniques or apply particular formulas (NCTM, 2018,
p. 11). They are the big ideas in a unit (Schuhl, 2020), the ideas that play an important
role in building students’ mathematical conceptual understanding. However, Sullivan et
al., (2012) noticed that during planning, teachers are less clear when asked to articulate
the important ideas in a topic. Mapping concepts helps identify the essential concepts that

students must retain.

6.6.3 Determining essential concepts
Scholars Ervin et al. (2013) and Harden (2001) emphasised the need to create main
conceptual conceptions by synthesising concepts that are interlinked. The main concepts
are identified below:

Relations — number/ algebra/graphs

Transformations (Reflection, Translation & Enlargement) — algebra/ graphs

Combination of multiple sub functions - graphs/algebra

Inverse proportion — algebra/graphs

Features of graphs - graphs

Algebra - algebra

Expand - algebra

Factorisation - algebra

Solve equations — relations/algebra

Indices — number/algebra

Scientific notation — number

Creating a table such as Table 6.2, with the main concepts identified in the conceptual
connections and all the other concepts students must learn listed under the corresponding
main concept will help teachers check if some concepts have been left out. It also provides

an opportunity to further link, expand or collapse the main concepts.
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Table 6.2: Grouping concepts under main concepts

1. Numbers 2. Relations 3. Algebra 4. Graphs
-indices -relations -relations -transformation of
-scientific - solve equations -algebra graphs
notations - combination of -relations
-relations multiple functions -combination of

-inverse proportion multiple functions
-algebra -features of graph
-expand -inverse proportion
-factorisation

Solve equations

Table 6.2 shows that different concepts can be repeated in a range of main concepts.
Hence the table can be condensed to identify only the essential concepts that students
must retain. For example, “relations” are found under all four main concepts, hence the
need to have relations as one of the main concepts is eliminated. Additionally, in the
Australian Currriculum, "mathematics”, “numbers” and “algebra” have a linked
relationship and thus can be combined into one concept. In another example, graphs have

different features and characteristics, for example, “if the x variable in a hyperbola y =
% is increased to a very big value (approaches positive infinity), the value of y approaches

zero.” Consequently, different types of graphs can be renamed as characteristics and
features of graphs. Thus, the essential concepts can be distilled down to “numbers”,

“algebra” and characteristics and features of graphs.

6.6.4 Content Sequencing

The main conceptual connections identified in this unit on Functions were “number”,
“relations”, “algebra” and “graphs”. Using the main conceptual connections (instead of
the essential concepts, which may be too broad) will ensure all concepts to be taught are
included. For example domain, range and rule are all part of the definition of relations. It
is important to include all the assumed prior knowledge from the concept breakdown table
in their hierachical order to show the structure of knowledge development. “Mathematics
is a hierarchical subject, where new learning builds on earlier learning in a highly
connected way” (Australian Academy of Science, 2015, p. 17). The hierachical nature of

mathematics means concepts increase in complexity as they develop hence assummed

prior knowledge must generally follow levels of hierachy to new knowledge as shown in
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Figure 6.2. This is important to develop a logical cohension of content (topics) that build

on each other as teaching and learning progresses.

negative numbers

fractions

surds

indices (numbers only)

scientific notations

Cartesian Plane

sets

independent and dependent variable

domain and range

general substitution into linear and nonlinear relationships(mapping)
identify coefficients

grouping and simplify like terms

subject of the formulae

distributive law

factorisation of linear and quadratics expressions
direct proportion

solve linear and quadratic equations

simultaneous equations

indicial equations

factorise cubic functions (Remainder and Factor Theorem)
transformation of graphs

linear, quadratic functions and their inverse
piecewise-defined functions

hyperbolic functions

cubic functions

quartic functions

circles (graph, recognize characteristics and features)

Figure 6.2: Sequenced Content using the Framework.

6.7 How the Planning Framework Influences Effective Teaching of Mathematics

Teachers have a responsibility to ensure that mathematics learning is effective.
Mathematics teachers are expected to unpack subject matter, sequence content, provide
students with an opportunity to connect prior knowledge to new knowledge and gradually
release support for students (Stoll et al., 2012). Similarly, effective teaching and learning
require students to have suitable, relevant and applicable prior knowledge and new
knowledge that interconnects and can be expanded to other concepts as well as allow
students to link concepts (Novak, 2010). The framework on content sequencing
emphasizes the identification of prerequisites needed for students to access senior level
concepts which can help teachers in addressing identified gaps in students’ prior

knowledge.
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The hierarchical nature of mathematics and spiral sequencing of concepts across levels
make senior level mathematics teaching and learning highly dependent on junior level
mathematical understanding. The amount and quality of prior mathematics knowledge a
student possesses determines how that student builds new mathematical knowledge
(Schneider et al., 2011). It is a prerequisite for successful achievement of learning
outcomes (Achmetli et al., 2019). High levels of understanding of prior knowledge helps
students identify different methods of solving a mathematical problem and choosing the
most efficient one (Newton et al., 2020). The connection of critical and relevant prior
knowledge and corresponding new knowledge, as emphasised in the concept breakdown

tables, is critical in supporting effective teaching and learning.

Students have a better chance of participating and achieving in mathematics when links
are developed between what students already know and new concepts (Australian
Curriculum, & Assessment and Reporting Authority [ACARA], 2018; QCAA, 2018). For
example, the Cartesian plane, creating a table of values of linear and non-linear
relationships may support students’ understanding of independent and dependent
variables, domain and range and mapping of functions and relations. To illustrate this,
when students are asked to create a table of values for a linear relationship at Year 8 level,
they substitute x — values in the given relationship to obtain corresponding y — values.
Importantly teachers can emphasise that the y — value obtained is dependent on the x —
value substituted, thus defining independent and dependent variables. Knowledge of the
Cartesian plane is vital when representing the relationship graphically. Importantly all the
x — values in the table of values of the linear relationship satisfy the graph, hence
defining the domain of the graph, since domain is a “set of all the first coordinates of the
ordered pairs in a relation (Evans et al., 2018, p. 215). Correspondingly, the y — values
of the table of contents will define the range of the linear relationship. However,
restricting a domain involves considering only a smaller portion of a domain. Inequality
solutions when displayed on a number line can also be used to indicate only the part that
satisfies the solution. Similarly, restricting a domain is considering only the x — values
that satisfy a given condition in a relation or a function, hence inequalities might be prior
knowledge that support students’ understanding of restricting a domain. In addition,
inequalities can also help build foundational knowledge for piece-wise functions as piece-
wise functions have “different rules for different subsets of the domain” (Evans et al.,
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2018, p. 231). Thus, a piece-wise function has the domain divided into different sections
which can be defined by inequalities. Knowledge of linear and non-linear relationships at
Year 9 level can facilitate students’ understanding of different rules for different sections

x2+1 x>0

f'a piece-wise function. F le: to sketch th h of ={ ;
of a piece-wise function. For example: to sketch the graph of f(x) 1—x x <0

students apply the knowledge from linear and quadratic graphs.

Tables of values are not limited to linear relationships but can also be extended to non-
linear relationships that include parabolas, hyperbolas, exponential graphs and
logarithmic graphs, to mention just a few. It follows that as students are creating their
tables of values, they are mapping an independent variable to a dependent variable. At
Year 8 level, the linear relationship is the rule or formula for mapping the variables.
Grouping all x — values in one set and all y — values in another set, then using arrows
to match all corresponding ordered pairs, will demonstrate an arrow diagram. Different
relationships shown from arrow diagrams will allow the teacher to introduce conditions
for a relationship to be defined as a function or not. Similarly, when linear and non-linear
relationships are represented diagrammatically from the tables of values on the Cartesian
plane, students can be asked to use the vertical line test to determine if the relationships
are for functions or not. Different ways of determining if relationships are functions or

not will support flexibility and deeper understanding of the concept.

From junior secondary level (Years 7-10), students are expected to represent relationships
graphically. The relationship between the rule of the relationship and the shape of the
graph must be emphasised. In fact, “the likelihood of information being maintained in
memory increases when students’ brains are prepared in advance to ‘catch’ the new input”
(McTighe & Willis, 2019, p. 99). To develop mastery of features and shapes of graphs in
Year 11, prior knowledge on features and shapes of graphs from lower levels is significant.
For example, linear relationships are represented by straight lines while quadratic
relationships are represented by a concave shape. Features and shapes can also include
turning points that are expected to be covered in Year 9 when non-linear graphs are
introduced. Other points, such as intercepts and tables of values, can also be important
when emphasising the zeros on intercepts. Most of the graphs in Year 11 are also in the
Year 10A curriculum, hence it is important for teachers to start by recapping the assumed

prior knowledge. Furthermore, when teaching and learning in mathematics start from
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prior knowledge, it not only facilitates the retention of ideas but also deepens
mathematical knowledge by integrating the ideas and creating effective mathematical
meaning (Kilpatrick, 2001). Indeed, “the most significant variable in learning something
new is prior knowledge” (McTighe & Willis, 2019, p. 99). Thus, students with high
cognition of prior knowledge are better positioned to use both procedural and conceptual
learning effectively and efficiently (Newton et al., 2020). In fact, mathematical
understanding is enhanced when students are presented with the opportunity to adapt or
reflect on their prior experience and knowledge and make connections between concepts,
resulting in a gradual development of new knowledge (ACARA, 2018; Lowrie et al.,
2018). Similarly, effective teaching involves “activating prior knowledge by making
explicit connections to new learning” (DoE, 2021 p. 14). Therefore, teaching that is
informed by starting with the familiar then progressing to unfamiliar concepts can

promote student participation, knowledge building and understanding.

6.8 Chapter Conclusion

The planning framework can reinvigorate the pedagogical dialogue as classroom teachers
collaboratively plan to deliver effective teaching of mathematics. To reiterate, a central
premise of this chapter is the development of a framework on sequencing of mathematics
content that can support the linking of junior mathematics (Years 7 to 10) content to the
senior mathematics (Years 11 and 12) content in Queensland. The potential
implementation of this planning framework can mean that the hierarchical nature of
mathematics and spiral sequencing of concepts across levels can be articulated more
explicitly. The identification and linking of critical and relevant prior knowledge and
corresponding new content knowledge, as emphasised by the pillars of the framework,
can support gradual development of mathematical knowledge during teaching and
learning. However, there are potential limitations when implementing this framework,
which focuses mainly on the spiral sequencing of mathematics concepts across levels.
The limitations might include a lesser focus on catering for individual student needs,
diversity of readiness and connecting mathematics teaching to students’ diverse everyday

experiences.

This chapter provides the basis of supporting collaborative planning for effective
sequencing of mathematics content between lower-level and upper-level topics and across

different level mathematics subjects and proposes a step-by-step systematic sequencing

145



Supporting the teaching of calculus-based senior mathematics in Queensland.

of mathematics content to promote interlinking, coherence and spiralling of concepts
between the Australian Curriculum (Prep — Year 10): Mathematics and the Senior
Queensland Mathematical Curriculum: Mathematical Methods Unit. It has identified that
depending on the level of assumed prior knowledge and skills students recall and apply,
teachers can start teaching from any level of the sequenced content.

This chapter suggests that the framework can be adapted to all mathematics subjects and
levels; it can help identify relationships between lower-level and upper-level topics,
concepts and skills and it can link the two levels and provide students with the opportunity
to build their mathematical knowledge from the familiar to unfamiliar contexts. The aim
is to encourage further research, dialogue and professional development to
(re)conceptualise collaborative planning for effective sequencing of mathematics content.
The next chapter outlines teachers’ perceptions on the importance of content sequencing

in teaching and learning of mathematics.
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Chapter 7: Teachers’ Perceptions of the effectiveness of a Planning
Framework on Content Sequencing for the Teaching and Learning of
Mathematics.

A version of this chapter has been published in the Eurasia Journal of
Mathematics, Science and Technology Education.

https://doi.org/10.29333/ejmste/13108

7.1 Chapter Introduction

The Australian Mathematical Sciences Institute (AMSI) director Professor Tim
Marchant warns that year 12 students studying Advanced Mathematics in Australia has
dropped by 10 per cent for the first time, mathematics enrolments have dropped to an
alarming level and that action must be taken now (AMSI, 2022). With enrolment rates
in Advanced Mathematics at senior secondary level declining in most western countries,
that include the United Kingdom (Noyes & Adkins, 2016; Watt, 2007) and especially
Australia (Bita & Dodd, 2022; Kennedy et al., 2014), planning for effective teaching
and learning of mathematics needs renewed focus. Importantly, how teachers plan
informs teaching and learning which influences participation and achievement
(Australian Institute for Teaching and School Leadership [AITSL], (2014). Moreover,
the sequence of concepts and tasks teachers develop during planning are informed by
several preparatory actions and is central to teaching and learning (Sullivan et al.,
2013). Therefore, teachers’ views on how content sequencing can inform teaching and
learning of mathematics can assist planning at senior secondary level and support

student participation and achievement.

Planning is an instrument for effective teaching and learning of mathematics which
focuses on “how pupils learn mathematics; the structure of the mathematics curriculum;
the specific content, skills and concepts you are teaching; the prior knowledge of the
pupils; ways of teaching mathematics” (Jones & Edwards, 2017, p. 70). Planning
informed by sequencing from fundamental to more complex content enhances teaching
and learning (Fautley & Savage, 2014). However, limited research is available on how

sequencing mathematics content and tasks inform the teaching and learning of
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mathematics (Sullivan et al., 2013). This chapter seeks to explore teachers’ perceptions
on how mathematics content sequencing, a key pillar of mathematics planning, can
inform teaching of senior mathematics with the view to supporting students’

participation and achievement.

Mathematics is hierarchical in nature (Nakamura, 2014). This means that sequential
development of concepts fosters deeper mathematical understanding (Newton et al.,
2020). In Japan and Thailand, the use of ‘Bansho’ which emphasises making use of
board space to sequence learning from prior knowledge has been hailed as an effective
teaching and learning strategy (Kuehnert et al., 2018). Importantly, significant research
(Duncan et al., 2007; Geary et al., 2013; Pagani et al., 2010; Schneider et al., 2011;
Watts et al., 2014) indicates that prior mathematical knowledge supports high
achievement at upper grades. Similarly, creating a learning environment in which
students’ participation is anchored on creating skills and knowledge based on prior
experience is one of the most effective pillars of a robust and effective teaching
methodology (Ealy, 2018; Hailikari et al., 2008). Content sequencing by teachers
maximises their ability to set clear goals for the teaching and learning program (Smith
et al., 2020). Therefore, sequencing of content supports teaching and learning and
content sequencing is key when planning for effective teaching and learning of
mathematics as delivery should reflect planning. This article investigates teachers’
perceptions of how a framework (Chinofunga et al., 2022) on content sequencing from
junior prior mathematics knowledge (years 7 to 10) to senior new mathematical

knowledge (years 11 to 12) supports teaching and learning of mathematics.

7.2 Mathematics Planning

Planning sets the foundation and path for teaching and learning. Mathematics planning
involves “imagining a learning trajectory” through sequencing content to be taught “in
an order that is likely to lead learners to develop further” (Mousley et al., 2007, p. 466).
Likewise, effective planning promotes development of coherent content and
experiences that facilitate self-paced learning [Australian Association of Mathematics
Teachers (AAMT, 2006)]. However, planning is currently influenced by official
curriculum documents which sometimes act as a textbook (Remillard, 2005). In

Australia, secondary teachers mainly use commercial publications such as textbooks for

148



Supporting the teaching of calculus-based senior mathematics in Queensland.

their yearly, termly and unit planning (Sullivan et al., 2012). However, the quality of
textbooks has always been questioned as limited options are available that can support
linking of concepts to promote opportunities for gradual development of content
(Mithans & Grmek, 2020). Drawing from China, planning focuses on the process of
reviewing existing knowledge and linking it to new knowledge, meaning investigate
current knowledge then transfer to new context (Jin, 2012). Jin went further to note the
planning that has significantly contributed to student learning and success. In addition,
China obtained the best results in the 2018 PISA, under the 15-year category in
mathematics (Organisation for Economic Co-operation and Development [OECD],
2019). Therefore, teachers as curriculum implementers are best placed to evaluate if the
framework on content sequencing can support linking prerequisite knowledge to

unfamiliar contexts during planning.

During planning, hypothesising how students will engage with sequenced content helps
teachers choose the most effective teaching and learning instruction and activities that
will be used during lesson planning (Mousley et al., 2007; Simon, 1995). When
mathematics planning is done collaboratively, it builds teacher capacity through
knowledge sharing and demonstrates that every mathematics teacher at different year
levels contributes to building students’ mathematical knowledge (Davidson, 2019).
Content sequencing informs mathematics lesson planning and sequencing, which is

particularly beneficial to teachers if done collaboratively.

