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The provision of waiting time information in emergency departments (ED) has
become an increasingly popular practice due to its positive impact on patient
experience and ED demand management. However, little scientific attention has
been given to the quality and quantity of waiting time information presented
to patients. To improve both aspects, we propose a set of state space models
with flexible error structures to forecast ED waiting time for low acuity patients.
Our approach utilizes a Bayesian framework to generate uncertainties associ-
ated with the forecasts. We find that the state-space models with flexible error
structures significantly improve forecast accuracy of ED waiting time compared
to the benchmark, which is the rolling average model. Specifically, incorporating
time-varying and correlated error terms reduces the root mean squared errors
of the benchmark by 10%. Furthermore, treating zero-recorded waiting times
as unobserved values improves forecast performance. Our proposed model has
the ability to provide patient-centric waiting time information. By offering more
accurate and informative waiting time information, our model can help patients
make better informed decisions and ultimately enhance their ED experience.
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1 INTRODUCTION

Long waiting times in an emergency department (ED) have become of growing public policy concern over the recent
years. These extended waits not only result in suboptimal health outcomes but also impact patients’ satisfaction with the
healthcare services they receive.1,2 Furthermore, waiting times and queue length are associated with patients’ decisions
to leave without being seen, which can have negative health consequences.3 To address waiting time uncertainty and
improve patient experience, waiting time communication interventions, such as posting ED waiting time predictions
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online or within the ED, have been proposed.4 However, concerns remain regarding the quality of information reported
and how patients perceive waiting time information.5

Providing accurate waiting time forecasts has been methodologically challenging due to the complex nature of
clinical ED environment and significant variations in waiting time. Few hospitals provide waiting time predictions to
patients, and those that do often rely on a simple rolling average, which provides relatively inaccurate forecasts.6,7 Several
studies have used statistical models and machine learning algorithms to improve the accuracy of individual waiting time
predictions. For example, Lin et al8 used queuing theory to model waiting time and evaluated impacts of queue growth
and ED resource allocation on waiting times. Sun et al9 used a quantile regression to account for large waiting time fluc-
tuations in their forecasts. Ang et al6 proposed a Lasso regression with variables from a fluid model, termed as “Q-Lasso,”
which outperformed the commonly used rolling average model by over 30% in mean squared error. Similarly, Pak et al7

found that a Lasso-based model and a random forest approach generated more accurate waiting time predictions than
the rolling average. Using queue-based features in non-linear models such as random forest can also benefit the forecast
accuracy.10

While the previous studies have primarily focused on predicting individual waiting times for patients, particularly
those with lower acuity levels, our study seeks to generate aggregated ED waiting time forecasts over a specific time
window. This approach involves providing a single waiting time forecast with uncertainties to low acuity patients who
arrive during a particular time frame. Patients in this category are typically seen in order of arrival, and are more likely to
consider waiting time as a crucial factor in their decision-making process regarding where and when to seek healthcare
services. Furthermore, providing an aggregated ED waiting time forecast offers an implementation advantage for hospi-
tals. Displaying a single waiting time prediction in the ED waiting room is more feasible than delivering individualized
predictions to each patient by an ED nurse.

In addition to forecasting aggregated ED waiting time, we make several methodological and practical contributions
to the ED waiting time literature. First, it is often observed that many zero-recorded observations exist in aggregated ED
waiting time dataset.* In practice, the zero-recorded observations within a time-window do not necessarily imply that
patients will experience zero waiting time if they arrive to ED. The zero-recorded observations may reflect a situation
where no patients were called in for treatment during that particular time window rather than an indication of no patients
waiting. Therefore, treating zero-recorded observations as actual zeros not only misrepresents the actual waiting time,
but also leads to significant fluctuations in ED waiting times. These fluctuations might affect the goodness-of-fit and
out-of-sample forecast performance. To avoid these problems, we argue that treating these zero-recorded observations as
unobserved values is a more appropriate approach.

Second, we present an alternative approach to the commonly used time dummy model for capturing temporal vari-
ations in waiting time such as daily, weekly, and monthly patterns. The time dummy approach often results in a large
number of dummy variables if multiple periodic patterns are considered. This over-parameterization might lead to poor
forecast performance. Furthermore, the marginal effects of time dummy models remain time-invariant. To overcome
these limitations, we propose a set of state space (SS) models with flexible error structures, which effectively capture the
dynamic behaviors of ED waiting times. These flexible error structures aim to mitigate extreme values and potential serial
correlation among waiting times. Additionally, we introduce efficient Markov chain Monte Carlo (MCMC) algorithms
for estimating these models.

Third, we make a significant contribution to the literature by generating forecasts for multiple periods ahead using
SS models and evaluating their accuracy performance. Unlike the previous studies that solely concentrated on predicting
individual patient waiting times for the next time interval (ie, one-period-ahead forecast), our modeling approach encom-
passes multiple-period-ahead forecasts. Multiple-period-ahead forecasts have important practical benefits in improving
ED waiting time management and responding to the ED demand more effectively.

Lastly, we use a Bayesian approach to explore the predictive posterior distributions of the forecasted waiting times.
This approach enables us to provide measures of uncertainty, such as probabilities. From a practical standpoint, relying
solely on point forecasts of ED waiting times can be uninformative and potentially misleading. Hospitals are unable to
guarantee that a patient will be seen within the predicted waiting time, and studies in the literature on patient experi-
ence with ED services have shown that patient dissatisfaction tends to increase when they wait longer than previously
indicated.11-13 Therefore, studying the distribution of waiting time forecasts is crucial, as ED waiting times are inherently
uncertain and asymmetric due to the complex nature of clinical pathways and the unpredictability of arrivals of urgent
and critically-ill patients, which require sudden diversion of significant ED resources. By generating and conveying uncer-
tainties associated with the waiting time forecasts to patients, we can potentially provide better alternatives for hospitals
and improve the overall patient experience.
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4460 TRINH et al.

This study is structured as follows. In Section 2, we present a set of model specifications with flexible error
structures. In Section 3, we provide an overview of the data used in this article. In Section 4, we discuss the in-sample and
out-of-sample forecast results. Finally, Section 5 concludes the article.

2 STATE SPACE SPECIFICATION

Our model specification is based on a SS model, also known as a dynamic linear model. This modeling approach has
proven to be a powerful tool in capturing unobserved processes and offers flexibility in handling missing values.14 In
fact, SS models have been implemented in various research areas such as electrical engineering,15 physics,16 business,17

economics,18 and ecology.19 Moreover, the use of SS models in applied health research has been growing over the years.
For instance, Nobre et al20 compared the forecast performance of an SS model with a seasonal autoregressive integrated
moving average (MA) model in predicting the incidence of hepatitis A and malaria cases. They found that both mod-
els performed similarly in short and long-term forecasts, although the SS model offered greater flexibility in capturing
diverse types of time series patterns. Similarly, Fukaya et al21 and Kawamori et al22 utilized an SS model to measure base
body temperature and forecast menstruation periods. Furthermore, Christensen et al23 employed an SS model to capture
seasonal variations in hospitalization rates for stroke.

Within a SS framework, we decompose the logarithm of waiting time yt into a conditional mean process 𝜇t and an
error process 𝜀y

t as follows:

yt = 𝜇t + 𝜀y
t , 𝜀

y
t ∼ (0, 𝜎2

y ); (1)

where yt is comprised of the logarithm of observed waiting time, denoted as yo
t , as well as the logarithm of “unobserved”

waiting time, denoted as yu
t . The error process 𝜀y

t is assumed to follow a normal distribution with a mean of 0 and a
constant variance of 𝜎2

y . Later, we will discuss some flexible error structures for 𝜀y
t . Equation (1) is commonly referred to

as an observation equation.
While the time-varying conditional mean 𝜇t in (1) is unspecified, the model (1) can incorporate several well-known

specifications with an appropriate conditional mean process, such as:

1. A rolling average

𝜇t =
1
k

t∑

i=t−k+1
yi; (2)

where the conditional mean process is computed as an unweighted average of k waiting time observations. When 𝜎2
y

is constrained to 0, this model is referred to as a rolling average. The estimation of k is based on the smallest root
mean-squared error within the in-sample data.

2. An unobserved component (UC) model:

𝜇t = 𝜏t,

𝜏t = 𝜏t−1 + 𝜀𝜏t , 𝜀
𝜏

t ∼ (0, 𝜎2
𝜏 ); (3)

where the initial value 𝜏0 is an unknown parameter and will be estimated. Equation (3) is commonly referred to as a
state equation. In comparison to the rolling average model, the UC model offers greater flexibility by accounting for
measurement errors in the data and potential model misspecifications. The conditional mean process 𝜏t is assumed
to follow a random walk process. We select the UC model as the benchmark for the density forecast measure since
the density forecast measure is not applicable to the rolling average model.

3. A time dummy (TD) model:

𝜇t = 𝛾0 +D𝜸;

where 𝛾0 represents the intercept, D is a 1 ×m matrix of dummy variables that could include days of the week and/or
months of the year, and 𝜸 = (𝛾1, … , 𝛾m)′ is a m × 1 coefficient associated with D. This model can accommodate a

 10970258, 2023, 24, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9870 by E
ddie K

oiki M
abo L

ibrary, W
iley O

nline L
ibrary on [30/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TRINH et al. 4461

Lasso regression if a penalty is applied to shrink some coefficients towards zero to deal with the over-parameterization,
particularly when a large number of dummy variables are used.7,9

4. A time-varying auto-regressive model (TVAR)

𝜇t = 𝛽0t + yt−1𝛽1t + yt−2𝛽2t + … + yt−p𝛽pt,

= Xt𝜷 t,

𝜷 t = 𝜷 t−1 + 𝜺
𝜷

t , 𝜺
𝜷

t ∼ (0,𝚺𝜷); (4)

where 𝜷 t = [𝛽0t, 𝛽1t, 𝛽2t, … , 𝛽pt]′, X = [1, yt−1, … , yt−p], and 𝚺𝜷 = diag(𝜎2
𝛽0
, 𝜎

2
𝛽1
, … , 𝜎

2
𝛽p
). The initial condition 𝜷0 =

[𝛽00, 𝛽10, … , 𝛽p0] is unknown and will be estimated. The TVAR model captures the conditional mean waiting time by
utilizing past information of the waiting time.

If one sets𝚺𝜷 equal to 0, that is, 𝜎2
𝛽0
= 𝜎2

𝛽1
= … = 𝜎2

𝛽p
= 0 in (4), a TVAR model becomes a constant auto-regressive

(AR) model:

𝜇t = 𝛽0 + 𝛽1yt−1 + … + 𝛽pyt−p.

