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Voice assistant applications have become omniscient nowadays. Two models that provide the two most 
important functions for real-life applications (i.e., Google Home, Amazon Alexa, Siri, etc.) are Automatic Speech 
Recognition (ASR) models and Speaker Identification (SI) models. According to recent studies, security and 
privacy threats have also emerged with the rapid development of the Internet of Things (IoT). The security 
issues researched include attack techniques toward machine learning models and other hardware components 
widely used in voice assistant applications. The privacy issues include technical-wise information stealing and 
policy-wise privacy breaches. The voice assistant application takes a steadily growing market share every year, 
but their privacy and security issues never stopped causing huge economic losses and endangering users’ personal 
sensitive information. Thus, it is important to have a comprehensive survey to outline the categorization of the 
current research regarding the security and privacy problems of voice assistant applications. This paper concludes 
and assesses five kinds of security attacks and three types of privacy threats in the papers published in the top-tier 
conferences of cyber security and voice domain.
1. Introduction

Naturally, people communicate through voice. Three technologies 
have been proposed to facilitate human-computer interaction through 
voice, including automated speech recognition (ASR), natural language 
processing (NLP), and speech synthesis (SS). NLP enables machines 
to comprehend human intents, and SS enables machines to talk. The 
research of voice assistant applications started in the 1950s with con-

tinuous refinement. Fig. 1 shows the progress of voice assistant applica-

tions over time. The Hidden Markov Model (HMM) method, a statistical 
model-based approach, has increasingly taken the lead in voice recog-

nition research since the 1980s. As voice recognition technology thrives 
with the more advanced deep learning algorithm, it integrates with 
more and more devices. In 2011 when the iPhone 4S was released, the 
world’s first mobile phone personal voice assistant Siri was known and 
opened a new chapter for voice assistant applications.

Nowadays, voice assistant applications prosper with a large portion 
of the market. The voice assistant has brought huge convenience to 
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our daily life and greatly changed how humans interact with comput-

ers. Almost every smart device has a built-in voice assistant. Because of 
the development and wildly use of voice assistant applications, privacy 
and security problems emerge. Often, users may not even notice their 
conversation has been recorded or mistakenly awoken by the voice as-

sistant. Taking Siri as an example, several times it heard other people 
saying “Are you serious?” or “a series of...”, it just started to voice recog-

nition and write down what it heard on my screen. A voice assistant is 
easily activated by accident, which malicious attackers could exploit. 
Plausible but severe threats include bank transfers, buying virtual prod-

ucts, fabricating messages to your close friends or families asking for 
money, stealing your credential information, and many others. Large fi-

nancial and emotional losses may occur if voice assistant applications 
are breached. Thus, the security and privacy problems within voice 
assistant applications should be followed with interest. Users become 
more focused on taking complete control of their voice assistant appli-

cations, knowing the potential attack and defense methods.
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Fig. 1. The timeline that outlined the development and progress of voice assistant applications.
With many papers published in recent years about new attack tech-

niques and defense means, a comprehensive outline of their develop-

ment is needed. However, there are two surveys in the voice assistant 
security and privacy domain. Cheng et al. Cheng and Roedig (2022) fo-

cused on security and privacy problems that voice assistants have in 
using acoustic channels. Acoustic channel attacks manipulate audio sig-

nals to deceive or compromise voice assistants. Four main problems 
were included in Cheng et al. Cheng and Roedig (2022). They are ac-
2

cess control loss, acoustic DoS attack, voice privacy loss, and malicious 
use of acoustic sensing. Compared to their survey, this survey also cov-

ers none acoustic channel attacks. Non-acoustic channel attacks exploit 
non-acoustic communication channels to gain unauthorized access or 
extract sensitive information from voice assistants. Also, their survey 
only covers research before the end of 2020, and this survey covers 
more recent research published in top security conferences until 2022. 
In this survey, during 2020-2022, quite a few papers about new side-

channel attacks were researched and had impressive results. Another 

difference is that this survey divided the attacks towards ASR and SI 
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models. Because ASR and SI are the two major functions that voice as-

sistant applications have, some applications have both, and some have 
only one. It is useful for users to know which function their applications 
have and what type of threats correspond to each application.

The other survey by Yan et al. Yan et al. (2022) covers almost the 
same security and privacy problems mentioned in Cheng et al. Cheng 
and Roedig (2022). However, it also does not cover any research after 
2020. Also, Yan et al. Yan et al. (2022) categorize defensive methods 
from a system designer’s perspective, which differs from this survey 
and Cheng et al. Cheng and Roedig (2022). In this survey, defensive 
methods are introduced regarding specific attacks. Through this sur-

vey, some defensive methods are effective in multiple types of attacks, 
and some mitigate one type of attack but are prone to another type of 
attack, which helps the users or producers have more comprehensive 
information when choosing the defensive methods.

This survey aims to make a comprehensive and clear outline of the 
security and privacy issues of voice assistant applications. The papers 
included in this survey are from the top four cyber security conferences 
and Interspeech, a conference focusing on the speech domain. The as-

pects that are included are as follows:

1. Technical attacks that were targeted towards ASR models and SI 
models. Including machine learning attacks that targeted the soft-

ware, frequency modulation that exploits the hardware, malicious 
skills hidden in the third-party market and policy loopholes that 
were not refined quickly enough to catch up on the development 
of voice assistants.

2. Defensive methods have been researched and proven effective in 
ASR and SI models. Usually, the defensive means can be divided 
into detection and prevention. Some methods may provide both 
means.

3. We have security and privacy issues when using voice assistant ap-

plications beyond technical threats. With more and more younger 
users, third-party regulations and policies should be refined.

Contributions. This paper provides a comprehensive summary of tech-

nical attacks with impressive experiment results and feasible defensive 
methods corresponding to each attack. Nontechnical threats in the voice 
assistant application market are included to safeguard the user. The con-

tributions are concluded as follows:

• From a user’s standpoint, this survey is, as far as we are aware, the 
most thorough investigation of voice assistant application security. 
Our study includes both market policy issues and technology risks. 
We provide a comprehensive overview of the state of the art, devel-

opment, major difficulties, and future prospects for voice assistant 
application security research based on a thorough literature review 
of pertinent attacks and countermeasures.

• We classify pertinent assaults by attack techniques and structure 
the attack literature according to the voice assistant’s systems. In 
order to properly identify, comprehend, and analyze the security 
risks against voice assistants, the organization assists in bridging 
the gap between a large category of seemingly unrelated attacks 
and vulnerabilities.

• To systematize the countermeasures against various attacks, we 
base them on defensive tactics. We present a qualitative evaluation 
of existing solutions by the installation cost if the defense requires 
additional devices, usability, and security and make useful recom-

mendations in order to help users select protection based on the 
type of danger they may encounter.

The remaining portions of this essay are structured as follows: The 
introduction to voice assistant applications in Section 2 is brief. The 
taxonomy of assaults on ASR and SI models as well as the taxonomy 
of countermeasures that may be applied to ASR and SI models are also 
3

introduced in Section 2. The attacks that take advantage of the voice 
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assistant’s ASR function’s weaknesses are described in detail in Sec-

tion 3 along with the corresponding defenses. The attacks against SI 
models are described in detail in Section 4, along with systematized de-

fense tactics that can stop or at least slow them down. The security and 
privacy issues outside of technological assaults are summarised in Sec-

tion 5. In Section 6, we go through issues with the current research and 
potential future approaches for voice assistant applications. The survey 
is concluded in Section 7.

2. Preliminaries of voice assistant applications

This section provides background information on voice assistant 
apps, including a definition of key terms, a list of categories, and a 
description of the process for each type of voice assistant application.

