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1. Introduction

Electronics and computer engineers and scientists are always
looking to further improve computers and computing methods.
Neuromorphic computing is a branch of engineering that aims
to replicate the low power, highly parallel, and high throughput

of the brain, which is one of the most highly
efficient and powerful computers known to
exist.[1] Key to any neuromorphic architec-
ture, such as the spiking neural network
(SNN), is the utilization of event-driven,
asynchronous voltage spikes. Using these
spikes significantly reduces the power con-
sumption of these networks compared to tra-
ditional deep neural networks (DNNs).[2,3]

Neuromorphic networks are designed
using two fundamental building blocks;
neurons and synapses, which are repre-
sented in the top panel of Figure 1. The
neurons, in their simplest integrate and
fire form, are designed to take weighted
summations of their input to generate an
output (middle panel of Figure 1). In neuro-
morphic structures, the inputs can be repre-
sented in the form of voltage spikes, which
represent events presented to the system for
processing, or information to transfer across
the network. In this widely accepted form,
these spikes are added to the neuron’s
membrane potential until a given threshold
is reached, where an output spike is gener-
ated and the membrane potential is reset.

The second fundamental neuromorphic building block is the
synapse. The synapse acts as the place where the weight of the
input (referred to as the synaptic weight) is stored and modified
(see the middle panel of Figure 1). Various learning rules can be
applied at the synapse, all with different benefits and drawbacks.
In SNNs, common learning rules include rate-based rules such
as spike-rate-dependent plasticity (SRDP) and time-based rules
such as spike-timing-dependent plasticity (STDP). SRDP com-
pares the firing rates of input and output to determine the change
in the synaptic weight, while STDP relates the timing of pre- and
postsynaptic spikes to govern the change in the synaptic weight.
Implementing these learning rules and the neuronal integrate
and fire behavior can be efficiently realized by utilizing specific
devices known as memristors.[4]

Memristors are two terminal devices that effectively act
as resistors with a form of memory. First proposed by Leon
Chua in 1971,[5] the link between thin-film resistive switching
(RS) devices and the memristor was first established in
2008.[6] Since then, memristor research has exploded, with many
devices having been fabricated and tested for their neuromorphic
applications.[4] Memristors are particularly advantageous to use
because they can eliminate what is known as the von Neumann
bottleneck, caused by the separation of processing and memory
elements in traditional computing architectures.[7] As
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As data processing volume increases, the limitations of traditional computers and
the need for more efficient computing methods become evident. Neuromorphic
computing mimics the brain’s low-power and high-speed computations, making
it crucial in the era of big data and artificial intelligence. One significant
development in this field is the memristor, a device that exhibits neuromorphic
tendencies. The performance of memristive devices and circuits relies on the
materials used, with graphene being a promising candidate due to its unique
properties. Researchers are investigating graphene-based memristors for large-
scale, sustainable fabrication. Herein, progress in the development of graphene-
based memristive neuromorphic devices and circuits is highlighted. Graphene
and its common fabrication methods are discussed. The fabrication and pro-
duction of graphene-based memristive devices are reviewed and comparisons are
provided among graphene- and nongraphene-based memristive devices. Next, a
detailed synthesis of the devices utilizing graphene-based memristors is provided
to implement the basic building blocks of neuromorphic architectures, that is,
synapses, and neurons. This is followed by reviewing studies building graphene
memristive spiking neural networks (SNNs). Finally, insights on the prospects of
graphene-based neuromorphic memristive systems including their device- and
network-level challenges and opportunities are given.
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memristors are able to simultaneously change and store their
conductance, they could significantly improve the efficiency
and performance of future computers by performing computa-
tions in the place of memory, i.e., in-memory computing
(IMC).[8]

Due to their IMC feature, memristors are often used for
neuromorphic synaptic applications.[7,9] As shown in the bottom
right panel of Figure 1, memristors are often placed as a direct
substitute for the synapse. The synaptic weight is then stored in
the conductance of the memristive device, which can be altered
using various learning mechanisms. Another application of
memristors in neuromorphic computing is in neuronal circuits.
As shown in the bottom left panel of Figure 1, the memristor
plays an important role in the output spiking of a memristive
neuron. Here, the resistor–capacitor circuit is responsible for
the temporal integration of the incoming voltage spikes.
When the capacitor is sufficiently charged, the memristor under-
goes an increase in conductance, producing output spikes.

Hence, memristors pose as ideal candidates for investigating
neuromorphic applications.

In addition to their spiking neuromorphic applications, mem-
ristor’s IMC abilities have been widely studied in conventional,
non-SNNs and machine learning. Furthermore, memristors
made from organic materials have similar properties to organic
processing units such as the eye or skin.[10] As such, areas
such as visual processing and storage,[11] tactile perception,[12]

and auditory processing[13] can all be implemented using
memristive devices.[14] Furthermore, by tuning properties
such as optical transparency, memristors can serve as image sen-
sors as well. This could be useful for neuromorphic applications
as neuromorphic computing benefits from event-based data.
As such, designing sensing systems that can collect data in a
neuromorphic way is tailored for neuromorphic systems.
Despite the many interesting applications, in this article, we
focus mainly on the use of memristors in spiking neuromorphic
architectures.

Figure 1. Utilizing graphene-based memristive devices in neuromorphic settings. The general structure of biological components (i.e., neurons and
synapses) and their connectivity is illustrated in the top panel. The middle panel demonstrates simplified models of the biological neuron and synapse.
Here, the soma of the neuron (yellow) is modeled with a summation term and an activation function, while the synapse structure visualizes the neuro-
transmitters and neuroreceptor mechanism. The bottom panel shows simplified equivalent graphene-based memristive neuromorphic circuits for the
simplified models. Here, part of the neuron is a transistor structure composed of graphene at its gate (similar to the design in ref. [58]), implementing the
activation function of the model neuron. The synapse is a sandwich filament-based memristive structure showing graphene at its bottom electrode.
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The materials used to manufacture memristive devices play a
significant role in their performance, cost, and environmental
impact. One material of particular interest is graphene, due to
its superior electrical, mechanical, and thermal properties,
which can be recently achieved through sustainable fabrication
methods.[15–18] Due to these benefits, graphene-based memris-
tive neuromorphic components (see the bottom panel of
Figure 1) have attracted high research and development interests.

In this article, we will discuss graphene, and how it can be
utilized to build memristive devices that can be implemented
into various neuromorphic architectures. Section 2 will outline
the various properties, fabrication processes, and applications
of graphene. Section 3 will cover the literature on different
graphene-based memristive devices that have been developed.
Section 4 will discuss the various synapses and synaptic
structures that have been developed using graphene memristive
devices. For this section, only devices that were characterized to
perform a spike-based learning rule were considered, due to our
paper’s neuromorphic focus. Section 5 will discuss the various
neuronal circuits that have been developed using graphene-based
memristive devices. Section 6 will provide an overview of the var-
ious neuromorphic networks that have utilized graphene-based
devices. Section 7 provides insights into the challenges and
opportunities of using graphene-based memristors in neuromor-
phic computing, while Section 8 concludes the paper.

2. Graphene

2.1. Properties of Graphene

Although graphene simply consists of a single layer of carbon
atoms bonded together, its prospects and future in electrical
engineering is unlike any other material. A list of graphene’s
superior electrical properties includes zero bandgap, a linear
energy dispersion near the Dirac point, and a high electron
mobility of 15 000 cm2V�1s�1.[19] This high electron mobility
means that graphene has an extremely high in-plane conductivity
at room temperature, while its through-plane conductivity is
more comparable to an insulator. Optically, graphene is mostly
transparent and only absorbs 2.3% of incoming white light.[20]

Furthermore, the optical absorption of graphene is independent
of wavelength,[21] and leads to many useful outcomes such as
two-photon absorption, four-wave mixing, and a saturable
absorber.[21]

To add to this, graphene is also known to possess a large ther-
mal conductivity, which varies between 3000 and 5000WmK�1

at room temperature.[22] A high thermal conductivity suggests
that graphene can act as a heat sink. Furthermore, due to its
strong anisotropy brought about by its structure, graphene’s
through-plane thermal conductivity is much lower, because it
is limited by the weak van der Waals interactions between sub-
strates,[22] which suggests potential implementation for thermal
insulation as well. Additionally, graphene is known to be
mechanically robust, making it suitable for applications requir-
ing flexibility such as wearable devices.[19]

Graphene’s unique properties means many electronic devices
could see improvement in the future. This includes devices
such as various transistors, transparent conducting electrodes,

light-emitting diodes, photovoltaics, and other applications.[19]

However, the class of device most relevant for this article is the
memristor, and many researchers have developed graphene-
based memristive devices. Although other 2D materials such
as black phosphorous, boron nitrides, dichalcogenides, and
2D perovskite have also picked up interest in this field,[23–26]

in this literature review, we merely focus on graphene-based
memristive devices.

2.2. Motivation for Using Graphene

Asmentioned in the previous section, graphene has a wide range
of properties suitable for a variety of applications. For neuromor-
phic applications like SNNs, the memristor serves as a promising
candidate to perform IMC and significantly accelerate perfor-
mance. Hence, utilizing graphene’s properties in memristive
devices can lead to many advances, such as flexible memristive
devices,[26] low power devices[27] and memristive devices with
optical applications.[28]

However, this is not the only motivation for using graphene.
The methods used to fabricate graphene play a significant role in
its commercial viability and its environmental sustainability.
Currently, there is a need for graphene to be produced at a
low cost, in large volumes, and in a sustainable manner. In a
previous work,[17] we used the plasma-enhanced chemical vapor
deposition (PECVD) method to fabricate graphene, without
using a catalyst, and by using Melaleuca alternifolia (a natural
extract from the tea-tree plant) as the precursor. Our work dem-
onstrated that high-quality graphene can be fabricated using this
sustainable technique, further showing the benefits of utilizing
graphene for memristive device fabrication in neuromorphic
applications.