Collaborative planning provides teachers with an opportunity to share knowledge and
learn from each other (Gilbert & Gilbert, 2013). “If teachers spend time collaborating
and providing critical feedback on their tasks with a goal of conceptual understanding,
then their students have a better chance of developing mathematical understanding and
increase interest in mathematics” (Boyle & Kaiser, 2017, p. 406). This echoes the
National Council of Mathematics Teachers [NCMT] (2014), which says that teachers
need a deep understanding of the mathematics that their students have to learn and this
will help them to collaboratively determine a suitable progression of how concepts
should develop to new knowledge. Similarly, Schuhl et al. (2020) say that collaborative

mathematics planning increases the chances of uniformity in students learning
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expectations across grade level or school because colleagues decide what students
should be taught and key concepts and skills to retain enhancing students learning.
Hence collaborative planning can be used to support teacher efficacy and teaching and

learning.

Teachers are heavily involved in mathematics planning at school level in many
countries. Official curriculum documents and in most cases centrally approved or
endorsed resources such as textbooks are provided. However, teachers in most countries
have the responsibility of sequencing content (Davidson, 2019) as well as contextualise
official commercial (eg textbooks) or non-commercial (syllabus) documents to suit their
classroom dynamics (Remillard, 2005). In China, while planning is heavily influenced
by official nationally approved textbooks and curriculum and instructional materials,
teachers still have to contextualise content to suit the needs of their students (Li et al,
2009). Similarly, in the United States of America, states develop the curriculum and
provide suggested sequencing but mathematics teachers during planning decide on how
content is sequenced and enacted in a classroom (Remillard, 2005). In Australia,
Queensland mathematics teachers have the responsibility to sequence content during

planning.

The Australian curriculum, developed by the federal government, sets the national
curriculum from preparatory to year 10 (P-10) while each state or territory determines
its own senior secondary curriculum (Years 11 to 12). Long term planning such as
teaching and learning plans or unit planning involve sequencing and contextualising
content to students’ needs and learning experiences as schools’ dynamics differ (Roche
et al., 2014). Most curriculum bodies provide templates and exemplars that teachers can
use as reference material during planning (Grundén, 2020). The framework on content
sequencing, linking junior to senior content developed by Chinofunga and colleagues
(2022), links the nationally designed Australian curriculum (prior knowledge) to state
developed senior mathematics curriculum (new knowledge). The focus of the research
described in this chapter was to evaluate mathematics teachers’ perceptions on how the
framework supports the teaching and learning of mathematics especially at senior level.

The framework emphasis on linking foundational concepts identified at junior level to
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concepts to be developed at senior level to promote the gradual and deeper

understanding of mathematics to reduce students’ cognitive overload.

7.3 Framework on Content Sequencing from Junior to Senior Mathematics

The framework on content sequencing in Figure 6.1 outlined in the last chapter, was
developed to provide consistency and a broad understanding on how mathematics
content can be sequenced from prior to new knowledge. The key objective was to
promote collaborative planning among teachers through linking mathematics concepts
from the national curriculum (P-10) to concepts at senior secondary (Years 11-12). In
Queensland, at senior secondary level students are required to choose mathematics
subjects between calculus-based and non-calculus-based options. Mathematical
Methods and Specialist Mathematics are calculus-based options. Some students who
previously achieved good results in junior secondary school (Years 7-10) found
themselves struggling to comprehend concepts in calculus-based subjects at senior
secondary level (Bennett, 2019). Therefore, the framework on content sequencing
demonstrates that prior knowledge (from junior secondary mathematics) is critical in

developing new knowledge (senior secondary mathematics concepts).

Constructivists believe learners are active participants in their learning as they interpret
the meaning of new knowledge and reference it to what they already know (Garbett,
2011). As aresult, the chapter was conceptualised within a constructivist epistemology.
Similarly, there is emphasis that “knowledge is socially constructed through interaction
of the researcher with research participants”, as they share experiences (Tavakol &
Sandars, 2014, p. 747). Therefore, the active interaction between the researcher and
senior mathematics teachers and the sharing of experiences, beliefs and ideas played a

vital role in evaluating the framework on content sequencing.

The framework “provides a step-by step systematic sequencing of curriculum content to
promote interlinking, coherence and spiralling of mathematics concepts between lower-
level and upper level topics” (Chinofunga et al., 2022, p. 3). It ensures that prior

knowledge is central when mapping mathematics content from junior secondary to
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senior secondary level. Thus, the emphasis is on developing new knowledge from prior
experiences. Such a framework is designed based on the constructivist view that
students learn by making sense of what is presented to them through the lenses of their
prior knowledge and skills (Hu et al., 2011; Taber, 2019). Constructivism has been
credited with reshaping the teaching and learning of mathematics over the years despite
advocacy from traditional rote learning (Hu et al., 2011; Mallamaci, 2018; Simon, 1995;
Stemhagen, 2016). Content sequencing helps to reduce the cognitive load of the official
curriculum and make it familiar through linking new knowledge to prior knowledge.
Hence evaluating teachers’ perceptions on how the framework supports teaching and
learning of mathematics is key in realising a critical part of mathematics planning and

delivery of the lessons.

The content sequencing framework informs the process of sequencing mathematics
concepts from familiar to unfamiliar concepts as described by Chinofunga and

colleagues (2022). The framework is based on four elements as described below:

The first element identifies and defines key words and their synonyms from the subject
matter provided in the syllabus and is central to identifying skills and prerequisites of
new knowledge. Keywords “provide significant clues for the main points about the
sentence” (Li et al., 2020, p. 8196) in the content descriptions in the official curriculum
documents. Similarly, key words give meaning to a sentence as dominant sentences are
composed by important keywords (Dominguez et al., 2016; Wang, 2012). Importantly,
by identifying key words teachers can identify the main concepts related to subject
content provided in official curriculum documents (Chinofunga et al., 2020). The
second element details how the prior skills and concepts link with new knowledge in the
subject content and is central to content sequencing. Importantly, for deeper
understanding students are expected to link mathematical concepts (Novak, 2010).
Therefore, backward mapping using a concept break down table is critical in this
process as it provides the opportunity to clearly link prior knowledge to new knowledge
which enhances teaching and learning of mathematics (Queensland Curriculum and
Assessment Authority [QCAA], 2018). The third element identifies essential concepts.
These are concepts and skills that students are expected to retain at the end when the

teaching and learning process is complete and this is done by grouping new knowledge
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and prerequisites into main concepts. Essential concepts are the key ideas in a unit
(Schuhl, 2020), that enhances conceptual understanding (Hansen, 2011) and are to be
retained long after the teaching and learning process (National Council of Teachers of
Mathematics [NCTM], 2014). The fourth and final element will follow the hierarchical
nature of the identified main concepts and the sub-concepts under each main concept.
“Mathematics is a hierarchical subject, where new learning builds on earlier learning in
a highly connected way” (Australian Academy of Science, 2015, p. 17). Therefore, the
framework takes into consideration the fact that mathematics concepts build in

complexity as more teaching and learning take place.

7.4 Methods

This study followed a mixed-methods approach (see Chapter 3). Mixed methods
involve the use of quantitative and qualitative data in order to better understand the
research problem because it builds on the strength of both types of data (Creswell,
2014). Importantly, a mixed-methods approach also provides the opportunity to
converge or integrate data in a study (Fetters et al., 2013) and helps to deepen
(qualitative) and broaden (quantitative) the understanding of the phenomenon under
study, hence providing opportunities for future research (McKim, 2017; Palinkas et al.,

2013).
This chapter focused on the following research question:

e What are teachers’ perceptions of a planning framework on content sequencing

for the teaching and learning of mathematics?

Purposive sampling was used to select 16 high school mathematics teachers in
Queensland. Purposive sampling involves identifying and selecting knowledgeable
participants or those who have experienced the phenomenon of interest and who are
available and open to share their experiences and opinions (Bernard, 2011). The
inclusion criteria were teachers who were currently teaching or who had taught
mathematics, especially calculus-based options at senior high school level (Years 11
and 12) in Queensland. Ethical approval was gained from the Department of Education,
Queensland: Reference number: 550/27/2383 and James Cook University Human
Research Ethics Committee: Approval number: H8201.
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Sixteen (16) research participants watched a 10-minute video where they participated on
how the framework on content sequencing could be used in planning for teaching and
learning of mathematics (see Chapter 3). This was the most convenient way due to
COVID 19 restrictions and time constraints among participants distributed across
Queensland. The mathematics content used in the presentation and exercise was drawn
from Unit 1 in Mathematical Methods, with functions as a focus. The participants were
given a full term (10 weeks) to apply the framework in their planning sessions before

data collection began.

7.4.1 Data Collection and Analysis

Data collection was conducted through a survey and semi-structured interviews. The
survey was made up of six five-point Likert scale items and five open-ended questions.
The researcher and participants had follow-up and check-in sessions fortnightly via
Zoom. The sessions were used to check on progress and challenges and if participants
needed support or more information as they were applying the framework. Semi-
structured interviews were conducted with eight of the 16 participants who were
available. This provided opportunities for the interviewer to ask follow-up questions
based on the interviewee’s responses (Galletta & Cross, 2013; Kallio et al., 2016). Each

interview took approximately 25 minutes.

Quantitative data from the 5-point Likert scale survey was collated and the initial results
tabulated. The mode and median responses for each question were determined. This
was because Likert data are generally ordinal in nature and are best analysed using
modes and medians (Stratton, 2018). Thereafter, a table of questions and percentage
responses was created to summarise the results. Data analysis of the open-ended
questions and interviews followed a thematic analysis (see Chapter 3). Thematic
analysis aims to identify, investigate and reveal patterns found in a data set (Braun &
Clarke, 2006). To ensure validity, the study used theory triangulation, which involved
sharing qualitative responses among colleagues at different status positions in the field
then comparing findings and conclusions (Guion et al., 2011). Coding was

independently undertaken by the researcher on the open-ended survey responses and

154



Supporting the teaching of calculus-based senior mathematics in Queensland.

interview transcripts. This included independent initial identification of themes and data
related to the themes, collaboratively reviewing findings, revising and discussing

themes (see Appendix A, B and C).

7.5 Results
The survey data collected using the five-point Likert scale were analysed and the findings
are presented in Table 7.1.

Table 7.1: Likert Scale responses showing Participants Perceptions of how the

Framework on Content Sequencing Support Teaching and Learning of Mathematics

Question Strongly Agree Not Disagree Strongly
Agree Sure Disagree

1. Content sequencing as outlined

in the framework is a critical

component of mathematics (14) (2) 0 0 0
planning and teaching as it 87.5% 12.5% 0.0%  0.0% 0.0%
provides a clear link between

relevant and significant assumed

prior knowledge and

corresponding new knowledge.

2. Content sequencing as outlined
in the framework places assumed
prior knowledge, skills and 13 3 0 0 0
conceptual connections at the 81.3% 18.8% 0.0% 0.0% 0.0%
centre of mathematics knowledge

development.

3. Content sequencing as outlined 13 3 0 0 0
in the framework helps identify

key concepts in a unit and 81.3% 18.8% 0.0% 0.0% 0.0%
hypothesising effective delivery
methods.

4. Collaborative content 13 3 0 0 0
sequencing as outlined in the

framework reinforces teachers’ 81.3% 18.8% 0.0% 0.0% 0.0%
responsibility of effective teaching
of mathematics concepts at every
level.

5. Collaborative content 13 3 0 0 0
sequencing as outlined in the

framework fosters a common 81.3% 18.8% 0.0% 0.0% 0.0%
agenda of focusing on how
students develop mathematical
knowledge.
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6. Collaborative content
sequencing as outlined in the
framework makes mathematics 14 0 2 0 0
teaching a collective responsibility  87.5%  0.0% 12.5%  0.0% 0.0%
as students understanding and

participation at higher levels

depend on lower levels.

All participants strongly agreed or agreed that the collaborative content sequencing as
outlined in the framework supports teaching and learning of mathematics. In fact, at
least 13 which is 81.3% of participants strongly agreed that content sequencing
informed by the framework linked development of new knowledge to prior knowledge.
Likewise, at least 13 which is 81.3% of participants strongly agreed that the framework
highlighted the hierarchical nature of mathematics through collaborative content
sequencing and mapping of concepts. The majority of participants strongly agreed with
all the Likert scale items. This was further demonstrated by the mode and median of all
items being 5 or strongly agree. The study strongly supported the importance of the
framework on content sequencing in enhancing teaching and learning of mathematics. It
further underpinned the significance of collaboration during content sequencing in
fostering mathematics teaching and learning and knowledge development and cohesion

within and across levels.

The data from the open-ended survey questions and semi-structured interview questions
were analysed and the following themes agreed upon as capturing the views of the

participants on:

o the utility of content sequencing framework in creating an environment that

promotes development of new knowledge from prior knowledge.

e the utility of the framework on content sequencing in articulating the

hierarchical nature of mathematics

7.5.1 Theme 1: The utility of Content Sequencing Framework in Creating an
Environment that Promotes Development of New Knowledge from Prior Knowledge.
The general observations from participants in the open-ended survey questions showed

that participants agreed that content sequencing as guided by the framework supports
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the development of new concepts from prior knowledge. Participants noted that the

framework on content sequencing emphasised:

e sequencing content appropriately and logically to support student understanding

e identifying skills needed to engage with new knowledge

e linking prior knowledge to new concepts in the unit

e breaking down concepts to determine fundamental concepts students need to
understand or access new concepts

e identifying key concepts in the new unit and sequencing them in a logical way
that links prior knowledge and builds on to new knowledge, thus develop new
knowledge in small steps.

e building from concrete to abstract

These results demonstrated the importance of the framework on content sequencing in
fostering how new and unfamiliar mathematics knowledge is developed from prior and
familiar knowledge. Semi structured interviews supported the general observations but

went further to include participants’ perceptions on the four elements of the framework.

Semi structured interviews provided more detail on participants’ views on element 2 of
the framework. This aspect of the framework emphasised the importance of linking
prior to new knowledge. The central role of prior knowledge in teaching and learning of
mathematics was noted by participant 5 when he provided an example “if you're doing
measurement and geometry, make sure that the kids are good in numbers field, that
number has to come before measurement.” Thus, this provides students with an
opportunity to participate and engage in the learning if they understand prior
knowledge. The participant is emphasising the importance of including in the planning
and teaching, relevant and necessary prior knowledge to aid students’ understanding of

new knowledge. Participant 8 said

“The proposed framework is very important because it provide guidelines and
steps to follow when we are planning... Expectations across each level are now
uniform and teacher empowerment in different ways for example developing unit

plans is being achieved”
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The participant identified consistency in planning across levels as something that can be
achieved by using the framework. The participant went further to say, “we really did
not take content sequencing as so important until we become part of research
participants but it’s a weakness we are prepared to correct as we have realised it is
very important for our students to develop their knowledge gradually from known to
unknown.” The extract demonstrates that in some cases teachers might not have
appreciated the importance of content sequencing, but the framework might highlight
the benefits it brings to effective planning and teaching. Participant 1 summed the
content sequencing framework by saying “cut down an awful lot of time that we spend
doing sequencing” and pointed out that “there is no document that I know of that links
the current senior syllabus back to the knowledge that students need to know at P-10.”
Therefore, the framework on content sequencing provides the basis of linking junior to

senior curriculum.

Interestingly participants also highlighted how the framework on content sequencing
helps to contextualise learning for different students depending on their capabilities.
Participant 4 emphasised that “how we use sequenced content varies, depends on your
local context and also conceptual and procedural connections between subject
matters.” She went further to share her experience in two different schools when she
said “my second school, this is a more rural school, and students, their prior
knowledge, has been observed, not as solid as in an urban school, so therefore content
sequencing is helpful.” The participant is highlighting the key role content sequencing
might play in a differentiated class. Participant 7 noted the importance of framework on
content sequencing in a class when she said “I, myself personally feel that is best
practice, that is an amazing opportunity to really customize for children.” She went
further to say “We, we keep forgetting that every class has a specific group dynamic,
every school has a specific context.” Importantly participant 3 noted that the framework
could support teaching and learning after identifying “student ability level and their
prior knowledge to see where we need to start.” Therefore, students operating at
different levels of prior knowledge can significantly benefit as teachers have a pathway
to follow which is informed by planning. The different elements proposed in the

framework play a significant role in content sequencing.
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Participants also highlighted the importance of element 1 of the framework. This
element emphasised the importance of identifying and defining key words and their
synonyms from the subject content as central to identifying skills and prerequisites of
new knowledge. Participant 6 appreciated the importance of key words in identifying
prior knowledge when he said “Get those keywords that you talked about from the
whole thing then from there, go back to your content, try to see, which are the key
concepts that I need to cover for students to understand new concepts.” Participant 2
went further to also include a benefit of identifying prior concepts when she said
“identify prior concepts that you do need to teach for each particular topic using key
words, this makes you think about the students' needs and what they already know.”
Similarly, participant 8 pointed out that “key words help identify prior knowledge then
fundamental and essential concepts that students have to master.” The participants
emphasised how key words can provide a deeper insight into concepts. Identifying key
words helps identify prior skills and concepts that are fundamental to develop new
knowledge, however it is also important to explore and link the identified concepts to

new knowledge.