2.1. Voice assistant components and speech recognition workflow

There are two kinds of voice assistant models — automatic speech 
recognition (ASR) and speaker identification (SI). As shown in Fig. 2

and Fig. 3, the first step in creating a voice recognition model is trans-

lating the spoken language into text. Speech recognition is much more 
challenging to solve than machine translation. A machine translation 
system’s input is usually printed text that differentiates between in-

dividual words and word strings. The voice input used by a speech 
recognition system is far more complicated than written text and spoken 
language, especially with ambiguity. When two people communicate, 
they frequently infer the term in the conversation in the context and 
often read a lot of latent information from the tone, facial expres-

sions, and gestures the other party uses. The speaker regularly rectifies 
what has been said and repeats important material by rephrasing. It 
is challenging to train an automated system to detect and comprehend 
speech. To provide a compact digital representation of the sound wave, 
each sampled value is quantized throughout the speech recognition pro-

cess. A feature vector characterizing the spectral content is retrieved for 
each frame from which the sampled values are situated in overlapping 
frames. The words that the speech represents are identified based on 
the features of the voice signal. The five steps that make up the voice 
recognition process are described as follows:

Step 1. Voice Signal Acquisition

Voice signal acquisition is the foundation of voice signal processing. 
A voice signal acquisition system typically receives inputs through a mi-

crophone. Subsequently, the sound wave is transformed from a voltage 
signal by the microphone to a digital signal handled by an A/D device 
like a sound card. Voice signal acquisition and processing systems based 
on single-chip microcomputers and DSP chips are utilized extensively 
for unfavorable on-site conditions, limited space, and numerous specific 
equipment. The essential hardware for voice assistant apps includes 
sound cards, speakers, microphones, and many alike. Sound cards are 
crucial to process voice signals through signal filtering, amplification, 
A/D conversion, and D/A conversion. Modern recording software tools 
activate the sound card to harvest voice signals as voice recordings.

Step 2. Speech Signal Pre-processing

After collecting the speech signal, pre-processing operations must be 
completed, including filtering, A/D conversion, pre-emphasis, and end-

point detection. Filtering primarily serves the two goals of preventing 
aliasing interference and suppressing the 50 Hz power frequency in-

terference. The voice analog signal is converted into a digital signal via 
A/D conversion. The signal is quantized during A/D conversion, and the 
quantization error, also known as quantization noise, is the difference 
between the quantized signal value and the original signal value. Pre-

emphasis processing aims to improve the signal’s high-frequency con-

tent, flatten its spectrum, and maintain its full frequency range from low 
to high frequency. Endpoint detection involves extracting the beginning 
and conclusion of speech from a speech-containing signal. Effective end-
point identification removes background noise in silent periods. Two 
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Fig. 2. Workflow of voice assistant application service.

Fig. 3. Microphone components and voice signal capturing and pre-processing workflow.
popular approaches work on different features — time-domain features 
and frequency-domain features. The time domain feature approach uses 
the voice volume and zero-crossing rate to identify endpoints with the 
advantage of a minimal amount of calculation. However, the time do-

main feature approach often leads to incorrect evaluation of air sounds, 
and differing volume calculations will also result in varied detection 
outcomes. On the other hand, the frequency domain feature technique 
uses variations in the sound spectrum and entropy detection to identify 
speech at a high computation cost.

Step 3. Feature Parameter Extraction of the Speech Signal

The frequency of human speech is below 10 kHz. Shannon’s sam-

pling theorem requires the sampling frequency to be at least twice the 
maximum speech frequency present in the speech signal. The signal is 
often broken into blocks (also known as frames). Frames should overlap 
each other to prevent losing crucial information. Microphones collect 
waveforms of sound. It is important to extract distinctive information to 
separate the words from the collected data. Techniques for linear pre-

dictive coding are frequently employed to extract voice components. 
The fundamental tenet of linear predictive coding is that speech signal 
sampling points are correlated so that a linear combination of numer-

ous previous sampling points helps predict the values of the present 
and subsequent sampling points. The linear prediction coefficient is cal-

culated to reduce the mean square error between the anticipated and 
actual values.

Step 4. Vectorization

Vector quantization (VQ) is a data compression and coding method. 
In scalar quantization, a dynamic range is split into several sub-

intervals, where each sub-interval has a representation value. This rep-

resentative value is used to determine the value for an input scalar sig-

nal that falls inside the sub-interval during quantization. Due to scalar 
quantization, the semaphore is a one-dimensional scalar. VQ transforms 
a scalar into a one-dimensional vector from the perspective of linear 
space to quantify the vector. VQ separates the vector space into numer-

ous little sections. A representative vector replaces the vectors in the 
section during quantization for each small section. VQ integrates vari-

ous scalar values into a vector (or feature vector generated from a frame 
of speech data) to provide overall quantization in multi-dimensional 
space and enable data compression with minimal information loss. In a 
hidden Markov model, the input observation symbol can alternatively 
4

be the vector quantized feature vector.
Step 5. Speech Recognition

A typical speech recognition task is recognizing words and phrases 
because words are sequences of letters. A recognition system receives 
feature parameters from the speech signal as the input, like the LPC 
predictive coding parameters. Using Bayesian decision-making with 
maximum likelihood, three typical approaches are used in speech recog-

nition: template matching, stochastic model, and probabilistic parsing.

• In template matching, a template is generated and stored while 
a user pronounces each phrase during the training stage. Each 
template in the template library is a feature vector. During the 
recognition stage, the input speech’s feature vector sequence is it-
eratively compared to each template in the template library for the 
best match.

• The hidden Markov model (HMM) is the most popular method 
among stochastic models. HMM is a time-varying process that tran-

sits from one reasonably stable feature to another characteristic. 
With adequate time, the speech signal’s properties gradually stabi-

lize.

• Probabilistic parsing is used for continuous voice recognition across 
broad length ranges. While individuals speak the same phonetics, 
significant differences in the corresponding spectrograms and their 
modifications exist among individuals.

Last but not least, several other voice recognition techniques exist espe-

cially artificial neural network-based approaches for voice recognition, 
including the BP neural network, the Kohcmen feature mapping neural 
network and other networks with deep learning (Fig. 3).

2.2. Speaker identification workflow

The Speaker Identification (SI) system is often referred to as speaker 
recognition. SI consists of two stages: speaker identification and speaker 
confirmation. Speaker identification is a one-to-one mapping, and 
speaker confirmation is a many-to-one mapping. SI determines whether 
multiple speakers are present in a record and validates a speaker’s iden-

tity by analyzing and processing the speech signal of the speaker. SI 
creates a reference template or model by extracting unique charac-

teristics from the original voice signal before recognizing a speaker 
according to the predetermined criteria. In a SI task, the system extracts 

the speaker’s personality traits by averaging the semantic information in 
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the speech signal, emphasizing the individual’s distinctive characteris-

tics; in a speech recognition task, the system normalizes the differences 
between different people’s speeches as much as possible. The waveform 
of the speaker’s speech reflects differences in pronunciation organs and 
habits, revealing each person’s speech as a distinct personal trait that 
serves as an objective assurance of the speaker’s identity.

Depending on the speaker numbers, speaker identification has two 
categories: closed set and open set. A closed set SI requires reflecting 
the number of speakers in the set to a closed set; on the contrary, an 
open set SI requires disregarding the number of speakers. Only a com-

parison and judgment between a reference model and the test speech 
are required for validation.

Speaker identification may be broken down into three groups: text-

related, text-independent, and text-prompted. The speaker’s pronun-

ciation of essential words and phrases is used as a training text by 
text-related SI, and the same information is uttered during recognition. 
The recognition object is a free speech signal, and the text-independent 
speaker identification technique does not define speech content during 
training or recognition.

The training stage and the recognition stage are the two key phases. 
A template or model of each speaker is created during the training phase 
using feature extraction and the training corpus for each speaker in 
the speaker set. The speech to be recognized is broken down into its 
component characteristics at the recognition stage and compared to the 
template or model created during the system training. In speaker iden-

tification, the recognition outcome is the speaker corresponding to the 
model with the highest predicted speech similarity. Decide speaker con-

firmation by determining if the similarity between the test tone and the 
claimed speaker’s model is higher than a predetermined threshold. The 
following fundamental issues affect the SI system’s realization:

1. Preprocessing speech signals and feature extraction or extracting 
parameters can describe speaker characteristics.

2. Establishing the speaker model and establishing the model’s train-

ing parameters.

3. Calculating the test speech’s similarity to the speaker model.

4. Identification and technique for choosing. Confirmation or identi-

fication of the speaker.

