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ABSTRACT 
Several secreted proteins from helminths (parasitic worms) have been shown to have immunomodula-
tory activities. Asparaginyl-tRNA synthetases are abundantly secreted in the filarial nematode Brugia 
malayi (BmAsnRS) and the parasitic flatworm Schistosoma japonicum (SjAsnRS), indicating a possible 
immune function. The suggestion is supported by BmAsnRS alleviating disease symptoms in a T-cell 
transfer mouse model of colitis. This immunomodulatory function is potentially related to an N-ter-
minal extension domain present in eukaryotic AsnRS proteins but few structure/function studies have 
been done on this domain. Here we have determined the three-dimensional solution structure of the 
N-terminal extension domain of SjAsnRS. A protein containing the 114 N-terminal amino acids of 
SjAsnRS was recombinantly expressed with isotopic labelling to allow structure determination using 
3D NMR spectroscopy, and analysis of dynamics using NMR relaxation experiments. Structural compari-
sons of the N-terminal extension domain of SjAsnRS with filarial and human homologues highlight a 
high degree of variability in the b-hairpin region of these eukaryotic N-AsnRS proteins, but similarities 
in the disorder of the C-terminal regions. Limitations in PrDOS-based intrinsically disordered region 
(IDR) model predictions were also evident in this comparison. Empirical structural data such as that 
presented in our study for N-SjAsnRS will enhance the prediction of sequence-homology based struc-
ture modelling and prediction of IDRs in the future.   

Abbreviations: AsnRS: Asparaginyl-tRNA synthetase; SjAsnRS: Asparaginyl-tRNA synthetase of 
Schistosoma japonicum; BmAsnRS: Asparaginyl-tRNA synthetase of Brugia malayi; HsAsnRS: Asparaginyl- 
tRNA synthetase of Homo sapiens; aaRSs: aminoacyl-tRNA synthetases; N-: N-terminal of; CXCR1: CXC 
chemokine receptor 1; CXCR2: CXC chemokine receptor 2; CCR3: CC chemokine receptor 3; 3D NMR: 
heteronuclear triple-resonance Nuclear Magnetic Resonance; HSQC: Heteronuclear Single Quantum 
Coherence; NOESY: Nuclear Overhauser Effect Spectroscopy; IDR: intrinsically disordered region
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1. Introduction 

Asparaginyl-tRNA synthetase (AsnRS) is a critical enzyme for 
both prokaryotes and eukaryotes because it catalyses the 
binding of asparagine to tRNA during protein translation (Ibba 
& S€oll, 2000; Pang et al., 2014). In addition to this primary 
function, an immunomodulatory function has been identified 
for particular AsnRS proteins. Human AsnRS (HsAsnRS) is 
involved in the development of autoimmune diseases, such as 
interstitial lung disease or myositis (Park et al., 2018). In con-
trast, the AsnRS abundantly secreted by the helminth (para-
sitic worm) Brugia malayi (BmAsnRS) alleviates symptoms in a 
T-cell transfer mouse model of colitis (Kron et al., 2013). 

B. malayi is classified as a filarial nematode, but immunomo-
dulatory effects are not limited to this species and other types 
of helminths also produce proteins that have been shown to 
have immune-mediating effects (Ryan et al., 2020; Smallwood 
et al., 2017). Modulation of the immune responses of the 
mammalian hosts is thought to aid helminths to avoid expul-
sion and to establish long-term residence in the host (Maizels 
& McSorley, 2016; Nutman, 2015). In the context of drug dis-
covery secreted helminth proteins also have considerable 
potential for the development of anti-inflammatory drug leads 
(Maizels et al., 2018; Ryan et al., 2020). 

Most eukaryotic aminoacyl-tRNA synthetases have evolved 
an extension domain for a secondary function (Crepin et al., 
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2011; Guo et al., 2010). In AsnRS proteins, an anti-codon 
binding domain and catalytic domain are conserved in both 
prokaryotic and eukaryotic AsnRS proteins, but the N-ter-
minal extension domain is entirely absent in prokaryotic 
AsnRS proteins (Berthet-Colominas et al., 1998; Crepin et al., 
2011; Guo et al., 2010; Rajendran et al., 2018) (Figure 1). 
Some eukaryotic N-terminal domains, including those in 
human and filarial AsnRS proteins, appear to be critical for 
the immunomodulatory function observed (Kron et al., 2012; 
Park et al., 2018). In BmAsnRS, the N-terminal extension 
domain alone (residues 1–111, N-BmAsnRS) induces chemo-
taxis towards neutrophils and eosinophils, while an analogue 
without the N-terminal domain (comprising residues 112– 
548) does not induce chemotaxis (Kron et al., 2012; Ramirez 
et al., 2006). Truncation studies on the human AsnRS have 
shown the N-terminal extension domain (residues 1–77, N- 
HsAsnRS) is involved in CC chemokine 3 receptor (CCR3)- 
mediated chemotactic activity for immune cells (Howard 
et al., 2002; Park et al., 2018). 