Participants highlighted the importance of linking prior skills and concepts with new
knowledge using a concept break down table as central to content sequencing.
Participant 3 appreciated the framework by saying “the framework actually enhance
content sequencing starting from prior experience through to at level content, and in
fact I was keen to develop a content break down table when [ saw it.” This was
supported by participant 8 when he said “If highlights the importance of content
sequencing as it is central to any planning and demonstrate to teachers the importance
of prior knowledge as demonstrated in the content breakdown table.” Importantly the
participant went further to say,
“Not that teachers are not aware of the importance of prior knowledge but this
goes deeper by including much more prior knowledge in our planning as in the
content breakdown table so that our students can even correct prior knowledge
misconceptions and increase their chances of understanding new knowledge
with this clear and defined link.”
Participant 4 had a similar view when she said “building connection between prior
experience and new knowledge using backward mapping in the content breakdown

table is very important in systematically developing students’ mathematics
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understanding.” Participants appreciated that linking of prior knowledge to new

knowledge using a concept breakdown table provides more detail during planning on

how new knowledge will be developed. The concept-break-down table plays a

significant role in clearly defining how prior knowledge links with new knowledge.

During check-in with participants, we collaboratively developed a concept break down

table in Figure 7.1, for a section on Introduction to differentiation in Unit 2 of

Mathematical Methods.
Unit 2: Introduction to differential calculus
Year 7 Year 8 Year 9 Year 10 Year 11
Year 10 Science (Distance,
Number & Algebra : rale, speed and time- calculate &
distance-time graph (travel graph). Rates of chemical | ©*lore average and .
graph), speed, gradient {and reactions-eg calculateang | Stantaneous rate of change in
slope), variable graph average concentration | 2 Y@ty of praciical contexts
versus fime
Fractions- dividing a numerator of 1 by denominatars of use a numerical technique to

integers from 1 and keeping on increasing the
denominator to very big numbers till the answer converge
to zero (limit as denominator tums to infinity).

factorisation (including factor and remainder theorem)
and simpiification - necessary before applying limit,

estimale a limit or an average
rate of change

the features of these curves
from

their equation, (Helps to
understand the derivative
of a quatic is cubic, cubic
Is quadratic, quadratic is

) e:_raminua the behaviour of the
ordered pairs & Cartesiane Calculate the gradient of | Solve problems involving difference quatient (flx+h)-{x))h
Plane aline segment (interval) | linear equations, including a5 h—{ as an informal

on the Cartesian plane, | 9etermining gradient. introduction to the concept of a
Gradient{m}= {change Jimit
Simplify algebraic in yliichange inx) er | g periite vaiues into differentiate simple power
expressions. General risefrun - fchange in ¥ | formulas to determing an functions and polynomial
substitution. Factaring iz dy and change in x [s unknown eg determine (2). functions from first principles
out common dx) (substituting a value into a
pronumeral, given function). Factorisation,
Find the gradient of a interpret the derivative as the
line segment (interval) instantaneous rate of change
on the Cartesian plane.
Gradientim)= (change in | Solve problems involving
y){change in x) or linear equations, including : S
risefrun - (change in y is | those derived from formulas, | Mterpret the derivalive as the
dy and changs in ¥ is Modify equation of line to gradlenl::fa tangent line of the
dx). Importantly- | y-b = m{x-a) where (a,b) isa | 92" Y=Tix)
Equation of a straight | point that lie on the straight
line - y = mx +c line.
Apply understanding of
arange of polynomials and
describe the features of examine examples of variable
Iir;aa_r amdgn—llneﬁ these curves from their ] rates of change of non-linear
ationeh equation and contexdualise funciions
problems. Year 10 Sciance-
Chermical Reactions
Find the gradient
betwesn two points.
. o Identify the gradient establish the derivative formula
Operations with Directed given the equation of of positive integers
numbers, Ordered pairs & line- gradient is the
cartesiang Plane derivalive of line.
Describe, interpret and
sketch
parabolas, hyperbolas,
circles
and exponential functions.
Apply undsrstanding of
T linear and non-linear lynomials o skeich a nderstand the concapt of the
finear relationsh i-and poly u cepk
b vs relationships range of curves and describe | derivative as a function
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linear-students can match
graphs and functions)
apply the distributive recognise and use properties of
law 1o the expansion of | Calculate gradient the derivatives d/dx
algebraic expressions (f{x)+g(x))=d/dx f{x)-+dfdx g{x)
determine(indentify) WV’”"‘:';‘;’ identify da"d calculate derivatives of power
gradient of a linear describe the fealures and polynomial function
relationship these curves from their
equation.
Year 10 Science (Distance,
Number & Algebra : rate, speed and time- calculate &
distance-time graph (travel Calculate gradient of graph). Rates of chemical determine instantaneous rates
graph), speed, gradient (and two points. reactions-eg calculate and of change
slope), variable graph average concentration
versus time
Solve linear equations ﬁmmﬁ §olve problems Involving lmgen{l::‘lmmgr :m :f the
using y= mx +¢ linear equations, including tangent
those derived from formulas
Number & Algebra : -rate, , ’ construct and interpret
: Year 10 Science (Distance, .
eyl st - caoiaon. | e g v
o mitrord graph). "
pe), varial tangent
Describe, interpret and
skeich parabolas,
hyperbolas, circles
and exponential funqions.
E"f iora fha conecion sketch curves associated with
Graph simple linear and | algebraic and graphical power incionsand
non-finear representations of relations polynomals W gnd mduqmg
graph linear relations with and such as simple quadratics, m; :1"3 Sta“;"rlem
relationships without the circles and exponentials s ol
use of digital using digital technology as gd‘nmma s WL
oomorges | gy ° | [y e
understanding of polynomials Sy
fo sketch a range of curves Or negaive «.
and describe the features of
these curves from their
equation. identify features of
different polynomials.
mnnfy oonlmds. sui.iable for
modelfing optimisation problems
involving pofynomials up to and
including degree 4 and power
W functions on finite interval
ng linear . . domains and use models to
relationships modeling quadratic functions | 1.6 oractical problems with
and without technology, verify
and evaluate the usefulness of
the model using qualitative
statements and quantitative
analysis.

Figure 7.1: Content break down table on Introduction to Differentiation

The content breakdown table shows the prior content from the Australian Curriculum
that builds the foundations of the concept of differentiation at senior secondary school.
The Year 11 column is the content that students are expected to engage with as new

knowledge.
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Semi structured interviews also provided positive feedback on element 3 of the
framework. This element helps in identifying essential or key concepts which students
are expected to return to as they develop their conceptual understanding. Participant 6
noted that the framework on content sequencing helped to identify, “exactly

the concepts that are very relevant and essential to teach.... which are the key concepts
that I need to cover.” Participant 2 supported the view when she said “very good in
terms of identifying what are the key concepts.” Participant 5 gave an example of
essential concepts when he said “depend on the matrix of the 3 big ideas algebra,
geometry and number. If you're doing measurement and geometry, you make sure kids
are good in numbers field.”” The participant observed that foundational concepts may be
key in developing higher order concepts and need to be included during planning to
support teaching and learning. The key or essential concepts help build students’
mathematics knowledge as they are the concepts that students need to retain or use as a

foundation for conceptual understanding.

7.5.2 Theme 2: The Utility of the Framework on Content Sequencing in Articulating
the Hierarchical Nature of Mathematics

Generally, results showed that participants agreed that collaborative content sequencing
during planning illuminated the hierarchical nature of mathematics. From the open-

ended survey results, participants’ responses emphasised the following:

e hierarchical, spiralling and logical development of concepts

e backward mapping to lower levels

e link-related concepts where one skill from a lower level can easily be transferred
to another unit at the level or above.

¢ the importance of teachers gaining a better understanding on how skills and the

content they teach are prerequisites to learning new knowledge at a higher level.

Semi structured interviews showed positive views regarding element 4 of the
framework. Participants agreed that use of the framework during collaborative planning
articulated the hierarchical nature of mathematics across school levels. Participant 1

noted that,
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“Collaborative content sequencing places the responsibility on teachers to make
sure that their students know how to do this (apply a skill) because it’s relevant
down the track, whether it’s the next topic or two three topics time, you know

when a particular skill is important.”
The participant went further to say,

“teachers that never ever taught high level maths to see that okay, what I'm
teaching here is really important out there so I better do a really good job. And |
really better make sure that my kids are doing or have mastered this because,
it’s then going to limit or they re going to limit themselves in being able to

access higher learning of maths”

The participant emphasised the responsibility of teachers in determining that students
understand junior concepts to be able to engage meaningfully with senior concepts.
Participant 8 conclusively said “everyone is agreeing it remind teachers that
mathematics is hierarchical therefore collaborative planning is more beneficial to
everyone than individual planning.” Therefore, applying the framework collaboratively
helps to foster the culture of collaboration at all levels and brings to the fore the

understanding that mathematical concepts interlink and build on each other.

Participant responses also showed their agreement with the idea that exposure to more
learning allowed concepts to develop and deepen for students. Participant 6
demonstrated the hierarchical nature of mathematics articulated by the framework as the

basis of teaching and learning when he said,

“when you move from one topic to another I always use some of the concepts
that they did from previous lessons because if they suddenly jump and feel like
there’s a sudden jump, there’s something that is very different from what they
were doing on the previous lesson, it’s is a hustle to get them to understand what
needs to be done... I'll start with the basis, like the basics of the topic, so that at

least I get the understanding of those students.”

The participant went further to say “you know the concepts that are relevant from other
units or levels.” The participant’s emphasis was on how the framework promotes

linking of concepts to develop a web of knowledge that is coherent and developing in a
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gradual form. Similarly, participant 2 said the framework “draw the links between the
topics...which one comes first... where we need to go to within that topic.” Participant 3
went on to say “concepts are presented according to the level they are expected to be
taught making content sequencing easy.” Participants appreciated that the framework
on content sequencing could provide a foundation for effective planning. Participant 5
considered the broader hierarchy of mathematics when he said “simple familiar content
and build into complexity making sure they know the simple stuff and how to build it
into, complex content.” The observation by the participant demonstrates that prior
knowledge plays an important role in developing the understanding of complex
concepts. Participants’ responses show that the framework on content sequencing
fosters the identification of prior concepts, development of new knowledge from prior

knowledge, identification of key concepts and the hierarchical nature of mathematics.

7.6 Discussion

The purpose of this study was to gain a better understanding of teachers’ perceptions on
how the framework on content sequencing from junior (Years 7 to 10) to senior level
(Years 11 and 12) can support the planning, teaching and learning of mathematics. The
results of this research provide supporting evidence that the framework places prior
knowledge at the centre of mathematics planning, teaching and learning. All
participants in the study agreed that the framework highlighted content sequencing as a
critical component of mathematics planning and teaching as it links relevant and
significant assumed prior knowledge and corresponding new knowledge. The
qualitative data supported this view as participants identified that the framework
facilitated the systematic and logical linking of prior knowledge to new knowledge. The
findings can add value to current trends in Australia of secondary teachers relying more
on commercial publications (Sullivan et al., 2012) which have been found to be limited
in explicitly breaking down and linking junior to senior content in mathematics
(Mithans, & Grmek, 2020) These results align with previous findings by Hailikari et al.
(2008), who posited that linking prior knowledge to new knowledge is key for effective
mathematics teaching. The content sequencing framework focuses on including prior
knowledge at the planning stage and shows how it contributes to the development of

new knowledge (Chinofunga et al., 2022a). These results represent participants’ support
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of the framework as an inherent part of the planning that is key to teaching and learning

mathematics.

The identification of key words in the subject matter provided in official curriculum
documents played a key role in identifying prior concepts and this is one of the critical
processes advocated by the framework. The quantitative results show that at least 14
participants strongly agreed that the framework facilitated the identification of prior
knowledge and linked it to new content while the qualitative results provided further
evidence that identification of key words in the syllabus was central to the identification
of relevant prior knowledge. These results are consistent with the first stage of the
framework, which emphasises that identification of key words from content as stated in
official curriculum documents assists in identifying prior knowledge (Chinofunga et al.,
2022a). These results are also consistent with Li et al.’s (2020) work that emphasised
that key words help decode the main focus of a sentence. After using key words in
identifying prior knowledge, it is important to present how prior knowledge links with

new knowledge in the subject matter.

The use of concept breakdown tables in backward mapping concepts from junior to
senior level is also one of the key stages of the framework. Quantitative results from
this study show that 13 participants strongly agreed that the framework places assumed
prior knowledge, skills and conceptual connections at the centre of mathematics
knowledge development. This is important because effective teaching and learning
requires students to have relevant prior knowledge to construct new knowledge and
allows students to link concepts for deeper understanding (Novak, 2010). Moreover, the
open-ended survey results showed that participants agreed with the view that it is
important to break down new concepts using prior concepts so that student engagement
with new concepts can be supported. The semi-structured interview results also
highlighted the importance of concept breakdown tables in this regard and clearly
identified the relationship as a gradual way for students to access new knowledge.
These results are consistent with other research (QCAA, 2018; Newton et al., 2020) that
suggest that a clear definition of the link between prior knowledge and new knowledge

supports teaching and learning of mathematics.
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A vital feature of the framework is the identification of key or essential concepts that
students should retain at the end of the teaching and learning process in order to build
conceptual understanding. Both the quantitative and qualitative results provide evidence
that the framework contributes to conceptual understanding by facilitating the
identification of key or essential concepts. Identification of key or essential concepts is
important as it supports Schuhl’s (2020) and Hansen’s (2011) findings that key concepts
are key ideas in a unit and they are the ones that help students build conceptual
understanding. Their identification helps teachers to focus on those concepts, which
students must retain long after the teaching and learning process (NCTM, 2014).
Therefore, the opportunity that the framework offers teachers in identifying the key

concepts can support teaching and learning of mathematics.

As stated many times previously, mathematics is a hierarchical subject and reflecting
this in mathematics planning, teaching and learning can support understanding. The
quantitative data in this study showed that 14 participants strongly agreed that the
framework reflected this hierarchical and interconnected nature of mathematics. This
was confirmed by the qualitative results, which were consistent with the work of
Nakamura (2014) and the Australian Academy of Science (2015) and reinforce that the
hierarchical nature of mathematics makes collaborative planning the best way to apply

the framework on content sequencing.

The hierarchical nature of mathematics also sets the platform for collaborative content
sequencing among teachers. The quantitative results in this study show that at least 13
participants strongly agreed that the framework on content sequencing from junior to
senior mathematics emphasised to teachers that understanding senior mathematics
depends on how effectively concepts are taught at lower levels. Participants noted that
the framework also highlighted that effective teaching of mathematics at junior level is
critical for students’ participation at senior level. Similarly, the qualitative results
support the notion that the framework stresses the interlinking of mathematics content
within and across levels, thus supporting Schneider and colleagues (2011) who posited
that when students are taught well at junior levels and retain the knowledge, their

chances of understanding senior level mathematics is supported. Taken together, the
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findings indicate that the framework on content sequencing emphasises the hierarchical
nature of mathematics as a way mathematics can effectively be planned, taught and

learnt.

7.7 Chapter Conclusion

In summary, teachers have a perception that the framework on content sequencing from
Jjunior to senior level mathematics can be an effective framework to use in identifying,
linking and sequencing mathematics concepts. The results indicate that teachers believe
that the stages in the framework can assist them to effectively sequence mathematics
content in a way that promotes the gradual development of new knowledge. Moreover,
teachers noted that using the framework collaboratively appears to benefit teachers
across all levels as the hierarchical nature of mathematics promotes the interconnection

and interdependence of mathematics concepts.

Importantly, the chapter provides a framework that teachers can use across schooling
levels within a community of practice as they sequence content during planning. The
chapter also highlights the importance of content sequencing during planning, teaching
and learning. This chapter supports the constructivist view of teaching mathematics that
new knowledge is constructed from prior knowledge. Similarly, the chapter advocates
for prior knowledge to be included during planning and linked to new knowledge which

could contribute towards conceptual understanding.

The chapter used teachers’ perceptions as curriculum planners to evaluate the
framework on content sequencing from junior to senior concepts in mathematics.
Although the present results indicate that the framework on content sequencing can
support teaching and learning of mathematics, it is appropriate to recognise that the
main limitation of this chapter is the sample size. In terms of future research, it would
be useful to extend the current findings by examining the impact of content sequencing
using this framework on teacher instruction and student achievement. The next chapter
outlines the development of a resource (concept maps) that can supplement the
framework on content sequencing in developing conceptual knowledge through linking

prior knowledge to new knowledge.
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Chapter 8: How can Concept maps as a resource support the teaching
and learning of mathematics at senior secondary level.