Three categories can be used to implement SI:

1. Template matching — A reference template is a set of feature vec-

tors to characterize the sequence of feature vectors. During the 
training process, feature vectors are extracted from the training 
sentences of each speaker to extract the feature vector sequence. 
During identification, a subject’s template is compared with each 
reference template. The outcome of matching is frequently the 
accumulated distance between the feature vectors, measured as 
part of the matching process. VQ and dynamic time normalization 
(DTW) are template-matching techniques most often utilized.

2. Probabilistic model — An effective feature vector from pronuncia-

tions accurately characterizes the speaker’s feature vector’s distri-

bution in the feature space. A mathematical model is constructed 
using statistical characteristics. A few model parameters serve to 
represent and store mathematical models. The feature vector of the 
test speech is compared to the mathematical model used to de-

scribe the speaker. The similarity between the test speech and the 
model is computed and helps make the recognition decision. The 
most widely used model is HMM because HMM correctly captures 
the properties of human vocal tract alterations and provides a rea-

sonable description of stationarity and variability.

3. Artificial neural networks (ANN) — ANN is self-organized and self-

learning, which may enhance its performance over time. ANN’s 
features may be utilized to effectively extract speakers’ personal-
5

ity traits from audio samples to implement SI systems.
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Several performance metrics for evaluating the SI system include 
recognition rate, training duration, number of training corpora, reaction 
time, speaker set size, speaking mode, pricing, and number of training 
corpora. There are several assessment indicators for various events. The 
recognition rate is the most crucial factor, and it must be assured first to 
serve as the baseline for all other performance measures. Accurate and 
false recognition rates are frequently employed in voice recognition sys-

tems. The speaker confirmation mechanism determines the erroneous 
rejection and acceptance rates. The two are at odds with one another. 
Different sizes are needed for various events. The equal error probabil-

ity is crucial for assessing speaker confirmation since it states that the 
two are equivalent if a particular judgment threshold is met.

2.3. Metrics

The metrics commonly used to evaluate the performance of voice 
assistants in converting spoken words into text are the Word Error Rate 
(WER) and Sentence Error Rate (SER). WER measures the proportion 
of words in the recognized text that differ from the words in the ref-

erence (correct) transcript. It is calculated by dividing the number of 
added, changed, or removed words by the total number of words in the 
reference transcript.

On the other hand, SER measures the number of sentence recogni-

tion errors, such as incorrect or missing sentences, divided by the total 
number of sentences in the reference transcript.

It is worth noting that SER is typically 2 to 3 times higher than WER 
due to the cumulative effect of errors within sentences. However, de-

spite the higher error rate, SER is often neglected in evaluations, and 
more emphasis is placed on WER. This is because WER provides a more 
granular analysis of individual word errors, which is crucial for assess-

ing the accuracy of voice assistants’ transcription capabilities.

In addition to WER and SER, another important metric to consider 
is the Attack Success Rate (ASR). ASR measures the effectiveness of at-

tacks against voice assistants by evaluating the proportion of successful 
adversarial attempts in manipulating or deceiving the system’s speech 
recognition. ASR reflects the vulnerability of voice assistants to vari-

ous adversarial techniques and is an essential metric in assessing the 
security and robustness of these systems.

2.4. Taxonomy

We develop a taxonomy of security and privacy problems in the 
voice assistant domain to define the attacks against voice assistants. 
This taxonomy classifies voice assistants’ security and privacy risks 
recently published. Our taxonomy investigates various target models, 
adversarial information, and attack strategies. We further classify publi-

cations in the target model level category based on probabilistic models 
and target machine learning model types, such as DNN, RNN, CNN, 
and many alike. Popular apps are also used in various empirical stud-

ies, including Amazon Alexa, Google Assistant, and Microsoft Cortana. 
We categorize articles according to adversarial knowledge levels as 
black-box, grey-box, and white-box attacks on the target model. The 
taxonomy of attacks that threaten voice assistant models is shown in 
Fig. 4. The current attacks on SI models include spoofing, backdoor, ad-

versarial, and hidden command attacks. Attacks in ASR models include 
dolphin attacks, adversarial attacks, and hidden command attacks.

We also developed a taxonomy for defensive methods in the voice 
assistant domain. The taxonomy of defensive methods is shown in 
Fig. 5. The defensive methods were listed based on different attacks that 
they mitigate. Furthermore, each mitigation method was categorized 
based on its mitigation types: detection and prevention. The defensive 
methods also were categorized based on whether they needed extra de-

vices when they are deployed to protect the voice assistant applications.

We categorize all published publications that discuss attacks on ASR 
and SI models and then choose a few exemplary studies to put in Ta-
bles 1 and 3. Each chosen paper either revealed new ways to exploit 



Computers & Security 134 (2023) 103448J. Li, C. Chen, M. Rahimi Azghadi et al.
6

Fig. 4. Taxonomy of security and privacy attacks towards voice assistant applications.
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Fig. 5. Taxonomy of security and privacy defenses towards voice assistant applications.
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Table 1

A comparison of existing attacks on ASR systems. The medium of a practical attack includes: A: Over-the-air, L: Over-the-line, P: Over-the-phone, S: Over-the-surface. 
The target model of a practical attack includes: I)Deep Speech, II)CNN based model, III) RNN based model, IV) DNN based model, V)Commercial smart devices. The 
setting of a practical attack includes: B: Black-box, W: White-box, G: Grey-box.

Type Year Paper Medium Goal Target Model Setting Attack Approach Success Transferability

A L P S I II III IV V B W G

Backdoor 2021 Kasher’21 ★ □ □ □ T ★ □ □ □ □ ★ □ □ Comparison of Characteristics 50% Y

Koffas’21 ★ □ □ □ T □ ★ □ □ □ □ ★ ★ Dataset Poisioning >=99% PY

Voice squatting

/Voice masquerading
2019 Zhang’19 ★ □ □ □ T □ □ □ □ ★ ★ □ □ Use third party market >=50% -

Adversarial 2020 Serrano’20 □ ★ □ □ U ★ □ □ □ □ □ ★ □ Adversarial perturbations - PY

Chen’20 ★ □ □ □ T ★ □ □ □ □ □ ★ □ Domain adaptation algorithm D, >=90% -

2019 Taori’19 □ ★ □ □ T ★ □ □ □ □ ★ □ □
Combine genetic algorithms

and gradient estimation
35% -

2018 Carlini’18 □ ★ □ □ T ★ □ □ □ □ □ ★ □ End-to-end 100% PY

Hidden Command 2021 Abdullah’21 □ □ ★ □ U ★ □ □ □ ★ ★ □ □ Interfere signal preprocessing 100% Y

Zhang’21 ★ ★ □ □ T □ □ □ □ ★ ★ □ □ Faste speech D, >=90% Y

2018 Schonherr’18 □ ★ □ □ T □ □ □ ★ □ □ ★ □ Psychoacoustic hiding 98% PY

2019 Abdullah’19 ★ ★ □ □ T ★ □ □ □ ★ ★ □ □ Generic attack method 80% Y

DolphinAttack 2020 Yan’20 □ □ □ ★ T □ □ □ □ ★ ★ □ □ Solid material D, >=90% -

Wixey’20 □ ★ □ □ U □ □ □ □ ★ ★ □ □ Internet attack - PY

2017 Zhang’17 ★ □ □ □ T □ □ □ □ ★ ★ □ □ Modulate the frequency of the voice 
signal

D, >=90% PY

★ Applicable □ Not applicable T: Targeted U: Untargeted D: Depending on the experimental environment Y: Yes PY: Presumably Yes - None (or 
unspecified)

Table 2

A comparison of existing defensive methods for ASR systems. The type of a defense includes: D: Detection, P: Prevention.