Regarding the error process 𝜀y
t , imposing a normal distribution on 𝜀y

t can be restrictive, considering that waiting time
exhibits significant fluctuations over time, which can be attributed to variations in both the mean process and the error
process. In this article, we address this limitation by introducing various specifications for the error process 𝜀y

t .
It is well-known in the statistical literature that normal distributions have exponentially decaying tails, and there-

fore they have little mass for extreme values.24,25 In the context of ED waiting time, patients, especially those who
do not require urgent medical treatment, may experience significant waiting time, particularly when the ED is
overwhelmed by an influx of emergency patients. To account for the potential extreme values, we incorporate a
heavy-tailed distribution (ie, a t-distributed error) as the first specification for the error process, which can be expressed
as follows:

𝜀
y
t ∼ (0, 𝜆t𝜎

2
y ), 𝜆t ∼ (𝜈∕2, 𝜈∕2). (5)

The t-distributed error is expressed as a scale mixture of Gaussian distributions, which simplifies model estimation
via data augmentation. When the scale mixture parameter 𝜆t is integrated out, the marginal distribution of the error term
is t-distributed.26 The scale mixture parameters 𝜆1, … , 𝜆t are assumed to be independent and follow the inverse gamma
distribution (𝜈∕2, 𝜈∕2), where 𝜈 is the degrees of freedom parameter. The degrees of freedom is treated as an unknown
parameter and has a uniform prior, that is, 𝜈 ∼  (2,V). We restrict 𝜈 to be greater than 2 to ensure that the first and
second moments of the t distribution exists.

To capture the high variability of ED waiting time, the second specification of the error process allows the variance of
𝜀

y
t to vary over time using the stochastic volatility (SV) model27†:

𝜀
y
t ∼ (0, eht ),

ht = 𝜇h + 𝜙h(ht−1 − 𝜇h) + 𝜀h
t , 𝜀

h
t ∼ (0, 𝜎2

h); (6)

The log-volatility ht follows a stationary AR(1) process with |𝜙h| < 1. The log-volatility process is initialized by draw-
ing h1 from a normal distribution, that is, h1 ∼ (𝜇h, 𝜎

2
h∕(1 − 𝜙

2
h)). The prior on variance 𝜎

2
h follows a standard

inverse gamma distribution, that is, 𝜎2
h ∼ (𝛼h, 𝜂h), while the prior on the mean log-volatility 𝜇h follows a normal

distribution, that is,  (m𝜇h ,V𝜇h). To ensure the stationary process we assign a truncated normal prior to 𝜙h, that is,
𝜙h ∼ (𝜙h0 ,V𝜙h)1(|𝜙h| < 1).

The third specification of the error process 𝜀y
t accounts for autocorrelation using a MA specification. It is widely

acknowledged in the time series literature that neglecting serial correlation in model specifications can lead to imprecise
estimates and inaccurate statistical inferences and predictions.30,31 Without loss of generality, we model the error process
using an MA(1) process:

𝜀
y
t = ut + 𝜓ut−1, ut ∼ (0, 𝜎2

y ). (7)
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The |𝜓| is restricted to less than 1 to ensure the invertibility condition for the MA process. This representation is
motivated by the Wold decomposition theorem, which establishes that any zero-mean covariance-stationary time series
has an infinite MA representation.32 In other words, such a process can be approximated arbitrarily well by a sufficiently
high order of autoregressive MA model. We use a truncated Gaussian prior for 𝜓 , specifically 𝜓 ∼ (0,V𝜓 )1(|𝜓| < 1), to
ensure the stationary condition.

By combining these three key specifications of the error term process, we further generate four additional specifica-
tions for the error 𝜀y

t :

• tSV: incorporating t-distributed error in (5) with SV component in (6):

𝜀
y
t ∼ (0, 𝜆teht ), 𝜆t ∼ (𝜈∕2, 𝜈∕2),

ht = 𝜇h + 𝜙h(ht−1 − 𝜇h) + 𝜀h
t , 𝜀

h
t ∼ (0, 𝜎2

h); (8)

• tMA: incorporating t-distributed error in (5) with a MA component in (7):

𝜀
y
t = ut + 𝜓ut−1, ut ∼ (0, 𝜆t𝜎

2
y ), 𝜆t ∼ (𝜈∕2, 𝜈∕2); (9)

• MASV: including both SV in (6) and MA in (7) components:

𝜀
y
t = ut + 𝜓ut−1, ut ∼ (0, eht ),

ht = 𝜇h + 𝜙h(ht−1 − 𝜇h) + 𝜀h
t , 𝜀

h
t ∼ (0, 𝜎2

h); (10)

• tMASV: including all three components in (5) to (7):

𝜀
y
t = ut + 𝜓ut−1, ut ∼ (0, 𝜆teht ), 𝜆t ∼ (𝜈∕2, 𝜈∕2),

ht = 𝜇h + 𝜙h(ht−1 − 𝜇h) + 𝜀h
t , 𝜀

h
t ∼ (0, 𝜎2

h). (11)

Table 1 presents the list of candidate models that we consider in this article, which includes a rolling average model,
as well as the models that specify the conditional time-varying mean process as TD, UC, and TVAR. For the error process,
we consider a homoscedastic error (ie, a Gaussian distribution specified in Equation (1)), as well as seven additional
specifications presented in Equations (5) to (11) for the TD, UC, and TVAR models. We also estimate the models where
zero-recorded observations are treated as unknown, as well as the models where the observations are treated as actual
zeros. In total, we estimate 41 models. The model parameters are estimated using MCMC algorithms, with details of the
Bayesian estimation provided in Appendix B. The programming is conducted using MATLAB.

3 DATA

Princess Alexandra Hospital (PAH) is a major tertiary urban hospital in Australia that provides care in all major adult
specialities except for maternity. Since PAH is a public hospital, visits to the ED are covered by the universal public health
insurance scheme called medicare, and patients are not required to pay any out-of-pocket expenses. The ED records
contain detailed information on the date and time of each patient’s progress throughout the ED, allowing us to calculate
the actual waiting time for treatment and observe the level of activity in the ED at specific time points. Additionally,
patient data such as triage category at the time of arrival are also recorded.

We restrict our analysis to patients who are classified as triage 3, 4, or 5 and assigned to the ED waiting room. These
patients have a lower priority for medical treatment than more urgent cases (triage categories 1 and 2) due to the severity
of their condition, which is determined by their presenting symptoms and pre-existing medical conditions. In our sample,
patients allocated to the waiting room have largely homogeneous waiting times to treatment across triage categories, but
their waiting times are longer than those who wait in the acute bed area.

The objective of this research is to generate hourly waiting time forecasts. To achieve this, we first calculate the waiting
time to treatment for each patient as the difference between the time when they saw a doctor or a nurse and the time of
triage. These individual waiting times are then averaged for each hourly time window in which patients arrived at the ED.
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TRINH et al. 4463

T A B L E 1 A list of competing models.

Model Description

Rolling average Rolling average

UC Unobserved component with a homoscedastic error

TD Time dummy including days of a week with a homoscedastic error

TD-MA TD with a moving average error

TD-SV TD with a stochastic volatility error

TD-MASV TD with a moving average and stochastic volatility error

TD-t TD model with a t-distributed error

TD-tMA TD-MA with a t-distributed error

TD-tSV TD-SV with a t-distributed error

TD-tMASV TD-MASV with a t-distributed error

UC-MA UC with a moving average error

UC-SV UC with a stochastic volatility error

UC-MASV UC with a moving average and stochastic volatility error

UC-t UC with a t-distributed error

UC-tMA UC-MA with a t-distributed error

UC-tSV UC-SV with a t-distributed error

UC-tMASV UC-MASV with s t-distributed error

TVAR Time-varying autoregressive AR(1) with a homoscedastic error

TVAR-MA TVAR with a moving average error

TVAR-SV TVAR with a stochastic volatility error

TVAR-MASV TVAR with a moving average and stochastic volatility error

TVAR-t TVAR with a t-distributed error

TVAR-tMA TVAR-MA with a t-distributed error

TVAR-tSV TVAR-SV with a t-distributed error

TVAR-tMASV TVAR-MASV with a t-distributed error

TD-zero TD considers zeros as an actual waiting time

TD-MA-zero TD-MA considers zeros as an actual waiting time

TD-SV-zero TD-SV considers zeros as an actual waiting time

TD-MASV-zero TD-MASV considers zeros as an actual waiting time

TD-t-zero TD-t considers zeros as an actual waiting time

TD-tMA-zero TDt-MA considers zeros as actual waiting time

TD-tSV-zero TD-tSV considers zeros as an actual waiting time

TD-tSV-zero TD-tSV considers zeros as an actual waiting time

UC-zero UC considers zeros as an actual waiting time

UC-MA-zero UC-MA considers zeros as an actual waiting time

UC-SV-zero UC-SV considers zeros as an actual waiting time

UC-MASV-zero UC-MASV considers zeros as an actual waiting time

UC-t-zero UC-t considers zeros as an actual waiting time

UC-tMA-zero UC-tMA considers zeros as actual waiting time

UC-tSV-zero UC-tSV considers zeros as an actual waiting time

UC-tMASV-zero UC-tMASV considers zeros as an actual waiting time
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4464 TRINH et al.

For instance, if three patients arrived between 2 PM and 3 PM on a particular day, we use their actual waiting time to
treatment to compute the mean waiting time for that interval. Our data comprise hourly waiting time windows for low
acuity patients at PAH’s ED from 1 January 2020 to 15 December 2020, which correspond to 8400 observations.

4 APPLICATION TO PAH ED WAITING TIME FORECASTING

In this section, we present the full sample estimation results of some selected models listed in Table 1. The objective
of this exercise is to examine whether there is any evidence suggesting the presence of time-varying variance and serial
correlation in the error process. Second, we investigate the forecast performance of the models listed in Table 1 to under-
stand the role of flexible structures in the error process in forecasting ED waiting time. Finally, we explore whether
treating zero-recorded ED waiting time as an unobserved component can improve the forecast performance of these
models.

4.1 Priors

In order to complete the model specifications for the models listed in Table 1, we provide priors for the model parameters.
To enable easy comparison, we impose the same priors for the common parameters across the models. For the mean
process, we choose an independent Gaussian prior for each 𝜇0 = {𝜏0, 𝛾0, 𝛾1, .., 𝛾m, 𝛽00, 𝛽10, … , 𝛽p0}, that is, 𝜇0 ∼ N(0,V𝜇0)
where V𝜇0 = 100. Since the prior variance is relatively large, the prior of 𝜇0 is considered relatively non-informative. In
addition, we assume independent inverse gamma priors for variances 𝜎2

y and 𝜎2
Θ =

{
𝜎

2
𝜏
, 𝜎

2
𝛽0
, 𝜎

2
𝛽1
, … .𝜎

2
𝛽m

}
:

𝜎
2
y ∼ (𝛼y, 𝜂y), 𝜎

2
Θ ∼ (𝛼Θ, 𝜂Θ).