A version of this chapter has been published in the International
Journal of Innovation in Science and Mathematics Education
(IJISME).
https://aus01.safelinks.protection.outlook.com/?url=https%3 A%2F%?2
Fdoi.org%2F10.30722%2FIJISME.31.01.003&data=05%7C01%7Cda
vid.chinofunga%40my.jcu.edu.au%7Ce83587¢109474984bd2{08db76
97464e%7C2eba4ct8at764db3bcaf81b5592535ef%7C0%7C0%7C63
8234164322588590%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC
AwLjAWMDAILCJIQIjoiV2IuMzIiLCJBTil61k lhaWwil.CJXVCI6Mn
0%3D%7C3000%7C%7C%7C&sdata=qmOSNBWKKKZRIIN%2Bx
LgojHrgaxogmVfghIMe2ql7kaU%3D&reserved=0

8.1 Chapter Introduction

Schools are facing challenges in developing students’ conceptual knowledge in
mathematics (Richland et al., 2012), conceptual knowledge being defined as the
knowledge of the interconnection of fundamental concepts in a domain (Schneider &
Stern, 2010). According to Richland et al. (2012), students lack the deeper understanding
of mathematics that facilitates reasoning, flexibility and generalisations and high school
graduates who enter the community college system in USA end up in mathematics
bridging courses because they lack conceptual knowledge. Similarly, in Australia, limited
conceptual knowledge focus has been identified as the main factor influencing students’
participation in mathematics (Smith et al., 2018). However, mathematics teaching and
learning can be supported when students learn “with understanding, actively building new
knowledge from experience and previous knowledge” (National Council of Teachers of
Mathematics [NCTM], 2000, p. 2). Australian teachers believe conceptual knowledge is
essential in helping students understand mathematics (Hurrell, 2021) and understanding
that conceptual knowledge plays a key role in mathematics knowledge development

highlights the importance of interlinking mathematics concepts.
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Conceptual knowledge is a network of concepts that constitute a bigger unit of knowledge
(Osterman & Brating, 2019). Complex unfamiliar problems in mathematics mostly
require students to make connections of knowledge within or across a domain (QCAA,
2018). Importantly, awareness of the connectedness and coherence of mathematics
concepts is often overlooked by mathematics teachers; however, it is an important goal
that has reshaped instruction during teaching and learning of mathematics (Novak, 2010).
This is because “mathematics is a field of continuous inquiry about new relationships and
of proving these relationships.” (Bingolbali & Coskun, 2016, p. 236). Moreover, coherent
instruction in mathematics connects prior and fundamental concepts to new knowledge
and provides the opportunity to deepen the understanding of complex concepts (Doabler
et al., 2012). Importantly, one of the key aims of the Australian Curriculum: Mathematics
v9.0 is to help students see the bigger picture and make connections between mathematics
concepts (Australian Curriculum, Assessment and Reporting Authority [ACARA], 2023).
Mathematical understanding is enhanced when students have the opportunity to adapt or
reflect on their experience and knowledge and make connections between prior
knowledge and new knowledge, thus gradually developing their own new knowledge,
(ACARA, 2013). “Well-constructed knowledge is interconnected, so that when one part
of a network of ideas is recalled for use at some future time, the other parts are also
recalled” (Sullivan, 2011, p. 6). Thus, this study’s focus was on exploring a visual
representation that teachers can use to support students’ development of mathematical

knowledge through the ability to link junior to senior concepts as learning progresses.

Students learn better when exposed to information in visual form (Raiyn, 2016). In fact,
students retain visual formats better and longer in their minds, as it is easy to understand
and show connections (Raiyn, 2016). Similarly, visuals not only provide teachers and
students with the opportunity to identify and visualise concepts and procedures but also
to realise and illustrate relationships, making recalling easier (Birbili, 2006). Indeed,
visuals are “the best tool for making teaching effective and the best dissemination of
knowledge” (Shabiralyani, 2015, p. 226). Moreover, they can represent a large amount of
information, reducing the time required to go through the information (Raiyn, 2016). As
a result, visuals such as concept maps that can link junior concepts (Years 7 to 10) to

senior concepts (Years 11 and 12) can support teaching and learning of mathematics.
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8.2 Concept Maps

The use of concept maps in teaching conceptual knowledge has been highly
recommended. Novak (1990) introduced concept maps in science and mathematics to
organise and link concepts. Research on use of concept maps in mathematics has focused
mostly on middle school and teacher training level with very limited research at the senior
secondary level (Schroeder, Nesbit, Anguiano, & Adesope, 2018). Importantly, a
metanalysis by Schroeder and colleagues concluded that research has focused more on
explaining the benefits of using concept maps without collecting evidence to support such
assertions. This study reports on teachers’ perceptions of the benefits of concept maps for

mathematics teaching at the senior secondary level.

Concept maps show concepts and how they are connected, thus giving a representation
of conceptual understanding. They are a resource that can be used to represent and
demonstrate conceptual understanding (Watson, Pelkey, Noyes, & Rodgers, 2016).
Moreover, they can be a tool to demonstrate concept cohesion within or across a domain
(Hartsell, 2021), which is key to mathematics content sequencing during planning
(Chinofunga, Chigeza & Taylor, 2022). In this view, conceptual understanding is
represented by concept nodes that are connected by single or bidirectional arrows labelled
with verbs to specify the relationship between and among them (Birbili, 2006; Novak,
2010). They can be hierarchical or non-hierarchical in nature as it is the input that

determines the shape (Llinas, Macias, & Marquez, 2018).

Concept maps promote higher order thinking (Canas, Priit, & Aet, 2017), facilitate
integration of complex ideas (Beat, 2015) and promote problem solving (Watson et al.,
2016). Their ability to provide opportunities to present conceptual interconnections and
relationships that include the main concepts and other related prior or sub-concepts
promotes critical thinking (Groffman & Wolfe, 2019). Similarly, use of visual
representations to show relationships of mathematics concepts encourages critical
thinking and enhances teaching and learning of mathematics (Bay-Williams &
SanGiovanni, 2021). It follows that, “concept mapping promotes students' understanding

of complex constructs and complicated relationships, while stimulating critical analysis
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and improving critical thinking” (Fonteyn, 2007, p. 200). Furthermore, they enhance the
quality of students’ learning by facilitating connection of ideas and providing a solid
foundation to add and understand new knowledge, which is valuable for problem solving
(Kinchin, Méllits, & Reiska, 2019). Being able to break down complex phenomenon into
familiar concepts is central in solving complex questions that might require integration
of different concepts, which is expected in mathematics at senior secondary (QCAA,
2018). Moreover, linking as much prior knowledge as possible to new knowledge
enhances cohesion of concepts and understanding (Mai et al., 2021). At senior secondary
level, students’ ability to link relevant prior knowledge at junior level to senior level

concepts support participation and understanding.

Broadly, concept maps have several benefits to teaching and learning. They are beneficial
“in activating students’ prior knowledge, identifying misconceptions, focusing
discussions, facilitating collaborative learning and as revision and assessment tools”
(Kinchin, 2011, p. 183). Concept maps help teachers in focusing students on what they
need to learn and the main concepts they need to retain (Hartsell, 2021). They also
facilitate a meaningful and consolidated understanding of mathematics, as well as help to
show the differences in knowledge and understanding among students (Ho, Harris,
Kumar, & Velan, 2018). As a result, they can be used in mathematics formative
assessments which to not require students to recall facts and procedures (Bell, 2017).
Importantly, they provide an overall picture of the phenomenon in question rather than
just focusing on facts (Vasconcelos et al., 2019). Mapping concepts provide opportunities
of multiple representation which enhances deeper understanding (Gokalp & Bulut, 2018).
Similarly, they can be used to identify students’ misconceptions in their conceptual
understanding (Watson et al, 2016). Moreover, they enhance integration and clarity of
concepts and motivate students to learn (Chiou, 2008). Concept maps support student
centred learning by making them active participants in the learning process (Groffman &
Wolfe, 2019). Thus, teaching and learning of mathematics that involve concept maps

support the interlinking of mathematics concepts (Schroeder et al., 2018).

However, concept maps are also viewed to have several disadvantages in teaching and

learning. The relational aim of using concept maps can be a disadvantage as teaching and
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learning in some cases require arguments and objections to positions (Davies, 2011).
Furthermore, Eppler (2006) found that students often feel overwhelmed and demotivated
when faced with designing concept maps as they require some expertise to design.
Concept maps do not enable easy separation of concepts of critical importance to those
of secondary importance (Daley, 2004). Davies suggested that they are not adequate to

capture more complex relationships between concepts.

Teachers as classroom practitioners are well placed to evaluate resources. Thus, this study
investigated teachers’ perceptions of the impact of concept maps that link junior to senior
concepts on the teaching and learning of mathematics at senior secondary school. The

study addressed the following research question:

What are senior secondary teachers’ perceptions of the impact of concept maps that
link junior to senior concepts on the teaching and learning of mathematics at senior

secondary school?

8.3 Method

This mixed methods study explored the impact of concepts maps in the teaching and
learning of mathematics. The mixed methods approach is ideal because it provides an
opportunity for consolidating results from both quantitative and qualitative research
methods (Creswell, 2015). Quantitative and qualitative data are analysed and then
integrated in order to cross validate findings (Creswell, 2015). The purpose of the study
was to investigate secondary mathematics teachers’ perspectives on the effectiveness of
using concept maps that link junior to senior concepts as tools that mathematics teachers

can use in developing students’ conceptual knowledge.

Purposive sampling was used to select 16 high school mathematics teachers in
Queensland, Australia. The inclusion criteria were teachers who are currently teaching or
who have taught mathematics, especially calculus-based options at senior high school
level that is Year 11 and 12 in Queensland. Ethical approval was gained from the
Department of Education, Queensland: Reference number: 550/27/2383 and James Cook

University Human Research Ethics Committee: Approval number: H8201.
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Sixteen research participants took part in a 10-minute video presentation where they were
provided with information on how concept maps that link junior to senior concepts could
be used in teaching and learning of mathematics. The video presentation included how to
develop the concept maps and the possible stages where they could be used during
teaching and learning. They were given a full school term (10 weeks) to respond after
including concept maps that link junior to senior concepts in their teaching. During the
implementation period, fortnightly after-hours Microsoft Teams check-in meetings with
all participants were organised to check on progress and offer support. When and how to
employ such concept maps during teaching and learning was left for teachers to decide
considering class dynamics. The concept maps could be teacher developed, student
developed and/or class developed depending on the pedagogy employed by the teacher.
This provided teachers with the opportunity to be innovative resulting in diverse
experiences and perceptions. The concept map tools that link junior to senior concepts
were developed using a Content Sequencing framework developed by Chinofunga and
colleagues (2022). The mathematics content presented in the concept map presented to
teachers was drawn from Unit 1 in Mathematical Methods (Figure 1), with functions as a

focus.

Cartesian Plane

drawn on
include

can be drawn on piecewise fuctions

ate included in

undergo

combine to give

Functions & Relations

\’[Linear and/or non Iinear)
undergo

Figure 8.1: Concept map that links junior to senior concepts: Functions

Transformations

The concept map shown in Figure 8.1 links the concepts on a section of functions in Unit

1 Mathematical Methods. It includes phrases that help explain how the concepts link and
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the to- and from- arrows show that some connections are bi-directional. Thus, concept

maps help to construct meaning and relationship between concepts.

During the designing of concept maps that link junior to senior concepts, the following
processes were used: Firstly, a concept of focus at senior mathematics was identified.
Novak and Canas (2006) noted that a concept map begins with a concept or phase which
represents a focus question that require an answer. Secondly, junior concepts that link to
the concept of focus were identified. That is, concepts identified in the concept breakdown
table can be used. Thirdly, connecting terms are used to link junior and senior concepts.
Davies (2011) posited that connecting terms are used to show relationships between

concepts represented.

8.4 Data Collection
Data collection were conducted through a survey and semi structured interviews. The

survey with a five-point Likert scale and five open-ended questions was shared with the
participants. The scaled survey questions required teachers to rate their level of agreement
on a scale from 1 to 5 on questions based on use of concept maps that link junior to senior

concepts in developing students’ mathematics knowledge.

Semi-structured interviews were conducted to gain knowledge of how teachers used the
concept maps in their teaching of mathematics. Semi structured interviews are adjustable
and adaptable, because they provide opportunities for the interviewer to ask follow-up
questions based on the interviewee’s responses (Kallio, Pietild, Johnson & Kangasniemi,
2016). Interviews were conducted with only eight out of the 16 participants who
completed the survey due to competing schedules. The interviews ranged about 25

minutes.

8.5 Data Analysis

Quantitative data from the 5-point Likert scale was collated in Excel. Rows were allocated
to participants and columns to questions. From the initial results tabulation, the mode and
median responses for each question were determined. This is because Likert data are

generally ordinal in nature and are best analysed using modes and medians (Stratton,
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2018). Thereafter a table of questions and percentage responses was created to summarise

results.

This study involves two types of qualitative data which are open ended survey questions
and semi structured interviews. After transcribing the semi structured interviews, member
check was done with two participants to verify accuracy of the transcribed scripts. Data
analysis of survey open-ended questions and interviews followed a thematic analysis.
Thematic analysis aims to identify, investigate and reveal patterns found in a data set
(Braun & Clarke, 2006). To ensure validity the study used theory triangulation. It involves
sharing qualitative responses among colleagues at different status positions in the field
then comparing findings and conclusions (Guion et al., 2011). Survey open-ended
responses and interview transcripts of participants were shared among the principal
researcher and his two supervisors for independent analysis. Analysis was informed by
the research questions. Coding was independently undertaken by the principal researcher
and his two supervisors. This included initial identification of themes and data related to
the themes independently. The findings were collaboratively reviewed, and themes were
discussed and revised. The following themes were agreed upon which captured the views

of participants on:

e the utility of concept maps that link junior to senior concepts in creating an
environment that creates awareness of the interconnection of mathematical
concepts.

e the utility of concept maps that link junior to senior concepts in creating an
environment that supports consolidation and assessment of teaching and learning

of mathematics.

Semi- structured interviews gave participants an opportunity to explain their experiences
after using such concept maps in teaching and learning of mathematics. Quantitative and
qualitative data were integrated to answer the research question. Combining the two data

sets may result in validated and well justified findings (Creswell, 2015).
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8.6 Results

The teachers’ responses suggested that use of concept maps that link junior to senior
concepts can enrich mathematics classrooms. Table 1 below represents the Likert scale
items that captured the teachers’ perceptions on the utility of concept maps in the teaching

and learning of mathematics.
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Table 8.1: Likert Scale Responses in Percentages

. Strongly Not . Strongly
Questions Agree Agree Sure Disagree Disagree
1. Concept maps help students understand how 14 2 0 0 0
mathematical concepts are related. 88% 13% 0% 0% 0%
2. Student or teacher developed concept maps
can be used to link prior knowledge to new 13 3 0 0 0

81% 19% 0% 0% 0%

knowledge.
3. Concept maps facilitate consolidation of 10 6 0 0 0
learning. 69% 31% 0% 0% 0%
4. Concept maps facilitate a visual evaluation 12 4 0 0 0
of students’ learning. 75% 25% 0% 0% 0%
5. Concept maps give an overview of a topic 13 3 0 0 0

' ptmaps PIE %1% 19% 0% 0% 0%
6. Concept maps help identify key concepts in 13 3 0 0 0
a topic. 81% 19% 0% 0% 0%
7. Concept maps promote integration of
concepts that deepen mathematical 10 3 | | 0

pts P 69% 19% 6% 6% 0%

understanding.

8. The hierarchical nature of mathematics

makes concept mapping central to teaching and ? 4 3 0 0
56% 25%  19% 0% 0%

learning of mathematics.

The research question is centred on teachers’ views on how concept maps that link junior
to senior concepts can strengthen the teaching and learning of the interconnection of
concepts. The mode and median of all the questions under consideration shows strong
agreement. Similarly, all participants agreed or strongly agreed that concept maps support
conceptual understanding, facilitate consolidation, are a visual representation of
mathematical knowledge, provide overviews and help identify key concepts. Moreover,
at least 81% of participants agreed or strongly agreed that concept maps play an important
role in enhancing the teaching and learning of mathematics especially through connecting

concepts.

8.6.1 Theme 1: The utility of concept maps that link junior to senior concepts in
creating an environment that stimulates awareness of the interconnection of
mathematical concepts.

This theme focused on the use of concept maps in developing knowledge of the
interconnection of mathematics concepts. Results from the survey open-ended questions
indicated participants’ views on the usefulness of concept maps in enhancing students’

knowledge of conceptual connections. Participants identified the following benefits:
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e providing concept maps for students helps them to visualise the links between
concepts.

e developing concept maps in class helps students make conceptual connections.

e students can also develop their concept maps to represent their own knowledge
development.

e concept maps allow students to link prior knowledge or foundational concepts
with new knowledge.

e concept maps show students how simple familiar procedures develop into

complex problem solving.