Mitigated Attacks Year Type Paper Methods Extra Device Success Transferability

D P

Backdoor 2020
√

× Kokalj-Filipovic’20 Deep Learning Classifiers × - Y

Voice squatting

/Voice masquerading
2019

√
× Zhang’19 Context-sensitive detector × 95% -

Adversarial 2021
√ √

Hussain’21 LPC and Mel extraction inversion
√

- Y
√

× Park’21 Add noise to logits × - PY

Hidden Command 2019
√

× Wang’19 Extract vibration features from motion sensor
√

100% Y

DolphinAttack 2021
√

× Guoming’21 Decay rate difference
√

99% Y

2020
√ √

Yan’20 Monitor the characteristics of the source signal
√

- -
√ √

Wixey’20 Use imperceptible sounds as covert channels × - Y

2017 ×
√

Zhang’17
Hardware-based: microphone enhancement

and baseband cancellation; Software-based: machine learning
× - PY

√
Positive × Negative - None (or unspecified) Y: Yes PY: Presumably Yes
privacy issues on a particular target model or offered new attack strate-

gies. Table 1 and Table 3 provide additional details about each study 
that in the taxonomy Fig. 4, which can aid readers in understanding 
and comparing each work. We specifically provide the publication year, 
publication venue, learning task for the target model, attack knowledge 
available to the attacker, specific attack approach, baseline for the pro-

posed attack, metrics for evaluating attack performance, and datasets 
used in the experiments for each paper listed in Tables 1 and 3. The 
correspondence defensive methods are summarized in Tables 2 and Ta-

ble 4.

3. Attacks and defenses in ASR-based voice assistant applications

3.1. Backdoor attacks and defenses in ASR

The use of backdoor attacks against Automatic Speech Recognition 
8

(ASR) models is a common occurrence (Table 2). In these attacks, ad-
versaries embed inaudible signals into data, such as music clips or 
voicemail messages, to disrupt the processing and decision-making of 
machine learning models. The objective of a backdoor attack is to in-

sert a specific input, known as a trigger, into the model, resulting in the 
model making desired decisions based on that trigger. Adversarial au-

dio is utilized to translate concealed orders into the attacker’s intended 
command, exploiting the voice assistant’s neural processing network 
while remaining imperceptible to human ears.

Kasher et al. Kasher et al. (2021) employed a backdoor system to 
control smart devices that respond to voice commands. They introduced 
potent, noise-resistant adversarial audio perturbations to music-only au-

dio samples, effectively translating them into target commands. Their 
backdoor method exhibited efficacy when applied to both music and 
speech-based samples, enabling perturbations of various types. The 
study evaluated different base vectors, target words, and perturbation 

strengths to maximize the impact of the backdoor attack. Although the 
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selection of the target phrase is crucial, they achieved a transcription 
accuracy rate of over 50%.

Outsourcing the training process of ASR models or purchasing pre-

trained models introduces vulnerabilities to various adversaries, includ-

ing backdoor attacks. Koffas et al. Koffas et al. (2021) investigated 
backdoor attacks against ASR systems. They explored the injection of 
inaudible triggers, which make it challenging to detect backdoor at-

tacks. The study utilized datasets with 10 and 30 classes, along with 
three neural networks, to assess the impact of trigger type, duration, 
and location. The findings revealed that launching an inaudible back-

door attack against ASR systems is relatively straightforward, requiring 
the attacker to poison only about 0.5% of the training samples. The du-

ration of the trigger, even if inaudible, can significantly enhance the 
attack’s success, and short non-consecutive triggers inserted into less 
than 0.5% of the training dataset can achieve attack success rates higher 
than 99%.

While the effectiveness of the attack strategies in these papers is ev-

ident, no defensive mechanisms were explored. Future research in the 
backdoor attack domain should focus on developing effective defenses. 
Kokalj-Filipovic et al. Kokalj-Filipovic et al. (2020) emphasized the 
need for further investigation into the detection of adversarial backdoor 
samples. They utilized raw acoustic data in covert attacks, employing 
inaudible messages transmitted through backdoor channels. By creating 
a backdoor dataset and analyzing the effects of the backdoor channel 
on acoustic data classification, they observed a decline in classifier ac-

curacy. The extent of deterioration varied across deep classifier types 
and was less pronounced for classifiers trained with autoencoders. The 
authors suggested statistics, such as the empirical entropy layer of the 
classifier output or the log-likelihood of a variational autoencoder used 
for pre-training, that could be employed to identify out-of-distribution 
data generated by the backdoor channel. The initial findings underscore 
the necessity for further research before deploying deep learning classi-

fiers as backdoor covert channel detectors.

In summary, backdoor attacks involve concealing inaudible signals 
within data to manipulate ASR models through covert backdoor chan-

nels, influencing the resulting transcriptions. These attacks are not lim-

ited to human voices and can be carried out using pure music clips or 
noisy audio that would not produce accurate transcriptions without per-

turbations. Moreover, the duration of the trigger signal can be as long 
as the injected audio, enhancing the attack’s potency without revealing 
the signal. The recent backdoor attack techniques have achieved attack 
success rates exceeding 90% on average.

3.2. Voice squatting and voice masquerading

Voice assistants are a ubiquitous part of people’s daily lives in the 
modern world. One must first authenticate to hear instructions and call 
other services using a voice assistant. As the third-party market grows, 
more and more service providers add new functions (skills) to it. As a 
result, attackers can trick voice assistants by uploading malicious skills 
to unofficial markets.

To evaluate how much impact the skills in the third-party mar-

ket have on the security of voice applications, Zhang et al. Zhang et 
al. (2019) examine whether such remote, massive attacks through the 
third-party market are plausible. Voice squatting and masquerading 
were identified as two novel attack techniques. Voice squatting means 
imitating a legal ability by employing a wake phrase that sounds like 
the legal skill you intend to use. For instance, employing the lawful skill 
“open capital one” prevents voice assistants from utilizing the criminal 
skill “capital won”. When you hear “capital one please,” call another tal-

ent. When an attacker uses speech masquerading to communicate with 
a user and get sensitive information, they pose as a voice assistant or a 
called skill. The trials the authors did on the Google Home and Amazon 
Echo, which included user research and actual installations, revealed 
9

that they both offer a genuine threat.
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Amazon and Google constructed a new squat detector available on 
Alexa and Google’s marketplace. It confirms the importance of voice 
squatting and masquerading. A skill named scanner was created and 
available on the Amazon and Google Skills marketplaces to mitigate 
the risk. It identified several vulnerable Alexa skills and published skill 
names, indicating that the attack may have affected thousands of VPA 
customers. Additionally, they developed and used a context-sensitive 
detector to 95% accurately reduce the threat of voice masquerading. 
Future work will be needed to improve voice channel security and to 
verify the people engaged without interfering with the VPA system’s 
availability.

3.3. Adversarial attacks and defenses in ASR

Recurrent neural networks (RNNs) are commonly utilized in time 
series machine learning systems, including Automatic Speech Recogni-

tion (ASR) systems. Serrano et al. Serrano et al. (2020) highlight the 
susceptibility of RNNs to periodic adversarial perturbations due to their 
unique memory and parameter-sharing capabilities. Their attack on the 
DeepSpeech model generates previously unknown cases in real-time by 
producing antagonistic perturbations. Experimental results demonstrate 
an average 0.426 cross-correlation and a mean square error of 0.017 be-

tween undisturbed and disturbed audio samples. The smoothed BLEU 
score between original and disturbed DeepSpeech transcripts is 0.221. 
While previous attacks on RNNs have focused on white-box and black-

box iterative approaches, this strategy exploits the temporal nature of 
the problem, leveraging RNNs’ real-time adversarial perturbation gen-

eration capabilities.

Carlini et al. Carlini and Wagner (2018) conduct an end-to-end ad-

versarial attack against the DeepSpeech model in a white-box setting. 
Despite the difficulty of optimizing with Mel-frequency spectral coef-

ficient (MFCC) preprocessing, they directly feed unprocessed data as 
input to the classifier. Their attack is 100% effective regardless of the 
required transcription or source audio samples. By embedding speech 
within audio that should not be identified as speech, they demonstrate 
the potential to transcribe speech into music, conceal speech from tran-

scription, and achieve a transcription rate of up to 50 characters per 
second. This highlights the value of targeted audio adversarial samples 
in automated speech recognition, revealing that linearity does not hold 
in the audio domain.