For the prior hyperparameters of 𝜎2
y and 𝜎2

Θ, we select a relatively small value for the shape 𝛼y = 𝛼Θ = 3.33-35 Choosing
a small shape parameters serves two purposes. First, it ensures the existence of the mean and variance of 𝜎2

y and 𝜎2
Θ.‡

Second, it ensures that a precision-based algorithm is used to sample all states (time-varying) parameters simultaneously,
rather than one-at-a-time. Jointly sampling all states, such as 𝜏 = (𝜏1, … , 𝜏T), in one step leads to efficiency improvements
compared to one-at-a-time Gibbs sampling (see Appendix B for further discussion).33,34 The scale hyperparameter 𝜂y is
set to be 𝛼y − 1, which implies E(𝜎2

y ) = 1. This choice is comparable to the models with SV, where the prior mean for the
unconditional mean of log-volatility 𝜇h is equal to zero (exp(𝜇h) = 1). For the scale hyperparameter of each 𝜎Θ, we set 𝜂Θ =
0.12(𝛼Θ − 1), which implies E(𝜎2

Θ) = 0.12. The chosen prior mean reflects the desired smoothness of the corresponding
state transition associated with the conditional mean process.

For the SV component in the error process, we use a normal prior for the unconditional mean of the log-volatility 𝜇h,
given by 𝜇h ∼ N(0,V𝜇h ), where V𝜇h = 100, and a truncated normal prior 𝜙h ∼ (𝜙h0 ,V𝜙h)1(|𝜙h| < 1) where 𝜙h0 = 0.95
and V𝜙h = 100. As for 𝜎2

h, the prior is an inverse gamma, 𝜎2
h ∼ (𝛼h, 𝜂h) with 𝛼h = 3 and the scale hyperparameter 𝜂h =

0.12(𝛼h − 1), which implies E(𝜎2
h) = 0.12 and reflects the smoothness of the corresponding transition associated with the

log-volatility.
The degrees of freedom parameter (𝜈) in the SS model with t-distributed error is treated as an unknown parameter

and has a uniform prior, that is, 𝜈 ∼  (2,100). We restrict 𝜈 to be greater than 2 to ensure the first and second moments
of the t distribution exist. For the MA component of the error process, we impose a truncated Gaussian prior for 𝜓 to
guarantee the invertibility of the MA process. Specifically, we set 𝜓 ∼ (0,V𝜓 )1(|𝜓| < 1) with V𝜓 = 100. Additionally,
we assume an unobserved waiting time yu

t follows a normal prior, that is, yu
t ∼ (0,Vyu) with a large variance Vyu = 100.

4.2 Full sample estimation results

Table 1 presents the full estimation results (01/01/2020 00:00:00 to 15/12/2020 23:00:00) of some selected models, which
include TD-tMA, UC-tMA, TVAR-tMA, TD-tMA, UC-tSV, TVAR-tSV, TD-tMASV, UC-tMASV, and TVAR-tMASV. The
objective is to investigate the presence of time-varying variance and serial correlation in the error process. All estimates
presented in this section are based on 25 000 draws from MCMC samplers, following a burn-in period of 5000.
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TRINH et al. 4465

A key parameter of interest is the MA coefficient 𝜓 . If the posterior density of 𝜓 tends to concentrate near zero, it
suggests that the inclusion of the MA component may not be necessary. The posterior distributions of 𝜓 depicted in
Figure 1 demonstrate that the majority of the distribution mass for the MA coefficient, across the model specifications, is
concentrated in regions far from zero. For example, the posterior mean of 𝜓 is approximately 0.1 under the UC-tMASV
model. This finding implies that even after accounting for time-variation in variances, there is a notable autocorrelation
in the observed waiting time, lending support to the presence of an MA component.

Another interesting point is that under the TD-tMA, TD-tMASV, UC-tMA, and UC-tMASV models, the MA coefficient
𝜓 is estimated to be positive, while it is estimated to be negative under the TVAR-tMA and TVAR-tMASV models. The
difference might not be surprising. In the TD and UC model variants, the autocorrelation of the waiting time is modeled
through either time dummy variables or a random walk in the conditional mean process, which might not be suffi-
cient to capture all the observed positive autocorrelation. In the TVAR-tMA and TVAR-tMASV models, past waiting time
information is directly captured in the conditional mean. The results suggest that the autoregressive components, based
on the waiting time with one lag, seem to “over-capture” the observed positive autocorrelation, resulting in a negative
autocorrelation in the residuals.

As an example, Figure 2 reports the estimated posterior means and the 90% credible intervals for the standard error
exp(ht∕2) during the period from 10/12/2020 00:00:00 to 15/12/2020 23:00:00. This particular subset of data is presented to
provide a clearer visualization of the dynamic movements in the standard error. The full 1-year hourly dataset is too dense
to observe the pattern effectively. Across the model specifications, we observe substantial time-variation in the standard
error estimates for the waiting time, emphasizing the importance of accounting for time-variation in the error process.

To evaluate the convergence and efficiency of the MCMC algorithms in estimating the models, we compute the con-
vergence diagnostic proposed by Geweke.37 For visual inspections, we provide box plots of inefficiency factors and trace
plots for specific parameters.38 Further details can be found in Appendix C.

F I G U R E 1 Estimated posterior distributions of 𝜓 under the TD-tMA, UC-tMA, TVAR-tMA, TD-tMASV, UC-tMASV, and
TVAR-tMASV models.
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4466 TRINH et al.
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F I G U R E 2 Estimated posterior means and the 90% credible intervals for the standard error exp(ht∕2) during the period from
10/12/2020 00:00:00 to 15/12/2020 23:00:00 under the TD-tSV, UC-tSV, TVAR-tSV, TD-tMASV, UC-tMASV, and TVAR-tMASV models.

4.3 Forecast setup and forecast measures

In order to evaluate the performance of the models listed in Table 1, we conduct a recursive out-of-sample forecasting
exercise. The primary objective of this exercise is to investigate whether incorporating flexible error structures enhances
the accuracy of waiting time forecasts. Additionally, we explore whether treating zero-recorded ED waiting times as
unobserved values improves the forecast performance of the models.

The recursive exercise involves dividing the data into three sub-samples. The first part is the initialization period,
which contains the first p observations that are used to initialize TVAR(p) models. This ensures that UC, TD, and TVAR
model variants have the same initial observations. For this exercise, we choose the lags of TVAR models (p) equal to 1.
The second part is the training period, denoted as y1∶t, which represents an expanding window of observations. We
first start with the training period up until t (10/12/2020 23:00:00). We then employ MCMC samplers, as described in
Appendix B, to obtain posterior draws of model parameters for each model based on y1∶t. The point forecast for the wait-
ing time observations, E(yt+h|y1∶t), is computed as the predictive mean for h-period-ahead forecasts, where h = 1, 2, … , 8
(ie, 11/12/2020 00:00:00 to 11/12/2020 07:00:00). Additionally, we compute p(yt+h|y1∶t) as the density forecast. This proce-
dure is repeated by iteratively incorporating additional data from 11/12/00:00:00 to 15/12/2020 22:00:00 into the training
period. The third part of the data is the evaluation period, consisting of the remaining observations, which are used to
assess the forecast of each model. In total, we generate 168 recursive predictions for h = 1 and 161 recursive predictions
for h = 8.

To compare the performance of the models, we use both point forecast measures, such as the root mean squared fore-
cast error (RMSFE) and the mean absolute forecast error (MAFE), and the density forecast measure—the log predictive
likelihood. Utilizing the density forecast measure offers an insight into the entire predictive distribution of ED waiting
times, enabling a more comprehensive evaluation of the models’ forecasting performance.

To ensure a fair comparison, we exclude zero-recorded observations when computing the forecast measures. This
exclusion is necessary because we do not observe the actual waiting time within the time windows recorded as zero. The
point forecast measures, namely RMSFE and MAFE, are defined as follows:
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TRINH et al. 4467

RMSFE =

√√√√
∑T−h−n0

t=t0
(y0

t+h − E(yt+h|y1∶t))2

T − h − t0 − n0 + 1
,

MAFE =

∑T−h−n0
t=t0

|y0
t+h − E(yt+h|y1∶t)|

T − h − t0 − n0 + 1
;

where y0
t+h is the observed value of yt+h, t0 denotes the start of the evaluation period, and n0 indicates the number of

zero-recorded observations in the evaluation dataset. A smaller forecast error corresponds to a smaller RMSFE and MAFE.
To evaluate the density forecast p(yt+h|y1∶t) we use the predictive likelihood p(yt+h = y0

t+h|y1∶t), which represents the
predictive density of yt+h evaluated at the observed value y0

t+h. A high value of the predictive likelihood indicates that the
observed value y0

t+h is likely to be within the density forecast, whereas a low value suggests otherwise. We evaluate the
density forecasts by computing the average log predictive likelihood (ALPL).

ALPL = 1
T − h − t0 − n0 + 1

T−h−n0∑

t=t0

log pt+h(yt+h = y0
t+h|y1∶t).

To facilitate the comparison of performance among the models, we standardize the forecast measures relative to the
benchmark models. If the ratio between the model’s RMSFE and the benchmark’s RMSFE is smaller than 1, it suggests
that the model outperforms the benchmark, and vice versa. Similarly, for ALPL, we standardize the values by subtracting
the ALPL of each model from the ALPL of the benchmark model. A positive relative ALPL indicates that other models
perform better than the benchmark, while a negative value suggests the opposite.

4.4 Forecast results

Tables 2–4 provide a summary of the relative RMSFE, MAFE, and ALPL forecast measures for the competing models com-
pared to the benchmark models at different forecast horizons: h = 1 (one-hour-ahead forecast), h = 2 (two-hour-ahead
forecast), … , and h = 8 (eight-hour-ahead forecast). To determine whether the differences in forecast accuracy between
the benchmark model and the alternative models are statistically significant, we conduct a one-sided test of equal pre-
dictive accuracy as described by Diebold and Mariano.39 The differences in accuracy that are statistically different from
zero are denoted with one, two, or three asterisks in Tables 2–4, corresponding to significance levels of 10%, 5%, and 1%,
respectively.