Despite the potential significance of the N-terminal exten-
sion domain of AsnRS proteins, structural analyses of this 
domain have largely been overlooked. The currently available 
experimentally solved structures in the protein database are 
N-BmAsnRS (NMR, PDB 2KQR (Crepin et al., 2011)) and N- 
HsAsnRS (X-Ray, PDB 4ZYA (Park et al., 2018)). Both structures 
have the same secondary structure topology order b1-a1-b2- 
b3-a2 (a1: the first a-helix, b2: the second b-sheet) (Crepin 
et al., 2011; Park et al., 2018). An homology model (Phyre 
2.0) for the N-AsnRS of the liver fluke Fasciola gigantica (N- 
FgAsnRS) (Rajendran et al., 2018) differs in the secondary 
structure topology order (a1-a2-b1-b2-a3) and the location 
of disordered regions compared with the N-BmAsnRS and N- 
HsAsnRS structures. 

To expand our knowledge of the N-terminal extension 
domain of AsnRS proteins, we have determined the three- 
dimensional (3D) structure of the N-terminal extension domain 
from the parasitic blood fluke Schistosoma japonicum AsnRS 
protein (N-SjAsnRS). Cytoplasmic SjAsnRS is one of the most 
abundantly secreted proteins of S. japonicum (Liu et al., 2009). 
Proteomics studies on this organism have identified several 
molecules with immunomodulatory effects (Liu et al., 2016; 
Shan et al., 2021; Sun et al., 2010; L. F. Wang et al., 2017; X. 
Wang et al., 2017; Zhang et al., 2019), but the effects of 
SjAsnRS have not been tested. We recombinantly expressed 
the 114 N-terminal residues of SjAsnRS (N-SjAsnRS) and deter-
mined the 3D structure using NMR spectroscopy and analysed 
the heteronuclear NOE, and longitudinal and transverse relax-
ation times. This structural analysis provides insight into both 
conserved and variable features in the eukaryote-specific N- 
terminal extension domain of this critical class of enzyme. 

2. Methods 

2.1. Expression and purification of recombinant  
N-terminal SjAsnRS 

A recombinant form of N-SjAsnRS was expressed with 13C 
and 15N isotopic labelling in Escherichia coli using a method 
described elsewhere (Marley et al., 2001). Briefly, this 
involved cDNA encoding N-SjAsnRS with a hexa-histidine tag, 
which was then cloned into a pET30a vector and expressed 
in E. coli BL21 (DE3) cell culture. For isotopic labelling with 
13C and 15N, cells were initially grown in LB broth with 
50 lg/mL kanamycin at 37 �C and agitated at 200 rpm. When 
the optical density at 600 nm (OD600) reached 0.7, the culture 
medium was replaced by M9 minimal growth media supple-
mented with Basal Vitamins Eagle media, MgSO4, CaCl2 and 
13C D-glucose. NH4Cl in the M9 media was substituted for 
isotopically labelled 15NH4Cl. After one hour of incubation, 
protein expression was induced by isopropyl b-D-1-thiogalac-
topyronoside (IPTG) to a final concentration of 0.8 mM. The 
incubation time after induction was 4 h, before harvesting 
the cells (Marley et al., 2001). For the NMR relaxation experi-
ments the protein was expressed with only 15N labelling, 
using similar methods without the use of 13C D-glucose. 

BugBusterVR Protein Extraction Reagent (Merck Pty. Ltd) 
was used to disrupt the cells and Immobilized Metal-Affinity 
Chromatography (IMAC, Cytiva) was used to isolate the tar-
get protein. The eluate, containing the target protein in imid-
azole buffer, was buffer-exchanged and concentrated into 
PBS (phosphate-buffered saline, 2.7 mM KCl, 1.5 mM KH2PO4, 
137.9 mM NaCl, 8.1 mM Na2HPO4, pH 7.1) using centrifugal 
concentrators (Ultra-15 Centrifugal Filter Units, Amicon) by 
repeated centrifugation (20 min at 4 �C and 3700 g). A yield 
of approximately 3 mg protein from 100 mL of labelled cul-
ture media was obtained. Protein mass was confirmed by 
sodium dodecyl sulphate-polyacrylamide gel electrophoresis 
(SDS-PAGE). The protein concentration was determined using 
a PierceTM BCA (bicinchoninic acid) Protein Assay Kit 
(Thermofisher Scientific). 