Taori et al. Taori et al. (2019) focus on improving adversarial attacks 
on deep recurrent networks in ASR systems, particularly in black-box 
environments. They employ a combination of evolutionary algorithms 
and gradient estimation techniques to generate adversarial samples. Af-

ter 3,000 generations, they achieve a 35% target attack success rate, 
maintaining 94.6% audio file similarity and 89.25% target attack sim-

ilarity. The findings suggest that combining genetic algorithms with 
gradient estimation produces superior adversarial samples compared 
to using either approach alone. Their method successfully targets deep 
nonlinear ASR systems, generating near-perfect transcriptions while 
maintaining a high degree of similarity.

Chen et al. Chen et al. (2020) address the challenge of signal distor-

tion during aerial transmission by proposing the generation of inaudible 
sounds that can withstand air transmission. They leverage the frequency 
selectivity of devices and channels, employing a two-phase architecture 
called Metamorph. This approach creates an initial perturbation based 
on prior measurements that account for core distortion effects. A do-

main adaptation technique is then applied to enhance the attack range 
and reliability. Evaluation results demonstrate a high attack success rate 
of 90% at close attack ranges of 6 meters.

In summary, deep learning-based ASR systems face significant se-

curity and privacy challenges, particularly in relation to adversarial 
attacks. These attacks have demonstrated success rates exceeding 90% 
on average. Researchers have explored various attack strategies, in-

cluding exploiting RNN vulnerabilities, end-to-end adversarial attacks, 

targeted attacks in black-box environments, and addressing signal dis-
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tortion during aerial transmission. The development of robust defense 
mechanisms against adversarial attacks remains an important area for 
future research.

3.4. Hidden command attacks and defenses in ASR

Deep neural networks (DNNs) have significantly advanced Auto-

matic Speech Recognition (ASR) by approximating human hearing and 
understanding. However, DNNs are highly susceptible to adversarial 
perturbations. One type of attack is the hidden command attack, which 
exploits imperceptible perturbations that are correctly understood by 
ASR but not by human listeners.

Schonherr et al. Schönherr et al. (2018) introduced an innovative 
adversarial example based on psychoacoustic concealment. Their at-

tack utilized DNN-based ASR systems, incorporating a back-propagation 
stage into the initial analytic process. The attack achieved a success rate 
of 98% in less than two minutes for 10-second audio recordings. Hu-

man listeners were unable to comprehend the intended transcription, 
although the accuracy remained unchanged.

The DNN-HMM system underwent forced alignment and backprop-

agation, generating undetectable adversarial perturbations with high 
reliability. The study by Schonherr et al. Schönherr et al. (2018) ex-

plored algorithm variables such as the number of iterations and per-

mitted hearing threshold deviations. Their approach resulted in less 
distortion compared to previous studies, enabling targeted adversarial 
situations. Further research should incorporate psychoacoustic models 
to strengthen ASR systems against these simple attacks. Evaluating at-

tacks in real-world scenarios and commercial ASR systems using black-

box settings is also essential.

Abdullah et al. Abdullah et al. (2019) addressed the limitations of 
white-box attacks by utilizing a model-agnostic (black-box) approach 
in hidden command attacks. They leveraged signal processing methods 
commonly used by voice processing systems (VPS) to generate data for 
input into machine learning systems, making hidden command attacks 
more feasible. Their study evaluated 12 machine learning models, in-

cluding proprietary ones, against various targets. They demonstrated 
the effectiveness of four classes of perturbations resulting in unintel-

ligible sounds. The attacks performed well across different hardware 
setups, emphasizing the role of domain-specific knowledge in success-

ful covert voice command attacks.

Building upon this research, Abdullah et al. Abdullah et al. (2021)

explored pipeline phase attacks as black-box and transferrable attacks. 
By modifying a few audio frames, the attack achieved a 100% mistran-

scription and misrecognition rate. These attacks exploited the model’s 
sensitivity to minor, imperceptible speech components critical for ac-

curacy. Certain English phonemes, especially vowels, were found to be 
more vulnerable. These attacks proved effective in cellular networks, 
where transcoding, jitter, and packet loss weaken the signal. Unper-

ceivable phrases or signals with a significant impact on ASR or speaker 
identification (SI) systems can be utilized to construct more potent 
models for reducing ASR and AVI system vulnerabilities. Adversarial 
training can provide partial mitigation, but stronger defenses are ulti-

mately necessary to counter these attacks.

Zhang et al. Zhang et al. (2021) proposed a novel attack indepen-

dent of the target model, exploiting rapid speech that often leads to 
misinterpretation by both humans and ASR systems. They manipulated 
the phonetic structure of target voice commands in high-speed ver-

sions to deceive ASR systems into inferring secret meanings. The attack 
consistently succeeded across seven real-world ASR systems in vari-

ous settings, achieving a high success rate for adversarial commands. 
This study highlighted the vulnerability of current ASR systems to fast 
speech and demonstrated the efficacy of the proposed CommanderGab-

ble method.

Defending against hidden command attacks poses challenges, result-

ing in fewer research outcomes on defenses compared to attacks. Wang 
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et al. Wang et al. (2019) proposed a detection technique that identi-
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fied and analyzed distinctive audio signatures of spoken instructions 
transmitted through vibration. They exploited audio-induced surface vi-

brations detected by motion sensors, which are difficult to replicate, to 
conceal verbal orders and trick authentication systems. Their learning-

based method distinguished conventional voice instructions from covert 
ones using temporal and frequency-domain statistical characteristics 
and acoustic signals extracted from motion sensor data. Experimental 
results showed 99.9% accuracy in differentiating disguised from con-

ventional voice instructions using low-cost motion sensors with low 
sample frequency. The system also benefited from speaker motion sen-

sors.

Nevertheless, Wang et al. Wang et al. (2019) acknowledged po-

tential issues with the system’s playback procedure, such as front-end 
mode incursion and playback delays. Modulating the front-end play-

back sound to inaudible frequencies could potentially achieve zero 
incursion. Combining front-end and rear-end playback configurations 
using hidden and inexpensive devices with built-in speakers and motion 
sensors has been explored. The unsupervised learning-based strategy 
could be extended to protect against additional threats, such as ultra-

sonic attacks, with minimal training. Further investigation into separat-

ing playback noises and human voices in the vibration domain would 
also be worthwhile.

In conclusion, hidden command attacks exploit imperceptible per-

turbations that fool ASR systems but remain undetected by humans. 
Various studies have explored different attack methods, including psy-

choacoustic concealment, model-agnostic approaches, and exploiting 
fast speech. Defending against these attacks requires robust defenses, 
and research should focus on enhancing ASR systems’ resilience while 
considering real-world scenarios and commercial systems. Additionally, 
methods utilizing distinctive audio signatures and vibration analysis 
show promise in detecting hidden command attacks, although further 
refinements and investigations are needed.

3.5. DolphinAttack and its defenses in ASR

Speech assistants are susceptible to transcribed signal injection at 
inaudible frequencies. In earlier studies, high-frequency signal injection 
into audio has received much attention. Sound waves above or below 
the human hearing range are used as an attack strategy in DolphinAt-

tack. There are many ways to attack voice assistants, and research has 
concentrated on inserting secret orders into audio samples. Zhang et 
al. Zhang et al. (2017) are the first to propose a silent attack named 
DolphinAttack. Although DolphinAttack uses an ultrasonic carrier wave 
(with a frequency over 20 kHz) to avoid human perception, voice as-

sistants likely discern the signal because of the hardware properties 
of the microphone. DolphinAttack was successfully conducted on sev-

eral voice recognition systems, including Siri, Google Now, Samsung S 
Voice, Huawei HiVoice, Cortana, and Alexa.

Zhang et al. Zhang et al. (2017) suggested baseband cancellation 
and microphone augmentation as two hardware-based defense tactics. 
In terms of microphone improvement, an improved microphone sup-

presses acoustic sounds with ultrasonic-range frequencies. Signals in 
the ultrasonic frequency range with AM modulation properties can be 
identified and demodulated to obtain baseband in terms of baseband 
cancellation. Since there will be no association between the acquired 
audible speech signal and the noise in the ultrasonic region, a com-

mand cancellation procedure will not affect the microphone’s working 
condition.