These views highlighted the critical role that concept maps can play in developing

students’ mathematics conceptual knowledge.

The semi-structured interview data further explored feedback from participants on the
role of concept maps in the teaching and learning of conceptual knowledge. The value of
linking concepts to students’ learning was made clear. Participants observed that it helped
students value current learning as they realised it was connected to future understanding.
For example, Participant 1 combined the importance of visuals and conceptual connection
when she said, “They can see the relevance of what they have learnt in the past and how
it links to something you are trying to teach them now and something that you will teach
them in the future.” Participant 2 stated, “So that definitely helps in terms of helping the
students make that link between concepts and why they need to actually learn those
concepts.” Participant 8 was more specific when he said, “... have since included concept
maps in conceptual teaching and students seem to understand the linking of concepts

better.”

In relation to linking prior experience to new knowledge or linking concepts within or
across domains, which is key to effective mathematics teaching, Participant 4 stressed
that concept maps can show “connections between prior and current learning, that’s one
purpose of using a concept map”’. The same observation was put forward by Participant
8, who said, “Concept maps also emphasise the importance of prior knowledge to new
content.” It was interesting that the directions of the linking arrows (emphasising that

mathematics is spiral and hierarchical in nature and concepts can be integrated) in the
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concept maps was a key focus. Participant 3 said, “Conceptual maps actually allow
Students to have something to hang on and they can go backwards and forwards” and
Participant 8 mentioned “two-way linking”. Similarly, Participant 5 noticed the
importance of backward arrows when he mentioned “... forward and backwards arrows
that can help your concept map”.

The use of arrows in facilitating integration of concepts was noted by Participant 2, who
said arrows could help in “showing how they can actually link concepts together and
use it, for example, in problem solving where you've got to use multiple concepts at a
time.” These indicated that complex problems are a combination of concepts, and a
concept map is useful in building that understanding and hence that concepts maps can

be very effective in teaching and learning of conceptual knowledge.

8.6.2 Theme 2: The utility of concept maps that link junior to senior concepts in
creating an environment that supports consolidation and assessment of mathematics
knowledge.

This theme focused on how concept maps can assist in consolidation and assessment of

mathematics knowledge, as shown by the following participant responses:

e students can develop concept maps for consolidation of a topic or unit.

e students can be asked to develop a concept map at the end of a lesson, topic or unit as
part of assessment.

e uncompleted concept maps can be used as a task for students to fill in the gaps.

e concept maps developed in class can be used to expose misconceptions or common

mistakes.

Student-developed concept maps represent their mathematics knowledge and thus can be
used as an assessment tool to measure students’ understanding. Participant 7 pointed out
that concept maps “... would give me a better way to checklist how each individual
student is acquiring knowledge”. Participant 8 went further when he said he “used it in a
lesson for students to show me how their knowledge has developed.” Participant 2 was
more focused on visual learners’ representations when she said, “it helps those visual
learners and organising their thoughts”. These results show that concept maps, when
developed by students, can be used to evaluate students’ mathematics understanding,

hence can be an assessment tool that requires teacher feedback.
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The importance of this feedback was emphasised by Participant 7 when she said, “If kids
miss concepts, you will never get them to be able to progress until you go back. By having
a map, we know where to go back to and we can trace back until we find the gap.” Thus
student-developed concept maps might also open an opportunity to identify students’
misconceptions, evaluate their understanding and take corrective action. This was
supported by Participant 8 who said, “Misconceptions can also be identified as students
develop concepts that give the teacher the opportunity to reteach or redirect.”
Importantly, opportunities for effective consolidation arises at the end of a topic or unit,
when teachers take into consideration students’ knowledge representations and sum up

everything that they have learnt.

Artefacts from teachers and students collected during the course of this study also offer
valuable evidence on use of concept maps in teaching and learning. The artefacts
provided an insight into how teachers used concept maps as a resource to link prior and
new concepts and for consolidation of concepts. Figures 8.2, 8.3 and 8.4 show concept
maps from Participants 4 and 8 covering three different concepts in Mathematical
Methods. Additionally, Figures 8.5, 8.6 and 8.7 show concept maps developed by

students in different topics in Mathematical Methods subject.
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Figure 8.5: Student developed concept map on Continuous Random Variables.
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Figure 8.7: Student developed concept map on Integration.

8.7 Discussion

Analysis of both qualitative and quantitative data indicate that teachers have a perception
that concept maps that link junior to senior concepts can support the teaching and learning
of mathematics at the senior secondary level. In particular, participants’ views provide
supporting evidence that such concept maps can support students’ knowledge of
conceptual connections which is critical in making students aware of how mathematics
concepts relate to each other. During semi structured interviews, participants noted that
students’ understanding of mathematics as a web of concepts can be supported by concept
maps. Additionally, artefacts from students indicated that students could link several
concepts, especially from their prior knowledge to concepts at senior level mathematics.

The findings are consistent with previous research by Watson and colleagues (2016) who
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noted that concept maps enhance conceptual understanding. Thus, promoting the
interlinking of mathematics concepts is a more effective teaching and learning strategy in
senior school mathematics compared to other instructional models (Novak, 2010). It is
because it promotes coherent instructions that foster the development of new knowledge
from prior knowledge (fundamental concepts) then provide opportunities to include more
complex concepts as teaching and learning progresses (Doabler et al., 2012). These
results support the idea that concept maps can also be used to show the cohesion of
concepts (Hartsell, 2021), which can promote content sequencing in mathematics. The
nature and structure of concept maps, that is the nodes, arrows and linking words, might

be key in deepening students’ understanding of mathematics.

The uni or bi-directional arrows on concept maps show links between concepts which can
support integration and help identify key concepts. Quantitative results show that 88% of
participants agreed that concept maps support integration of concepts while all
participants agreed that they can be used to identify key concepts. During interviews,
participants further emphasised that concept maps provide evidence on how solving a
problem may involve several concepts. Similarly, during open-ended survey responses,
participants noted that concept maps may demonstrate how simple familiar concepts
integrate to complex unfamiliar concepts as concepts integrate. These views support the
position that complex problems require students to integrate different concepts (QCAA,
2018). Similarly, Fonteyn (2007) suggest that concept maps may demonstrate how
concepts evolve from simple familiar to complex unfamiliar as concepts integrate and
relationships get more complex. Artefacts from students and teachers showed links
between different concepts which demonstrates that linking a system of foundational
concepts may assist in the development of complex concepts in mathematics.
Importantly, the findings also indicate that concept maps can help students understand
and integrate concepts (Beat, 2015; Kinchin et al., 2019). Concept maps show
relationships of mathematics concepts which will help students to understand

mathematics as a web of concepts.

The interconnection of concepts is not only important in understanding the nature of
mathematics but can also inform how it is effectively taught. Teachers’ views from both
quantitative and qualitative results show that concept maps can facilitate the linking of

prior knowledge to new knowledge. Semi structured interview data provided an in depth
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understanding as participants explained that the concept maps promoted and enabled
connections to be made between junior and senior concepts. This supports the
hierarchical nature of mathematics and underscores the importance of content sequencing
from prior to new knowledge since this is critical to students’ understanding of new
concepts. The results provide supporting evidence to Kinchin (2019) who posited that by
identifying connections and underlying links between prior knowledge and new
knowledge, students have a better chance to learn effectively. This is because
mathematics is all about exploring new and existing relationships among concepts
(Bingolbali & Coskun, 2016). Therefore, concept maps that link junior to senior concepts
can be a critical resource in supporting the teaching and learning of mathematics as
connections between prior knowledge and new knowledge play a key role in

comprehension.

The views of participants in this research provide supporting evidence that conceptual
maps can be a tool for consolidation and assessment. Consolidating a topic or a unit
requires students to have a general understanding of the interlinking of concepts that are
involved because topics in a unit or topic are closely connected. The artefacts from
students can demonstrate that if students are provided the opportunity to develop concept
maps, their concept maps can show what they view as key prior concepts that are
fundamental to new knowledge. This can provide a teacher with opportunities to add
value by suggesting other concepts students might have overlooked, thus deepening their
understanding. Likewise, teacher developed concept maps (artefacts from teacher)
provided an overview of the linking words that could be critical in establishing how the
concepts are related, which align with Novak’s (2010) findings. During semi-structured
interviews participants went further to point out that concept maps can help identify gaps
in knowledge and also show connections of concepts within a topic or subject matter
together. The gaps might indicate misconceptions. These results point to the effectiveness
of concept maps in facilitating consolidation, as well as identifying and addressing
misconceptions. The results support Kinchin (2011) whose works determined that
concept maps can expose students’ conceptual misconceptions and also support
consolidation. The findings also indicate that concept maps that link junior to senior
concepts made by students represent their conceptual understanding and thus can be used

as an assessment tool.
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Concept maps can be considered a visual representation of students’ conceptual
understanding. Quantitative results show that all participants agreed that they can be a
representation of students’ knowledge of the interconnection of concepts. In open-ended
survey questions responses, participants noted that students can develop concept maps
during or at the end of a learning session or a topic or unit. Interviews with teachers
provided an in-depth insight that concept maps can represent students’ thoughts.
Importantly the student artefacts collected in this study provided an insight into students’
conceptual understanding, especially when students identified the prior concepts that
linked with new knowledge. Results demonstrate that concept maps developed by
students can be used to check for understanding which in turn provides an opportunity
for teachers to give feedback. The results align with Ho and colleagues’ (2017) work
which noted that concept maps represent a visual display of an individual’s conceptual
understanding. The results are also in line with Bell (2017) who posited that concept maps
may be used as an assessment task during formative evaluation to assess knowledge
beyond facts and procedures. Furthermore, participants highlighted that incomplete
concept maps can be used as assessment pieces for students to complete. Therefore,
effective use of concept maps that link junior to senior concepts may play an important

role in improving students’ participation and achievement in mathematics.

8.8 Implications for practice
Concept maps that link junior to senior concepts can be a resource that teachers can use

to support teaching and learning of mathematics at senior secondary school. Linking prior
to senior concepts can facilitate gradual development of knowledge and deeper
understanding. The linking of junior to senior concepts is critical to teaching and learning
as it shows that mathematics is a web of concepts that build on each other. Moreover, it
represents continuity, especially in jurisdictions where students choose different
mathematics subjects at senior secondary level. Similarly, concept maps are visual
representations that research has identified as easy to recall and an effective teaching and
learning tool. The use of concept maps at senior secondary level needs to be encouraged
and their inclusion in resources such as textbooks and assessments can be further

developed.
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8.9 Chapter Conclusion
In conclusion, teachers have a perception that concept maps that link junior to senior

concepts can play a central role as a key resource of choice in deepening senior secondary
students’ mathematics knowledge. The results from this chapter can support concept
maps as a resource that can create a rich learning environment beyond developing
conceptual knowledge in mathematics teaching and learning at senior secondary level.
However, the main limitations of this study are that a small number of participants was
used, and senior secondary students’ views and experiences as key stakeholders were not
solicitated. Furthermore, this study did not include evidence of impact on students’
learning outcomes. Despite these limitations, the present study has contributed important
insights into our understanding of the role of concept maps in the teaching and learning
of mathematics at senior secondary level. We hope this study will stimulate further
investigation on the importance and role of visuals in mathematics teaching and learning
especially at senior secondary level. The next chapter outlines the development of another
resource (procedural flowcharts) which can support the teaching and learning of

mathematics.
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Chapter 9: Role of Procedural Flowcharts in Teaching and Learning
of Senior Secondary Mathematics.

A version of this chapter was published in N. Fitzallen, C. Murphy, &
V. Hatisaru (Eds.), Mathematical Confluences and Journeys
(Proceedings of the 44th Annual Conference of the Mathematics
Education Research Group of Australasia, July 3-7, 2022), pp 130-
137.
https://merga.net.au/common/Uploaded%?20files/Annual%20Conference%20Proceed
ings/2022%20Annual%20Conference%20Proceedings/Research%20Papers/Chinofu
nga%20RP%20MERGA44%202022.pdf

9.1 Chapter Introduction

When the senior secondary Mathematical Methods subject was introduced by the
Queensland Curriculum and Assessment Authority (QCAA) in 2019, parents raised the
issue that students who obtained ‘As’ at junior level were getting lower grades at senior
level (Bennett, 2019). In Queensland, trends have shown a decline in student participation
and achievement in calculus-based senior secondary mathematics options (Chinofunga et
al; 2022a, b) and international trends have shown a similar decline in participation in most
countries (Hodgen et al., 2010a, b). Researchers have pointed to pedagogy and classroom
practices that are disengaging (Tytler, et al., 2008) as one of the causes of the decline in
participation and achievement in advanced mathematics subjects. Additionally, students’
limited procedural fluency has been highlighted as one of the causes that is limiting their
understanding of mathematics ideas and solving mathematics problems (Kilpatrick et al.,

2001), hence affecting participation and achievement.

9.2 Procedural Fluency

Procedural knowledge is a part of procedural fluency in mathematics education and is
defined as knowledge of procedures and steps to a solution (Braithwaite & Sprague,
2021). Procedural fluency is more than just being able to perform a procedure as it
involves conception of the problem, choosing the appropriate method and adaptability in
applying the chosen method (Bay-Williams, 2020). It also involves “using procedures
efficiently, flexibly, and accurately” (Bay-Williams et al., 2022, p. 178). Bay-Williams

and San Giovanni (2021) define “efficiency” as selecting the best method and using it to
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solve a mathematics problem within a set time and “accurately” as using a procedure
correctly, while “flexibility” is conceptualised as knowing more than one procedure and
being able to modify procedures when solving a mathematics problem (Star, 2005). “To
support flexibility, teaching standards in numerous countries recommend that students be
introduced to multiple procedures early in instruction and be encouraged to compare the
procedures” (Rittle-Johnson et al., 2012, p. 437). Students demonstrate procedural
fluency when they exhibit flexibility in using a skill, obtain the correct solution and can
effectively communicate the method used (McClure, 2014). Procedural knowledge is
therefore part of procedural fluency and teachers are expected to help students build

procedural fluency, using different strategies and teaching styles to do so.

Teachers in Queensland use explicit teaching approaches to help students execute
procedures accurately and to select the optimal method to solve a problem while practice
brings flexibility and efficiency. In this approach, teachers demonstrate the skill, then
guide students’ practice and finally provide the opportunity for unprompted practice
(Archer & Hughes, 2010). Thus, after the students have been taught explicitly a method
to solve a mathematics problem, they must be given an opportunity to practice when and
how to use the method (Bay-Williams et al., 2022). When students can identify a context
where the procedure can be suitably applied, they also have the opportunity for procedure
modification (NCTM, 2014), resulting in deeper knowledge. Similarly, “procedural
fluency is a comprehensive way of navigating mathematical procedures; it includes
mastery of algorithms and strategies, but it also includes knowing when to use them”
(Bay-Williams & San Giovanni, 2021, p. 25). However, procedural knowledge is
perfected through “practice, and thus is tied to particular problem types” (Rittle-Johnson
et al., 2015, p. 119), as mastery of procedures is key to developing this knowledge. As a
result, repeated practice and guidance is one critical part of building procedural
knowledge (Rittle-Johnson, 2017). Hence, procedural knowledge development is
characterised first by being guided, then by mimicking and then through experience,

adapting procedures to other complex familiar problems as part of procedural fluency.

Students who operate at high levels of procedural fluency are more likely to integrate and
modify familiar procedures to solve complex unfamiliar problems (Blote et al., 2001).
However, in Queensland, simple familiar problems constitute 60% of examination

questions and require use of procedures identified in the questions (QCAA, 2018).
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In such cases, students have to identify the most appropriate procedure and then apply it
correctly and efficiently to pass the examination. Therefore, procedural fluency plays a
key role in success in mathematics. This study focused on how procedural flowcharts can

support students’ procedural fluency in the Mathematical Methods subject.

9.3 Procedural Flowcharts

A flowchart is the most efficient and concrete method with which to illustrate a procedure
or multiple procedures to solve a problem (Toyib et al., 2017). The importance of
flowcharts in developing procedural knowledge is supported by the definition of
procedure established by Rittle-Johnson et al. that it is “a series of steps, or actions, done
to accomplish a goal” (p. 588). In addition, a flowchart is effective in a class where
students are operating at different levels of prior knowledge, being more advantageous to
those at the very low level as it helps in decision-making and provides problem-solving
skills (Hooshyar et al., 2015). Importantly, flowcharts play a significant role in promoting
independent learning as students can refer to them after encountering a familiar
mathematics problem (Marzano, 2017). Apart from showing contradictions and
contrasting procedures, flowcharts promote representations of steps and procedures from
different perspectives (Andrej, 2018). In procedural knowledge, relationships are
sequential, that is, steps follow each other (Hiebert & Leferve, 1986). Consequently,
flowcharts are an important tool for a mathematics teacher to teach procedural knowledge
because they guide students through a process, allowing learning to be student-centred

and to accommodate different levels of understanding among students.