2.2. NMR spectroscopy and structural analysis 

The isotopically labelled N-SjAsnRS protein sample in PBS 
(500 mL) was mixed with 50 mL D2O. All NMR spectra used for 
structure determination were acquired on a 900 MHz 
AVANCE III NMR spectrometer (Bruker, Karlsruhe, Germany) 
at 298 K (with a cryogenically cooled probe) with an inter-
scan delay of 1 s. All 3D spectra, excluding NOESY experi-
ments, were acquired using non-uniform sampling and 
processed using the Rowland NMR Toolkit (Mobli et al., 

Figure 1. Comparison of the domain arrangement of prokaryotic and eukaryotic AsnRS proteins. Asparaginyl-tRNA synthetase proteins in prokaryotic species, such 
as Thermus thermophilus, consist of an anti-codon binding domain, catalytic domain and the hinge region between the domains. In eukaryotic species, such as H. 
sapiens, B. malayi, F. gigantica and S. japonicum, homologous proteins contain an additional N-terminal extension domain.  
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2007) and analysed using the CcpNmr software package 
(Vranken et al., 2005). The following methods, 2D 1H-15N 
HSQC, 3D HNCACB, 3D CBCA(CO)NH, and 3D HNCO spectra, 
were used for backbone sequence assignment, and 3D 
HBHA(CO)ONH, 3D CC(CO)NNH and 3D H(CCCO)NNH were 
used for side chain assignment (Ikura et al., 1990; Kay et al., 
1990). Following backbone assignments, secondary chemical 
shifts were calculated by subtracting random coil shifts from 
the Ha shift (Wishart et al., 1995). NOESY spectra including 
3D 15N NOESY-HSQC, 13C-aliphatic NOESY-HSQC and 13C-aro-
matic NOESY-HSQC with mixing times of 120 ms, were used 
to derive distance restraints. u and w backbone torsion-angle 
restraints, protein backbone dynamics and secondary struc-
tures were predicted using TALOS-N (Shen et al., 2009; Shen 
& Bax, 2013), based on the chemical shift assignments of HN, 
Ha, Ca, Cb resonances (Berjanskii & Wishart, 2005; 2007; 
2008). Initial structures were calculated using the CYANA pro-
gram incorporating the TALOS-N angle restraints, and dis-
tance restraints based on automatic assignment of the 
NOESY spectra (Guntert, 2004). The TALOS-N derived angle 
restraints, and interproton distance restraints derived from 
CYANA were subsequently used in CNS structure calculations 
with refinement in explicit water using scripts previously 
described (Br€unger et al., 1998; Nederveen et al., 2005). A set 
of 20 structures with the lowest energy, no violations greater 
than 0.5 A˚ or 4� (distance or angle violation, respectively), 
were selected for the final ensemble. Structure quality was 
analysed using PSVS (Bhattacharya et al., 2007), and struc-
tures were visualised using MOLMOL (Koradi et al., 1996). 

2.3. NMR relaxation experiments 

To study the backbone motion of N-SjAsnRS, f1Hg-15N 
Nuclear Overhauser effects (NOEs), and longitudinal (R1) and 
transverse (R2) relaxation rates were measured on a 600 MHz 
Bruker spectrometer equipped with a cryoprobe. Data were 
acquired at 298 K on a 0.1 mM sample of 15N labelled N- 
SjAsnRS. f1Hg-15N heteronuclear NOEs were acquired with a 
relaxation delay of 5 s. T1 spectra were recorded with delays 
of 20, 60, 200, 600, 800, 1100, 1400 and 1800 ms. The 60 ms 
and 600 ms delays were repeated to ensure reproducibility of 
the results. T2 spectra were recorded with delay times of 16, 
32, 64, 128, 160, 192, 224 and 256 ms. The 32 and 160 ms 
delays were repeated. Spectra were processed using the 
Rowland NMR toolkit (Mobli et al., 2007) and analysed using 
CcpNMR (Vranken et al., 2005). f1Hg-15N heteronuclear NOE 
values were determined by a ratio of cross-peak intensities 
with or without 1H saturation. 1H-15N HSQC spectra were 
recorded between the NOE, R1 and R2 experiments to ensure 
the sample had not degraded. 