However, it is challenging to stop DolphinAttack. To launch Dol-

phinAttack, attackers surreptitiously insert malicious orders into voice 
assistants and control systems by modulating audible speech with ultra-

sonic waves (such as doors or smart speakers). Guoming et al. Guoming 
et al. (2021) proposed EarArray as a simple technique for detecting 
DolphinAttack. EarArray exploits the fact that ultrasonic waves decay 
more quickly than audible sound to identify DolphinAttack. EarArray 

compares the command sound signal with the decay rate using nu-
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Table 3

A comparison of existing attacks on SI systems. The medium of a practical attack includes: A: Over-the-air, L: Over-the-line, P: Over-the-phone, S: Over-the-

surface. The goal of a practical attack includes: T: Targeted, U: Untargeted. The target model of a practical attack includes: I)Deep Speech, II)CNN based model,

III) RNN based model, IV) DNN based model, V)Commercial smart devices. The setting of a practical attack includes: B: Black-box, W: White-box, G: Grey-box.

Type Year Paper Medium Goal Target Model Setting Attack Approach Success Transferability

A L P S T U I II III IV V B W G

Adversarial 2021 Chen’21 ★ ★ □ □ ★ ★ □ □ □ □ ★ ★ □ □ Optimization 99% PY

Backdoor 2020 Zhai’20 □ ★ □ □ ★ □ □ □ □ ★ □ ★ □ □ Clustering-based attack 45% Y

hidden command 2021 Abdullah’21 □ □ ★ □ □ ★ ★ □ □ □ ★ ★ □ □ Interfere signal preprocessing 100% Y

hidden command 2019 Abdullah’19 ★ ★ □ □ ★ □ □ □ □ □ ★ ★ □ □ Generic attack method 80% Y

DolphinAttack 2017 Zhang’17 ★ □ □ □ ★ □ □ □ □ □ ★ ★ □ □ Modulate the frequency of the voice signal D PY

★ Applicable □ Not applicable D: Depending on the experimental environment Y: Yes PY: Presumably yes
merous microphones integrated into the smart device. EarArray could 
determine the attacker’s direction with 97.89% accuracy and detect in-

audible spoken orders with 99.0% accuracy.

The viability of transmitting silent ultrasonic attacks using solid ma-

terials is proposed as SurfingAttack in Yan et al. Yan et al. (2020). 
Unlike wireless transmission in previous studies, the new attack may 
conceal itself inside or beneath the solid material, opening up a new 
path for inaudible attacks. SurfingAttack employs the energy transmis-

sion mechanism of ultrasonic guided waves, which is a viable and af-

fordable attack method. SurfingAttack effectively attacked devices from 
30 feet away while using just 0.75 W of attack signal power. Several tri-
als were tested to determine the scope and boundaries of this hazard. 
The voice response was listened to at a low volume to facilitate dialogue 
between an opponent and the voice-controllable device. SurfingAttack 
may allow attackers to decrypt SMS passwords or place phony calls.

Yan et al. Yan et al. (2020) proposed several strategies for defense 
against SurfingAttack. There are three recommendations to reduce or 
eliminate acoustic vibrations in the ultrasonic range, including improv-

ing the microphone’s hardware arrangement, positioning the gadget 
atop a soft woven fabric, and differentiating the frequency difference 
between attacks and normal signals. 54 attacks were manifested us-

ing various attack settings (i.e., frequency, table material, distance, 
baseband signal, and device). Because the human voice contains few 
extremely high-frequency components, the received voice signal will be 
labeled an attack if the attack index is higher than the pre-set thresh-

old. This defense technique may fail if the device’s audio low-pass filter 
has a cut-off frequency lower than 10 kHz because of inadequate data 
for attack index calculation.

The network attacks in Wixey et al. Wixey et al. (2020) cause smart 
devices to create high-frequency (17-21 kHz) independently and low-

frequency (60-100 Hz) sounds, transforming them into acoustic attack 
weapons. Several gadgets appeared capable of emitting noises at vol-

umes that matched or surpassed several advised limits. The measure-

ments were conducted in an anechoic chamber at a distance of one 
meter. It can impact individuals across a wide region and be used for 
large and lethal devices. For instance, a speaker system in a car or a 
linked PA system during a concert or sporting event may be attacked to 
emit dangerous noise to human beings. Other, “noisier” channels may 
also be used, including smart TV broadcasts and injecting HFN or LFN 
into phone conversations.

Wixey et al. Wixey et al. (2020) evaluated two free Android applica-

tions with an external microphone to generate an alarm when the sound 
intensity increased, particularly HFN. Other defense tactics against Wix-

ey’s attack include routing inaudible noises, restricting speakers’ fre-

quency range, notifying the user, disabling playing audio files outside 
the audible range, and strengthening mobile app permissions. Consumer 
and business antivirus detection engines can incorporate heuristics to 
find these threats. A confirmation prompt may be sent to the user to ask 
if they want to proceed if, for instance, a combination of specific behav-
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iors is frequently identified by antivirus engines as suspicious behavior.
4. Attacks and defenses in SI-based voice assistant applications

Most products combine ASR and SI models in the voice assistant 
applications market. Some applications only provide speech recognition 
functions. However, stand-alone SI function applications are rare. The 
research in this area has fewer works that target SI systems only. The 
number of attack kinds used on SI systems is also fewer than in ASR 
systems. This section introduces attack and defense techniques for SI 
systems.

Tables 3 and 4 present notable investigations of attacks against 
Speaker Identification (SI) systems and defenses employed for SI sys-

tems. The attack studies are compared based on the target model, 
attack methods, and attack settings. Similarly, the defense studies are 
compared according to their defense methods, the need for additional 
devices, success rates, and related factors. In order to obtain outcomes 
that are both realistic and applicable, all experiments were conducted in 
varying levels of ambient noise, replicating real-life environments. The 
majority of these studies utilized the widely accessible open-sourced 
TIMIT dataset, which is a prominent collection of speech data. A few 
studies, however, opted to gather their own datasets through partici-

pant contributions.

4.1. Attacks against SI-based models

The vulnerability of Speaker Identification (SI) systems to adversar-

ial attacks is a significant concern in IoT devices, where SI systems are 
commonly employed for biometric identification and authentication. 
While research has made progress in understanding adversarial attacks 
in white-box settings, the challenge of adversarial attacks in the black-

box context remains open.

In 2021, Chen et al. Chen et al. (2021a) conducted an extensive 
investigation on adversarial attacks against SI systems in black-box 
environments, making notable contributions to this field. They intro-

duced a novel adversarial technique called FAKEBOB, which generates 
adversarial samples by optimizing adversarial sound intensity and im-

perceptibility. The authors proposed a technique to estimate the score 
threshold component of SI systems and used it to address optimization 
challenges. FAKEBOB achieved a high success rate of 98% in 16 attack 
scenarios and demonstrated the difficulty for human listeners to distin-

guish between neutral and aggressive speakers. Furthermore, FAKEBOB 
rendered several countermeasures against adversarial attacks in speech 
recognition ineffective.

The reliance on training data collected from third parties exposes 
SI systems to security risks. Backdoor attacks, where an attacker poi-

sons the training data to introduce a secret backdoor into the speaker 
verification model, pose a significant threat. Zhai et al. Zhai et al. 
(2021) proposed a cluster-based attack strategy, using various triggers 
for poisoned samples from different clusters. This approach success-

fully evaded prior backdoor defenses by employing unregistered defined 
triggers for model validation. Experimental evaluations across datasets 

showed Attack Success Rates (ASR) greater than or equal to 45% for 
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Table 4

A comparison of existing defensive methods for SI systems. The type of a defense includes: D: Detection, P: Prevention.