Works such as refs. [29,30] have also demonstrated promising
and sustainable methods of graphene production. In ref. [29], an
environmentally benignmethod of producing few layer graphene
was reported. George et al. exfoliated graphene using naturally
available phenolics. In ref. [30], epitaxial growth was used to fab-
ricate wafer-sized, single-crystal graphene. This method had the
advantages of wafer compatibility, fast (�10min) production,
and excellent scalability.

2.3. Graphene Fabrication Methods

The first work detailing a method for fabricating graphene was
published in 2004.[31] Interestingly, the graphene was produced
by removing the surface layer graphene from graphite using
tape.[32] The graphene flakes of varying thicknesses could reach
up to 1mm in size.[31] Other mechanical exfoliation methods
include using atomic force microscope tips to extract the surface
layer,[33] and it has been found that a force of 300 nN μm�2 is
required to separate the surface graphite. However, mechanical
exfoliation is limited by its inability to be scaled and reproduced
in a consistent manner.

As more research has been developed for graphene and
graphene-based memristive devices, many other methods of
production have come to light, such as epitaxial growth,[34–36]

chemical exfoliation,[37–39] unzipping carbon nanotubes,[40–42]

and other methods.[43] One of the most promising methods
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for producing large volumes of high-quality graphene is chemical
vapor deposition (CVD). This bottom-up method requires gas-
eous reactants to undergo chemical reactions to deposit solids
onto various substrates.[44] The CVD method has been used to
produce graphene in many different works;[45–47] however, this
method has some potential drawbacks as well. Often, CVD
requires high temperatures and pressures to deposit graphene
onto a substrate.[33] A variation of the CVD is the PECVD
method, where the gases react in the presence of a plasma, which
can lower the required temperatures and pressures. The plasma
can be induced via radio frequency (RF), microwave or inductive
coupling. Many works have demonstrated graphene fabrication
using this method.[17,48–50]

Epitaxial growth is also a method that allows the deposition of
a single-crystalline film (epitaxial film) on a single-crystal sub-
strate. Although lesser studied than CVD, epitaxial growth of gra-
phene is still quite common,[35,36] due to scalability, high-quality
product, and exceptional electronic properties. However, one of
the drawbacks of epitaxial growth is the substrate used. Metal
substrates are suitable for epitaxial growth of graphene, however,
for electronics applications such as neuromorphic computing, it
is much more suitable for growth to occur on an insulator.
Hence, an alternative such as SiC is used instead. However,
SiC suffers from drawbacks such as limited quality due to the
inability to control sublimation rates at temperatures between
900 and 1300 °C and that thermal decomposition is limited to
the use of 3C–SiC (111) surface.[51]

3. Graphene-Based Memristors

Memristors are two terminal devices that are set to change the
dynamics of computing. First proposed in ref. [5] as a fourth,
fundamental electrical component, the fabrication, characteriza-
tion, and implementation of memristors have seen a huge inter-
est from electronic and material engineering researchers.
Memristive devices have the unique property where the conduc-
tance/resistance of the device is dependent on previously applied
voltages and currents, allowing the devices to possess a form of
memory in their conductive/resistive state (and hence the term
“mem"-"ristor”). Utilizing the conductance in this way is said to
provide many benefits, including overcoming the von Neumann
bottleneck and lower power and area consumption.[4,7] This sec-
tion will cover the various graphene-based memristive devices
that have been previously developed.

3.1. Graphene-Based Memristor Fabrication Methods

When manufacturing graphene-based memristive devices, gra-
phene is often grown using CVD.[52–54] This is largely owing
to this method’s potential to fabricate high-quality graphene in
large volumes, at a relatively cost-effective rate. To build
graphene-based memristive devices, graphene is often synthe-
sized and then transferred to the device, or the materials of
the device are deposited on top of the graphene via thermal evap-
oration or other techniques. In limited cases, other methods have
been used. This is the case in works such as,[55] where graphene

was grown using epitaxial growth. In ref. [56], mechanical exfo-
liation was used to produce a graphene/MoS2/graphene memris-
tive device. However, these methods are often not considered
unless they are required for specific reasons such as fabricating
memristive devices with specific materials/needs. Chemical
methods, such as those outlined in ref. [57] have also been used
to produce graphene oxide for memristive devices, and in some
cases such as refs. [26,58], commercially grown graphene has
been used to fabricate the memristive device.

Some studies have investigated unique methods of fabricating
graphene-based memristors. In ref. [59], SiOx memristive nano-
dots were developed on graphene electrodes via a block copoly-
mer self-assembly process. The cost-effective, scalable, and high
resolutions achieved using block copolymer processes can sur-
pass the limits imposed using optical lithography.[59,60] Other
interesting methods have also been explored for developing
graphene-based memristive devices. The work proposed in
ref. [61] investigated inkjet-printed memristors with graphene
oxide layers. Printed memristors tend to be larger, on the order
of μm as opposed to nm.[62] However, printed memristors can
be produced rapidly, at low cost and with minimal waste, making
them suitable for rapid prototyping.

3.2. Memristor’s Characteristics

When designing memristors, there are a series of parameters
that determine the device’s suitability for various applications.
This includes ROff/ROn (or high-resistance state (HRS)/low-
resistance state (LRS)) ratio, number of states, switching energy
and speed, device size, endurance, retention, and cycle-to-cycle
(CTC) and device-to-device (DTD) variability.[4] The ROff/ROn

is a ratio between the minimum and maximum values of resis-
tance for the memristive device, which is important for distin-
guishing between states and establishing a dynamic range.
The number of states refers to the number of resistance states
possible within the memristive device, which is important in
determining the possible applications of the device. Switching
energy and speed refer to the energy and time required to switch
the device from HRS to LRS, respectively. These considerations
are important when considering the required power needed to
supply the device as well as the maximum speeds that the device
can operate under.

Endurance is the property of the memristor to be switched
from HRS to LRS consistently, and is measured by the number
of cycles of switching from HRS to LRS until state degradation is
observed.[63] Retention is the time that a memristor can retain its
resistive state before changing state.[63] Finally, the CTC and
DTD variations refer to the probabilistic variations in the resistive
state (or other properties) as a result of intrinsically stochastic
device behavior or device defects between devices, respectively.
With an understanding of these parameters, many researchers
endeavor to utilize different switching mediums and mechanics
to improve these parameters. In the following subsections, we
discuss four prominent memristive switching mechanisms
and explain how graphene has been integrated into them to build
improved memristive devices.
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3.3. Building Graphene Heteromaterial Interfaces

Before discussing the various RS mechanics of graphene-based
memristors, it is important to discuss how graphene interfaces
with other materials, as this interface can play a significant role in
determining memristive properties such as the conduction
mechanism. For example, in ref. [64], it was noted that the
Schottky barrier could be modulated by increased donor concen-
tration for their device. As such, a two orders of magnitude
increase in resistance was observed, demonstrating the impor-
tance of designing interfaces with graphene. In ref. [65], gra-
phene and TiOx heterojunctions implemented into a
memristive device yielded 103 power reduction. Furthermore,
the tunneling barrier of their graphene–TiOx was tunable
through tuning the barrier width via SET and RESET operations
or by altering the quality of the graphene. In ref. [66], it was even
observed that the introduction of a Ta–graphene–TaO5 can alter
the types of ions being migrated in the RS medium by inhibiting
TaOx formation. In turn, this can affect the power consumption,
variability, and endurance/retention characteristics of the device.

3.4. Graphene-Based Ferroelectric Polarization Memristors

Some devices utilize the reversible electric polarization with a
ferroelectric material to produce RS. These devices are often
referred to as ferroelectric tunneling junction (FTJ) devices,

and a demonstration of how the device switches in response
to different input voltages is provided in Figure 2. Clearly, by
altering the applied voltage, the average barrier height for charge
carriers to tunnel through is altered, resulting in a modification
to the conductance. The typical minimum switching energy
required to alter the conductance of these devices is
�100 fJ,[67] which is moderate compared to other mechanisms.
However, it should be noted that their scalability is limited by the
fact that depolarization tends to occur as the device approaches
its critical thickness.

In ref. [68], an FTJ device was developed with a graphene elec-
trode. In this work, graphene’s superior in-plane conductance
was not the sole factor of device improvement. Instead, graphene
was used to control the molecular layers at the graphene–
ferroelectric interface. They found that when trapping a layer
of NH3 through the transfer phase, the ferroelectric polarization
retention time is several days for both polarized states, suggest-
ing a nonvolatile form of memory. Importantly, they found a
ROFF/RON ratio of �6000, providing a large conductance range
for neuromorphic purposes.