It is a common experience for mathematics teachers to witness students applying
procedures inappropriately just because they have memorised them (DeCaro, 2016) and
minimising this problem will improve students’ participation and achievement. When
procedures are taught using flowcharts, decisions are taken at every step. This is because
“flowcharts represent a sequence of decision making and information processing”
(Marzano et al., 2017, p. 57). They are an ““aid to thought” that help in analysing a problem
and planning the solution (Ensmenger, 2016, p. 328). Consistent use of flowcharts helps
students to develop skills in identifying suitable methods for solving mathematical
problems and to become more sophisticated in approaching complex problems (Newton
et al., 2020). Superficial procedural knowledge might be limited to accurate and efficient

use of one procedure, but deep procedural knowledge involves several approaches and
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knowing when to apply a particular strategy (Bay-Williams, 2020). As students apply a
flowchart, decisions are made depending on how the processes, steps and solution being
followed align with the flowchart. Due to the checks and balances provided by the
flowchart, students can then determine the most relevant procedures needed to solve a

particular problem.

Applying tools that promote multi-solution strategies enhances students’ capacity to solve
a variety of problems (Siegler, 2003). Teachers can use flowcharts to represent multiple
ways or choices to a solution (Marzano, 2017), thus promoting procedural flexibility.
Flowcharts guide students through processes, steps and decision-making, all of which are
critical for procedural fluency (Marzano, 2017). “When students achieve procedural
fluency, they carry out procedures flexibly, accurately and efficiently” (QCAA, 2018 p.
1). Thus, procedural flowcharts are a visual representation of available procedures and
corresponding steps, showing all stages of evaluation and alternative paths to a desired
result or solution. This study explored teachers’ perceptions of the use of procedural
flowcharts, based on the research question: “What are teachers’ perceptions on how
flowcharts can support teaching and learning of procedural fluency in the Mathematical

Methods subject?”

9.4 Method

The mixed-methods study informed by constructivism focused on teachers’ perceptions
on how procedural flowcharts can support the teaching and learning of Mathematical
Methods. Quantitative and qualitative data were collected and analysed to gain further
insights into participating teachers’ perspectives (Creswell, 2015). Ethical approvals
were obtained from the Department of Education, Queensland: Reference number:
550/27/2383 and James Cook University Human Research Ethics Committee: Approval
number: H8201. The same 16 senior secondary Mathematical Methods teachers who
participated in the study described in Chapter 7 participated in this study as well, and
watched a 10-minute video presentation based in this instance on procedural flowchart
tools developed from a section on Functions in Unit 1 of the Mathematical Methods
syllabus. Figure 9.1 is an example of one of the procedural flowcharts used in the

presentation.
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Figure 9.1: Procedural Flowchart on Distinguishing Functions and Relations

Using Figure 9.1, teachers asked the students to determine if a polynomial graph or set of
ordered pairs was a function or a relation. The decision was reached after applying the
mathematical procedures. As the mathematical procedures were being implemented, they
allowed the choices given in the flowchart to be justified. This allowed students to work
through independently and be reminded of the steps and procedures that were critical to
solving the problem. Students were also expected to learn about features of quadratic

functions.

A procedural flowchart on features of quadratic functions in Figure 9.2 shows the
procedures needed to determine different features that students are expected to learn in
Year 11 was collaboratively developed with participants. Effective teaching of quadratic
functions helps students understand how different forms of algebraic representations
relate to how features of the functions are determined (Wilkie, 2016), so this was included
in the flowchart of quadratic functions. The relationships between these features, as
shown in Figure 9.2, help students to build and broaden their understanding of the
concept. They also remind students of the key mathematical steps and procedures to solve
problems related to the concept. Thus, procedural flowcharts are key in highlighting the
vocabulary expected in a concept, such as “intercepts”, “turning points” and

“discriminant’, which are important in developing mathematical fluency.
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9.5 Data collection and analysis

The participants in this study were given a school term to embed the procedural
flowcharts in their teaching and learning of mathematics programs at their schools. They
were also asked to respond to the five-point Likert scale questions and the open-ended
questions to give this researcher a deeper understanding of their insights from using the
procedural flowcharts in the teaching and learning of mathematical methods. The 20-
minute semi-structured interviews were conducted with eight participants (the same eight
teachers who participated in the study described in Chapter 7) who completed the surveys.
The responses to the open-ended questions and semi-structured interviews were then

analysed thematically and coded (Creswell, 2015).

9.6 Results

The themes agreed upon after the independent thematic analysis, collaborative reviewing
and revision were as follows: (1) procedural flowcharts can foster a classroom
environment that stimulates procedural fluency when learning mathematics, and (2)
procedural flowcharts can support student-centred teaching and learning of mathematics

procedures.

The survey data collected using the five-point Likert scale was analysed as shown in

Table 9.1.
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Table 9.1: Likert Scale Responses showing Participants Perceptions of how Procedural

Flowcharts can Support Teaching and Learning of Mathematical Methods.

] Strongly Not . Strongly
Questions Agree Agree Sure Disagree disagree
1. Visual representation of mathematical 15 1 0 0 0

knowledge enhances ‘Feachlng and 949, 6% 0% 0% 0%
learning of mathematics.
2. Procedural flowcharts (showing steps

and procedures) plays an important role 9 5 1 1 0
in developing students’ mathematical 56% 31% 6% 6% 0%
skills.
3. Procedural flowcharts promote 11 2 3 0 0
fluency and recall. 69% 13%  19% 0% 0%
4. Procedural flowcharts canbe usedto 11 3 2 0 0
highlight critical vocabulary 69% 19% 13% 0% 0%
5. Procedural flowcharts are a reference
resource that can also be used for 13 3 0 0 0
. 81% 19% 0% 0% 0%
revision.
6. Procedural flowcharts focus on 11 3 3 0 0
students’ learning. 69% 19% 13% 0% 0%
7. Procedural flowcharts promote 11 2 3 0 0
independent or collaborative learning. 69% 13%  19% 0% 0%
8. Procedural flowcharts can help
evaluate or give feedback to students on 10 5 1 0 0
their understanding and correct use ofa  63% 31% 6% 0% 0%
procedure.

The results show 15 participants strongly agreed that visual representations of
mathematical knowledge enhance teaching and learning of mathematics. At least 13
participants in the survey agreed or strongly agreed that procedural flowcharts support
learning of procedural fluency in mathematics. Results show “strongly agree” and “5”
were both the mode and median for questions 2-8. Importantly, 11 participants strongly
agreed that procedural flowcharts support fluency and recall, highlight critical
vocabulary, support student-centred learning and promote independent and collaborative
learning. Moreover, 13 of participants strongly agreed that procedural flowcharts are a
tool that can play a critical role in revision. Above all, the data shows that 15 of
participants agreed or strongly agreed that they can help evaluate or give feedback to
students on their understanding and correct use of procedures. Therefore, this study
strongly supported procedural flowcharts as a resource that can support teaching and

learning of mathematics procedural knowledge.
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9.6.1 Theme 1: Procedural Flowcharts can Foster a Classroom Environment that
Stimulates Procedural Fluency when Learning Mathematics.

The participants agreed that procedural flowcharts stimulated procedural fluency and the
open-ended survey questions showed that participants supported the use of procedural
flowcharts in enhancing procedural fluency. These included: (i) teacher-created
procedural flowcharts for students to use during explicit teaching phases or targeting
students who have not achieved fluency or for students with identified learning needs, (i1)
class-generated procedural flowcharts during collaborative teaching phases to show the
processes that were applied, and (iii) student-generated procedural flowcharts to show
common mistakes or misconceptions. These results demonstrate the flexibility of

procedural flowcharts in enhancing fluency.

Feedback from the semi-structured interviews gave greater detail on how procedural
flowcharts created a wide range of opportunities for developing procedural fluency in
mathematics. Participants’ perceptions after applying them as a teaching and learning
resource provided some insight into how this resource can help develop students’

procedural knowledge and skills.

Participants noted that students were more comfortable with visual representations than
just worded steps. In fact, they appreciated that most students were visual learners who
responded better to diagrammatical representations than to written steps.

For example, Participant 8 said, “Because it’s a diagrammatic representation, students
look at it favourably because it’s easier to process and, like I said, most students are
visual learners.” Importantly, during participants’ check-in sessions the researcher
collaboratively developed procedural flowcharts with participants. Participants 2, 7 and
8 collaboratively developed a procedural flowchart in Figure 9.2 with the researcher
which they then used during teaching and learning. Participant 7 went to give an
advantage of a procedural flowchart by saying, “It is steps in diagrammatic form which
is easy to process and easy to understand.” Thus, students can follow easily and use the
steps to answer problems with minimum help. Participant 2 noted, “If you had steps just
written down in the book, it's hard to flip back through and find the information you're
looking for, whereas if it's a diagram, it's easy to find.” Participant 2 then said, “They

enhance students’ memory”. Therefore, flowcharts that are easy to navigate and use
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provide a better opportunity to recall and accurately apply information, which assists in
the development of procedural fluency. They can help solve most problems in
mathematical methods examinations, as indicated by Participant 8 when he said, “I¢ is
very handy for simple familiar questions which are mostly recall and fluency questions,

’

but which are the majority in mathematics examinations.’

As students follow the steps on the procedural flowchart, they work towards developing
their procedural knowledge and fluency. Participant 2 made this point when she said,
“Really good how it organises the steps and explains where you need to go if you're at a
certain part in a procedure.” In addition, Participant 7 said, “The cycle approach, the
feeding back in, feeding back out, that type of stuff, that’s when we are starting to teach
students how to think.” Likewise, Participant 8 observed, “Complex procedural
flowcharts guide students in making key decisions as they work through solutions which
is key to critical thinking and judgement and these two are very important in maths.”
Thus, procedural flowcharts support students’ efficiency and flexibility in solving
problems, deepening their understanding through reasoning and justification, which are

part of mathematics proficiency strands.
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Figure 9.2: Procedural flowchart on features of Quadratic functions.

The flowchart in Figure 9.2 provides an overview of features of quadratic functions in

Mathematical Methods. Firstly, students have to match the given equation which will
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guide the student on steps to follow to determine the coordinates of turning point.
Secondly students determine the nature of the turning point by matching the coefficient
of the square of the variable with the procedure that has been provided. Finally, students
have to determine the value of the discriminant to determine properties of the roots of
the function. The value will inform students if the function has two solutions, one
solution, or no solutions. Similarly, the procedural flowchart on Transformations in
Figure 9.3 was developed by participant 8 and provided different types of
transformations needed in Mathematical methods. The flowchart identifies how the
transformations can be represented in function notation. It can be noted that the
procedural flowchart guides students through procedures, acting as a scaffolding
resource. As a diagrammatic representation they can summarise key steps and
procedures that are essential to solving a problem. They can be used in assisting
students in identifying the most suitable solution as they navigate through the flowchart
and match their thinking and proposed solutions with steps in the procedural flowchart.
The steps can also help students recall procedures that are needed, for example in Figure
9.2 students have to recall how to determine the discriminant as the formula is not

provided.
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Figure 9.3 Procedural flowchart on Transformation developed by a participant.

Procedural flowcharts provide teachers with the opportunity to determine students’
procedural competencies and misconceptions. Participant 8 said, “/ went further to ask
my students to create their own procedural flowcharts ... so that I can evaluate if they
understand and represent their fluency on the chart.” Participant 1 included procedural
misconceptions: “/ use it to identify the potential students’ misconceptions and I'll use it

to identify student’s competencies” therefore, enhancing procedural fluency.

9.6.2 Theme 2: Procedural Flowcharts can support Student-centred Teaching and
Learning of Mathematics Procedures.

The participants agreed that the use of procedural flowcharts encourages and facilitates
independent and student-centred learning. The open-ended survey responses highlighted
the use of: (i) student-generated procedural flowcharts after explicit teaching, and (ii)
student-generated procedural flowcharts at the end of the lesson as part of lesson

consolidation. Participants shared procedural flowcharts in Figures 9.4 and 9.5 that were
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developed by their students as an alternative way of assessing students’ understanding of
procedures. The procedural flowchart in Figure 9.4 shows a students’ understanding of
determining an arithmetic and geometric sequence. It can be the key to solving a question
where the sequence is not identified by type, hence the testing so as to identify the
sequence given. Such a procedural flowchart shows that a student understands the
fundamentals of the sequences section in Mathematical Methods. Likewise Figure 9.5
shows a students’ understanding of solving quadratic equations using factorisation. The
student’s interesting and accurate procedural flowchart shows deeper understanding of
the concept. Importantly, the procedural flowcharts can support students’ deepening

understanding.
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Figure 9.4: Student developed procedural flowchart on Sequences
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AN

Figure 9.5: Student developed procedural flowchart on factorising quadratic expressions.

The use of procedural flowcharts by participants in the teaching and learning of
mathematical methods made the participants realise that the flowcharts promoted
independent and student-centred learning. The response from Participant 8 was, “They
promote individual learning and learning which is student-centred.” Participant 6 said
that capable students “can teach themselves without even a teacher.” The teacher
developed procedural flowcharts in Figure 9.2 and 9.3 can be used for students’
independent learning. Importantly, independent learning by students can provide a
teacher with the opportunity to help struggling students. This view was supported by
Participant 5 when he said, “It gave me the opportunity to work with slower kids as they

[the flowcharts] promote individual learning.”
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Participant responses also indicated that procedural flowcharts encouraged student
engagement. When asked about the role of the flowcharts on the development of
students’ procedural knowledge, Participant 8 said, “I have witnessed more students
engaging more in the YOU DO (student-centred) phase.” The participant went on, “I was
so impressed because students engaged more with the task.” A similar but more detailed
observation was also made by Participant 7, who said,

“Mathematics goes from being very dry and dusty to being something which is

actually creative and interesting and evolving, starting to get kids actually

engaging and having to back themselves, and having to be less passive and more

active as learners.”

Moreover, participants noted that the flowcharts helped students understand the
importance of procedures if they were to engage effectively with mathematics. Participant
3 shared her observation that procedural flow charts, “allow the students to move in both
directions and it makes them see that the actual responses that they have to give are
minimised, rather than seeing every question as separate.” This was very important,
especially for questions that require procedural steps rather than in their most usual form
or representation.

The participants agreed that procedural flowcharts play an important role in supporting

procedural fluency and engagement in mathematics.

9.7 Discussion

One interpretation of these findings is that participants noted procedural flowcharts can
support the development of procedural knowledge and fluency. As highlighted
previously, procedural knowledge is knowledge of steps and procedures to reach a
solution (Braithwaite & Sprague, 2021). Thus, procedural flowcharts represent a series
of steps and procedures that may include several approaches to reach a desired solution
to a particular type of mathematics problem. Results of this study show that at least 13
participants agreed or strongly agreed that procedural flowcharts support the development
of mathematics skills and promote fluency and recall. Fluency includes an understanding
of vocabulary and 14 participants acknowledged that procedural flowcharts highlight the
criticality of vocabulary in mathematics procedures. Participants concurred that the
flowcharts not only provided steps to be followed but facilitated decision-making through

reasoning as students evaluated the correct procedures to follow. Kilpatrick (2001)
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posited that procedural skills are central to students’ learning of mathematics. Thus,
practice in solving problems using sequenced steps and procedures promotes accuracy.
Additionally, information processing and decision-making help in evaluating how the
path to a solution aligns with the available procedures, thus enhancing “efficiency”. This
study highlighted that multi-solution procedural flowcharts provided an option for
students to discover more than one solution, thus enhancing their “flexibility”. Using
mathematics steps accurately, effectively and efficiently develops fluency (Bay-Williams
et al., 2022). Therefore, efficient use of procedural flowcharts helps students develop
procedural knowledge and assists in the development of procedural fluency. As a
resource, it can also support explicit teaching, which is one of the main pedagogies in

Queensland.

The results of this study also show that developing a procedural flowchart during any
stage of explicit teaching is beneficial. First, teachers can develop the charts during the “I
DO” (teacher-centred) stage by teaching students how to organise the steps, processes
and loops for decision-making. The artefacts show the step-by-step presentation of
procedures and key stages that require students to decide on which direction to take
depending on how the solution is shaping up. Second, the charts can be developed as a
class during the “WE DO” (collaborative) stage and, lastly, students can develop them
during the “YOU DO” (student-centred) stage. The participants’ responses show that
having students develop their procedural flowcharts can be an efficient way of checking
students’ procedural understanding and misconceptions and evaluating their learning.
These results are consistent with Raiyn (2016), whose work concluded that visual
representations require less time and are easier to process than text. Furthermore,
presenting information in different, for example, verbal, numerical and diagrammatical
forms, helps students comprehend the phenomenon (Murphy, 2011). When students are
given the opportunity to create their own procedural flowcharts, they represent their
procedural knowledge and fluency diagrammatically. The artefacts from students
demonstrated that procedural flowcharts developed by students can be used by teachers
to gain an insight into students’ understanding of a procedure. Procedural flowcharts are

also a tool that can be used to promote engagement and student-centred learning.