2.4. Prediction of IDR from sequence 

The intrinsically disordered regions (IDRs) of N-SjAsnRS were 
predicted by using a sequence-based prediction tool (PrDOS: 
Protein DisOrder prediction System) (Ishida & Kinoshita, 
2007), and the location of the disordered region was then 

compared with the experimentally determined N-SjAsnRS 
structure. 

3. Results 

3.1. Isotopically labelled protein expression and 
purification of N-SjAsnRS 

A recombinant form of N-SjAsnRS, expressed with 13C and 
15N isotopic labelling in E. coli., had a single band at an 
approximate molecular weight of 14.3 kDa in SDS-PAGE gel, 
confirming expression of the protein and illustrating the pur-
ity (Supplementary Figure S1). The isolated fraction was buf-
fer exchanged and concentrated for NMR experiments. 

3.2. Description of the overall structure of N-SjAsnRS 

Initial analysis of the 2D 1H-15N HSQC spectrum 
(Supplementary Figure S2), recorded at a concentration of 
approximately 0.1 mM, indicated a well-defined structure for 
part of the protein based on the chemical shift dispersion but 
there was also significant overlap for several peaks. Analysis of 
the suite of NMR spectra collected allowed the majority of the 
backbone assignments to be made, but several residues, includ-
ing Gln2, Ala14, Pro22, Ser59, Lys77, Pro79, His80, Glu81, Glu84 
and Pro109, could not be assigned. 

Analysis of the secondary chemical shifts (Supplementary 
Figure S3A) and secondary structure probabilities from 
TALOS-N (Figure 2A) indicates the presence of several 
b-sheets and helices in the N-terminal region (residues 1 to 
73) in contrast to the C-terminal region of N-SjAsnRS (resi-
dues 74–114), where the secondary shifts are close to ran-
dom coil (Supplementary Figure S3B) and no secondary 
structure was predicted. Furthermore, the random coil index- 
order parameters (RCI-S2) predicted from TALOS-N are con-
sistent with the C-terminal region being dynamic (Figure 2B). 
The backbone NH peaks of the well-structured region (resi-
dues 1–73) are highlighted in black, and the overlapped 
backbone NH peaks of the disordered region (residues 74– 
114) are highlighted in red, in the 2D 1H-15N HSQC spectrum 
(Supplementary Figure S2). 

Calculation of the three-dimensional structures of N- 
SjAsnRS with water refinement in CNS (the PDB and BMRB 
codes are 8FA3 and 31060, respectively) confirmed a well- 
defined region for residues 1–73, followed by a disordered 
region comprising residues 74–114. The well-defined region 
has a backbone RMSD of 0.97 ± 0.27 Å (Table 1) and contains 
two a-helices and three b-strands in the order of b1-a1-b2- 
b3-a2. The b1 and b2 strands are parallel while b2 and b3 
are in an antiparallel orientation (Figure 3). The 20 conform-
ers with the lowest energy are shown in Supplementary 
Figure S4, and the structure with the lowest energy is dis-
played in Figure 3. The structural statistics for the final 
ensemble of structures are shown in Table 1. 

The secondary structure is consistent with the secondary 
structure probabilities (Figure 2A) and secondary chemical 
shift analysis (Supplementary Figure S3A). Glu19 has signifi-
cantly shielded a and b protons, which is supported by close 
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interactions with Trp53 and Tyr4 in the three-dimensional 
structures. Aromatic residues are known to cause significant 
chemical shift perturbations of neighbouring residues. The 
disordered region between residues 74–114 has a backbone 
RMSD of 11.64 ± 3.31 Å. Although the disordered structure 
results from the lack of restraints in this region, it is likely 
this region of the protein is flexible in solution based on the 
chemical shifts being close to random coil (Supplementary 
Figure S3B), the lack of NOE peaks and the local order 
parameters (RCI-S2) predicted from TALOS-N (Figure 2B). 
Furthermore, the NMR-derived structure for the related pro-
tein, N-BmAsnRS, also has disorder in this region (Crepin 
et al., 2011). To experimentally confirm the presence of dis-
order for the C-terminal residues 74–114, 15N relaxation 
experiments were conducted. 