Another similar vein of study is the introduction of graphene
to various field effect transistors (FETs). Due to graphene’s supe-
rior conductivity, it is often introduced in the channel region of
the transistor (connecting the drain to the source). Works such as
refs. [28,69–72] use graphene-based transistors, that utilize fer-
roelectric polarization to produce RS. Some works such as

Metal Electrode (ME)

Interfacial layer (IL)

Ferroelectric Material (FM)
+_ +

_
+
_

+
_

+
_

+
_

Graphene Electrode (GE)

+
_

+
_

+
_

+
_

+
_

+_

+ + + + + +

Interfacial Layer (IL)

+ + + + + + - - - - - -

- - - - - -

ME MEIL FM IL

GE

IL FM ILGE GE

Fermi Energy

Average Barrier 
Height

(a)

(b)

ΔH

Figure 2. Graphene-based ferroelectric tunneling junction (FTJ) mechanic. a) Illustration of the FTJ mechanic. Note how the polarization within the
ferroelectric material changes with the applied voltage. b) The energy band diagrams associated with each polarized state in (a). In this example,
the reversal of polarization results in a shift in the average barrier height, resulting in a change in conductance.
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refs. [69,72] use the transistor’s gate as the third terminal of a
memristive device. For instance, Chen et al.[69] utilized this gate
to introduce an extra signal which was used to deploy a super-
vised learning (SL) algorithm.

3.5. Graphene-Based Memristors with Conductive Filament

One of the most common memristive switching mechanics is
the formation and rupture of conductive filaments. This is where
the electric field applied induces redox reactions within the
switching medium that form the conductive filaments. Some fil-
aments are formed through electrochemical metallization
(ECM), where an electrolyte is sandwiched between an electro-
chemically inert electrode such as Pt or Pd and an electrochemi-
cally active electrode like Ag[73] or Cu.[74] Some devices utilize
valence-change memory (VCM), where oxygen vacancies serve
as the conductive filament, and the migration of these ions
can be controlled with an applied electric field. For these types
of memristors, the electrodes need not consist of active metals;
however, they generally possess a longer write/erase endurance
cycle due to the lack of impurity residue introduced into the oxide
layer, and also because the metal electrode hardly participates in
ion migration.[14] In general, conductive filaments have �100 fJ
switching energy,[67] which is moderate compared to other
switching mechanisms.

Investigations surrounding graphene’s implementation into
conductive filament are often centered around two areas; inves-
tigating graphene as an electrode material and investigating gra-
phene oxide as an RSmaterial.[75] Graphene has long been touted
as a suitable electrode material for many reasons, including
lower power consumption due to high out-of-plane contact resis-
tance, high flexibility, and being used as a blocking layer for
atomic diffusion and other effects.[76] As such, graphene can play
a useful role for both ECM- and VCM-type devices. For VCM-type
devices, graphene (and graphene oxide, a derivative of graphene)
play a significant role in the morphology and diffusion of oxygen
vacancies,[18,27] whereas for ECM devices graphene can be uti-
lized to limit conductive filament formation for better uniformity
and stability,[73,77] as shown in Figure 3.

Some examples of graphene-based memristive devices that
utilize the conductive filament switching mechanism
include.[27,78] The memristive device developed in ref. [27]

sandwiches aluminum between aluminum oxide and graphene.
Applying various electric fields forms conductive filaments
through the migration of oxygen vacancies. The most notable fea-
ture about their device is that the switching energy required is
less than a femtojoule, which is ideal for power consumption.
In ref. [78], graphene and MoS2 were used to develop a memris-
tor. Both the MoS2 and the graphene were grown using the CVD
method. The monolayer graphene was transferred to a wet pþ

SiO2/Si substrate, where photolithography was used to pattern
the graphene. The graphene then formed the bottom electrode
by etching with oxygen plasma. Mo films were then e-beam evap-
orated onto the etched graphene and then sulfurized using a
CVD furnace.

Graphene oxide is another material that is also often investi-
gated for memristor applications. Graphene oxide is a derivative
of graphene that consists of a single atomic layer of carbon
atoms, but with both surfaces modified by oxygen containing
functional groups.[79] Unlike graphene, graphene oxide is hydro-
philic, and is easily dispersible in organic solvents,[80] yet is still
able to be produced in a similar manner to graphene. Graphene
oxide is often investigated as an RS medium, because it shows
better RS behavior when used as a dielectric medium compared
to graphene. Works such as refs. [80–82] discuss graphene oxide
memristive devices, and how graphene oxide contributes to the
switching mechanic. Works such as refs. [55,83] have also uti-
lized graphene oxide memristive devices, and have demonstrated
the STDP learning rule with their devices.

3.6. Graphene-Based Memristors with Magnetic Tunneling
Junction

Magnetic tunneling junction memristors utilize the orientation
of the magnetic moment within a material to generate RS, simi-
lar to the memristor that utilize the ferroelectric polarization.
This type of switching mechanic is less common than others,
particularly for when graphene is implemented into the design.
This is largely owing to the limited conduction range providing
fewer states to manipulate, making them less effective as mem-
ristive devices, particularly in neuromorphic environments.[67]

Regardless of this, works such as refs. [84,85] have both fabri-
cated graphene-based magnetic tunneling junctions.

Ion Movement
Graphene

Metal Electrode (e.g. silver)

Electrode (e.g . platinum)

(a) (b)

Figure 3. Improving electrochemical metallization (ECM) devices through graphene filament confinement. a) ECM device with no confinement. In this
image, multiple filaments are formed, resulting in higher power consumption and a larger degree of variations. b) ECM device with graphene nanohole for
filament confinement. Clearly, the graphene limits the migration of metal ions such that only one filament can form.
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3.7. Graphene-Based Phase-Change Memory

Phase-change memory (PCM) devices rely on reversible phase
changes (induced by joule heating) between an amorphous low con-
ductivity state and a highly conductive crystalline state. Heating the
device above the melting temperature of the medium by applying
electrical current can alter the device’s phase from crystalline to
amorphous, which in turn decreases its conductance. Similarly,
if the applied current heats the device between the crystallization
and melting temperatures, the device re-crystallizes and its conduc-
tance is increased. These devices have shown promise for their scal-
ability, however, the phase change requires a significant amount of
switching energy, with 1000 fJ being a typical value.[67]

Although graphene has a large in-plane thermal conductivity,
it is its low out-of-plane thermal conductivity that is often utilized
when developing graphene-based PCM devices. Due to this, gra-
phene often serves as a thermal barrier between the heater elec-
trode and the phase-change material. Doing so confines the heat
to a particular region, as shown in Figure 4, increasing the tem-
perature of this region without increasing the energy inserted
into the device. In ref. [86], graphene was placed as the interface
between the Ge2Sb2Te5 (GST) and the bottom electrode. In their
work, they demonstrated that by introducing graphene, a 40%
reduction in the reset current compared to a graphene-free
device can be achieved.

Another work that has implemented graphene into a PCM
device is ref. [87]. Similar to the work done in ref. [86], they
too utilized GST as a PCM material, and demonstrated an
85% reduction in the required reset current in their fabricated
device when graphene was introduced. Unlike the previous work,
the authors of ref. [87] sandwiched the graphene between a
30 nm thick GST layer and a 10 nm thick GST layer. By applying
a 2D finite-element method, they showed that the graphene could
confine the heating of the device to the 10 nm GST layer, while
increasing the temperature of this area from 740 to 1000 K. Their
work also demonstrated that their 40 nm graphene-based device
required less reset current than 10 nm devices of the same mate-
rial, and they attribute this result to the increased series resis-
tance that graphene introduces. In ref. [88], two types of
graphene-based PCM devices are developed. One where gra-
phene is patterned into nanoribbons and the other where the
phase-change material (GST) is patterned into nanoribbons.
Their device was found to need <1 μA SET and <10 μ RESET

currents. They also found that the off/on resistance ratios of their
device was >100.

3.8. Comparison of Graphene-Based Memristors with Different
Switching Mechanics

Figure 5 and its accompanying Table 1 compare the various
aforementioned memristive properties based on the various
switching mechanics discussed. To the best of the authors’
knowledge, the values represented in both the table and figure
are state of the art. As shown in all comparisons, graphene-based
memristive devices have not fulfilled their maximum potential
compared to their non-graphene counterparts. In some examples
such as magnetic tunneling junctions (MTJs) and conductive fil-
ament, graphene-based memristive devices have improvements
in switching energy. Graphene is often utilized as an electrode to
lower energy consumption due to its higher out-of-plane resis-
tance, so this result is not entirely unexpected.

Out of the aforementioned switching mechanics, PCM and con-
ductive filament devices are by far the most widely studied for neu-
romorphic applications (particularly conductive filament devices.)
Although Figure 5 suggests that PCM devices are weaker for neuro-
morphic applications, there are certain properties of these devices
that make them more suitable. The retention plotted in Figure 5 is
themaximum value at which the device have been tested. However,
the device still held its retention at this point, and it is predicted that
these devices can have retention on the order of 10 years.[67]

Furthermore, the low HRS/LRS ratio is made up for by the fact
that most PCM devices can be programmed in an analog fash-
ion.[67] However, the most significant drawback of PCM devices
is its large switching energy, even when graphene is introduced.

Graphene-based memristive devices have competitive advan-
tages over non-graphene memristors, such as improvements in
switching energy.[76] However, the ideal memristive candidate
needs to have a wide variety of suitable properties. As shown
in the radar plot in Figure 5, graphene-based memristive devices
typically show lower endurance than non-graphene counterparts.
This means that graphene-based memristive devices cannot per-
form as many operations, limiting their lifetime. For conductive
filament devices, cycling endurance failures can be attributed to
the aggregation of defects during cycling.[89,90] Hence, develop-
ing graphene-based memristive devices that limit the accumula-
tion of defects is a logical step for neuromorphic investigations.