A notable finding from the forecasting results is that treating zero-recorded observations as unobserved values sig-
nificantly improves the forecast performance.§ Tables 2–4 reveal that the models treating zero-recorded observations as
unobserved values generally exhibit lower relative RMSFE and MAFE values, and higher relative ALPL values compared
to their counterparts where zero-recorded observations are treated as actual zero values. For example, the UC-tMASV
model achieves the smallest relative RMSFE of 0.914 for the one-hour-ahead forecast, while the UC-tMASV-zero model
yields a relative RMSFE of 1.039. The key takeaway is that appropriately handling zero-recorded observations is necessary
before modeling or forecasting ED waiting time.

We observe that no single model dominates in forecasting ED waiting time across the forecast horizons. However,
models employing UC and TVAR specifications in the conditional mean process tend to yield better forecasts compared to
the rolling average and TD models, particularly for short-term forecasts up to 4 h ahead. The RMSFE results presented in
Table 2 demonstrate that the UC-tMASV model outperforms the benchmark rolling average model by nearly 10% in terms
of the RMSFE criterion. Moreover, the 68% credible interval of the predicted waiting times obtained from the UC-tMASV
model encompasses the majority of the observed values (refer to Figure A1 in Appendix A).

The ALPL density forecast measure indicates that the UC-SV and TVAR-MASV models are superior in forecast-
ing ED waiting time for one-hour-ahead-forecast and three-hour-ahead-forecast, respectively. These results align with
the findings from the estimation using the full sample in Section 4.2. Notably, incorporating both time-variation and
serial correlation in the model specifications leads to improved in-sample fitness and out-of-sample forecast performance
compared to the model specifications with constant variances.

While the findings indicate that the TD models do not perform well in short-term forecasting, they exhibit favorable
performance in long-term forecasting (h > 4). The TD and TD-SV models achieve a reduction in RMSFE and MAFE of
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4468 TRINH et al.

T A B L E 2 Relative RMSFE.

Model h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Rolling average 0.744 0.788 0.827 0.854 0.890 0.922 0.978 1.009

UC 0.923 0.929 0.923 0.937 0.947 0.933* 0.921*** 0.919**

TD 1.055 1.007 0.966 0.924 0.892 0.864* 0.813** 0.788***

TD-MA 0.933 1.001 0.961 0.928 0.889 0.86** 0.813** 0.788***

TD-SV 1.058 1.001 0.961 0.928 0.895 0.864 0.817** 0.792**

TD-MASV 0.922 1.007 0.967 0.926 0.895 0.867 0.816** 0.79**

TD-t 1.059 1.006 0.964 0.929 0.889 0.864* 0.813** 0.792***

TD-tMA 0.934 1.009 0.964 0.930 0.898 0.868* 0.82** 0.793*

TD-tSV 1.057 1.007 0.967 0.926 0.894 0.873 0.816** 0.793**

TD-tMASV 0.925 1.011 0.961 0.926 0.892 0.869** 0.822** 0.792**

UC-MA 0.92* 0.946 0.929 0.923 0.918 0.895*** 0.872*** 0.863***

UC-SV 0.918*** 0.93** 0.924** 0.943** 0.959 0.943*** 0.939*** 0.94*

UC-MASV 0.919*** 0.928* 0.92* 0.942 0.955 0.94** 0.931*** 0.923**

UC-t 0.931** 0.937 0.929* 0.958 0.971 0.948** 0.948** 0.942**

UC-tMA 0.93** 0.939 0.925 0.947 0.965 0.942** 0.93** 0.925

UC-tSV 0.917** 0.935*** 0.917** 0.941** 0.961 0.938** 0.929*** 0.931*

UC-tMASV 0.914** 0.928** 0.916* 0.943 0.965 0.938** 0.939*** 0.934***

TVAR 0.948** 0.943* 0.926 0.951 0.970 0.949 0.952** 0.968

TVAR-MA 0.94* 0.936 0.923 0.943 0.958 0.937** 0.939 0.941**

TVAR-SV 0.939** 0.948** 0.925 0.955* 0.985* 0.967* 0.970 0.980

TVAR-MASV 0.944** 0.942** 0.925** 0.949* 0.978 0.956** 0.966 0.976

TVAR-t 0.945** 0.949 0.932* 0.958 0.986 0.956 0.973* 0.981

TVAR-tMA 0.947** 0.944 0.924 0.954 0.972 0.951 0.952* 0.968

TVAR-tSV 0.936*** 0.943 0.924* 0.957* 0.985 0.960 0.964* 0.985

TVAR-tMASV 0.939** 0.939*** 0.93* 0.960 0.981* 0.962 0.97* 0.980

TD-zero 2.023 1.882 1.836 1.700 1.676 1.613 1.522 1.433

TD-MA-zero 2.235 1.903 1.800 1.744 1.666 1.624 1.489 1.454

TD-SV-zero 1.055 1.028 0.982 0.947 0.912 0.881 0.833** 0.811*

TD-MASV-zero 1.488 1.037 0.961 0.930 0.919 0.891 0.837** 0.799**

TD-t-zero 1.061 1.001 0.977 0.934 0.898 0.877 0.827** 0.798**

TD-tMA-zero 1.059 1.017 0.971 0.935 0.904* 0.872 0.821** 0.795**

TD-tSV-zero 1.070 1.020 0.982 0.929 0.920 0.871 0.835*** 0.803**

TD-tMASV-zero 1.058 1.024 0.977 0.948 0.908 0.877* 0.836*** 0.805**

UC-zero 2.900 2.738 2.598 2.520 2.450 2.406 2.252 2.142

UC-MA-zero 2.891 2.578 2.471 2.407 2.270 2.214 2.081 2.050

UC-SV-zero 5.189 5.031 4.692 4.751 4.594 4.522 4.474 4.348

UC-MASV-zero 4.827 4.669 4.386 4.455 4.272 4.223 4.181 4.106

UC-t-zero 0.932 0.943 0.944 0.952 0.969 0.947* 0.938* 0.925**

UC-tMA-zero 0.937 0.938 0.927 0.959 0.967 0.944* 0.936 0.926**

UC-tSV-zero 1.071 1.018 0.969 0.995 1.037 0.965** 0.971 0.993

UC-tMASV-zero 1.039 1.004* 0.950 0.976 1.029 0.997 0.942*** 0.976

Note: The results presented for the benchmark (rolling average) model represent the actual RMSFE, while the results for the other models are presented
relative to the benchmark. The best-performing model is indicated in bold. The subscript symbols ***, **, and * denote the significance levels of 1%, 5%, and
10%, respectively, indicating the presence of a significant difference in predictive accuracy between the alternative models and the benchmark. These
significance levels are determined using the asymptotic test proposed by Diebold and Mariano.39
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TRINH et al. 4469

T A B L E 3 Relative MAFE.

Model h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Rolling average 0.571 0.623 0.662 0.679 0.726 0.767 0.811 0.828

UC 0.924 0.935 0.936 0.949 0.967 0.934** 0.919*** 0.914***

TD 1.126 1.038 0.980 0.949 0.895 0.854* 0.803** 0.781***

TD-MA 0.948 1.032 0.981 0.951 0.892 0.846* 0.803*** 0.781***

TD-SV 1.121 1.036 0.981 0.947 0.902 0.848 0.805** 0.785**

TD-MASV 0.923 1.036 0.987 0.951 0.900 0.852 0.806** 0.787**

TD-t 1.125 1.037 0.981 0.955 0.892 0.85* 0.805*** 0.785***

TD-tMA 0.932 1.042 0.978 0.951 0.906 0.856* 0.811** 0.79*

TD-tSV 1.123 1.038 0.984 0.949 0.897 0.860 0.803* 0.787**

TD-tMASV 0.923 1.041 0.980 0.946 0.895 0.855* 0.811** 0.788**

UC-MA 0.927 0.979 0.955 0.955 0.931 0.884*** 0.861*** 0.848**

UC-SV 0.9** 0.911*** 0.917* 0.941** 0.970 0.947*** 0.94*** 0.945**

UC-MASV 0.899** 0.919 0.924 0.954 0.971 0.949** 0.930*** 0.927***

UC-t 0.907*** 0.924 0.928 0.961 0.985 0.961** 0.943** 0.955*

UC-tMA 0.907** 0.940 0.944 0.963 0.988 0.948* 0.932*** 0.930

UC-tSV 0.902** 0.921*** 0.92** 0.949*** 0.980 0.946*** 0.927*** 0.934**

UC-tMASV 0.899** 0.908** 0.910** 0.939 0.978 0.948** 0.939*** 0.941***

TVAR 0.932* 0.93* 0.927 0.939 0.963 0.932 0.915 0.917***

TVAR-MA 0.928** 0.935 0.928 0.942 0.960 0.915* 0.905* 0.899*

TVAR-SV 0.929** 0.919** 0.912* 0.928 0.956 0.939** 0.916*** 0.917*

TVAR-MASV 0.93** 0.91** 0.916 0.921** 0.962 0.929** 0.92*** 0.922*

TVAR-t 0.926** 0.924 0.922 0.943* 0.971 0.931*** 0.926* 0.930

TVAR-tMA 0.931** 0.931 0.925 0.939 0.962 0.922 0.911*** 0.918**

TVAR-tSV 0.92** 0.915* 0.91* 0.929 0.963 0.934 0.915*** 0.924**

TVAR-tMASV 0.929** 0.911* 0.922 0.933 0.965 0.934** 0.922*** 0.921**

TD-zero 2.136 1.944 1.848 1.746 1.700 1.550 1.517 1.425

TD-MA-zero 2.246 1.966 1.869 1.788 1.675 1.602 1.461 1.440

TD-SV-zero 1.116 1.051 0.992 0.967 0.908 0.864* 0.819** 0.802**

TD-MASV-zero 1.295 1.040 0.992 0.963 0.911 0.866* 0.818** 0.792***

TD-t-zero 1.123 1.040 1.000 0.958 0.905 0.859 0.814* 0.791**

TD-tMA-zero 1.112 1.051 0.992 0.964 0.903* 0.859* 0.81** 0.791**

TD-tSV-zero 1.136 1.050 0.992 0.964 0.915 0.863 0.82** 0.799**

TD-tMASV-zero 1.112 1.058 0.994 0.970 0.917 0.864* 0.821*** 0.799**

UC-zero 3.324 3.036 2.834 2.759 2.603 2.497 2.372 2.293

UC-MA-zero 3.143 2.887 2.699 2.649 2.395 2.339 2.227 2.183

UC-SV-zero 3.076 3.170 3.232 3.593 3.503 3.481 3.726 3.709

UC-MASV-zero 2.525 2.571 2.413 2.519 2.524 2.414 2.477 2.416

UC-t-zero 2.490 2.547 2.344 2.468 2.432 2.310 2.431* 2.419**

UC-tMA-zero 0.930 0.939 0.948 0.977 0.995 0.954 0.937 0.933**

UC-tSV-zero 0.937* 0.943 0.944 0.968 1.015 0.973*** 0.963** 0.971

UC-tMASV-zero 0.923* 0.926** 0.944 0.97* 1.005 0.978* 0.963*** 0.984**

Note: The results presented for the benchmark (rolling average) model represent the actual MAFE, while the results for the other models are presented
relative to the benchmark. The best-performing model is indicated in bold. The subscript symbols ***, **, and * denote the significance levels of 1%, 5%, and
10%, respectively, indicating the presence of a significant difference in predictive accuracy between the alternative models and the benchmark. These
significance levels are determined using the asymptotic test proposed by Diebold and Mariano.39
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4470 TRINH et al.

