
Efficient Memristive Stochastic Differential Equation Solver

Xuening Dong, Louis Primeau, Roman Genov, Mostafa Rahimi Azghadi,*
and Amirali Amirsoleimani

1. Introduction

Stochastic differential equation (SDE) theory has been intro-
duced to various fields of research, including finance, biological
modeling, and mechanics.[1] The inclusion of stochastic terms
in differential equations provides a useful way to modeling

dynamical systems with unknown and
fluctuating natures. Furthermore, recent
studies have delved into the use of SDEs
in generative modeling for injecting/
removing noise from complex data.[2] For
complex models, analytical solutions are
rare; instead, numerical methods such as
Monte Carlo simulation are widely used
for solving SDE systems in which multiple
realizations of the same equation are
repeated with different samples from the
noisy process. Each realization is given
an equal probability of forming the final
solution, yielding a probability distribution
representing the possible outcomes of the
solution.

The two key elements of Monte Carlo
simulation for stochastic differential
equation (SDEs) are the computation of
the deterministic functions and forward
timestep and the simulation of the
Brownian motion path for the stochastic
term. In this work, for the deterministic

term, we focus on the Euler–Maruyama method, which is one
of the simplest numerical methods for solving SDEs based on
the Ito–Taylor expansion.[1] The 1D Brownian motion paths, also
known as the Wiener processes,[3] are generated by continuous
Gaussian random numbers (GRNs).

Software implementations of these methods, such as provided
in refs. [4,5], iterate through steps on the solution paths and sim-
ulate stochastic processes with pseudo-random software-based
random number generators (RNGs). As the step size decreases
to attain better accuracy, the number of iterations increases,
demanding more access to memory for retrieving data from pre-
vious iterations (Figure 1a). This process leads to high energy
demand and long processing time due to serial data processing
in the Von Neumann architecture,[6–8] making the software
implementations power and time hungry. To address this prob-
lem, we propose to use the well-known concept of in-memory
computing, as shown in Figure 1b for solving SDEs.

Memristors with their nonlinear electrical behavior and
nonvolatile characteristics have been widely configured as mem-
ory elements, logic gates, or computational devices. This device
has an adjustable resistance that not only stores data but also
modulates incoming data flow to perform logic or arithmetic
operations. Organizing such devices in a crossbar manner helps
to deal with a large amount of data in parallel and perform
ultraefficient vector–matrix multiplication (VMM) based on the
fundamental Ohm and Kirchhoff laws.[9,10] The numerical
solving process of SDEs can thereby be adapted to the system

X. Dong, L. Primeau, R. Genov
Edward S. Rogers Sr. Department of Electrical and Computer Engineering
University of Toronto
10 King’s College Road, Toronto M5R 0A3, Ontario, Canada

M. Rahimi Azghadi
College of Science and Engineering
James Cook University
Townsville, QLD 4811, Australia
E-mail: mostafa.rahimiazghadi@jcu.edu.au

A. Amirsoleimani
Lassonde School of Engineering
York University
Toronto M3J 1P3, Ontario, Canada

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/aisy.202300008.

© 2023 The Authors. Advanced Intelligent Systems published by Wiley-
VCH GmbH. This is an open access article under the terms of the
Creative Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is
properly cited.

DOI: 10.1002/aisy.202300008

Herein, an efficient numerical solver for stochastic differential equations based
on memristors is presented. The solver utilizes the stochastic switching effect in
memristive devices to simulate the generation of a Brownian path and employs
iterative Euler method computations within memristive crossbars. The correct-
ness of the solution paths generated by the system is examined by solving the
Black–Scholes equations and comparing the paths to analytical solutions. It is
found that the absolute error of a 128-step path is limited to an order of 10�2.
The tolerance of the system to crossbar nonidealities is also assessed by com-
paring the numerical and analytical paths’ variation in error. The numerical solver
is sensitive to the variation in operating conditions, with the error increasing by
1.17�, 38.7�, and 1222� as the ambient temperature, wire resistance, and stuck
probability of the memristor increase to extreme conditions. The solver is tested
on a variety of problems to show its utility for different calculations. And, the
resource consumption of the proposed structure built with existing technology is
estimated and it is compared with similar iterative solvers. The solver generates a
solution with the same level of accuracy from 4� to 10� faster than similar digital
or mixed-signal designs.

RESEARCH ARTICLE
www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300008 2300008 (1 of 16) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

mailto:mostafa.rahimiazghadi@jcu.edu.au
https://doi.org/10.1002/aisy.202300008
http://creativecommons.org/licenses/by/4.0/
http://www.advintellsyst.com
http://crossmark.crossref.org/dialog/?doi=10.1002%2Faisy.202300008&domain=pdf&date_stamp=2023-04-18


by transforming the iterative steps into matrix and vector form
using the Euler–Maruyama method.