The switching mechanic most suited for further neuromor-
phic investigation is the conductive filament mechanism. As
shown in Figure 5, the conductive filament device has a broad
range of properties that are suitable compared to other switching
mechanics that have limitations in certain areas. The graphene-
based conductive filament device shows the highest potential for
neuromorphic applications, if these devices can reach the same
properties that non-graphene conductive filament devices have
reached. While all of the aforementioned properties of memris-
tive devices are important, some properties like switching
energy, endurance, and retention should be prioritized over
others, as they have more impact in neuromorphic architectures.
Lastly, memristive devices (including conductive filament
devices) still suffer from large variability.[91] Addressing this
issue is challenging due to the stochastic physics underlying

Temperature
High

Low

PCM

Bottom Electrode

Top Electrode

Graphene

Figure 4. Illustration of phase change memory (PCM) devices with and
without graphene. Note that the graphene-based device’s lower PCM sec-
tion contains a higher-temperature section with the same applied current.
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conductive filament devices; however, promising results have
been achieved.[77,92] Strategies to close the gap between graphene
and non-graphene memristive devices could include graphene
structural/defect engineering,[93] reworking existing memristive
device structures by adding graphene[94,95] and by proposing new
device structures that aim to improve all relevant memristive
properties, not just specific properties.

4. Graphene-Based Memristive Synapses

When developing SNNs, there are two fundamental building
blocks: the neuron and the synapse. The synapse acts as a
weighted connection between neurons. This weight is often
referred to as the synaptic weight, and learning is introduced into

neural networks by adjusting the synaptic weights following a
certain mechanism.[96] Many unsupervised learning rules
exist in neuromorphic architectures, such as the STDP,[97,98]

SRDP,[99,100] paired pulse facilitation (PPF),[101] while there also
exist supervised[102] and deep-learning-like[103] rules. Figure 6
provides a visualization of some of the main neuromorphic
learning rules implemented with memristors.

The most widely investigated rule in neuromorphic comput-
ing and memristive-based neuromorphic systems is, perhaps,
the STDP rule. This is due to its biological plausibility as well
as its relative simplicity. The STDP rule is where the individual
timings of pre- and postsynaptic spikes dictate the synaptic
weight update. Memristive implementations of the STDP rule
require careful consideration of the action potentials presented
to the device.[98,104]

Figure 5. Radar plot comparing the various properties of memristors against different switching mechanics. The properties being plotted in the plot are
displayed in Table 1. *Values for retention and endurance could not be found for graphene-based MTJs.

Table 1. Summary of key properties for graphene-based and non-graphene memristors and the sources which reported these values.

Resistive switching mechanic Endurance Retention Switching energy Size Roff/Ron ratio

Graphene-based memristors

Graphene PCM 106 cycles [87] >300 s [88] 1.5 nJ [87] 2500 nm2 [86] �10 [87]

Graphene CF 107 cycles [77] 107 s [164] 0.01 fJ [27] 50 nm2 [77] �106 [27]

Graphene MTJ Not reported Not reported 0.1 fJ [165] 100 μm2 [84] 105 [85]

Graphene FTJ 4000 cycles [68] 3.45� 105 s [68] 50 nJ [69] 50 μm2 [69] 6000 [68]

Non-graphene memristors

Non-graphene PCM 1011 Cycles [166] >3.6� 105 s [167] �0.3 pJ [94] 78.53 nm2 [168] �350 [169]

Non-graphene CF >1012 cycles [170] >106 s [171] �115 fJ [172] 4 nm2 [173] 109 [174]

Non-graphene MTJ 1012 cycles [175] 3.15� 108s [176] 6 fJ [177] �907.9nm2 [178] �104 [179]

Non-graphene FTJ 108 cycles [180] 104 s [180] �1 fJ [181] 314.1 nm2 [182] 5.1� 107 [183]
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Many graphene-based memristive devices have been charac-
terized to behave as an artificial synapse, and these have been
summarized in Table 2. In refs. [69,71], graphene-ferroelectric
transistors were implemented as synapses. In ref. [69], an SL
rule was used, known as the remote supervised method
(ReSuMe).[102] In their work, they state that the ReSuMe method
has many unique advantages compared to other SL methods
used in SNNs, such as its capability of learning spike sequences
as opposed to single spikes and that it is applicable to various
types of neuron models. In ref. [70], graphene-based FETs were
used as synapses capable of performing vector matrix multipli-
cation. They also demonstrated their device’s ability to allow for
on-chip realizations of k-means clustering. However, the non-
SNN synaptic devices are out of the scope of this paper and
we will not investigate them in detail.

In ref. [27], a memristive device was developed by sandwiching
aluminum, aluminum oxide, and graphene, where the graphene
was used as the electrode. They characterized their device’s
STDP weight increase, i.e., potentiation, and decrease (depres-
sion) by applying 100 consecutive, positive/negative voltage
pulses to it, and also demonstrated its ability to implement
the STDP mechanism. Not only this, but the author of ref. [27]
also demonstrated that their device exhibited metaplasticity, where
the dynamics of the STDP rule change depending on the device’s
history.[78] is another work that demonstrates graphene’s potential
as a synapse capable of performing the STDP rule. In the device
proposed in ref. [78], MoS2 (another 2D material) was used as a
switching medium and graphene as a bottom electrode.

Graphene oxide–based memristors are also researched for
their neuromorphic applications. As already mentioned, unlike
graphene, graphene oxide is hydrophilic, and is easily dispersible
in organic solvents.[80] Works such as refs. [83,105–107] have all
investigated graphene oxide–based synapses. In ref. [106], their
device was capable of performing the STDP rule. By introducing

gold nanoparticles to the device, an improvement in the Roff/Ron

ratio was observed due to gold nanoparticles acting as charge-
trapping centers. In ref. [107], a graphene-based crossbar array
was used to hold synaptic weights as well as perform dot product
operations. The device proposed in ref. [107] utilizes graphene
oxide as the switching medium, as opposed to the electrode,
due to graphene oxide’s ability to contain oxygen vacancies.
The STDP rule has also been implemented in ref. [83]. In this
work, oxygen ions diffuse in the graphene oxide medium to form
conductive filaments, and the device displayed reasonable
endurance and retention properties. In ref. [105], a bilayer
graphene-based device was also able to replicate the STDP rule
while having modulatable plasticity, similar to ref. [27]. This
modulatable plasticity was achieved through adjusting a back
gate voltage being applied to the device.

Although STDP is very common for synaptic implementa-
tions, other learning rules are implemented as well. In some
cases, no specific learning rule is tested for, but rather the devi-
ce’s ability to perform long-term potentiation (LTP) and short-
term potentiation (STP). Investigations such as refs. [70,107,108]
have investigated such instances, and these studies are often
more focused on other aspects of the device. For example, in
ref. [108], their work focuses more on the device’s flexibility
and ability to perform well after repeated stress.

Studies such as refs. [109-111] have emulated the SRDP rule; a
rule which relates the spiking rates of pre- and postsynaptic neu-
rons to modulate synaptic weight. In all three of these studies,
graphene oxide was used, due to its ability to conduct protons. In
ref. [112], a graphene oxide–based device was used to implement
the PPF learning rule. This learning rule is a form of short-term
plasticity where pairs of pulses, closely following each other,
result in the second pulse having a higher excitatory postsynaptic
current (EPSC). Authors of ref. [112] attribute their PPF behavior
to residual protons in the indium zinc oxide (IZO) channel

PPF

STDP

pre post

SRDP

fpre fpost

ReSuMe(a)

(b)

(c)

(d)

Figure 6. Summary of major neuromorphic learning rules demonstrated with memristors. a) Memristive demonstration of the general concept of the
spike-timing-dependent plasticity (STDP) learning rule, where the timings of the pre- and postsynaptic spikes correlate to conductance change within the
memristor. b) Demonstration of the memristive SRDP learning rule, where the difference in the firing rates of pre- and postsynaptic spike trains correlates
to conductance change. c) Memristive demonstration of the ReSuMe learning rule. Note that the W(τ) refers to the window function used to convolute
with the input and a is a biasing term. SdðtÞ acts as the supervisory signal and SinðtÞ and SoðtÞ refer to the input and output spike trains, respectively.
d) Memristive demonstration of the paired pulse facilitation (PPF) learning rule.
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adding to the total proton concentration, resulting in a higher
measured EPSC. Yan et al.[113] presented another work that
has also demonstrated the PPF learning rule. Their study utilized
a multilayer graphene electrode in a conductive filament mem-
ristive device to implement PPF, and achieved desirable spiking
energy of 37 fJ. In ref. [55], an ECM-based device consisting of
nitrogen-doped graphene oxide quantum dots, sandwiched
between a platinum and silver electrode, was also used to perform
the PPF learning rule. The use of graphene oxide quantum dots
means that the device is biocompatible and biodegradable.
Another study that investigated the PPF learning rule was
ref. [93]. Interestingly, carbon plays a quite a significant role in
the RS mechanic of the device, as the filament is formed by car-
bon. Furthermore, this synapse was also capable of performing the
STDP rule as well.