T A B L E 4 Relative ALPL.

Model h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

UC −1.042 −1.107 −1.151 −1.196 −1.252 −1.272 −1.317 −1.347

TD −0.137*** −0.081*** −0.042*** 0.011*** 0.058*** 0.077*** 0.123*** 0.155***

TD-MA −0.013*** −0.081*** −0.042*** 0.01*** 0.06*** 0.077*** 0.123*** 0.155***

TD-SV −0.13*** −0.086*** −0.053*** −0.007*** 0.038*** 0.053*** 0.096*** 0.131***

TD-MASV 0.021*** −0.08*** −0.053*** −0.009*** 0.037*** 0.047*** 0.094*** 0.13***

TD-t −0.14*** −0.083*** −0.045*** 0.008*** 0.057*** 0.074*** 0.119*** 0.152***

TD-tMA −0.009*** −0.092*** −0.053*** 0*** 0.048*** 0.064*** 0.107*** 0.14***

TD-tSV −0.134*** −0.09*** −0.055*** −0.009*** 0.037*** 0.052*** 0.097*** 0.131***

TD-tMASV 0.017*** −0.082*** −0.053*** −0.01*** 0.034*** 0.048*** 0.093*** 0.126***

UC-MA 0.001 −0.021 −0.006 0.019 0.036*** 0.044*** 0.056*** 0.069***

UC-SV 0.064*** 0.031*** 0.01* −0.004 −0.021 −0.020 −0.036 −0.032

UC-MASV 0.057*** 0.026** 0.005** −0.006 −0.021 −0.020 −0.027 −0.015

UC-t 0.015*** 0.002*** −0.005** −0.025 −0.032 −0.026 −0.040 −0.039

UC-tMA 0.012*** −0.006 −0.010 −0.020 −0.026 −0.019 −0.024 −0.017

UC-tSV 0.056*** 0.019*** 0.008** −0.006 −0.017 −0.018 −0.026 −0.024

UC-tMASV 0.06*** 0.026*** 0.012*** −0.007 −0.025 −0.023 −0.034 −0.028

TVAR −0.007 0.003 0.005 −0.003 −0.004 −0.002 −0.003* −0.002***

TVAR-MA −0.002 0.000 0.004 0.011 0.010 0.016 0.013* 0.016***

TVAR-SV 0.048*** 0.027*** 0.011*** 0.001*** −0.013*** −0.025*** −0.031*** −0.027***

TVAR-MASV 0.043*** 0.031*** 0.014*** 0.006*** −0.012*** −0.015*** −0.022*** −0.026***

TVAR-t 0.01*** 0.002** 0.001 −0.012 −0.019 −0.018*** −0.026*** −0.024***

TVAR-tMA 0.009** 0.000 0.001 −0.008 −0.011 −0.013*** −0.013** −0.016***

TVAR-tSV 0.052*** 0.026*** 0.012*** −0.001*** −0.018*** −0.023*** −0.031*** −0.027***

TVAR-tMASV 0.043*** 0.026*** 0.007*** −0.005*** −0.019*** −0.022*** −0.033*** −0.022***

TD-zero −1.768 −1.703 −1.658 −1.612 −1.556 −1.536 −1.491 −1.460

TD-MA-zero −1.772 −1.704 −1.659 −1.614 −1.557 −1.537 −1.492 −1.461

TD-SV-zero −0.316 −0.266 −0.245 −0.199 −0.162 −0.145 −0.099 −0.062

TD-MASV-zero −0.297 −0.263 −0.252 −0.200 −0.164 −0.149 −0.103 −0.069

TD-t-zero −0.180 −0.127 −0.087 −0.038* 0.015** 0.03*** 0.073*** 0.107***

TD-tMA-zero −0.160 −0.124 −0.087** −0.036*** 0.013*** 0.03*** 0.077*** 0.107***

TD-tSV-zero −0.234 −0.183 −0.154 −0.104 −0.062 −0.041 −0.002 0.038*

TD-tMASV-zero −0.205 −0.182 −0.154 −0.105 −0.062 −0.044 0.005 0.037

UC-zero −1.791 −1.726 −1.683 −1.637 −1.582 −1.562 −1.518 −1.487

UC-MA-zero −1.792 −1.724 −1.680 −1.635 −1.579 −1.560 −1.515 −1.484

UC-SV-zero −2.023 −1.797 −1.791 −1.834 −1.859 −1.893 −1.930 −1.951

UC-MASV-zero −1.743 −1.662 −1.680 −1.718 −1.744 −1.789 −1.813 −1.841

UC-t-zero −0.019 −0.024 −0.035 −0.033 −0.037 −0.038 −0.036 −0.023

UC-tMA-zero −0.010 −0.019 −0.026 −0.034 −0.029 −0.035 −0.033 −0.025

UC-tSV-zero −0.043 −0.100 −0.094 −0.119 −0.131 −0.164 −0.180 −0.177

UC-tMASV-zero −0.029 −0.087 −0.089 −0.115 −0.133 −0.139 −0.136 −0.161

Note: The results presented for the benchmark (UC) model represent the actual ALPL, while the results for the other models are presented relative to the
benchmark. The best-performing model is indicated in bold. The subscript symbols ***, **, and * denote the significance levels of 1%, 5%, and 10%,
respectively, indicating the presence of a significant difference in predictive accuracy between the alternative models and the benchmark. These
significance levels are determined using the asymptotic test proposed by Diebold and Mariano.39
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TRINH et al. 4471

F I G U R E 3 Predictive posterior distribution of ED waiting time at h = 1 using the UC-tMASV model.

approximately 22% compared to the benchmark rolling average model for an eight-hour-ahead-forecast. Furthermore,
the relative density forecast measure ALPL yields significantly positive values, indicating that these models provide better
predictions of waiting time compared to the benchmark UC model. Figure A1 in Appendix A displays the out-of-sample
forecasts of the UC-tMASV and TD models for h = 1 and h = 8. In comparison to the UC-tMASV model, the forecasts
based on the TD model exhibit less volatility. This suggests that incorporating features that capture dynamic move-
ments of waiting time and flexible error structures improve short-term forecasts. However, the benefits of incorporating
the features are less pronounced in improving long-term forecasts. Additionally, it is worth noting that the TD mod-
els with flexible error specifications do not appear to outperform the TD model with a constant variance for long-term
forecasts.

Hospitals often face challenges in meeting fixed waiting time predictions for patients in the ED, rendering point fore-
casts of ED waiting time less informative. This observation is consistent with findings in the waiting time literature, where
studies have shown that patient dissatisfaction tends to increase when waiting times exceed previous indications.11,12 As
a result, conveying information about the uncertainties associated with ED waiting time forecasts can provide valuable
practical benefits. ED waiting times are inherently uncertain and asymmetric due to the complex nature of ED clinical
pathways and the unpredictability of arrivals of urgent and critically-ill patients, necessitating the sudden redirection of
substantial ED resources.

Using Bayesian estimation for the models enables us to examine the predictive distribution of ED waiting time, thereby
improving our understanding of the associated uncertainties in the forecasts. Figure 3 illustrates the predictive posterior
distribution of the predicted waiting time at h = 1 using the UC-tMASV model. By leveraging the predictive distribution,
we can readily compute the x% credible interval for the one-period-ahead waiting time prediction. For example, the 90%
credible interval indicates a 90% probability that the waiting time for the next time window will range from 14 to 132
min. In contrast, the 50% credible interval suggests that the waiting time for the next time window is expected to fluctuate
between 28 and 67 min. Such information provides practitioners with a degree of confidence in the accuracy of waiting
time forecasts.

5 CONCLUSION

In this article, we propose a set of models within a state space framework for forecasting ED waiting times. The state
space framework provides a parsimonious specification that captures the dynamic variations of ED waiting time and pro-
vides flexibility in handling zero-recorded waiting times. Our findings indicate that treating zero-recorded waiting times as
unobserved values improves forecast performance. Additionally, incorporating flexible error structures in the model spec-
ifications enhances forecast accuracy, especially for short-term forecasts. Based on our empirical findings, the UC-tMASV
model is superior for short term forecasts while the TD model provides better forecasts for longer term horizons. The

 10970258, 2023, 24, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9870 by E
ddie K

oiki M
abo L

ibrary, W
iley O

nline L
ibrary on [30/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4472 TRINH et al.

UC-tMASV model outperforms the rolling average model by 10% for forecasts up to four hours ahead. On the other
hand, both the TD and TD-SV models reduce the RMSFE of the benchmark model by nearly 22% for eight-hour-ahead
forecasts.

As a future research direction, it would be valuable to incorporate other explanatory variables, if available, to further
understand their impacts on waiting time and investigate whether the inclusion of exogenous variables can enhance fore-
cast performance. Another avenue is to combine forecasts from several different models using Bayesian model averaging.
A challenge is to develop an efficient and accurate algorithm to compute marginal likelihoods for the SS models with
flexible error structures.
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ENDNOTES
∗From now onwards, aggregated ED waiting time and ED waiting time are used interchangeably.
†Another way to accommodate the time-variation in variance is the generalized autoregressive conditional heteroskedasticity model.28,29

‡The inverse gamma distribution has the probability density function as follows:36

f (z; 𝛼, 𝜂) = 𝜂
𝛼

Γ(𝛼)
1

y𝛼+1 exp
(
− 𝜂

z

)
, z > 0.

The mean of z is E(z) = 𝜂

𝛼−1
for 𝛼 > 1, and var(z) = 𝜂

2

(𝛼−1)2(𝛼−2)
for 𝛼 > 2.

§For the computation purpose, we add a small positive number (ie, 𝜖 = 1e−3, 1e−5, and 1e−7) to the zero waiting time observations before
taking a logarithm for model estimation. We find that the main conclusions are robust across different choices of 𝜖.
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APPENDIX A. FIGURES
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F I G U R E A1 The observed waiting time, mean predicted waiting time and its 68% credible interval at h = 1 and 8 from the UC-tMSV,
and TD models.