3.3. Heteronuclear relaxation experiments 

Relaxation of 15N amide nuclei allowed us to characterise the 
protein backbone mobility in solution (Kay et al., 1989; 
Kharchenko et al., 2020; Rahnama et al., 2017; Saez et al., 
2011). f1Hg-15N NOEs, R1 and R2 relaxation rates, which are 
relaxation parameters commonly used to investigate the pro-
tein backbone motion (Kharchenko et al., 2020), were 

acquired for the backbone 15N nuclei of N-SjAsnRS (Figure 4). 
Thirty seven out of 114 residues were not included in the 
relaxation analysis due to low signal to noise ratio and over-
lapping peaks. f1Hg-15N heteronuclear NOE values were 
determined to identify fast protein backbone motion (Gong 
& Ishima, 2007; Kharchenko et al., 2020; Palmer, 1997; 
Rahnama et al., 2017). There were significant differences in 
the f1Hg-15N heteronuclear NOEs between the N-terminal 
(residues 1–73) and C-terminal (residues 74–114) regions of 
N-SjAsnRS, with average values of 0.73 ± 0.063 and 
� 0.13 ± 0.062, respectively. This difference indicates that the 
backbone motion is distinct between the two regions. The 
experimentally acquired negative NOE values suggest that 
the C-terminal region is disordered (Rahnama et al., 2017). In 
contrast, the elevated NOE values (close to one) indicates 
that N-terminal region is more rigid than the C-terminal 
region. There is a clear difference in the R2/R1 ratio between 
the N-terminal (residues 1–73) and C-terminal (residues 74– 
114) regions (average 6.60 ± 1.03 and 2.38 ± 0.41, respect-
ively). The residues with higher R2/R1 ratio coincide with the 
well-structured region while residues with lower ratio are 
found in the disordered region consistent with distinct differ-
ences in the backbone motions between the two regions 
(Figure 4). 

Figure 2. Secondary structure probabilities and local order parameters predicted from TALOS-N for N-SjAsnRS. (B) Random coil Index-Order parameters (RCI-S2). 
the C-terminal region has lower order parameters and is predicted to be dynamic. This region is highlighted with a box and open triangles. A threshold of RCI- 
S2<0.6 was used to consider a residue dynamic. (A) The secondary structure probabilities of N-SjAsnRS. The height of the bar indicates the probability of the sec-
ondary structure. a-helices are in magenta, b-strands are in cyan. The secondary structures present in our NMR structure are indicated by purple arrows and spirals. 
a1¼ alpha-helix 1. b1¼ beta-strand 1.  
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3.4. IDR prediction of N-SjAsnRS 

PrDOS was used to predict any IDR in N-SjAsnRS and the 
predicted results compared to the experimentally determined 
structure of N-SjAsnRS (Figure 5). Our experimentally 
acquired relaxation data (Figure 4), NMR structure (Figure 3), 
the secondary shifts analysis (Supplementary Figure S3B), 
and the RCI-S2 local order parameter prediction (Figure 2B) 
indicated that the C-terminal region between residues 74– 
114 is unstructured (or disordered) in solution. The predicted 
results from PrDOS also suggested that the C-terminal resi-
dues 70–91 and 107–114 are intrinsically disordered in N- 
SjAsnRS (Figure 5). 

Somewhat surprisingly, residues 92–106 were not pre-
dicted to be disordered, but there is no evidence from the 
15N relaxation parameters (Figure 4), angle or distance 
restraints based on the NMR data (Figure 3) to support this 
region having structure. In addition, the N-terminal residues 
1–18 of N-SjAsnRS were predicted to be disordered (Figure 
5) but this region of the NMR-derived structures is well 
defined, and includes a b-strand (Figure 3; Supplementary 
Figure S4). The lack of disorder in this region is supported by 
experimentally acquired relaxation data (Figure 4) and the 

chemical shifts of residues 1–25 which are mostly larger than 
0.1 ppm relative to random coil shifts (supplementary Figure 
S3A). Thus, multiple discrepancies were found in the IDR pre-
diction of the structural characteristics of N-SjAsnRS. 

3.5. Comparison of N-AsnRS structures 

The amino acid sequence of N-SjAsnRS was aligned with that 
of N-BmAsnRS, N-HsAsnRS and N-FgAsnRS in Figure 6 (Crepin 
et al., 2011; Park et al., 2018; Rajendran et al., 2018) to iden-
tify conserved sequence in this domain. Intriguingly, 
sequence conservation was found in the unstructured region 
(residues 92–108) while the sequence around the second 
b-strand (b2) in the well-defined region was not conserved. 