To facilitate comparison with non-graphene-based memristive
synapses, we also included, in Table 2, three representative devices
from each of the switching mechanics we discussed in
Section 3.4–3.7. Comparing memristive synapses is a difficult
endeavor due to the many factors that need to be considered. In
general, a graphene-based memristive synapse should operate with
lower power consumption than its non-graphene counterpart with
a similar device structure (if graphene is used as an electrode), due
to graphene’s higher out-of plane contact resistance.[76] However,
other factors such as number of programmable states, variability,
and switching time also play a critical role in the synaptic
effectiveness of a memristive device. Furthermore, considerations
should be made for any peripheral circuitry that is also required.
For example, in some cases, selector or transistor circuits are
required to limit the current flow through graphene-memristive

Table 2. Summary of graphene and 12 sample non-graphene-based memristive synapses. Here, we have presented as many of the graphene-based
neuromorphic synapses that could be found as well as 12 exemplar non-graphene-based memristive that represent each of the switching
mechanics described in Section 3.

Paper Device structure Resistive switching mechanism Size Switching energy Learning rule

Graphene-based

[69] Al/polyvinylidene fluoride (PVDF)/Cr–Au Ferroelectric polarization 5 μm� 10 μm� 150 nm 50 nJ ReSuMe[102]

[70] Graphene/Al2O3/Pt/TiN/pþþ�Si Interfacial polarization 0.5 μm� 1 μm� 120 nm 5mJ LTP/LTD

[27] Al/AlOx/graphene Conductive filament (oxygen vacancy) 20 μm� 50 μm� 157 nm 0.01–1 fJ STDP

[78] Ni-Au/MoS2/graphene/Ni–Au Not investigated 24–36 μm2 90 pJ STDP

[83] Ag/graphene oxide/FTO Conductive filament (oxygen vacancy) Not specified 9.6 μJ STDP

[105] Al/AlOx/graphene Conductive filament (oxygen vacancy) 9 μm� 360 nm 1 μJ STDP

[106] Al/graphene oxide–Au nanoparticle/ITO Conductive filament (oxygen vacancy) 1 μm2 150 nJ STDP

[107] Au/partially reduced graphene oxide/Au Conductive filament (oxygen vacancy) 6 mm� 3mm 11.2 mJ LTP/LTD

[108] Graphene/WSe2�xOy/graphene Conductive filament (oxygen vacancy) Not specified 16.1 pJ STP/LTP

[109] IZO/KH550-graphene oxide/ITO Field effect transistor 80 μm� 1000 μm 66 μJ SRDP

[110] Ti–AU/chitosan-reduced graphene oxide/Ti–AU Proton hopping 40 μm� 1 μm 8 nJ SRDP

[111] IZO/graphene oxide/ITO Proton hopping 150 μm� 1000 μm 250 pJ PPF and SRDP

[112] Au/graphene oxide/ITO Proton hopping 240 μm� 80 μm 12.5 μJ PPF

[113] Ta/Ta2O5/AlN/graphene Conductive filament (oxygen vacancy) Not specified 37 fJ PPF

[55] Ag/(nitrogen doped) graphene oxide quantum dots/Pt/Ti Conductive filament (silver cation) 31 415 μm2 900 μJ PPF

[93] TiN/AlN/graphene/Pd Conductive filament (carbon filament) 31 415 μm2 25 pJ PPF/STDP

Non-graphene-based

[184] Ag/GeS2/W Conductive filament (Ag) Not specified 15 pJ Stochastic STDP

[185] Ag/TiO2/Pt Conductive filament (Ag) 7853 μm2 26 pJ STDP/PPF

[186] TiN/Hf/HfO2/TiN Conductive filament (oxygen vacancy) 100 nm2 0.64 pJ LTP/LTD

[187] Ge2Sb2Te5 Phase-change memory 1 μm� 10 μm 1 pJ STDP

[188] Ge2Sb2Te5 Phase-change memory 39 nm technology 300 pJ STDP

[189] Ge2Sb2Te5 Phase-change memory 70 685 nm2 12.8 pJ LTP/LTD

[190] Ferromagnetic/MgO/ferromagnetic Magnetic tunneling junction 3141 nm2 38 fJ Stochastic STDP

[191] MgO/CoFeB/MgO/CoFeB Magnetic tunneling junction 18 900 nm2 1.2 pJ STDP

[192] Co/phenyldithiol/Co Magnetic tunneling junction 3142 nm2 5.6 μJ Stochastic STDP

[193] TiN/Si:HfO2/SiON/Si Ferroelectric polarization 500 nm� 500 nm� 28 nm 50 fJ STDP

[194] Pd/LSMO/(BaTiO30.5(CeO2)0.5/STO/Si Ferroelectric polarization 6362 μm2 0.12 pJ STDP/PPF

[195] Pd/BaTiO3–CeO2/LSMO Ferroelectric polarization 6362 μm2 120 pJ STDP
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devices,[114,115] increasing the size and power consumption of the
synaptic device.

5. Graphene-Based Memristive Neurons

As mentioned previously, the spiking neuron is an essential
ingredient when designing SNNs. Generally, the neuron is
designed such that a series of input voltage/current spikes
increase what is known as the neuron’s membrane potential,
to a point where a threshold is reached. Once this membrane
threshold is reached, the neuron produces an output voltage
spike that propagates through the network. When designing
neuronal circuits, many neuronal models exist ranging from
the biologically accurate Hodgkin–Huxley model,[116] right
through to the more computationally efficient and simple models
such as the Izhikevich[117] and leaky integrate and fire (LIF)[118]

models. The fundamental trade-off of biological plausibility and
computational simplicity often leans in favor of computational
simplicity when designing neuromorphic circuits, with the
LIF model being the most common choice.

Although it is more common to use memristors as synapses,
there have also been investigations dedicated to implementing
memristive devices into neuronal circuits. Utilizing the unique
characteristics of memristors when designing these circuits can
result in reduced size and power consumption, while also retain-
ing the fundamental properties of neurons. Although many
memristive neuron designs exist in the literature, only a few
of them are using graphene-based memristors. These designs
have been summarized in Table 3. For this table, all major mem-
ristive neuron designs found in the literature were considered
(graphene and non-graphene), and their key attributes such as

components used, neuron model, energy consumption, etc.,
have been summarized.

In ref. [119], two memristive LIF neuron models are proposed.
The first one is the most minimal design, consisting of a constant
voltage source, a volatile memristive device, and a capacitor.
This first model (referred to as MIF or MIF1) is able to replicate
two key voltage levels in spiking neurons: the resting potential
and the neuron threshold voltage. The second design, i.e.,
MIF2, adds an additional volatile memristor and a constant
voltage source to MIF1. With this change, the design is able to
replicate a third voltage level found in spiking neurons, the reset
potential. The authors of ref. [119] experimentally validated their
neuron design using off-the-shelf components and found that,
when connected to a solid-state brain network, their neurons
had a similar power consumption to the human brain, which
equated to approximately 12.8 pJ neuron�1. Due to the ideal
parameters of this design such as minimal components, low spik-
ing energy, and desirable operating range, this work is considered
to be one of the leading works in memristive neuron design.

In ref. [120], a memristive emulator was used to develop a
unique neuron model. In their design, biologically accurate
action potentials were presented to their neuron, and by control-
ling a fixed internal voltage source, they were able to replicate
many different spiking behaviors that are akin to those found
in biological neurons. Kim et al. (ref. [121]) also reported fabri-
cating a Ag/HfOx:N/Ag memristive device to develop an LIF
neuron. In this work, various characteristics of biological neu-
rons are retained, such as all-or-nothing spiking, the refractory
period, strength-modulated frequency, and threshold-driven
spiking. In ref. [122], a quasi-LIF neuron was developed where
the membrane timing constant τ was not held constant, but
rather, modified based on the principle of homeostatic plasticity.

Table 3. Summary of non-graphene- and graphene-based memristive neuron designs.

Paper Neuron model Energy usage Components useda) Output voltage /current Threshold voltage

Non-graphene-based

[119] (MIF1) LIF 4.9 pJ Spike�1 1 Mþ 1 Cþ 1 VS �70 to �50mV �48mV

[119] (MIF2) LIF 12.8 pJ Spike�1 2 Mþ 2 VSþ 1 C �80 to �50mV �52mV

[120] Spiking and bursting 60–110 nJ Spike�1 1 Mþ 3 Tþ 2 VSþ 1 C 0–2 V N/A

[121] LIF 4 nJ Spike�1 1 Mþ 1 Cþ 1 R 0–1 V 0.19 V

[124] LIF 4 μJ Spike�1b) 1 Mþ 1 Cþ 2 R 0–2 V 1 V

[125] LIF 5.6 fJ Spike�1 2 Mþ 2 VSþ 2 Cþ 2 R �2–2 V Not specified

[126] LIF 17.7 nJ Spike�1 1 Mþ 1 Cþ 2 R 0–0.4 V 0.7 V

[127] LIF 23μJ Spike�1 1 Mþ 1Cþ 1 R 0–1 V 0.5 V

[128] LIF 660 pJ Spike�1 2 Mþ 1Cþ 1 Rþ 1VS 0–0.4 V Not specified

[129] LIF 0.3 nJ Spike�1 1 M 10�9–10�4 A 4 V

[130] LIF 25nJ Spike�1 1 Mþ 1Cþ 1 R 0–25μA –

Graphene-based

[58] LIF 20 pJ Spike�1b) 1 Mþ 1 Cþ 3 R 0–1 V 4 V

[112] LIF 10 pJ Spike�1b) 1 T 100 nA 0.5 V

[131] LIF 500 pJ Spike�1 1 Mþ 1 Cþ 3 R 90 nA Not specified

a)M=memristor; C= capacitor; R= resistor; VS= voltage source; T= transistor. b)These values were calculated by E= voltage � current � spike duration.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300136 2300136 (11 of 19) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300136 by E

ddie K
oiki M

abo L
ibrary, W

iley O
nline L

ibrary on [23/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


Homeostatic plasticity is a phenomenon that constrains a neu-
ron’s firing rate to a semifixed rate, and has been utilized in neu-
romorphic networks to enhance the results.[123] Throughout the
investigations in the literature, no memristive designs have
implemented such a mechanism, owing to the increased com-
plexity of doing so. This is one avenue of memristive neuron
design that could potentially be explored.