APPENDIX B. MCMC ALGORITHMS

In this section, we present MCMC samplers for estimating a set of state space (SS) models with flexible error structures
described in Section 2. Without loss of generality, we keep the conditional mean as stated in Equation (3):

𝜇t = 𝜇t−1 + 𝜀𝜇t , 𝜀
𝜇

t ∼ (0, 𝜎2
𝜇).

We present MCMC samplers for the models with normal, t-distributed, SV, and MA errors. The estimation of their variants
where errors are the combination of the specifications should be readily implemented.

B.1 SS with a normal distribution
For convenience, we provide a partial representation of the state space model with a normal distribution here. A detailed
explanation of the notation can be found in Section 2.

yt = 𝜇t + 𝜀y
t , 𝜀

y
t ∼ (0, 𝜎2

y )
𝜇t = 𝜇t−1 + 𝜀𝜇t , 𝜀

𝜇

t ∼ (0, 𝜎2
𝜇).

To facilitate the discussion on estimation, we stack yt, 𝜇t, 𝜀
y
t , and 𝜀𝜇1 over time, that is, y = (y1, … , yT)′, 𝝁 = (𝜇1, … , 𝜇T)′,

𝜺
y = (𝜀y

1, … , 𝜀
y
T)
′, 𝜺𝜇 = (𝜀𝜇1 , … , 𝜀

𝜇

T)
′. The model can be expressed in a concise matrix form as follows:

y = 𝝁 + 𝜺y
, 𝜺

y ∼ (0, 𝜎2
y IT), (B1)

H𝝁𝝁 = 𝝁0 + 𝜺𝜇, 𝜺
𝜇 ∼ (0, 𝜎2

𝜇IT); (B2)

where IT is a T × T identity matrix, H𝝁 =
⎡
⎢
⎢
⎢⎣

1 0 … 0
−1 1 … 0
⋮ ⋱ ⋱ ⋮
0 … −1 1

⎤
⎥
⎥
⎥⎦
, 𝝁0 =

⎡
⎢
⎢
⎢⎣

𝜇0
0
⋮
0

⎤
⎥
⎥
⎥⎦
.
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It is worth noting that the logarithm of the waiting time y can be decomposed into the observed waiting time yo and
the unobserved waiting time yu as follows

y = Moyo +Muyu
,

where yo is a To × 1 vector, and yu is a Tu × 1 vector. Matrices Mo and Mu, containing values of zeros and ones, are the
T × To and T × Tu matrices associated with yo and yu, and T = Tu + To. For example, suppose that y contains three waiting
time periods, and the waiting time at period 2 is unobserved. In this case, the matrices Mo and Mu take the following
forms:

⎡
⎢
⎢
⎢⎣

y1

y2

y3

⎤
⎥
⎥
⎥⎦
=
⎡
⎢
⎢
⎢⎣

1 0
0 0
0 1

⎤
⎥
⎥
⎥⎦

[
y1

y3

]
+
⎡
⎢
⎢
⎢⎣

0
1
0

⎤
⎥
⎥
⎥⎦
y2.

The posterior draws of all model parameters can be obtained by sampling sequentially from:

1. p(𝝁|yo
, yu

, 𝜇0, 𝜎
2
𝜇
, 𝜎

2
y ) = p(𝝁|y, 𝜇0, 𝜎

2
𝜇
, 𝜎

2
y ),

2. p(𝜇0|yo
, yu

,𝝁, 𝜎
2
𝜇, 𝜎

2
y ) = p(𝜇0|𝝁, 𝜎2

𝜇),
3. p(𝜎2

𝜇
|yo
, yu

,𝝁, 𝜇0, 𝜎
2
y ) = p(𝜎2

𝜇
|𝝁, 𝜇0),

4. p(𝜎2
y |,𝝁, yo

, yu
𝜇0, 𝜎

2
𝜇
) = p(𝜎2

y |y,𝝁),
5. p(yu|yo

, 𝜎
2
y ,𝝁, 𝜇0, 𝜎

2
𝜇
) = p(yu|yo

, 𝜎
2
y ,𝝁).

Sampling 𝝁
A conventional approach for estimating the state vector 𝜇t is the Kalman filter.40 However, in this article, we adopt the
precision-based algorithm proposed by Chan and Jeliazkov.34 This algorithm has several advantages. First, it samples all
states (p(𝝁|y, 𝜇0, 𝜎

2
𝜇
, 𝜎

2
y )) in one step instead of one-at-a-time (p(𝜇t|y, 𝜇0, 𝜎

2
𝜇
, 𝜎

2
y , {𝜇j}j≠t)), which improves the efficiency of

the MCMC sampler.33,34,41 Given the time periods of 8400 in our empirical study, the recursive forecast exercise would
become excessively time-consuming if we sample one-at-a time for the state vectors. Second, this algorithm takes advan-
tage of the sparse and banded structure of matrices, particularly H𝝁, which speeds up computation and reduces storage
costs.42

The prior of 𝝁 is obtained through the state Equation (B2) by pre-multiplying both sides with H𝝁, resulting in:

𝝁 = H−1
𝝁 𝝁0 +H−1

𝝁 𝜺
𝝁
, 𝜺

𝝁 ∼ (0, 𝜎2
𝜇IT),

= 𝝁̃0 + 𝜺̃𝝁, 𝜺̃
𝝁 ∼ (0,𝛀𝝁); (B3)

where 𝝁̃0 = H−1
𝝁 𝝁0, 𝜺̃𝝁 = H−1

𝝁 𝜺
𝝁, and 𝛀−1

𝝁 = 𝜎2
𝜇

H′
𝝁H𝝁.

Equation (B3) implies that the prior density of 𝝁 is a normal distribution, that is, 𝝁 ∼ (𝝁̃0,𝛀𝝁)with the log-prior as
follows:

log p(𝝁|𝜇0, 𝜎
2
𝜇) = c1 −

T
2

log 𝜎2
𝜇 −

1
2
(𝝁 − 𝝁̃0)′𝛀−1

𝝁 (𝝁 − 𝝁̃0); (B4)

where c1 is a normalization term independent of 𝝁.
The log-likelihood function is obtained from the mean Equation (B1), which is:

log p(y|𝝁, 𝜇0, 𝜎
2
𝜇, 𝜎

2
y ) = c2 −

T
2

log(𝜎2
y ) −

1
2𝜎2

y
(y − 𝝁)′(y − 𝝁); (B5)

where c2 is a normalization term independent of 𝝁 and other model parameters.
Applying Bayes’ theorem, the log-posterior distribution is

log p(𝝁|y, 𝜇0, 𝜎
2
𝜇, 𝜎

2
y ) = c3 −

1
2
(
𝝁
′(𝜎−2

y IT +𝛀−1
𝝁 )𝝁 − 2𝝁′(𝜎−2

y y +𝛀−1
𝝁 𝝁̃0)

)
; (B6)
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4476 TRINH et al.

where c3 is a normalization term independent of 𝝁. Equation (B6) indicates that the posterior of 𝝁 follows a normal
distribution (m𝝁,K−1

𝝁 ) where:

K𝝁 = (𝜎−2
y IT +𝛀−1

𝝁 ); m𝝁 = K−1
𝝁 (𝜎−2

y y + +𝛀−1
𝝁 𝝁̃0).

Sampling 𝝁0
The log-likelihood function is obtained from the state equation at t = 1, which is:

log p(𝜇1|𝜇0, 𝜎
2
𝜇) = −

1
2

log(2𝜋𝜎2
𝜇) −

1
2𝜎2

𝜇

(𝜇1 − 𝜇0)′(𝜇1 − 𝜇0).

Given the prior 𝜇0 ∼ N(0,V𝜇), the posterior density of 𝜇0 is a normal distribution (m0,K−1
0 ) where

K0 = 𝜎−2
u + V−1

𝜇 ; m0 = K−1
0 𝜎

−2
𝜇 𝜇1.

Sampling 𝝈2
𝝁

The log-likelihood function is obtained from the state Equation (B2):

log p(𝝁|𝜇0, 𝜎
2
𝜇) = −

T
2

log(2𝜋𝜎2
𝜇) −

1
2𝜎2

𝜇

T∑

t=1
(𝜇t − 𝜇t−1)2.

Given the prior of 𝜎2
𝜇

is an inverse gamma 𝜎2
𝜇
∼ (𝛼𝜇, 𝜂𝜇):

log(𝜎2
𝜇) = c4 − (𝛼𝜇 − 1) log(𝜎2

𝜇) −
𝜂𝜇

𝜎
2
𝜇

;

where c4 is a normalization term independent of 𝜎2
𝜇

.
Applying Bayes’ theorem, the posterior density of 𝜎2

𝜇 follows an inverse gamma distribution (𝛼̂𝜇, 𝜂̂𝜇), where:

𝛼̂𝜇 = 𝛼𝜇 +
T
2
; 𝜂̂

𝜇
= 𝜂𝜇 +

1
2

T∑

t=1
(𝜇t − 𝜇t−1)2.

Sampling 𝝈2
y

Similar to 𝜎2
𝜇

, the posterior of 𝜎2
y is an inverse gamma (𝛼̂y, 𝜂̂y) where

𝛼̂y = 𝛼y +
T
2
; 𝜂̂y = 𝜂y +

1
2
(y − 𝝁)′(y − 𝝁).

Sampling yu

The log-likelihood of the observed data from Equation (B1) can be re-parameterized in terms of the observed data y and
the missing values y∗ as follows

log p(y|𝝁, 𝜇0, 𝜎
2
𝜇, 𝜎

2
y ) = p(yu

, yo|𝝁, 𝜇0, 𝜎
2
𝜇, 𝜎

2
y )

= c2 −
T
2

log(𝜎2
y ) −

1
2𝜎2

y

(
(Moyo +Muyu) − 𝝁

)′ ((Moyo +Muyu) − 𝝁
)

= c2 −
T
2

log(𝜎2
y ) −

1
2𝜎2

y
(𝝁 −Moyo)′(𝝁 −Moyo) − 1

2𝜎2
y

(
yu′M′

uMuyu − 2yu′M′
u(𝝁 −Moyo)

)
.

Given the prior of yu is (𝜽y,Vy), where the posterior distribution is a normal distribution, (my,K−1
y ), with

Ky = 𝜎2
y M′

uMu + V−1
y ; my = K−1

y
(
𝜎
−2
y M′

u(𝝁 −Moyo) + V−1
y 𝜽y

)
.
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TRINH et al. 4477

B.2 SS with a t distributed error

yt = 𝜇t + 𝜀y
t , 𝜀

y
t ∼ (0, 𝜆t𝜎

2
y ), 𝜆t ∼ (𝜈∕2, 𝜈∕2),

𝜇t = 𝜇t−1 + 𝜀𝜇t , 𝜀
𝜇

t ∼ (0, 𝜎2
𝜇).