Pairwise sequence alignment of the N-SjAsnRS with each 
eukaryotic N-AsnRS was performed (Supplementary Figure S5). 
Despite high sequence homology between N-SjAsnRS and N- 
FgAsnRS (over 80% in the well-defined region), the NMR- 
derived structure of N-SjAsnRS was not similar to the predicted 
structure of N-FgAsnRS, but similarities were found with both 
human and filarial AsnRS proteins. A comparison of the second-
ary structure of N-SjAsnRS with the experimental structures of 
N-BmAsnRS (Crepin et al., 2011) and N-HsAsnRS (Park et al., 
2018), and the modelled structure of N-FgAsnRS (Rajendran 
et al., 2018) is shown in Figure 7. Only the first approximately 
70 residues have regular secondary structure. The secondary 
structure arrangement for all experimental structures, including 
N-SjAsnRS, N-BmAsnRS and N-HsAsnRS, are b1-a1-b2- b3-a2 
(two a-helices and three b-strands). In contrast, the modelled 
structure of N-FgAsnRS has the secondary structure arrange-
ment in the order of a1-a2-b1-b2-a3 (consisting of three a-heli-
ces and two b-strands). 

There are distinctions in the disordered regions as well 
(Figure 7). The NMR derived structures for N-SjAsnRS and N- 
BmAsnRS show disorder for residues 74–114 and 76–111, 
respectively. It is not clear if the equivalent region in N- 
HsAsnRS is disordered as the crystal structure only contained 
residues 4–77. In contrast, the modelled structure of N- 
FgAsnRS was predicted to have two unstructured regions 
(residues 1–15 and residues 81–112), which conflicts with the 
experimental structures which have demonstrated the pres-
ence of a b-strand, b1 (Crepin et al., 2011; Park et al., 2018; 
Rajendran et al., 2018) in residues 1–15 (Figure 7). Thus, mul-
tiple discrepancies were observed between the modelled 
structure of N-FgAsnRS and experimentally determined struc-
tures, including the new solution structure with relaxation 
properties for N-SjAsnRS. 

It has previously been highlighted that the major struc-
tural difference between N-BmAsnRS and N-HsAsnRS (Park 
et al., 2018) is in a region corresponding to a b-hairpin. In 
this study both the 3D structures (the b-hairpin is high-
lighted in Figure 8A) and sequence comparisons (Figure 8B) 
have confirmed the distinction between structures in the N- 
terminal extension domain of AsnRS proteins is primarily in 
this b-hairpin region (i.e. N-SjAsnRS, N-Bm-AsnRS and N- 
HsAsnRS). The length of the b-strands, the size of the loops 
and the charge distribution varies amongst the three species. 
The negatively charged acidic residues dominate the 

Table 1.  Statistics and analysis of the N-SjAsnRS protein structure. 

Structural statistics of the N-SjAsnRS protein  

Experimental restraints  
Interproton distance restraints   

Intraresidue 300  
Sequential 404  
Medium range (i–j< 5) 197  
Long range (i–j� 5) 233  
Total 1134 

Dihedral-angle restraintsa 128 
Restraint statistics  

Average number of violations per structureb   

NOE restraints >0.5 Å 0  
Dihedral restraints >4� 0 

RMS of violationsb   

NOE restraints (Å) 0.018 ± 0.0011  
Dihedral restraints (�) 0.68 ± 0.14 

RMS from idealised covalent geometryb   

RMS for bond length (Å) 0.0033 ± 0.00013  
RMS for bond angles (�) 0.46 ± 0.017  
RMS for impropers (�) 0.43 ± 0.021 

Structural quality (ordered residues�)  
RMSD from average structure (Å)c   

Backbone atoms 0.97 ± 0.27  
Heavy atoms 1.64 ± 0.32 

Ramachandran statistics (%)d   

Most favoured regions 89.4  
Additionally allowed regions 10.6  
Generously allowed regions 0.0  
Disallowed regions 0.0 

Global quality scores (raw/Z scores)d   

Verify3D 0.13/-5.30  
Prosall (-ve) 0.26/-1.61  
PROCHECK (all) -0.46/-2.72  
MolProbity clashscore 16.09/-1.24  

aPredicted from TALOS-N (Shen et al., 2009; Shen & Bax, 2013). 
bDerived from CNS (Br€unger et al., 1998). 
cCalculated using MOLMOL (Koradi et al., 1996). 
dEvaluated by PSVS (Bhattacharya et al., 2007). 
*Ordered residue ranges: Residues 2–46, 50–72 are selected based on sum of 
u and w order parameter >¼1.8 (PSVS).
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b-hairpin region of N-SjAsnRS while N-BmAsnRS and N- 
HsAsnRS contain both positively and negatively charged resi-
dues (Figure 8B). The presence of methionine, which can 
form non-covalent interactions with aromatic residues to sta-
bilise receptor-ligand interactions (Imai et al., 2007; Valley 
et al., 2012), is also unique to N-SjAsnRS. 