Neuron designs such as[121,124–130] volatile memristors are
used to develop LIF neuron circuits, similar to the circuit in
Figure 7a. When input spikes are presented to this circuit, the
capacitor begins to charge the circuit, reflecting the increase
in the neuron’s membrane potential. The threshold is dictated
by the memristor’s threshold switching mechanism, so once
the membrane potential is sufficient, the device switches to a
low conductance state. This produces an increase in current
toward the load side, thus producing an output spike.

Graphene-based memristive neuron designs such as those
proposed in refs. [58,112,131] have also been investigated.
Wan et al.[112] utilized graphene oxide in a neuron transistor,
which was also capable of performing synaptic functions.
Interestingly, in this work, their device was implemented into
an orientation detection task, where the orientation of a grating
pattern is determined in a neuromorphic manner. The results of
this experiment showed comparable results to biological visual
systems. However, their neuron design only demonstrated the
dendritic integration aspect of most designs and did not demon-
strate postsynaptic events. In refs. [58,131], both graphene and
another 2D material (MoS2) were used in the memristive device,
and their artificial neuron was capable of replicating key behav-
iors of biological neurons, such as post-firing refractory period
and strength-modulated frequency response. In ref. [58], the
design of ref. [131] was improved upon by using a vertically struc-
tured device. This effect is attributed to the fact that the RS mech-
anism in these devices is mediated by the grain boundaries in
MoS2; hence, the vertically oriented device can be scaled.

6. Graphene Memristive Neuromorphic Networks

Some studies have taken their investigations to the next step by
using graphene-based memristors in traditional neural
networks and spiking neuromorphic architectures. Works such

as refs. [106,107] have investigated their device’s performance in
traditional artificial neural networks.[107] It is demonstrated that
their network could classify various flowers when information
such as the sepal length, sepal width, petal length, and petal
width was presented. When they implemented their device as
a synapse, a classification accuracy of 93.3% was achieved com-
pared to 96.7% that was achieved through ideally mapped con-
ductance values. In ref. [106], the graphene-based device’s ability
to replicate an input image was tested in a neuromorphic net-
work. This was done by using the STDP rule, and after 30 iter-
ations the image was successfully replicated.

There exist few, well-established benchmarks that are used to
compare performances across different neuromorphic net-
works.[132] This is largely owing to the difficult nature of devel-
oping learning algorithms capable of processing voltage/current
spikes.[132] One benchmarking test that is used in neuromorphic
circles is the classification of the Modified National Institute of
Standards and Technology (MNIST) dataset, using a network
similar to the one demonstrated in Figure 8. The MNIST dataset
is a series of 28� 28 gray scale images representing handwritten
numeric characters (0–9). To train and test SNNs similar to the
one shown in Figure 8, to performMNIST classification, it needs
to encode the input images into voltage/current spikes. One of
the most common methods for this is to encode each pixel into
Poissonian voltage/current spike trains where the average spik-
ing frequency is proportional to the pixel intensity. Another sim-
ilar method is to binarize the MNIST image and then encode the
binarized image with Poissonian spike trains with two different
spiking frequencies. Although this method reduces the informa-
tion contained within the image, the encoding circuitry required
is significantly simplified. To our knowledge, except for simula-
tion attempts to use graphene-based memristive devices in a neu-
romorphic architecture,[133] no previous work has attempted
MNIST classification using graphene-based memristive synap-
ses, thus it is difficult to assess how effective these devices
are compared to other devices.

Other SNNs have been developed to perform other tasks with
graphene-based devices. In ref. [69] an SNN was used to classify
3� 3 binary images, specifically the characters “z,” “v,” and “n.”
Their network utilized a graphene-based ferroelectric transistor
designed to perform SL, specifically the ReSuMe SL.[102]

+
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C R Rparallel Load Voutin
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Figure 7. a) Memristive neuron circuit capable of replicating the spiking behaviors of the LIF neuron; b) illustration on how the applied input voltages
generate an output spike.
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In ref. [134], graphene nanoribbons were structured to form a
synapse capable of implementing the STDP rule. These nanorib-
bons were then implemented into SNNs in works such as
refs. [135–137]. In all three of these works, classification
of five alphabetic characters in a 5� 5 binary image was
performed.

SNNs are often touted for their abilities to perform specific
tasks in a more efficient manner compared to traditional
deep-learning networks. These tasks are often attributed to
event-driven data (such as data from a dynamic vision sensor),
given that one of the main advantages of neuromorphic networks
is that they are event driven. As such, testing graphene-based
devices in networks performing tasks well suited for neuromor-
phic platforms is another critical area of research.[138,139] In
ref. [138], two graphene excitable lasers were connected in cas-
cade to perform a simple coincidence detection task. In this
work, the optical properties of graphene are utilized to create
an optoelectronic laser capable of spike processing, akin to an
LIF neuron. The neuromorphic task of performing coincidence
detection of two photons is significant for spatiotemporal pattern
recognition. In ref. [139], graphene–insulator–graphene memris-
tive devices were implemented as synapses to perform 2D
motion detection. A physics-based, SPICE-compatible model
was used to emulate the synaptic device, which had previously
been characterized in ref. [140].

Comparison of graphene and non-graphene memristive devi-
ces implemented into SNNs is a difficult endeavor. As men-
tioned previously, few works have developed graphene-based
SNNs that are comparable to previous works that have attempted
the same task. However, for typical graphene-based memristive
devices, one expectation is that the overall energy efficiency of the
network is increased, due to graphene’s lower power consump-
tion. However, other factors such as network output/accuracy,
size, etc., are dependent on design choices like the learning rule
used, the network topology, the neuron model chosen, etc.

Thus, the choice of which memristive device is dependent on
these design choices. Another element that is often not
explored is the versatility of graphene-based memristive devices.
The memristive structures proposed for graphene-based mem-
ristive devices are often based on the synaptic function that they
emulate. For example, the graphene-based memristors used to
perform rules like STDP[27,83] operate very differently to the
graphene-based memristors that implement the PPF learning
rule,[111,112] where the latter often uses proton conduction for this
effect. Compared to works like ref. [141], which have demon-
strated synapses capable of performing multiple functions, it
may be ideal to investigate multipurpose graphene-based mem-
ristive synapses.

7. Discussion and Prospects

Graphene has often been implemented in photonics as well as
electronics applications. However, other than neuronal and syn-
aptic applications, graphene has also found other use cases in
neuromorphic computing. For example, Shastri et al.[138] coupled
graphene with a laser system to demonstrate low-level spike proc-
essing. In their work, graphene was used as a saturable absorber,
due to its high saturable absorption-to-volume ratio. They also
demonstrated their system’s capability to perform coincidence
detection. Another neuromorphic application of graphene is
used in triboelectric nanogenerators. Triboelectric nanogenera-
tors can serve as energy conversion or can serve as sensors in
self-powered neuromorphic systems, and graphene has been
used in conjunction with these designs in various works.[142–145]

Furthermore, graphene has also been implemented in non-
memristive devices for both synaptic and neuronal applications.
Studies such as refs. [134,146] have utilized patterned graphene
nanoribbons to illustrate synaptic and neuronal applications,
respectively.

Figure 8. A simple spiking neural network (SNN) architecture that can be used to perform unsupervised MNIST learning and classification. The output
neurons, which are fully connected to all the input image pixels’ spiking trains through learning synapses, are also connected using inhibitory synapses
that introduce learning competition. Adapted with permission.[133] Copyright 2022, Authorea.
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Many issues still exist in the field of developing graphene-
based memristive devices for neuromorphic computing architec-
tures. Broadly speaking, these problems can be classified into two
categories: device-level and network-level problems, which will
be discussed in this section.

7.1. Device Level Issues

Many graphene-based and non-graphene-based devices have
been developed for neuromorphic purposes. However, these
developments usually are impacted by some device-level con-
straints and challenges. Issues such as DTD and CTC variability
still plague device fabrication today.[147] Although the stochastic-
ity in DTD and CTC variations of fabricated memristors limits
the ability to control the device’s conductance (and other proper-
ties), it can be exploited in neuromorphic settings to overcome
other issues, such as “overfitting.”Overfitting happens when a net-
work fails to generalize because it is tuned mainly to the
training data.[148] By utilizing this stochastic property, previous
research has shown that overfitting problem can be overcome.[149]

Some research efforts have been dedicated to eliminating var-
iability by tuning the device fabrication process. For example, in
ref. [150], Winkler et al. found that the orientation of the crystal
structure in HfO2 played a significant role in the forming voltage
and the memristor’s variability. They suggest that the grain
boundaries within the HfO2 control the energy and orientation
required to form conductive filaments, and thus proposed con-
trolling the grain boundaries in memristive devices for improved
performance. In ref. [151], it was noted that the removal of SrO in
their Ti-terminated SrTiO3-Pt devices reduced the memristive
device’s variability at the expense of reduced retention.
Graphene memristors have also been engineered to reduce var-
iability, in works like ref. [152], where filament formation due to
reduced graphene oxide can be controlled by modulating the
ambient temperature and humidity.