Similar to the SS model with a normal error, we represent a SS model with a t distributed error in a compact matrix form
as follows:

y = Moyo +Muyu = 𝝁 + 𝜺y
, 𝜺

y ∼ (0,𝛀y),
H𝝁𝝁 = 𝝁0 + 𝜺𝜇, 𝜺

𝜇 ∼ (0, 𝜎2
𝜇IT);

where 𝛀y = diag(𝜎2
y𝜆1, … , 𝜎

2
y𝜆T) = diag(𝜎2

y𝝀),𝝀 = (𝜆1, … , 𝜆T).
The model parameters are obtained via a MCMC sampler as follows:

1. p(𝝁|yo
, yu

, 𝜇0, 𝜎
2
𝜇
, 𝜎

2
y ,𝝀, 𝜈) = p(𝝁|y, 𝜇0, 𝜎

2
𝜇
, 𝜎

2
y ,𝝀, 𝜈),

2. p(𝜇0|yo
, yu

,𝝁, 𝜎
2
𝜇, 𝜎

2
y ,𝝀, 𝜈) = p(𝜇0|𝝁, 𝜎2

𝜇),
3. p(𝜎2

𝜇
|yo
, yu

,𝝁, 𝜇0, 𝜎
2
y ,𝝀, 𝜈) = p(𝜎2

𝜇
|𝝁, 𝜇0),

4. p(𝜎2
y |yo

, yu
,𝝁, 𝜇0, 𝜎

2
𝜇
,𝝀, 𝜈) = p(𝜎2

y |y,𝝁),
5. p(yu|y, 𝜎2

y ,𝝁, 𝜇0, 𝜎
2
𝜇
,𝝀, 𝜈) = p(yu|y, 𝜎2

y ,𝝁),
6. p(𝝀|yo

, yu
, 𝜇0, 𝜎

2
𝜇
, 𝜎

2
y ,𝝁, 𝜈) =

∏T
t=1p(𝝀t|𝜈, yt, 𝜎

2
y , 𝜇t),

7. p(𝜈|yo
, yu

, 𝜇0, 𝜎
2
𝜇
, 𝜎

2
y ,𝝁,𝝀) = p(𝜈|𝝀).

We now present the sampling technique for two additional parameters in block 6 and block 7 of the MCMC sampler,
that is, 𝝀 = (𝜆1, … , 𝜆T)′ and 𝜏. Note that (𝜆1, … 𝜆T) are conditionally independent, and we sample each of 𝜆t sequentially
from the posterior density (𝛼𝜂t , 𝛽𝜂t ), where

𝛼𝜆t =
𝜈 + 1

2
, 𝛽𝜆t =

1
2

(
𝜈 + 1

𝜎
2
y
(yt − 𝜇t)2

)
.

Applying Bayes’ theorem, we can obtain the log-posterior density of 𝜈 as follows:

log p(𝜈|𝝀) ∝ log p(𝜈) + log p(𝝀|𝜈)

∝ T𝜈
2

log
(
𝜈

2

)
− T logΓ(𝜈∕2) −

(
𝜈

2
+ 1

) T∑

t=1
log(𝜆t) −

𝜈

2

T∑

t=1
𝜆
−1
t ;

for 2 < 𝜈 < 100, Γ(.) is a gamma function. Obtaining the first and second derivatives of the log-density with respect to 𝜈
is straightforward and can be computed as follows:

d log p(𝜈|𝝂)
d𝜈

= T
2

log(𝜈∕2) + T
2
− T

2
Ψ(𝜈∕2) − 1

2

T∑

t=1
log 𝜆t −

1
2

T∑

t=1
𝜆
−1
t

d2 log p(𝜈|𝝂)
d𝜈2 = T

2𝜈
− T

4
Ψ′(𝜈∕2),

where Ψ(z) = d
dz

logΓ(z) and Ψ′(z) d
dz

logΨ(z) are the digamma and trigamma functions, respectively. As the first and
second derivatives can be evaluated efficiently, we can maximize log p(𝜈|Λ) using Newton-Raphson method to obtain the
mode, denoted as 𝜈, and the negative Hessian evaluated at the mode, denoted as K−1

𝜈
. We then use an independence-chain

Metropolis-Hastings step with the proposal distribution (𝜈,K−1
𝜈
), denoted as q(𝜈). In this step, given the current draw

𝜈, a candidate draw 𝜈
c ∼ (𝜈,K−1

𝜈
) is accepted with probability

min
{

1,
p(𝜈c|𝝀)
p(𝜈|𝝀) ×

q(𝜈)
q(𝜈c)

}
,

otherwise we stay at the current draw 𝜈.
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4478 TRINH et al.

B.3 SS with stochastic volatility

yt = 𝜇t + 𝜀y
t , 𝜀

y
t ∼ (0, eht ),

𝜇t = 𝜇t−1 + 𝜀𝜇t , 𝜀
𝜇

t ∼ (0, 𝜎2
𝜇),

ht = 𝜇h + 𝜙h(ht−1 − 𝜇h) + 𝜀h
t , 𝜀

h
t ∼ (0, 𝜎2

h).

We re-parameterize a SS model with SV in a compact matrix such as

y = Moyo +Muyu = 𝝁 + 𝜺y
, 𝜺

y ∼ (0,𝛀y),
H𝝁𝝁 = 𝝁0 + 𝜺𝜇, 𝜺

𝜇 ∼ (0, 𝜎2
𝜇IT),

Hhh = h0 + 𝜺h
𝜺

h ∼ N(0,𝛀h);

where 𝛀y = diag(eh1 , … ehT ), 𝛀h = diag(𝜎2
h∕(1 − 𝜎

2
h), 𝜎

2
h, … 𝜎

2
h), Hh =

⎡
⎢
⎢
⎢⎣

1 0 … 0
−𝜙h 1 … 0
⋮ ⋱ ⋱ ⋮
0 … −𝜙h 1

⎤
⎥
⎥
⎥⎦
, h0 =

⎡
⎢
⎢
⎢⎣

𝜇h
𝜇h(1 − 𝜙h)

⋮
𝜇h(1 − 𝜙h)

⎤
⎥
⎥
⎥⎦
.

The posterior distribution of model parameters are sampled from

1. p(𝝁|yo
, yu

, 𝜇0, 𝜎
2
𝜇
,h, 𝜎2

h, 𝜇h, 𝜙h) = p(𝝁|y, 𝜇0, 𝜎
2
𝜇
, 𝜎

2
y ),

2. p(𝜇0|yo
, yu

,𝝁, 𝜎
2
𝜇
, 𝜎

2
y ,h, 𝜇h, 𝜙h) = p(𝜇0|𝝁, 𝜎2

𝜇
),

3. p(𝜎2
𝜇
|yo
, yu

,𝝁, 𝜇0,h, 𝜎2
h, 𝜇h, 𝜙h) = p(𝜎2

𝜇
|𝝁, 𝜇0),

4. p(yu|yo
,h, 𝜎2

h,𝝁, 𝜇0, 𝜎
2
𝜇
, 𝜇h, 𝜙h) = p(yu|y, 𝜎2

y ,𝝁),
5. p(h|yo

, yu
,𝝁, 𝜇0, 𝜎

2
𝜇
, 𝜎

2
h, 𝜇h, 𝜙h) = p(h|y, 𝜇0, 𝜎

2
𝜇
, 𝜎

2
y , 𝜇h, 𝜙h),

6. p(𝜇h|yo
, yu

,𝝁, 𝜇0, 𝜎
2
𝜇
, 𝜎

2
h,h, 𝜙h) = p(𝜇h|h, 𝜇h, 𝜙h),

7. p(𝜙h|yo
, yu

,𝝁, 𝜇0, 𝜎
2
𝜇, 𝜎

2
h,h, 𝜇h) = p(𝜙h|h, 𝜇h, 𝜎

2
h),

8. p(𝜎2
h|𝝁, y

o
, yu

𝜇0,h, 𝜎2
𝜇
) = p(𝜎2

y |h, 𝜇h, 𝜙h).

The additional blocks of the MCMC are for SV process (block 5-8). The log-likelihood function of observed data y can
be represented:

log p(y|𝝁, 𝜇0, 𝜎
2
𝜇,h) = c2 −

1
2

T∑

t=1
ht −

1
2
(y − 𝝁)′𝛀−1

y (y − 𝝁);

= c2 −
1
2

T∑

t=1
ht −

1
2

T∑

t=1
(ỹt − 𝜇t)′e−ht (ỹt − 𝜇t).

The conditional posterior distribution for the log-volatility, h, is not standard. To address this, we adopt the auxiliary
mixture sampling approach proposed by Kim et al for block 5.27 The key idea of this approach is to transform the mean
equation into a linear model in terms of ht, resulting in the following formulation:

log (ỹ − 𝜇t)2 = log (ỹ)∗ = ht + log 𝜀̃t 𝜀̃t ∼ (0, 1).

Kim et al27 demonstrated that the likelihood of log (ỹ)∗ follows a log-normal distribution which can be approximated by
using the mixture of seven normal distribution with mean and variables defined in Table 4 of their article. After using the
auxiliary mixture sampling to approximate the likelihood, we apply the precision-based algorithm by Chan and Jeliazkov
to sample log-volatility h.

Sampling 𝜇h and 𝜎2
h (blocks 6 and 8) from the their posteriors are straightforward as both of the posteriors are standard.

The posterior of 𝜇h is a normal distribution, that is, (m̂𝜇h ,K
−1
𝜇h
) with

K𝜇h = V−1
𝜇h
+ X′

𝜇h
𝛀−1

h X𝜇h , m̂𝜇h = K−1
𝜇h
)(V−1

𝜇h
m𝜇h + X′

𝜇h
𝛀−1

h Z𝜇h);

where X′
𝜇h
= (1, 1 − 𝜙h, … , 1 − 𝜙h)′, Z𝜇h = (h1, h2 − 𝜙hh1, … , hT − 𝜙hhT−1)′.
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TRINH et al. 4479

The posterior of 𝜎2
h is an inverse gamma, that is, (𝛼̂h, 𝜂̂h) where

𝛼̂h = 𝛼h +
T
2
; 𝜂̂h = 𝜂h +

[(1 − 𝜙2
h)(h1 − 𝜇h)2 +

∑T
t=2(ht − 𝜇h − 𝜙h(ht−1 − 𝜇h))2]

2
.