Mitigated Attacks Year Type Paper Methods Extra Device Success Transferability

P D

Spoofing 2022 ×
√

Meng’22 Array Fingerprint × 99.84% -

2020 ×
√

Ahmed’20
Compare the spectral power difference between real human speech

and the replayed speech played through speakers
× 91.30% PY

×
√

Zhang’20
Catch the dissimilarities between bone-conducted vibrations

and air-conducted voices when human speaks
× 97% N

×
√

Shi’20 Cross-domain comparisons: Audio&vibration
√

97.20% Y

√ √
Shirvanian’20

The WER for the synthesized voices are 2-3

times more than the WER for natural voices

√
>=95% -

2019 ×
√

Williams’19 Combine x-vector attack embeddings with signal processing features × - -

2018 ×
√

Zhao’18 Weighting framework with a Gaussian Mixture Model (GMM) 
classifier

× >=98% PY

DolphinAttack 2017
√

× Zhang’17
Hardware-based: microphone enhancement and

baseband cancellation; Software-based: machine learning
× - PY

√
Positive × Negative - None (or unspecified) Y: Yes PY: Presumably Yes
the tested speaker verification techniques. Detecting this attack is chal-

lenging, as the tainted data’s Equal Error Rate (EER) is similar to that 
of a model trained with a clean dataset. In real-world applications with 
multiple users, the resulting ASR is further amplified, highlighting the 
need for robust verification techniques.

These findings shed light on the vulnerability of SI systems to ad-

versarial attacks, particularly in black-box scenarios. The FAKEBOB 
technique demonstrates the effectiveness of adversarial attacks in evad-

ing countermeasures, while the cluster-based backdoor attack strat-

egy provides a fresh perspective for creating new attacks. Addressing 
these challenges is crucial for enhancing the robustness and security of 
speaker verification techniques.

4.2. Defensive methods for SI-based models

Speech assistant systems are susceptible to acoustic attacks, includ-

ing spoofing attacks, because voice signals are accepted in open spaces 
and channels. Modern VUIs that employ classic voice authentication 
techniques are susceptible to spoofing attacks, in which an evil adver-

sary impersonates a real user by speaking commands that have already 
been recorded or synthesized. Once the voice assistant’s SI system has 
been tricked, some risky actions, like making bulk purchases and phon-

ing friends and family, may be executed.

Many studies have focused on addressing the vulnerability of 
Speaker Identification (SI) systems to spoofing attacks. Notably, the use 
of Constant-Q spectral coefficients (CQCC) and scattered spectral coef-

ficients (SCC) has been effective in speech synthesis (SS) and speech 
conversion (VC) to identify fake speech signals. However, the equal 
error rate (EER) remains high for certain types of attacks, leading to 
selective detection degradation. To mitigate this, Zhao et al. Zhao et 
al. (2018) proposed an independent detector with adaptive weighting. 
Their approach combines CQCC and SCC features at the score level, 
and employs a new clustering technique to assess data structure. By 
selecting appropriate weighting variables based on the clustering char-

acteristics of truthful and dishonest subgroups, they achieved lower 
EERs using a Gaussian Mixture Model (GMM) classifier on the ASVspoof 
2015 database.

Williams et al. Williams and Rownicka (2019) introduced a novel 
detection mechanism that combines x-vector attack embeddings with 
signal processing characteristics. Their system employs convolutional 
neural networks (CNNs) and spoken audio representations, generating 
x-vectors using Mel Frequency Cepstral Coefficients (MFCCs) through 
a Time Delay Neural Network (TDNN). The study includes diverse at-

tack types and contexts, and augments the data with Gaussian noise to 
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improve resistance against unseen attacks. The system’s performance is 
evaluated using the Tandem Detection Cost Function (tDCF) and Equal 
Error Rate (EER). The use of frame-level 40-dim MFCC features without 
frequency range restriction could be further explored to capture varia-

tions in acoustic settings.

Shirvanian et al. Shirvanian et al. (2020) proposed a mitigation 
strategy for increasing the security of speaker verification from voice 
synthesis attacks without additional hardware. They leveraged speech 
transcribers, as synthetic speech is typically transcribed less accurately 
compared to genuine voices. By discarding terms not found in the ref-

erence dictionary and accepting transcribed text with a specific number 
of word errors, their detection technology achieved low false rejection 
rates and false accept rates for phonetically unique terms. However, 
this strategy may be ineffective against sophisticated speech synthesis 
technology that can achieve transcription accuracy similar to natural 
audio.

Shi et al. Shi et al. (2020) presented a training-free voice authen-

tication system called WearID. It utilizes cross-domain voice similarity 
between audio recorded by wearable accelerometers and voice assistant 
(VA) systems’ microphones. This approach provides increased security 
for speaker verification in VA systems without requiring active user 
participation or the storage of privacy-sensitive voice samples. WearID 
utilizes a special vibration-sensing interface and transforms microphone 
data into low-frequency “motion sensor data” for domain comparisons. 
The system demonstrates high accuracy in identifying users’ voice com-

mands in regular use and detecting fraudulent voice commands in au-

dible/inaudible attacks.

Zhang et al. Zhang et al. (2020) developed a continuous live-

ness detection technique for secure Voice User Interfaces (VUIs) in 
IoT contexts. It distinguishes between air-conducted vocals and bone-

conducted vibrations during speech, validating real users and iden-

tifying spoofing attempts. The technique operates without additional 
software or hardware beyond standard loudspeakers and microphones. 
By utilizing the weaknesses of VUIs as a detection method and probing 
with ultrasound, this technique can identify spoofing attempts using re-

play attacks.

Ahmed et al. Ahmed et al. (2020) proposed a voice live detection 
system called “Void” to mitigate replay attacks. Void compares spec-

tral power differentials between actual human speech and replayed 
speech played over speakers to identify spoofing attacks. Their sys-

tem achieves low error rates using a single classification model with 97 
features, consuming significantly less memory and providing faster de-

tection compared to conventional approaches. By combining Void with 
a Gaussian mixture model employing Mel Frequency Cepstral Coeffi-
cients (MFCCs), the error rate can be further reduced.
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Meng et al. Meng et al. (2022) developed an active feature fin-

gerprint utilizing the microphone array in smart speakers for source 
identification. They demonstrated the robustness of the array finger-

print to environmental changes and human mobility, leveraging the 
circular architecture of the microphones. The proposed ARRAYID ap-

proach achieves high accuracy in passive liveness detection, surpassing 
other techniques, by incorporating characteristics that cooperate with 
array fingerprints.

In summary, while certain studies focused on specific papers with-

out delivering clear insights, these aforementioned works address the 
vulnerability of SI systems to spoofing attacks and propose mitiga-

tion strategies through various techniques such as adaptive weight-

ing, x-vector embeddings, speech transcribers, cross-domain similarity, 
vibration-based detection, spectral power differentials, and active fea-

ture fingerprints.

5. Privacy issues beyond technical attacks

Users of IoT devices may not always be aware of who can access 
their recordings, as many smart products, including TVs, doorbells, and 
more, have built-in microphones. Protective Jamming Devices (PJDs) 
are commonly used to prevent eavesdropping on conversations by plac-

ing them on top of smart voice assistants’ speakers. However, even with 
PJDs, there is still a risk of voice eavesdropping due to advanced signal 
processing techniques used by modern voice assistants that reduce back-

ground noise and enhance speech. Hackers could potentially disrupt 
user speech by gaining access to recordings made by smart speakers.

Walker et al. Walker and Saxena (2021) investigate the effectiveness 
of protective jamming devices in preventing eavesdropping on conver-

sations. They analyze the impact of white Gaussian noise as a PJD 
interferer and evaluate its effectiveness using extensive experiments and 
signal processing techniques.

Mitev et al. Mitev et al. (2020) propose LeakyPick, an architecture 
that monitors the communication flow of smart devices in the cloud to 
prevent private user conversations from being recorded. They analyze 
encrypted MAC-layer communication and identify potential vulnerabil-

ities in voice assistants’ wake word detection.

Young et al. Young et al. (2022) focus on protecting young users 
from harmful third-party features in voice applications. They conduct 
a dynamic analysis to identify policy-violating voice apps, providing 
insights for platform providers to prevent the release of such applica-

tions. Le et al. Le et al. (2022) develop a natural language processing 
system to analyze voice assistant dialogues and identify risky content 
for children. They highlight the potential risks associated with voice 
applications targeting kids and the need for stricter regulations and ex-

aminations.