The quantitative data analysis in this study indicated that at least 13 of participants agreed

or strongly agreed that procedural flowcharts support independent and student-centred
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learning, while the qualitative data highlighted the importance of procedural flowcharts
during the “YOU DO” stage when using the explicit teaching approach. This is the stage
when students are expected to interact and solve familiar problems to what they were
taught and practiced as a class in the “I DO” and “WE DO” stages. This is because
“routine practice is an extremely powerful instructional tool that not only helps students
learn and retain basic skills and facts in a fluent fashion, but has positive outcomes when
students attempt higher-order strategies” (Archer & Hughes, 2010, p. 21). The artefacts
demonstrated that procedural flowcharts that include more than one simple procedure
(system of procedures) may emphasise the ‘bigger picture’ which plays an important role
in the development of conceptual understanding. Importantly consistent use of flowcharts
helps develop mastery as they are an aid to thinking (Ensmenger, 2016). The participants’
perceptions in this study were consistent with Marzano’s (2017) conclusion that when
students come across familiar problems, they can refer to procedural flowcharts as they
independently solve them. Likewise, in student-centred learning, students develop
knowledge and experiences they have acquired by further exploring using tools and
resources as scaffolds (Lee & Hannafin, 2016). When answering the open-ended and
interview questions in this study, the participants emphasised that students could use
procedural flowcharts during the “YOU DQO” stage, providing them with an opportunity
to engage with learning using the procedural flowchart as a scaffolding resource and with

minimum teacher assistance.

9.8 Chapter Conclusion

This study highlighted that teachers view the use of procedural flowcharts as a resource
that can help develop students’ procedural fluency and participation in mathematics and
suggests that this approach can be extended to other mathematics subjects at different
levels. The present research, therefore, contributes to a growing body of evidence
suggesting that representation of mathematical knowledge and processes in non-linguistic
forms such as diagrams support participation and achievement. However, the main
limitation of this study was the small number of mathematical methods teachers who
participated. In terms of future research, it is hoped that this study has provided a basis
for further research in use of procedural flowcharts in mathematics teaching and learning.
The next chapter outlines the utility of procedural flowcharts in developing problem-

solving skills.
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Chapter 10: How can Procedural Flowcharts support Mathematics
Problem-solving Skills?

A version of this chapter is under review for publication in the

Mathematics Education Research Journal.

10.1 Chapter Introduction

This chapter starts with a review of the literature on problem solving as well as the use
of visual representations such as procedural flowcharts in mathematics education. It
then goes on to discuss the importance of visual representations in learning
mathematics, and a Problem Solving and Modelling Task (PSMT) approach from
QCAA which provides the context of the study. This is followed by an exploration of a
teacher’s perceptions of the use of procedural flowcharts in supporting mathematics
problem solving skills. An in-depth interview with the senior mathematics teacher and
four artefacts produced by her students informed the discussion of the use of procedural

flowcharts during a PSMT. The analysis is informed by the stages of problem solving.

Problem solving plays an important role in the teaching and learning of mathematics
(see Cai, 2010; Lester, 2013; Schoenfeld et al., 2014). However, research is still needed
on tools that teachers can use to support students during problem solving (Lester & Cai,
2016). Although research in mathematics problem solving has been progressing, it has
remained largely theoretical (Lester, 2013). Schoenfeld (2013) suggests that researchers
should now focus on exploring how ideas grow and are shared during problem solving.
Similarly, English and Gainsburg (2016) and Maal} (2010) identified that the
development of problem-solving competency in students is an area that researchers

should focus on.

A key area that would benefit from further research is the identification of strategies
that support students’ ability to construct and present their mathematical knowledge
effectively during problem-solving, particularly if complex processes such as
integration and modification of several procedures are involved (Vale & Barbosa,
2018). Similarly, students face challenges in connecting or bringing all the ideas

together and showing how they relate as they work towards the solution (Reinholz,
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2020). Research indicates that problem-solving in mathematics is challenging for
students (Ahmad et al., 2010) and therefore supporting students’ problem-solving skills
needs urgent attention (Schoenfeld, 2016). Furthermore, Mason (2016) posits that the
crucial yet not significantly understood issue for adopting a problem-solving approach
to teaching is the issue of “when to introduce explanatory tasks, when to intervene and
in what way” (p. 263). Therefore, teachers also need resources to support the teaching
of problem-solving skills, often because they were not taught these skills and

approaches when they were school students (Sakshaug & Wohlhuter, 2010).

The purpose of this chapter was to explore, through a teacher’s perceptions on the utility
of procedural flowcharts in supporting the development of students’ problem-solving
skills in mathematics. The aim was to investigate if use of procedural flowcharts could
support students in planning, logically connecting and integrating mathematical
strategies and knowledge and to communicate the solution effectively during problem
solving. “Mathematics is the science of patterns, it is natural to try to find the most
effective ways to visualise these patterns and to learn to use visualisation creatively as a
tool for understanding” (Zimmermann & Cunningham, 1991, p. 3). The use of
flowcharts in this study was underpinned by the understanding that visual aids that
support cognitive processes and interlinking of ideas and procedures influence decision-
making, which is vital in problem-based learning (McGowan & Boscia, 2016).
Moreover, flowcharts are effective tools for communicating the processes that need to

be followed in problem-solving (Krohn, 1983).

10.2 Problem-Solving Learning in Mathematics Education

The drive to embrace a student-centred problem-solving approach has been a priority in
mathematics education (Koellner et al., 2011; Sztajn et al., 2017). In the problem-
solving approach, the teacher provides the problem to be investigated by students who
then design the strategies to solve it (Colburn, 2000). To engage in problem-solving,
students are expected to use concepts and procedures that they have learnt (prior
knowledge) and apply them in unfamiliar situations (Matty, 2016). Teachers are
encouraged to promote problem-solving activities as they involve students engaging

with a mathematics task where the procedure or method to the solution is not known in
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advance (National Council of Teachers of Mathematics [NCTM], 2000), thus providing
opportunities for deep understanding as well as providing students with the opportunity
to develop a unique solution (QCAA, 2018). Using this approach, students are given a
more active role through applying and adapting strategies to solve a non-routine
problem and then communicate the method (Karp & Wasserman, 2015). During
problem-solving, they engage with an unfamiliar real-world problem, develop strategies
in response, justify mathematically through representation, then evaluate and

communicate the solution (Artigue & Blomhgj, 2013).

The process of problem-solving in mathematics requires knowledge to be organised as
the solution is developed and then communicated. Polya introduced the use of heuristic
strategies as the basic tool to use when developing a problem solution (Klang et al.,
2021). Students need to understand the problem, plan the solution, execute the plan and
reflect on the solution and process (Polya, 1971). It is therefore guided by four phases:
discover, devise, develop and defend (Makar, 2012). Makar expanded on each phase as
follows: “discover - connecting context to mathematics, devise — mathematisation of
problem, develop - modelling and representational fluency and defend - communicating
the process linking purpose to question then evidence and conclusion” (p. 74). When
using a problem-solving approach, students can pose questions, develop way(s) to
answer problems (which might include drawing diagrams, carrying calculations,
defining relationships and making conclusions), interpret, evaluate and communicate
the solution (Artigue et al., 2020; Dorier & Maass, 2020). Importantly, the Australian

Curriculum, Assessment and Reporting Authority notes that during problem-solving:

Students solve problems when they use mathematics to represent unfamiliar
situations, when they design investigations and plan their approaches, when they
apply their existing strategies to seek solutions, and when they verify that their
answers are reasonable. Students develop the ability to make choices, interpret,
formulate, model and investigate problem situations, and communicate solutions

effectively. (ACARA, 2014, p. 5)

Therefore, during problem solving students have to plan the solution to the problem and

be able to communicate all the key processes involved.

211



Supporting the teaching of calculus-based senior mathematics in Queensland.

Similarly, mathematical modelling involves problem identification from a
contextualised real-world problem, linking the solution to mathematics concepts,
carrying out mathematic manipulations, justifying and evaluating the solution in relation
to the problem and communicating findings (Geiger et al., 2021). Likewise, in
modelling Galbraith and Stillman (2006) suggested that further research is needed in
fostering students’ ability to transition effectively from one phase to the next.
“Mathematical modelling is a problem-solving process that requires students to interpret
information from a variety of narrative, expository and graphic texts that reflect
authentic real-life situations” (Doyle, 2005 p. 39). Thus, mathematical modelling is part
of problem-solving but has additional aspects. Figure 10.1 identifies the main stages

that inform mathematics problem-solving from the literature.

Identify and
execute
mathematics
strategies that
can solve the
problem

Justify,
evaluate

Interpret

Problem

identification problem

Mathematically

solution and
communicate

Figure 10.1: Stages of Mathematics Problem-Solving
However, although problem-solving is highly recommended in mathematics education,
it presents several challenges for teachers in terms of how they can best support students
to connect the processes and mathematics concepts into something coherent that can
lead to a meaningful solution (Hacker, 1998). Therefore, relevant tools that support
problem-solving and decision-making can make a difference for both mathematics

teachers and students (McGowan & Boscia, 2016).

Students can solve problems better if they can think critically (Kules, 2016). Problem-
solving requires their active engagement in analysing, conceptualising, applying
concepts, evaluating, comparing, sequencing, synthesising, reasoning, reflecting and
communicating, which are skills that are said to promote critical thinking (Kim et al.,

2012; King, 1995; Moon, 2008); QCAA, 2018). Similarly, the ability to undertake
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problem solving is supported when students are provided with the opportunity to
sequence ideas logically and evaluate the optimal strategy to solve the problem
(Parvaneh & Duncan, 2021). However, finding tools that can support problem-solving
has been a focus for researchers for a long time but with very limited breakthroughs
(McCormick et al., 2015). This study explored how procedural flowcharts as visual
representations can support teaching students to organise ideas, executing strategies,

justifying solutions and communicating their solution.

10.3 Importance of Visual Representations in Mathematics Learning

As indicated above, visual representations show thoughts in non-linguistic format,
which is effective for communication and reflection. “Visual representations serve as
tools for thinking about and solving problems. They also help students communicate
their thinking to others” (NCTM, 2000, p. 206). In mathematics, visual representation
plays a significant role in structuring a problem-solving approach and showing the
cognitive constructs of the solution (Owens & Clements, 1998), a view echoed by
Arcavi (2003), who said that visual representations can be appreciated as a central part
of reasoning and as a resource to use in problem-solving. More importantly, they can be
used to represent the logical progression of ideas and reasoning as the solution develops
(Roam, 2009). Therefore, use of visual representations such as flowcharts can support
problem analysis, problem understanding and solution generation, while communicating

the whole process effectively.

Flowcharts have been used to solve problems in different fields for a long time.
Significant research (Carlisle et al., 2005; Hooshyar et al., 2018) has noted their use in
solving information technology problems in such fields as robotics and programming.
They have been used to support independent problem-solving in familiar and unfamiliar
situations in vocational training for people with developmental disabilities (Villante et
al., 2021), while in health sciences, flowcharts have been used to help appropriate
decision-making within given options, which minimises errors and plays a significant
role in problem-solving in the field (McGowan & Boscia, 2016). Importantly, in
schools, Norton and colleagues (2007) noted that “planning facilitated through the use

213



Supporting the teaching of calculus-based senior mathematics in Queensland.

of flow charts should be actively encouraged and scaffolded so that students can
appreciate the potential of flow charts to facilitate problem-solving capabilities” (p. 15).
This was because the use of flowcharts in problem-solving provided a mental
representation of a proposed approach to solve a task (Jonassen, 2012). The success of
flowcharts in problem-solving in different fields can be attributed to their ability to

facilitate deep engagement in planning the solution to the problem.

Flowcharts support the process of problem-solving. Creating a flowchart during
problem-solving facilitates understanding, thinking, making sense of the problem,
investigating and communicating the solution (Norton et al., 2007). Flowcharts can also
be used when a logical and sequenced approach is needed to address a problem
(Cantatore & Stevens, 2016). Identifying the most appropriate strategy and making the
correct decision at the right stage is key to problem-solving. “One of the greatest
advantages of a flowchart is its ability to provide for the visualization of complex
processes, aiding in the understanding of the flow of work, identifying nonvalue-adding
activities and areas of concern, and leading to improved problem-solving and decision-
making” (McGowan & Boscia, 2016, p. 213). Teaching students to use visual aids like
flowcharts as part of problem-solving supports the ability to easily identify new
relationships among different procedures and assess the solution being communicated
faster as visuals are more understandable (Vale et al., 2018). Norton and colleagues
(2007) posited that using a well-planned and well-constructed flowchart in problem-
solving results in a good-quality solution. Flowcharts can also be a two-way
communication resource between a teacher and students or among students
(Grosskinsky et al., 2019). These authors further noted that flowcharts can help in
checking students’ progress, tracking their progress and guide them. They can also be
used to highlight important strategies that students can follow during the process of

problem-solving.

Another aspect of flowcharts is that they can be used to provide a bigger picture of the
solution to a problem (Davidowitz & Rollnick, 2001), as teachers can provide ready-
made flowcharts to guide students in the problem-solving process. Flowcharts help

students gain an overall and coherent understanding of the strategies involved in solving
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the problem as they promote conceptual chunking (Norton et al., 2007). Importantly,
“they may function to amplify the zone of proximal development for students by
simplifying tasks in the zone” (Davidowitz & Rollnick, 2001, p. 22). Use of flowcharts
by students reduces the cognitive load which then may help them focus on more
complex tasks (Berger, 1998; Sweller et al., 2019). Indeed, development of problem-
solving skills can be supported when teachers introduce learning tools such as
flowcharts, because they can influence the process of problem solving (Santoso &
Syarifuddin, 2020). Therefore, the use of procedural flowcharts in mathematics

problem-solving has the potential to transform the process.

As stated at the beginning of this chapter, procedural flowcharts are a visual
representation of procedures or strategies, corresponding steps, and stages of evaluation
of a solution to a problem (Chinofunga et al., 2022¢). These authors noted that
procedural flowcharts developed by the teacher can guide students during the inquiry
process and highlight key strategies and stages for decision-making during the process
of problem-solving. This is because “a procedural flowchart graphically displays the
information decision action sequences in the proposed order” (Krohn, 1983, p. 573).
Similarly, Chinofunga and colleagues (2022c) emphasised that procedural flowcharts
can be used to visually represent procedural flexibility as more than one procedure can
be accommodated, making it easier to compare the effectiveness of different procedures
as they are being applied. They further posited that student-developed procedural
flowcharts provide students with the opportunity to comprehensively engage with the
problem and brainstorm different ways of solving it, thus deepening their mathematics
knowledge. Moreover, a procedural flowchart can be a visual presentation of an

individual and group solution during problem-solving.

Research has identified extended benefits of problem-solving in small groups (Laughlin
et al., 2006). Vale and colleagues encouraged visual representation of solutions with
multi solutions as a tool to teach students problem solving (2018). Giving groups an
opportunity to present a solution visually can be a quicker way to evaluate a group
solution because visuals can represent large amounts of information (even from

different sources) in a simple way (Raiyn, 2016). For example, students can be asked to
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develop procedural flowcharts individually then come together to synthesise different

procedural flowcharts.

The research questions in this study were informed by the understanding that limited
resources are available to teachers to support students’ problem-solving abilities. In
addition, the literature indicates that visual representation can support students’
potential in problem-solving. Therefore, the research described in this chapter addressed
the following research question: What are teachers’ perceptions of how procedural
flowcharts support students’ problem-solving skills in the Mathematical Methods

subject?

10.4 Method

The active involvement of a mathematics teacher in the research described in this
chapter brought a wealth of knowledge through their feedback that the researcher could
tap into. The interaction between researchers and teachers through workshops and semi-
structured interviews promoted an exchange of ideas, while the interaction between
teachers and students and the use of procedural flowcharts in teaching and learning
provided new insights and opportunities for this research. The method for this study is

provided in more detail in Chapter 3 of this thesis.

10.5 Research Context of Phase Four of the Study

In the state of Queensland senior mathematics students engage with three formal
assessments (set by schools but endorsed by QCAA) in Year 12 before the end of year
external examination. The formal internal assessments consist of two written
examinations and a problem-solving and modelling task (PSMT). The PSMT is
expected to cover content from Unit 3 (Further Calculus). The summative external
examination contributes 50% and the PSMT 20% of the overall final mark,
demonstrating that the PSMT carries the highest weight among the three formal internal

assessments.
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The PSMT is the first assessment in the first term of Year 12 and is set to be completed
in four weeks. Students are given three hours of class time to work on the task within
the four weeks and write a report of up to 10 pages or 2000 words. The four weeks are
divided into four check points, one per week with the fourth being the submission date.
On the other three checkpoints, students are expected to email their progress to the
teacher. Of particular importance is checkpoint two where students are required to email
their draft reports for a general class feedback from the teacher. However, teachers are
expected to have provided students with opportunities to develop skills in undertaking
problem-solving and modelling task before they engage with this formal internal
assessment. These play an important role in developing students’ problem-solving skills
as they prepare for the formal internal PSMT. The QCAA has provided a flowchart on
how a PSMT should be presented (Appendix A).