4. Discussion 

The significance of the N-terminal extension domain of the 
eukaryotic AsnRS protein has been highlighted in human 
and filarial AsnRS (Kron et al., 2012; Park et al., 2018). 
However, there has been limited structural analyses on 
domains from other species. To explore this rather over-
looked domain, we have determined the structure and relax-
ation properties of the N-terminal extension domain of the 
AsnRS from the blood fluke, S. japonicum. 

The NMR structure revealed the first 73 residues of N- 
SjAsnRS fold into a well-defined structure in contrast to resi-
dues 74–114 which were disordered. The presence of the 
unstructured region was supported by subsequent NMR 
relaxation experiments. The heteronuclear NOE data and 
R2/R1 ratio suggested that the backbone molecular motion is 
distinct between the well-structured and disordered region. 
Although the heteronuclear NOE values (Figure 4) for the 

first 73 residues are considerably higher than the C-terminal 
region, the loops between the a1 and b2, and b2 and b3 
have slightly lower values indicating that these loops are 
more flexible than the secondary structure elements. Overall, 
the relaxation experiments are consistent with the secondary 
chemical shift analysis (Supplementary Figure S3A and S3B), 
and the RCI-S2 local order parameter prediction (Figure 2B). 
Furthermore, the location of the unstructured region of our 
N-SjAsnRS is consistent with the NMR structure of N- 
BmAsnRS (Crepin et al., 2011). The X-ray structure of HsAsnRS 
(Park et al., 2018) was determined on a construct containing 
residues 4–77 because a construct containing the whole N- 
terminal domain (residues 1–115) could not be crystalised 
(Park et al., 2018). It appears likely that the inability of crys-
tals to form for the whole N-terminal domain is related to 
disorder for 78–115. 

The biological role of this unstructured region in AsnRS 
proteins is still unclear. It has previously been suggested that 
this region forms a flexible linker between the two major 
domains to facilitate tRNA binding (Crepin et al., 2011) or to 
ensure that the N-terminal extension domain is conforma-
tionally independent (Yang, 2013). However, given the 
sequence conservation in residues 92–108 (Figure 6), this 
unstructured region may be more than a flexible linker, and 
could potentially share a common function across the 

Figure 3. The domain arrangement of SjAsnRS and the solution NMR 3D structure of N-SjAsnRS. In the well-structured region (residues 1–73) pink spirals represent 
a-helices and purple arrows represent b-strands. The unstructured region comprising residues 74–114 is shown in black. The domain arrangements and schematic 
representation of the secondary structure are shown at the top of the figure.  
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Figure 4. 1fHg-15N steady state NOE and ratio of longitudinal (R1) and transverse (R2) relaxation rates (R2/R1) for N-SjAsnRS. Data was acquired on a 600 MHz 
Bruker spectrometer equipped with a cryoprobe at 298 K on a 100 lM sample of 15N labeled N-SjAsnRS. The errors in the f1Hg-15N steady state NOE are a function 
of the S/N in the acquired spectra and the errors in R1 and R2 are time constant errors. Thirty-seven out of 114 residues were not included in the relaxation analysis 
due to low signal to noise ratio or overlapping peaks. The secondary structure is schematically represented at the top of the diagram.  

Figure 5. Predicted disordered regions in N-SjAsnRS. The thick red line represents disordered regions predicted by PrDOS (Ishida & Kinoshita, 2007) whereas the 
thick black line represents the disordered region indicated by NMR analyses. The residue numbers are indicated on the top of the figure. The prediction suggests 
the disorder is not continuous in the C-terminal region, in contrast to the experimentally derived three-dimensional structure.  

Figure 6. Sequence alignment of the N-terminal extension domain of AsnRS protein from four eukaryotic species. Conserved residues (defined as either identical 
or similar residues), are shaded in grey. Identical residues are also highlighted in bold. Secondary structures of N-SjAsnRS are shown above its sequence. Pink spirals 
represent a-helices and purple arrows represent b-strands.  
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eukaryotic species. A recent study suggested a tendency for 
some IDRs to share conserved sequences, conserved dis-
order, and conserved functions (Zhou et al., 2019). PrDOS 
has been evaluated as one of the best performing IDR pre-
diction tools in multiple studies (Deng et al., 2012; Liu et al., 
2019; F. Meng et al., 2017; Fanchi Meng et al., 2017; 
Monastyrskyy et al., 2014). However, discrepancies were 
found in the PrDOS prediction compared to our experimen-
tally acquired relaxation data and NMR structure (Figure 5). 
This potentially highlights the difficulty in predicting rela-
tively long disordered regions in this critical class of enzyme. 