He et al. He et al. (2022) investigate the distinctiveness of voiceprints 
based on different words and explore their applications in wake-word 
selection and enhancing voice assistant safety. Ahmed et al. Ahmed et 
al. (2022) propose EKOS as a remedy to protect against unintentional 
and adversarial activations during the wake-up procedure of voice assis-

tants. EKOS leverages spatial redundancy in the auditory environment 
to reduce unexpected activations while maintaining accuracy. Chen et 
al. Chen et al. (2021b) address the FakeWake phenomena, focusing on 
the inadvertent triggering of voice assistants by fuzzy words. They pro-

pose a systematic framework for generating and understanding fuzzy 
words, analyzing the causes of false acceptance by wake-up detectors, 
and proposing mitigation techniques.

There is also some work addressing some application logic issues. 
Cheng et al. Cheng et al. (2019) investigate incorporating additional 
data into acoustic signals for voice assistant processing, introducing a 
tagging technique to enhance privacy when using voice assistants.

Liao et al. Liao et al. (2020) examine the effectiveness of privacy 
policies in voice applications, revealing discrepancies and inaccuracies 
in existing regulations and highlighting the need for improved privacy 
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In conclusion, the discussed research addresses various concerns 
related to voice assistants, including eavesdropping risks, backdoor at-

tacks, privacy policies, harmful content in voice applications, voiceprint 
distinctiveness, and unintentional and adversarial activations. These 
studies provide valuable insights into protecting user privacy, improv-

ing security measures, and enhancing the overall safety of voice assis-

tant technology.

6. Challenges and future research directions

Because the backdoor attack’s performance has been relatively good, 
future studies should concentrate more on defensive strategies. Identi-

fying the backdoor channels has always been a priority when mitigating 
backdoor attacks. Most existing defenses against backdoor attacks rely 
on identifying tainted inputs, which is not always reliable because of 
well-hidden triggers in sparse data. Retraining is resistant to backdoor 
attacks, but it is not practical because of its high computational time 
and indefinite calls to clean training data. In addition, it is presumable 
that the attacker taints the data in a “normal” manner by altering the 
training dataset. If the dataset is poisoned from a distance, it remains 
unknown whether such an inaudible attack is effective.

Several facets of voice squatting and voice masquerade attacks may 
benefit future research. These two strikes are new and constantly evolv-

ing due to the quickly expanding third-party skill market. The main 
obstacle to these attacks is the development of an autonomous re-

trieval system to search for prospective “susceptible” talents to hijack 
or fake. The existing approach performs admirably, but the searching 
step places undue reliance on human effort.

Compared to other attacks, the adversarial attack is one of the most 
developed attacks in speech. For the adversarial attack, there are still 
restrictions and difficulties. First, in contrast to the Dolphine Attack, 
the disturbance introduced would change the audio file and be audi-

ble to human hearing. In other words, a human defense might identify 
the antagonistic samples if he/she listened to every audio clip played. 
Thus, improving the transcript’s plausibility without compromising its 
correctness remains a future work. It would stop human defenders from 
being suspicious enough to inspect the audio file. Second, the majority 
of adversarial attack methods include teaching the model to discover 
how to swap out or substitute certain target phrases, but it typically fails 
when encountering untrained or unseen samples. Third, unlike white 
box settings, the black box setting in adversarial attacks is significantly 
less investigated.

Most research in adversarial attacks focused on CNN and DNN mod-

els. For other machine learning areas, combining transformer ideas into 
their existing models to improve efficiency is a mainstream trend for 
end-to-end models. In the last four years, there has been little progress 
using the advantage of transformer models, except Carlini et al. Carlini 
and Wagner (2018) in 2018. Even with an impressive attack success 
rate, Carlini’s study was based on white-box knowledge, which did 
not hugely raise the attack’s performance compared to other white-box 
research. The defense side of the adversarial attack has been greatly 
developed over the years. Future studies should consider if original sen-

tences can be extracted from adversarial samples after adding noise to 
lower the adversarial samples’ accuracy, for example, Park et al. Park 
et al. (2021) in 2021. After testing various Gaussian noise distributions, 
they could retrieve the original transcription findings when the pertur-

bation signal in the opposing samples was minimal. The sound is louder 
while making huge perturbations of adversarial samples to retrieve the 
actual transcription from the logit noise. Additional research is required 
to reconstruct the original transcript using logit noise.

Regarding hidden command attacks, the method proposed in Schön-

herr et al. (2018) has achieved good attack rates using psychoacoustic 
concealment. A good attack rate was maintained without affecting hu-

man understanding of the original speech samples. However, its main 
problem is that the injecting sample took a relatively long time com-
pared to other methods. Moreover, it was not tested on black-box ex-
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perimental environments. The transferability and robustness need to be 
enhanced. To make the attack more stable and transferable, future re-

search should focus on decreasing the influence of adversarial training 
mitigation and avoiding transition loss over distance and medium. An-

other problem in this area is that the defense side was much weaker 
than the attack, making attacks more dangerous. With the very effec-

tive defense method introduced, voice attackers would face a challenge 
since it calls for them to imitate acoustic fingerprints in both the audio 
and vibration domains. The playback procedure needed in the detection 
process might result in front-end mode incursion and some playback de-

lays. Future research may investigate whether and how playback noises 
and human voices are separated in the vibration domain.

A dolphin attack takes advantage of the microphone’s hardware 
flaw, making it difficult to mitigate without hardware modification. 
Future research should pay attention to how to change the structure 
of the microphone and make the change more adaptable and cheaper 
to adapt. Dolphin attack was introduced in 2017 Zhang et al. (2017). 
For mitigation, some researchers have raised some ideas of modifying 
the existing microphone, for example, baseband cancellation and mi-

crophone augmentation. However, none of the defenses was adopted 
by the market. One reason could be that the defense only applies to 
single-attack mitigation. It is not worthwhile if the dolphin attack was 
used on a small scale. On the attack side, the attack over the air was 
mature enough; thus, much research focused on different transmission 
mediums. With good performance on solid medium, this attack was too 
specific and could only target specific users, and the attacker himself 
must have physical access to the attack environment or be close enough 
to the targeted object.

One of the most significant problems for the third-party market is 
the policy restriction to protect young users. With increasingly more 
young users storming into the voice assistant market and the average 
age of the users being increasingly younger, there are few regulations 
to distinct the accessibility of the content for adults and kids. The legi-

bility of the skills released to the third-party market was not thoroughly 
checked due to a lack of restrictions for the service providers. The en-

forcement of automatic checks for the legibility of every skill before 
publishing is necessary to safeguard voice assistant applications. Adding 
a kid’s friendly mode and requiring parents’ authorization when detect-

ing young users is also essential for voice assistant applications.

In summary, a few aspects should be refined to mitigate technical 
and non-technical threats in voice assistant applications. This section 
reviewed challenges and possible future research directions in back-

door attacks, voice squatting and voice masquerade attack, adversarial 
attack, hidden command attack, and dolphin attacks. The challenges 
and open issues include attack and defense sides for each attack. This 
section reviewed the security and privacy problem beyond technical 
attacks. Policy and supervision of the market are also important for 
protecting users.

7. Conclusion

An in-depth analysis of voice assistant security is provided in this 
article, with an emphasis on the attacks that may cause a voice assistant 
to act maliciously and the defenses against such attacks. We start by 
outlining the overall organization and process of a voice assistant. Then, 
based on the attacker’s intention, threat model, attack strategy, and 
actual effectiveness, we briefly review several attacks. The six different 
technological attacks — backdoor attack, spoofing attack, adversarial 
attack, hidden command attack, and dolphin attack—are systematized 
and expanded upon. We categorize current countermeasures into two 
groups — detection and prevention—and organize them according to 
the types of assaults they were intended to avoid and their usefulness 
in terms of implementation costs, usability, and effectiveness. Then We 
outlined the wake-up word issue and application logic issues within 
voice assistants. We also discuss the prospective avenues and current 
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difficulties in future research.
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