10.6 Phase Four of the Study

In Phase Four, a teacher’s shared experience and observations prompted an in-depth
interview with Ms Simon (pseudonym). Ms Simon had explored the use of procedural
flowcharts in a problem-solving and modelling task (PSMT) in her Year 11
Mathematical Methods class. This included an introduction to procedural flowcharts,
followed by setting the students a task whereby they were asked to use the flowchart to
plan how they would approach a problem-solving task. Importantly, procedural
flowcharts were used by the students to provide an overview and structure of their
proposed solution to the problem. The students were expected to first develop the
procedural flowcharts independently then to work collaboratively to develop an
alternative solution to the same task. The students developed procedural flowcharts
(artefacts) and the in-depth interview with Ms Simon, all of which were analysed. As
this was an additional study, an ethics amendment was applied for and granted by the
James Cook University Ethics committee, approval Number H8201, as the collection of

students artefacts was not covered by the main study ethics approval for teachers.

10.6.1 Participants in Phase Four of the study
Ms Simon and a group of four students were the participants in this study. Ms Simon

had studied mathematics as part of her undergraduate education degree, which set her as
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a highly qualified mathematics teacher. At the time of this study, she was the Head of
Science and Mathematics and a senior mathematics teacher at one of the state high
schools in Queensland. She had 35 years’ experience in teaching mathematics across
Australia in both private and state schools, 15 of which were as a curriculum leader. She
was also part of the science, technology, engineering and mathematics (STEM) state-
wide professional working group. Since the inception of the external examination in
Queensland in 2020, she had been an external examination marker and an assessment
endorser for Mathematical Methods with QCAA. The students who were part of this
study were aged between 17 and 18 years and were from Ms Simon’s Mathematical
Methods senior class. Two artefacts were from individual students and the third was a

collaborative work from the two students.

10.7 Phase Four Data Collection

First, data were collected through a semi-structured interview between the researcher
and Ms Simon. The researcher used pre-prepared questions and incidental questions
arising from the interview. The questions focused on how she had used procedural
flowcharts in a problem-solving and modelling task with her students. The interview
also focused on her experiences, observations, opinions, perceptions and results,
comparing the new experience with how she had previously engaged her students in
such tasks. The interview lasted 40 minutes, was transcribed and coded so as to provide
evidence of the processes involved in the problem-solving. Some of the pre-prepared

questions were as follows:

1. What made you consider procedural flowcharts as a resource that can be used in
a PSMT?

2. How have you used procedural flowcharts in PSMT?

3. How has the use of procedural flowcharts transformed students’ problem-
solving skills?

4. How have you integrated procedural flowcharts to complement the QCAA
flowchart on PSMT in mathematics?

5. What was your experience of using procedural flowcharts in a collaborative
setting?

6. How can procedural flowcharts aid scaffolding of problem-solving tasks?
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Second, Ms Simon shared her formative practice PSMT task (described in detail
below), and four of her students’ artefacts. The artefacts that she shared (with the
students’ permission) were a critical source of data as they were a demonstration of how
procedural flowcharts can support problem solving and provided an insight into the use

of procedural flowcharts in a PSMT.

10.8 Problem-solving and Assessment Task
The formative practice PSMT that Ms Simon shared is summarised below under the

subheadings: Scenario, Task, Checkpoints and Scaffolding (see Appendix A).

Scenario

You are part of a team that is working on opening a new upmarket Coffee Café. Your

team has decided to cater for mainly three different types of customers. Those who:

1. consume their coffee fast.

2. have a fairly good amount of time to finish their coffee.

3. want to drink their coffee very slowly as they may be reading a book or chatting.
The team has tasked you to come up with a mode or models that can be used to
understand the cooling of coffee in relation to the material the cup is made from and the

temperature of the surroundings.

Task
Write a mathematical report of at most 2000 words or up to 10 pages that explains how
you developed the cooling model/s and took into consideration the open cup, the
material the cup was made from, the cooling time, the initial temperature of the coffee
and the temperature of the surroundings.

e Design an experiment that investigates the differences in the time of cooling of a

liquid in open cups made from different materials. Record your data in a table.

e Develop a procedural flowchart that shows the steps that you used to arrive at a

solution for the problem.

e Justify your procedures and decisions by explaining mathematical reasoning.

219



Supporting the teaching of calculus-based senior mathematics in Queensland.

e Provide a mathematical analysis of formulating and evaluating models using

both mathematical manipulation and technology.

e Provide a mathematical analysis that involves differentiation (rate of change)
and/or anti-differentiation (area under a curve) to satisfy the needs of each

category of customers.

e Evaluate the reasonableness of solutions.

You may consider Newton’s Law of Cooling which states that the rate of change of the
temperature of an object is proportional to the difference between its own temperature
and the temperature of its surroundings. For a body that has a higher temperature than
its surroundings, Newton’s Law of Cooling can model the rate at which the object is
cooling in its surroundings through an exponential equation. This equation can be used

to model any object cooling in its surroundings:
kt
] o 4409

Where:

e y is the difference between the temperature of the body and its surroundings
after t minutes,

® Ay is the difference between the initial temperature of the body and its
surroundings,

e k is the cooling constant

Checkpoints

Week 1 - Students provide individual data from the experiment and create a
procedural flowchart showing the proposed solution to the problem. Teacher
provides individual feedback.

Week 2 - Students provide a consolidated group procedural flowchart. Teacher

provides group feedback.

Week 3 - Students email a copy of their individually developed draft report for
feedback.
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Week 4 - Students submit individual final response in digital (PDF format) by emailing
a copy to their teacher, providing a printed copy to their teacher and saving a copy in

their Maths folder.
Additional requirements/Instructions

e The response must be presented using an appropriate mathematical genre (i.e., a
mathematical report).
e The approach to problem-solving and mathematical modelling must be used.

e All sources must be referenced.

10.9 Data Analysis

The Phase Four interview with Ms Simon was transcribed and coded using the four
phases of problem-solving identified from the literature review (Figure 10.1). An
additional theme on the overarching benefits of procedural flowcharts in supporting
problem solving was also used to include data that fell outside the stages of problem-
solving. The details of the thematic analysis are provided in Chapter 3 and results are

found under Appendix A, B and C.

The students’ artefacts in Figures 10.2, 10.3 and 10.4 were analysed based on how they
responded to the different stages of problem-solving synthesised from the literature
(Figure 10.1) and the QCAA flowchart that guides problem-solving and mathematical
modelling tasks (Appendix D). The artefacts were shared between the researcher and his
supervisors, the analysis was done independently then reviewed by the researcher and
his supervisors. Very little discrepancies were observed except that some stages on the

students’ procedural flowcharts overlapped between skills.

10.10 Results
This section presents results from the analysis of the interview data and student
artefacts. The analysis of data also includes some observations that were made in Phase

Three of the study.
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10.10.1 Semi-structured Interviews

The thematic analysis of interviews resulted in two themes:

» The utility of procedural flowcharts in supporting mathematics problem-solving.
* The utility of procedural flowcharts in supporting the integration of the four

stages of mathematics problem-solving.

In Phase Three, which prompted the targeted Phase Four study described in this chapter,
teachers were asked the question, “How have you used procedural flowcharts to
enhance teaching and learning of mathematics?” The question was not specific to
problem-solving but the teachers’ observations and perceptions strongly related to

problem-solving and student-centred learning.

10.10.1.1 Theme 1-The Utility of Procedural Flowcharts Generally Supports
Mathematics Problem- Solving.
The visual nature of procedural flowcharts was seen as an advantage to both teachers
and students. For students, drawing a flowchart was easier than writing paragraphs to
explain how they had arrived at the intended solution. For teachers, the flowchart was

easier to process for timely feedback to students.

They present steps in diagrammatic form which is easy to process and easy to
understand and process... students prefer them more as its in diagrammatic
form and I have witnessed more students engaging. (Participant 8, Phase Three

study)

1 find it (visual) a really efficient way for me to look at the proposed individual
students processes and provide relevant feedback to the student or for the
student to consider. And, you know, once the students are comfortable with
using these procedural flowcharts you know, I find it much easier for me to give
them relevant feedback, and I actually find that feedback more worthwhile than
feedback we used to give them, you know, that was just based on what they
wrote in paragraphs, ...students get to practice in creating their own visual
display, which communicates their intended strategies to solve the problem, then

they have opportunities to use it, and fine tune it as they work out the problem ...
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student developed procedural flow charts, they represent a student’s maths

knowledge in a visual way. (Ms Simon).

Identifying students’ competencies early was seen as central to successful problem-
solving as it provided opportunities for early intervention. Results showed that teachers
viewed procedural flowcharts as a resource that could be used to identify gaps in skills,
level of understanding and misconceptions that could affect successful and meaningful
execution of a problem-solving task. Going through a student developed flowchart
during problem solving provided the teachers with insight into the student’s level of
understanding of the problem and the effectiveness of the procedures proposed to

address the problem.

1 found it quite useful because I can identify what kids or which kids are
competent in what, which sort of problem-solving skills. And I can identify
misconceptions that students have or gaps in students understanding.

(Participant 1, Phase Three study)

It also to me highlights gaps in students’ knowledge in unique ways that students
intend to reach a solution because the use of the procedural flow chart
encourages students to explain the steps or procedures behind any mathematical
manipulation that you know they're intending to use. And it's something that was
much more difficult to determine prior to using procedural flow charts... I've
also used you know, student developed procedural flow charts to ascertain how
narrow or wide the students’ knowledge is and that's also something that wasn't
obvious to make a judgement about prior to using procedural flow charts. (Ms

Simon)

Problem-solving was seen as student-centred. If procedural flowcharts could be used to
support problem-solving, then they could facilitate an environment where students were
the ones to do most of the work. The students could develop procedural flowcharts
showing how they will solve a PSMT task using concepts and procedures they have

learnt. The open-ended nature of the problem in a PSMT provide opportunities for
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diverse solutions that are validated through mathematical justifications. The visual

nature of procedural flowcharts makes them more efficient to navigate compared to text.

Mathematics goes from being very dry and dusty to being something which is
actually creative and interesting and evolving, starting to get kids actually

engaging and having to back themselves. (Participant 7, Phase Three study)

As a teacher, 1 find that procedural flowcharts are a really efficient way to
ascertain the ways that students have considered and how they are going to
solve a problem ... It engages the students from start to finish, you know in
different ways this method demands students to compare, interpret, analyse,
reason, evaluate, and to an extent justify as they develop this solution. (Ms

Simon)

Similarly, results showed that procedural flowcharts could be used as a resource to
promote collaborative learning and scaffolding. Students could be asked to
collaboratively develop a procedural flowchart or could be provided with one to follow

as they worked towards solving the problem.

Sometimes, you know, I get students to work on it in groups as they share ideas
and get that mathematisation happening. So, it's really helpful there ... I looked
at the PSMT and its Marking Guide, and develop a more detailed procedural
flowchart for students to use as a scaffold to guide them through the process. So,
procedural flowcharts provide a structure in a more visual way for students to

know what to do next. (Ms Simon)

Ms Simon shared her detailed procedural flowchart in Figure 10.2 that she used to guide
students in PSMTs.
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Figure 10.2: Ms Simon’s procedural flowchart on Problem-solving
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The participants also observed that procedural flowcharts could be used to promote
opportunities for solution evaluation which played an important role in problem-
solving. The loops that can be introduced in procedural flowcharts can promote
reflection and reasoning as alternative paths are developed or considered as the solution
to the problem is being developed. Below are participants’ comments referring to Figure
9.1 in Chapter 9 which was shared with participants in the video presentation detailed in

Chapter 3.

The cycle approach, the feeding back in the feeding back out that type of stuff, y
ou know, that is when we starting to teach students how to think. (Participant 7,

Phase Three study)

Complex procedural flowcharts like the one you provided guide students in
making key decisions as they work through solutions which is key to critical
thinking and judgement and these two are very important in maths. (Participant

8, Phase Three study)

1 also sincerely believe that procedural flowcharts are a way to get students to
develop and demonstrate the critical thinking skills, which PSMTs are designed
to assess. Students inadvertently have to use their critical thinking skills to
analyse and reason as they search for different ways to obtain a solution to the
problem presented in the PSMT ... the use of procedural flowcharts naturally
permits students to develop their critical thinking skills as it gets their brain into
a problem-solving mode as they go through higher order thinking skills such as
analysis, reasoning and synthesis and the like ... this visual way of presenting
solution provides students with opportunities to think differently, which they're

not used to do, and it leads them to reflect and compare. (Ms Simon)

Problem-solving of non-routine problems uses a structure that should be followed.
Resources that are intended to support problem-solving in students can be used to

support the integration of the stages involved in problem-solving.
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10.10.1.2 Theme 2—The Utility of Procedural Flowcharts in Supporting the
Integration of the Four Stages of Mathematics Problem-Solving.
Procedural flowcharts can support the flow of ideas and processes in the four stages
during problem-solving and modelling task in Mathematical Methods subject. Literature

synthesis in this chapter identified the four stages as:

» Identify problem.
* Interpret problem mathematically.
* Identify and execute mathematics strategies that can solve the problem.

» Justify, evaluate solution and communicate.

Similarly, QCAA flowchart on PSMT identifies the four stages as: formulate, solve,

evaluate and verify, communicate.

The logical sequencing of the stages of mathematics problem-solving is crucial to
solving and communicating the solution to the problem. Procedural flowcharts play an
important role in problem-solving through fostering the logical sequencing of processes
to reach a solution. Procedural flowcharts show the flow of ideas and processes which
provide an overview of how different stages connect into a bigger framework of the

solution.

Procedural flowcharts help students sum up and connect the pieces together ...

connect the bits of knowledge together. (Participant 4, Phase Three study)

Really good how it organises the steps and explains where you need to go if

you're at a certain part in a procedure. (Participant 2, Phase Three study)

Potentially, it's also an excellent visual presentation, which shows a student's
draft of their logical sequence of processes that they're intending to develop to
solve the problem ... So, the steps students need to follow actually flows
logically. So really given a real-life scenario they need to solve in a PSMT
students need to mathematise it and turn it into a math plan, where they execute
their process, evaluate and verify it and then conclude ... so we use procedural
flowcharts to reinforce the structure of how to approach problem-solving ...
kids, you know, they really struggling, you know, presenting things in a logical

way, because they presume that we know what they're thinking. (Ms Simon)
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Procedural flowcharts provided students with opportunities to plan the solution
informed by the stages of problem-solving. Teachers could reinforce the structure of
problem-solving by telling students what they could expect to be included on the
procedural flowchart. Procedural flowcharts can be used as a visual tool to all the

critical stages that are included during the planning of the solution.

1 tell the students, “I need to see how you have interpreted the problem that you
need to solve. I need to see how you formulated your model that involves the
process of mathematisation, where you move from the real world into the maths
world, and I need to see all the different skills you're intending to use to arrive

at your solution.” (Ms Simon)

Similarly, procedural flowcharts could visually represent more than one strategy in the
“identify and execute mathematics strategies that can solve the problem” stage, thereby
providing a critical resource to demonstrate flexibility. When there are multiple ways of
addressing a problem, a procedural flowchart can show all possible paths or the

relationship between different paths to the solution, thus promoting flexibility.

Students are expected to show evidence that they have the knowledge of solving
the problem using several ways to get to the same solution. So, it goes beyond
the students’ preferred way of answering a question and actually highlights the
importance of flexibility when it comes to processes and strategies of solving a
problem ... By using procedural flowcharts, I'm saying to the students, “Apart
from your preferred way of solving the problem, give me a map of other routes,

you can also use to get to your destination.” (Ms Simon)

The results also indicated that procedural flowcharts could be used to identify strengths
and limitations of strategies in the “evaluate solution” stage and thus demonstrate the
reasonableness of the answer. Having more than one way of solving a problem on a
procedural flowchart helps in comparing and evaluating the most ideal way to address

the problem.
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And I'm finding that, you know, as students go through, and they compare the
different processes, you know, the strengths and limitations, literally stare them
in the face. So, they don't have to. They're not ... they don't struggle as much as
they used to in coming up with those sorts of answers ... it's also a really easy
way that once the students reach the next phase, which is the evaluating verified
stage, they can go back to their procedural flow chart and identify and explain
strengths and limitations of their model ... It's a convenient way for students to
show their reasonableness of their solution by comparing strengths and
weaknesses of all the strategies presented on the procedural flowchart,

something that they've struggled with in the past. (Ms Simon)

The results from the interview show that