The issue of variability is also being addressed at the network
level, where works such as refs. [123,153,154] implement algo-
rithms that account for the memristor’s inherent variability.
For example, in ref. [123], a network was designed with a sim-
plified STDP learning rule. This simplified rule meant that
device non-idealities had less effect on the network’s output.
In ref. [153], a twin-memristive synapse (where two memristors
instead of one are used) showed little degradation in the final
results until the simulated dispersion of the memristive param-
eters was increased to 15%.[154] also used a multi-memristive
approach to mitigate device variability, where each synapse con-
sisted of twomemristors responsible for excitatory and inhibitory
connections.

Furthermore, due to graphene’s high conductivity, graphene-
based memristive devices suffer from a larger current draw,
particularly in their LRS. This problem can be solved by current
limiter circuits,[155,156] which limit the maximum amount of
current presented to the device. In its simplest form, a current
limiter can be a transistor connected in series with the memris-
tive device.[156] Other works such as ref. [155] use other simple
components like load resistors to limit the current. Although
these methods lower the current, the added circuitry increases
the difficulty in manufacturing.

Fabricating graphene in large volumes and in a sustainable
manner is another issue facing graphene-based memristive devi-
ces. The CVD and PECVD methods are often touted as being the
dominant method for producing graphene in large volumes, and
works such as refs. [17,45-47,157] have demonstrated the sustain-
able fabrication of graphene using them. However, fabricating gra-
phene-based memristive devices in large volumes still proves to be
a challenge. This is due to the difficult nature of generating uni-
form, defect-free graphene on a large scale. Another area of interest
in graphene fabrication is to further simplify the PECVD through
the use of atmospheric pressure microwave plasma.[158] In this
work, the plasma is produced under atmospheric conditions,
removing the need to create vacuums and heating. Importantly,
this reduces the cost and complexity of graphene production.

7.2. Network-Level Issues

Network-level issues are those that relate to the neuromorphic
architectures in which the graphene-based devices are imple-
mented. One of the biggest issues is creating arrays known as
crossbars to connect multiple neurons with synapses. A crossbar
array is one of the most common architectures for efficient and
flexible connections among neurons. Unfortunately, large-scale
crossbar architectures suffer from many issues, including
increased word and bit line resistance with increased size,
increased delays, and large current draw.[8] Solutions do exist
in the forms of adding peripheral circuitry to these crossbar
arrays but unfortunately, these circuits often consume the most
amount of power (�57%).[159]

Crossbars also suffer from issues such as sneak paths. Sneak
paths form when several memristors in low conductance states
can provide alternate paths within the crossbar to the selected
memristive device and thus alter its conductance. This problem
is unique in that it can be dependent on the values stored within
the memristive device. Potential solutions to the sneak path issues
exist. One solution is to use a complementary RS scheme, where
pairs of memristors in opposite states are used.[160] Alternatively, it
is also possible to perform read and reset operations in parallel
while using set-only selected cells to also overcome this prob-
lem.[161] Another solution is to build active crossbars using com-
ponents such as transistors, diodes and selectors.[162]

Another network-level issue is a lack of existing benchmarks
for neuromorphic computing. Although many benchmarks such
as the MNIST dataset exist for deep learning, they are not as
widely used in neuromorphic benchmarking, especially when
it comes to more advanced devices such as graphene-based neu-
rons and synapses used in unsupervised learning.[133] Instead,
tasks that favor neuromorphic systems, such as classifying data
from event-based vision sensors,[163] are preferred, due to their
inherent event-based nature. Few of these neuromorphic data-
sets exist, which has resulted in a lack of comparisons between
neuromorphic networks, making it difficult to assess and
improve upon existing networks.

7.3. Future of Graphene-Based Memristors

The upside to using graphene-based memristors in neuromor-
phic computing is enormous. Memristive devices generally
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suffer from high degrees of CTC and DTD variation. However,
graphene-based memristors can potentially overcome this flaw.
As noted in Section 3.5, defect engineering in graphene can
result in more concentrated filament formation and thus reduce
this variability. Furthermore, the manufacturing techniques out-
lined in ref. [152] show that controlling the ambient conditions in
which the memristive device is fabricated can potentially
improve its reliability. Another key upside is the potential for
extremely low power electronics. In ref. [27], a memristive device
with below femtojoule switching requirements was achieved, fur-
ther adding to the low power ideals of neuromorphic computing.
Another upside is the potential green fabrication of memristive
devices,[17] paving the way for low-cost and sustainable
manufacturing practices.

8. Conclusion

Graphene-based devices can bring significant benefits to neuro-
morphic computing and improve neuromorphic architecture
applications, due to the superior electrical, mechanical, and
thermal properties they offer. In this article, we discussed
how graphene-based memristive devices can be used to develop
neuromorphic synapses and neurons. We showed that, due to its
high conductivity, graphene is often utilized as an electrode in
neuromorphic neurons and synapses, but it can also be used
in other neuromorphic settings.

We conclude that there is still a gap between graphene- and
non-graphene-based memristive designs, in terms of their
important neuromorphically relevant characteristics such as size,
switching energy, endurance, retention, and Roff =Ron ratio. This
gap needs to be addressed by the research community before we
can bring graphene’s benefits to neuromorphic architectures and
implement graphene-based neural networks that combine both
graphene-based synapses and neurons in a niche study area,
which needs significant future investigations.
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[85] M. Rocci, A. Perez-Muñoz, J. Del Valle, J. L. Vicent, C. Leon,
Z. Sefrioui, J. Santamaria, F. Perrozzi, L. Ottaviano, M. Nardone,
S. Santucci, E. Treossi, V. Palermo, in APS March Meeting
Abstracts (APS Meeting Abstracts vol 2015), APS, San Antonio, TX
2015, p. D28.012.

[86] C. Ahn, S. W. Fong, Y. Kim, S. Lee, A. Sood, C. M. Neumann,
M. Asheghi, K. E. Goodson, E. Pop, H. S. P. Wong, Nano Lett.
2015, 15, 6809.

[87] C. Zhu, J. Ma, X. Ge, F. Rao, K. Ding, S. Lv, L. Wu, Z. Song, Appl. Phys.
Lett. 2016, 108, 252102.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300136 2300136 (16 of 19) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300136 by E

ddie K
oiki M

abo L
ibrary, W

iley O
nline L

ibrary on [23/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


[88] A. Behnam, F. Xiong, A. Cappelli, N. C. Wang, E. A. Carrion,
S. Hong, Y. Dai, A. S. Lyons, E. K. Chow, E. Piccinini,
C. Jacoboni, E. Pop, Appl. Phys. Lett. 2015, 107, 123508.

[89] H. Lv, X. Xu, H. Liu, R. Liu, Q. Liu, W. Banerjee, H. Sun, S. Long,
L. Li, M. Liu, Sci. Rep. 2015, 5, 1.

[90] Y. Ren, H. Ma, W. Wang, Z. Wang, H. Xu, X. Zhao, W. Liu, J. Ma,
Y. Liu, Adv. Mater. Technol. 2019, 4, 1800238.

[91] C. Sung, H. Hwang, I. K. Yoo, J. Appl. Phys. 2018, 124, 151903.
[92] S. Li, B. Li, X. Feng, L. Chen, Y. Li, L. Huang, X. Fong, K. W. Ang,NPJ

2D Mater. Appl. 2021, 5, 1.
[93] Z. Zhou, J. Zhao, A. P. Chen, Y. Pei, Z. Xiao, G. Wang, J. Chen, G. Fu,

X. Yan, Mater. Horizons 2020, 7, 1106.
[94] B. Liu, K. Li, J. Zhou, L. Wu, Z. Song, W. Zhao, S. R. Elliott, Z. Sun,

J. Mater. Chem. C 2023, 11, 1360.
[95] X. Zhang, C. Wu, Y. Lv, Y. Zhang, W. Liu, Nano Lett. 2022, 22, 7246.
[96] M. R. Azghadi, N. Iannella, S. F. Al-Sarawi, G. Indiveri, D. Abbott

Proc. IEEE 2014, 102, 717.
[97] G. q Bi, M. m. Poo, J. Neurosci. 1998, 18, 10464.
[98] M. R. Azghadi, B. Linares-Barranco, D. Abbott, P. H. Leong, IEEE

Trans. Biomed. Circuits Syst. 2017, 11, 1932.
[99] E. L. Bienenstock, L. N. Cooper, P. W. Munro, J. Neurosci. 1982, 2,

32.
[100] M. R. Azghadi, S. Al-Sarawi, D. Abbott, N. Iannella, Neural Networks

2013, 45, 70.
[101] T. Manabe, D. J. Wyllie, D. J. Perkel, R. A. Nicoll, J. Neurophysiol.

1993, 70, 1451.
[102] F. Ponulak, Ph.D. Thesis, Poznan University of Technology 2006,

pp. 46–47.
[103] J. K. Eshraghian, M. Ward, E. Neftci, X. Wang, G. Lenz, G. Dwivedi,

M. Bennamoun, D. S. Jeong, W. D. Lu 2021 arXiv:2109.12894.
[104] S. Song, K. D. Miller, L. F. Abbott, Nat. Neurosci. 2000, 3, 919.
[105] H. Tian, W. Mi, X. F. Wang, H. Zhao, Q. Y. Xie, C. Li, Y. X. Li, Y. Yang,

T. L. Ren, Nano Lett. 2015, 15, 8013.
[106] M. Qi, S. Cao, L. Yang, Q. You, L. Shi, Z. Wu, Appl. Phys. Lett. 2020,

116, 163503.
[107] H. Abunahla, Y. Halawani, A. Alazzam, B. Mohammad, Sci. Rep.