Our structural and sequential comparison (Figure 8A and 
B) found variabilities in the b-hairpin region, which was sug-
gested to be a part of the receptor-ligand interface in the 
studies of the human and filarial homologues (Kron et al., 
2012; Park et al., 2018). These differences have been sug-
gested to influence receptor binding (Park et al., 2018). In 
addition to significant conformational differences (i.e. loop 
size and length of strands), the prevalence of negatively 
charged acidic residues (Glu51, Asp46, Asp50 and Asp54) 
and the presence of methionine (Met52) are found to be 
unique to N-SjAsnRS (Figure 8B). These residues may play 

Figure 7. Comparison of the secondary structures in the N-terminal extension domain of AsnRS from four eukaryotic species. The a-helices, b-strands and unstruc-
tured regions present in N-SjAsnRS, N-BmAsnRS, N-HsAsnRS, and N-FgAsnRS are represented with spirals, arrows and thick lines respectively. The crystal structure 
of N-HsAsnRS (PDB 4ZYA (Park et al., 2018) only contains residues 4–77; therefore residues after 78 are not included in the figure. Overall, the secondary structure 
is similar, with the main differences at the N-terminus of the domain.  

Figure 8. (A) Structural comparison of the b-hairpin region of AsnRS from three eukaryotic species. Only the well-structured region is displayed, residues 1–73 for 
S. japonicum, residues 1–75 for B. malayi and residues 1–77 for H. sapiens. The b-hairpin region is circled with a black line. (B) Sequence comparison of the b-hair-
pin region of AsnRS from three eukaryotic species. The location of b-strands (b2 and b3) and the loop is shown above the amino acid sequence. Positively charged 
residues are shown in blue, negatively charged residue are shown in red.  
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key roles in non-covalent interactions, such as electrostatic 
interactions or a sulfur-aromatic interaction, in the receptor- 
ligand interface (Imai et al., 2007; Orabi & English, 2016; 
Valley et al., 2012; Zhou & Pang, 2018). The target receptor 
of N-SjAsnRS is still unknown but it appears the physio- 
chemical differences in the b-hairpin region may affect the 
binding specificity (Kron et al., 2012; Park et al., 2018). Our 
current study on N-SjAsnRs indicated possible flexibility of 
the loop within the b-hairpin but further study on the 
dynamics of the related proteins might provide more insight 
into the structural differences between these proteins. 

Pairwise alignment of the N-terminal extension of AsnRS 
(Supplementary Figure S5) suggests that the sequence of N- 
SjAsnRS has greater similarity to human compared to the filarial 
nematode protein, which does not align with general evolution-
ary understanding. Further investigation of sequence-structure- 
function relationship is warranted to determine the implications 
for this somewhat unexpected sequence alignment. 

Anti-infective drugs targeting pathogen AsnRS and other 
aminoacyl-tRNA synthetases (aaRSs) have been explored 
based on structural differences between pathogen and 
human host aaRSs (Francklyn & Mullen, 2019; Laupland & 
Conly, 2003; Rock et al., 2007; Saint-L�eger et al., 2016). These 
differences make it possible to inhibit the pathogen aaRSs 
without inhibiting the human enzymes (Nyamai & Tastan 
Bishop, 2019; O’Dwyer et al., 2015; Pham et al., 2014). 
However, aaRSs of various pathogens (from bacteria to the 
malaria causing parasite) have been reported to develop 
drug resistance (Bilsland et al., 2016; Francklyn & Mullen, 
2019; Randall et al., 2016; Saint-L�eger et al., 2016). The struc-
tural understanding developed in this study may help to 
overcome this challenge and design better aaRS inhibitors. 
For example, BmAsnRS is a target for antiparasitic drug 
design and recent mutational studies of BmAsnRS have sug-
gested that the sites of mutation that confer drug resistance 
are likely to be around the b-hairpin and the second a-helix 
region in the N-terminal extension domain (Chandrasekar 
et al., 2021). Thus, the significance of exploring the N-ter-
minal extension domain of this class of enzyme is of major 
importance across multiple research areas. 

In summary, we have shown a high degree of variability 
in the b-hairpin region of three eukaryotic N-AsnRS proteins, 
which warrants further functional studies. We have presented 
some inconsistencies in the molecular dynamics modelled 
structure of N-FgAsnRS with the three experimental struc-
tures and have found limitations in PrDOS-based IDR predic-
tions. Information from experimentally verified IDRs can 
improve the performance of prediction tools (Liu et al., 2019; 
F. Meng et al., 2017). Thus, the structural data, including 
relaxation properties, reported here for N-SjAsnRS will assist 
in the development of better sequence-homology based 
structure modelling and prediction of IDRs in the future. 
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