For block 7—sampling 𝜙h, the posterior of 𝜙h is given by

p(𝜎2
y |h, 𝜇h, 𝜙h) ∝ p(𝜙h)g(𝜙h) exp

(
− 1

2𝜎2
h

(ht − 𝜇h − 𝜙h(ht−1 − 𝜇h))2
)
;

where p(𝜙) is the truncated normal prior given in Section 2, g(𝜙h) = (1 − 𝜙2
h)

1∕2 exp
(
− 1

2𝜎2
h
(1 − 𝜙2

h)(h1 − 𝜇h)2
)

. Since

the posterior of 𝜙h is non-standard, we use an independence-chain Metropolis-Hastings step with a proposal trun-
cated normal distribution  (𝜙̂h,K−1

𝜙h
)1(|𝜙h| < 1) with K𝜙h = V−1

𝜙h
+ X′

𝜙h
X𝜙h∕𝜎

2
h, 𝜙̂h = K−1

𝜙h
(V−1

𝜙h
𝜙h0 + X′

𝜙h
Z𝜙h∕𝜎

2
h), where

X𝜙h = (h1 − 𝜇h, … , hT−1 − 𝜇h)′ and Z𝜙h = (h2 − 𝜇h, … , hT − 𝜇h)′. Given the current draw 𝜙h, a proposal 𝜙∗h from the
proposal truncated normal distribution is accepted with probability

min
{

1,
g(𝜙∗h)
g(𝜙h)

}
;

otherwise we stay at the current state 𝜙h.

B.4 SS with moving average

yt = 𝜇t + 𝜀y
t , 𝜀

y
t ∼ (0, 𝜎2

y ),
𝜖

y
t = ut + 𝜓ut−1, ut ∼ (0, 𝜎2

y ),
𝜇t = 𝜇t−1 + 𝜀𝜇t , 𝜀

𝜇

t ∼ (0, 𝜎2
𝜇).

We re-parametrize the model specification of SS-MA in a compact form of matrices:

y = Moyo +Muyu = 𝝁 +H𝝍u u ∼ (0, 𝜎2
y IT), (B7)

H𝝁𝝁 = 𝝁0 + 𝜺𝝁 𝜺
𝝁 ∼ (0, 𝜎2

𝜇IT), (B8)

where H𝝍 =
⎡
⎢
⎢
⎢⎣

1 0 … 0
𝜓 1 … 0
⋮ ⋱ ⋱ ⋮
0 … 𝜓 1

⎤
⎥
⎥
⎥⎦

1. p(𝝁|yo
, yu

, 𝜇0, 𝜎
2
𝜇
, 𝜎

2
y , 𝜓) = p(𝝁|y, 𝜇0, 𝜎

2
𝜇
, 𝜎

2
y , 𝜓),

2. p(𝜇0|yo
, yu

,𝝁, 𝜎
2
𝜇
, 𝜎

2
y , 𝜓) = p(𝜇0|𝝁, 𝜎2

𝜇
),

3. p(𝜎2
𝜇
|yo
, yu

,𝝁, 𝜇0, 𝜎
2
y , 𝜓) = p(𝜎2

𝜇
|𝝁, 𝜇0),

4. p(𝜎2
y |𝝁, yo

, yu
𝜇0, 𝜎

2
𝜇
, 𝜓) = p(𝜎2

y |ỹ,𝝁),
5. p(yu|yo

, 𝜎
2
y ,𝝁, 𝜇0, 𝜎

2
𝜇
, 𝜓) = p(yu|yo

, 𝜎
2
y ,𝝁, 𝜓)

6. p(𝜓|yo
, yu

, 𝜇0, 𝜎
2
𝜇
, 𝜎

2
y ,𝝁) = p(𝜓|y, 𝜎2

y ,𝝁).

To efficiently estimate the SS model with MA, we employ the algorithm proposed by Chan.43 The first step involves
transforming the mean Equation (B7) in such a way that the error process becomes uncorrelated. This is achieved by
pre-multiplying both sides of Equation (B7) with H−1

𝝍 . As a result, Equation (B7) can be expressed as:

ŷ = 𝝁̂ + u u ∼ (0, 𝜎2
y IT),

where ŷ = H−1
𝝍 y, 𝝁̂ = H−1

𝝍 𝝁.
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4480 TRINH et al.

We now sample 𝝁̂ instead of𝝁 in block 1. Once we have a draw of 𝝁̂, we can obtain a draw for𝝁 easily by pre-multiplying
𝝁̂ by H𝝍 . As mentioned in the SS with a normal error, the prior of 𝝁 is a normal distribution, that is, 𝝁 ∼ (𝝁̃0,𝛀𝝁). By
a simple change of variable, we have 𝝁̂ ∼ (H−1

𝝍 𝝁̃0,H−1
𝝍 𝛀𝝁H−1′

𝝍 ). A similar approach is applied for block 5 to sample yu.
Given the prior p(𝜓), the log posterior of 𝜓 in block 6 is as follows:

log p(𝜓|y,𝝁, 𝜎2
y ) = log p(𝜓) log(y|𝝍 , 𝜎2

y )

= c5 + log p(𝜓) − 1
2
(y − 𝝁)′(H−1

𝝍 𝛀𝝁H−1′
𝝍 )(y − 𝝁).

Since the dimension of 𝜓 is typically low, we can use numerical optimization routines to obtain the mode and neg-
ative Hessian of log p(𝜓|y,𝝁, 𝜎2

y ) evaluated at the mode. These values are denoted as 𝜓̂ and K𝜓 , respectively. Then,
draws from p(𝜓|y,𝝁, 𝜎2

y ) can be obtained using an independence-chain Metropolis-Hastings step with the proposal of
 (𝜓̂ ,K−1

𝜓 ), denoted as q(𝜓). In this step, given the current draw 𝜓 , a candidate draw 𝜓
c ∼ (𝜓̂ ,K−1

𝜓 ) is accepted with
probability

min

{
1,

p(𝜓 c|y,𝝁, 𝜎2
y )

p(𝜓|y,𝝁, 𝜎2
y )
×

q(𝜓)
q(𝜓 c)

}
,

otherwise we stay at the current draw 𝜓 .

APPENDIX C. EVIDENCE ON CONVERGENCE AND EFFICIENCY OF THE MCMC
ALGORITHMS

To evaluate the convergence and efficiency of the MCMC algorithms, we compute the Geweke37 convergence diagnostic
(CD). Additionally, we provide visual inspections through traceplots of selected parameters and boxplots of inefficiency
factors.

The P-values of the Geweke37 convergence diagnostic for selected parameters are presented in Table C1. Due to the
large number of states for time-varying parameters such as volatility (ht), we present the results for a few selected states
(eg, h7, h4010, h8383) as illustrations. A similar strategy is applied to the “unobserved” waiting time (yu

t ). A P-value of the CD
statistic greater than 0.05 indicates that the null hypothesis of convergence to the posterior distribution is not rejected. This
indicates that there is no significant evidence against the convergence of the MCMC samples to the posterior distribution.

To evaluate the efficiency of the MCMC samplers in drawing the states over the sample period, we generate boxplots
of inefficiency factors for all ht and yu

t . The inefficiency factor is the inverse of the relative numerical efficiency measure

T A B L E C1 P-values of Geweke convergence diagnostic statistic.

Parameters TD-tMA UC-tMA TVAR-tMA TD-tSV UC-tSV TVAR-tSV TD-tMASV UC-tMASV TVAR-tMASV

𝜓 0.317 0.305 0.346 - - - 0.318 0.300 0.306

𝜙h - - - 0.317 0.319 0.317 0.317 0.319 0.315

𝜇h - - - 0.317 0.318 0.318 0.318 0.320 0.320

𝜎
2
h - - - 0.322 0.316 0.318 0.319 0.309 0.306

𝜈 0.313 0.315 0.318 0.319 0.286 0.309 0.327 0.321 0.333

h7 - - - 0.274 0.322 0.310 0.321 0.319 0.307

h4010 - - - 0.583 0.880 0.339 0.362 0.351 0.282

h8383 - - - 0.309 0.311 0.316 0.310 0.309 0.319

yu
7 0.317 0.321 0.323 0.325 0.320 0.314 0.323 0.314 0.321

yu
4010 0.318 0.316 0.319 0.329 0.312 0.317 0.329 0.318 0.317

yu
8383 0.324 0.326 0.322 0.321 0.321 0.328 0.327 0.322 0.319
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F I G U R E C1 Inefficiency factors of yu
t and ht under the TD-tMA, UC-tMA, TVAR-tMA, TD-tSV, UC-tSV, TVAR-tSV, TD-tMASV,

UC-tMASV, and TVAR-tMASV models.

F I G U R E C2 Trace plots of the estimated moving average parameter 𝜓 under the TD-tMA, UC-tMA, TVAR-tMA, TD-tMASV,
UC-tMASV, and TVAR-tMASV models.
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4482 TRINH et al.

F I G U R E C3 Trace plots of the estimated moving average parameter 𝜇h under the TD-tSV, UC-tSV, TVAR-tSV, TD-tMASV, UC-tMASV,
and TVAR-tMASV models.

F I G U R E C4 Trace plots of the estimated moving average parameter 𝜙h under the TD-tSV, UC-tSV, TVAR-tSV, TD-tMASV, UC-tMASV,
and TVAR-tMASV models.
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TRINH et al. 4483

F I G U R E C5 Trace plots of the estimated moving average parameter 𝜎2
h under the TD-tSV, UC-tSV, TVAR-tSV, TD-tMASV, UC-tMASV,

and TVAR-tMASV models.

proposed by Chib,38 which is defined as

1 + 2
∞∑

s=1
𝜌s,

where 𝜌s is the sample autocorrelation at lag s. The inefficiency factors measure the efficiency of the MCMC samplers.
They quantity additional draws need to be taken to achieve the same precision as independent draws. For example, an
inefficiency factor of 50 after 50 000 draws for a parameter is equivalent to obtaining the same level of precision as 10 000
independent draws from the posterior. Figure C1 reveals that the inefficiency factor is low, less than 10, which is viewed
as satisfactory.

The trace plots Figures C2–C5, for selected parameters such as 𝜓, 𝜇h, 𝜙h, 𝜎
2
h under different model specifications (ie,

TD-tSV, UC-tSV, TVAR-tSV, TD-tMA, UC-tMA, TVAR-tMA, TD-tMASV, UC-tMASV, and TVAR-tMASV), exhibit stability.
Overall, the analysis indicates convergence and good mixing of the MCMC samplers. The MCMC samplers are

effectively exploring the posterior distributions and obtaining reliable estimates for the parameters of interest.
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