2020, 10, 9473.
[108] H. K. He, F. F. Yang, R. Yang, Phys. Chem. Chem. Phys. 2020, 22,

20658.
[109] Y. Yang, J. Wen, L. Guo, X. Wan, P. Du, P. Feng, Y. Shi, Q. Wan, ACS

Appl. Mater. Interfaces 2016, 8, 30281.
[110] Q. Lu, F. Sun, L. Liu, L. Li, Y. Wang, M. Hao, Z. Wang, S. Wang,

T. Zhang, Microsyst. Nanoeng. 2020, 6, 84.
[111] L. Guo, J. Wen, G. Cheng, N. Yuan, J. Ding, J. Mater. Chem. C 2016,

4, 9762.
[112] C. J. Wan, L. Q. Zhu, Y. H. Liu, P. Feng, Z. P. Liu, H. L. Cao, P. Xiao,

Y. Shi, Q. Wan, Adv. Mater. 2016, 28, 3557.
[113] X. Yan, G. Cao, J. Wang, M. Man, J. Zhao, Z. Zhou, H. Wang, Y. Pei,

K. Wang, C. Gao, J. Lou, D. Ren, C. Lu, J. Chen J. Mater. Chem.
C2020, Vol. 8, p. 4926.

[114] S. Seo, J. Lim, S. Lee, B. Alimkhanuly, A. Kadyrov, D. Jeon, S. Lee,
ACS Appl. Mater. Interfaces 2019, 11, 43466.

[115] D. Zhang, C. H. Yeh, W. Cao, K. Banerjee, IEEE Trans. Electron
Devices 2021, 68, 2033.

[116] A. L. Hodgkin, A. F. Huxley, Bull. Math. Biol. 1990, 52, 25.
[117] E. Izhikevich, IEEE Trans. Neural Networks 2003, 14, 1569.
[118] L. Lapique, J. Physiol. Pathol. 1907, 9, 620.
[119] S. M. Kang, D. Choi, J. K. Eshraghian, P. Zhou, J. Kim, B. S. Kong,

X. Zhu, A. S. Demirkol, A. Ascoli, R. Tetzlaff, W. D. Lu, L. O. Chua,
IEEE Trans. Circuits Syst. I: Regul. Papers 2021, 68, 4837.

[120] Y. Babacan, F. Kaçar, K. Gürkan, Neurocomputing 2016, 203, 86.
[121] T. Kim, S. H. Kim, J. H. Park, J. Park, E. Park, S. G. Kim, H. Y. Yu, Adv.

Electron. Mater. 2021, 7, 2000410.

[122] S. Dutta, A. Saha, P. Panda, W. Chakraborty, J. Gomez, A. Khanna,
S. Gupta, K. Roy, S. Datta, 2019 Symp. on VLSI Technology, IEEE,
Kyoto, Japan 2019, pp. T140

[123] D. Querlioz, O. Bichler, P. Dollfus, C. Gamrat, IEEE Trans.
Nanotechnol. 2013, 12, 288.

[124] X. Zhang, W. Wang, Q. Liu, X. Zhao, J. Wei, R. Cao, Z. Yao, X. Zhu,
F. Zhang, H. Lv, S. Long, M. Liu, IEEE Electron. Device Lett. 2018, 39,
308.

[125] W. Yi, K. K. Tsang, S. K. Lam, X. Bai, J. A. Crowell, E. A. Flores, Nat.
Commun. 2018, 9, 4661.

[126] K. Wang, Q. Hu, B. Gao, Q. Lin, F. W. Zhuge, D. Y. Zhang, L. Wang,
Y. H. He, R. H. Scheicher, H. Tong, X. S. Miao,Mater. Horiz. 2021, 8,
619.

[127] T. Guo, K. Pan, B. Sun, L. Wei, Y. Yan, Y. Zhou, Y. Wu,Mater. Today
Adv. 2021, 12, 100192.

[128] M. S. Feali, Neurocomputing 2021, 465, 157.
[129] J. Lin, W. Ye, X. Zhang, Q. Lian, S. Wu, T. Guo, H. Chen, IEEE

Electron. Dev. Lett. 2022, 43, 1231.
[130] S. O. Park, H. Jeong, J. Park, J. Bae, S. Choi,Nat. Commun. 2022, 13,

2888.
[131] H. Kalita, A. Krishnaprasad, N. Choudhary, S. Das, H. S. Chung,

Y. Jung, T. Roy, in 2018 76th Device Research Conf. (DRC), IEEE,
Santa Barbara, CA 2018, pp. 1–2.

[132] M. Davies, Nat. Mach. Intell. 2019, 1, 386.
[133] B. Walters, C. Lammie, S. Yang, M. Jacob, M. R. Azghadi, 2022,

Authorea 2022, https://doi.org/10.22541/au.164191999.
93843387/v1.

[134] H. Wang, N. C. Laurenciu, Y. Jiang, S. Cotofana, J. Emerg. Technol.
Comput. Syst. 2021, 17.

[135] Z. Wang, C. Liu, Y. Deng, Z. Huang, S. He, D. Guo, in 2020 IEEE
14th Int. Conf. on Anti-counterfeiting, Security, and Identification
(ASID), IEEE, Piscataway, NJ 2020, pp. 143–146.

[136] H. Wang, N. C. Laurenciu, Y. Jiang, S. D. Cotofana, IEEE Open J.
Nanotechnol. 2020, 1, 135.

[137] H. Wang, N. Cucu Laurenciu, S. Cotofana, IEEE Open J.
Nanotechnol. 2021, 2, 59.

[138] B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu,
P. R. Prucnal, Sci. Rep. 2016, 6, 19126.

[139] S. Pande, K. Srinivasan, S. Balanethiram, B. Chakrabarti,
A. Chakravorty, 2021, arXiv:2111.15250, https://doi.org/10.
48550/arXiv.2111.15250.

[140] B. Chakrabarti, T. Roy, E. M. Vogel, IEEE Electron. Device Lett. 2014,
35, 750.

[141] X. Yan, X. Jia, Y. Zhang, S. Shi, L. Wang, Y. Shao, Y. Sun, S. Sun,
Z. Zhao, J. Zhao, J. Sun, Z. Guo, Z. Guan, Z. Zhang, X. Han,
J. Chen, Nano Energy 2023, 107, 108091.

[142] J. Yu, X. Yang, G. Gao, Y. Xiong, Y. Wang, J. Han, Y. Chen, H. Zhang,
Q. Sun, Z. L. Wang, Sci. Adv. 2021, 7, eabd9117.

[143] M. Jia, P. Guo, W. Wang, A. Yu, Y. Zhang, Z. L. Wang, J. Zhai, Sci.
Bull. 2022, 67, 803.

[144] C. Gao, Q. Nie, C. Y. Lin, F. Huang, L. Wang, W. Xia, X. Wang, Z. Hu,
M. Li, H. W. Lu, Y. C. Lai, Y. F. Lin, J. Chu, W. Li, Nano Energy 2022,
91, 106659.

[145] S. Zhang, J. Guo, L. Liu, H. Ruan, C. Kong, X. Yuan, B. Zhang,
G. Gu, P. Cui, G. Cheng, Z. Du, Nano Energy 2022, 91,
106660.

[146] H. Wang, N. C. Laurenciu, Y. Jiang, S. D. Cotofana, in 2020 IEEE Int.
Symp. on Circuits and Systems (ISCAS), IEEE, Piscataway, NJ 2020,
17, pp. 1–5.

[147] I. T. Wang, C. C. Chang, Y. Y. Chen, Y. S. Su, T. H. Hou,
Neuromorphic Comp. Eng. 2022, 2, 012003.

[148] V. Yon, A. Amirsoleimani, F. Alibart, R. G. Melko, D. Drouin,
Y. Beilliard, Front. Electron. 2022, 3, 825077.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300136 2300136 (17 of 19) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300136 by E

ddie K
oiki M

abo L
ibrary, W

iley O
nline L

ibrary on [23/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.22541/au.164191999.93843387/v1
https://doi.org/10.22541/au.164191999.93843387/v1
https://doi.org/10.48550/arXiv.2111.15250
https://doi.org/10.48550/arXiv.2111.15250
http://www.advancedsciencenews.com
http://www.advintellsyst.com


[149] Z. Wang, C. Li, P. Lin, M. Rao, Y. Nie, W. Song, Q. Qiu, Y. Li, P. Yan,
J. P. Strachan, N. Ge, N. McDonald, Q. Wu, M. Hu, H. Wu,
R. S. Williams, Q. Xia, J. J. Yang, Nat. Mach. Intell. 2019, 1, 434.

[150] R. Winkler, A. Zintler, S. Petzold, E. Piros, N. Kaiser, T. Vogel,
D. Nasiou, K. P. McKenna, L. Molina-Luna, L. Alff, Adv. Sci.
2022, 9, 2201806.

[151] J. L. Rieck, F. V. Hensling, R. Dittmann, APL Mater. 2021, 9, 021110.
[152] F. H. Gorgabi, M. C. Morant-Miñana, H. Zafarkish, D. Abbaszadeh,
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