Despite the efficiency they exhibit in calculations, the
roadblock to developing memristive devices at large scales for
accurate calculations is the variation in their switching parame-
ters.[11] The inherent switching parameters vary from device to
device and even cycle to cycle in the same device, causing spatial
and temporal randomness introduced into every operation.[12]

This randomness can be harnessed for its true stochastic behav-
ior, and used for stochastic computing,[12–14] stochastic neural
networks,[11,15] or RNG.[16,17]

The nonidealities of the entire memristor crossbar system as a
whole are another concern to the accuracy of the calculation.
Issues such as sneak-path current[18] and wire resistance[19]

can alter the output current flow and lead to error in the final
solution. Therefore, accuracy enhancement techniques are nec-
essary to minimize the impact these nonidealities have on the
computations.[20]

In this work, we propose a memristor-based SDE solver struc-
ture that is based on the two aforementioned properties of mem-
ristors and memristor crossbars, that is, suitability of in-memory
computing, and intrinsic stochastic behavior. Our specific
contributions are as follows: 1) We introduce the use of
memristor-based Gaussian random number generator (GRNG)
to generate GRNs iteratively based on crossbar VMM to simulate
the Brownian motion path. The RNG is built on the intrinsic sto-
chastic switching behavior of memristors to enhance the quality of
randomness in the Gaussian path generations. 2) We implement
an iterative solver for realizing a solution path to SDEs using
Euler–Maruyama method by performing all the multiplication
and accumulation steps in-memory. 3) We enhance the accuracy
of the system with bit-slicing methods to cut down the effect
of nonidealities in the crossbar. 4) We propose a process-
slicing method that reduces the crossbar size needed for
solution paths of more than 100 steps to minimize the
simulation time while maintaining the accuracy of the solutions.
5) We apply the proposed structure to real-world problems and

compare the quality of simulated results with software numerical
solutions.

The rest of the paper is structured as follows: in Section 2, we
introduce the concept of SDEs and their numerical solving
methods. In Section 3, we overview the scientific computing
hardware. In Section 4, we present the proposed solver structure
and associated precision enhancement techniques. In Section 5,
we report and discuss simulation results under nonideal condi-
tions and in Section 6, we overview and discuss the results from
real-world problems. In Section 7, we analyze the resource
consumption of the solver. Finally, we conclude the work in
Section 8.

2. Stochastic Differential Equations

An SDE is a type of differential equation with random coeffi-
cients, either constants or functions, to introduce perturbations
to the deterministic term.[21] Common SDEs are seen in the
following form

dX ¼ μðt,XðtÞÞdt|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
deterministic term

þ σðt,XðtÞÞdWðtÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
stochastic term

(1)

where μ and σ are given functions, and dWðtÞ is a Brownian
motion. The Brownian motion is defined as a path that starts
from origin and has continuous independent increments sam-
pled from a normal distribution with zero mean and variance
equaling the step size.[4]

SDEs can be considered in the Ito sense or the Stratonovich
sense, depending on the discretization of the stochastic process
in the integral. In this work, we focus on the 1D Ito sense SDE
and propose a solver derived from Ito–Taylor expansion.[1]

2.1. Numerical Methods for SDEs

Numerical methods for SDEs can be broadly divided into two
classes: those that simulate many stochastic trajectories, which

(a)

(b)

(c)

(e) (f)

(d)

Figure 1. The dataflow within a) conventional computer architecture and b) in-memory computing systems. c) Three solution paths to the
Ornstein–Uhlenbeck process were constructed from the Euler–Maruyama method using three different stochastic processes. d) The time evolution
of the distribution of the stochastic processes. The distribution of solution values at three timestamps (0.01, 0.05, and 0.9 s) from 10 000 paths is
plotted. The circuit diagram of e) passive and f ) one-transistor-one-memristor (1T1R) crossbars that are considered for vector–matrix multiplication
(VMM) in hardware computing systems.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300008 2300008 (2 of 16) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300008 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [23/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


is the way analytic solutions (if they exist) are generated,
and those that solve the corresponding Fokker–Planck partial
differential Equation (2), which we focus on in this paper.

∂p
∂t

¼ � ∂
∂x

ðrpÞ þ 1
2

∂2

∂x2
ðσ2pÞ (2)

where p is the probability density function of random variable X,
x are the values that random variable X can take and r and σ are
the deterministic and stochastic functions, respectively. The sim-
plest ordinary differential equation (ODE) solver for SDEs is the
Euler–Maruyama method (Figure 1c,d), which has the following
form

Xn � Xnþ1 ¼ μðtn,XnÞΔtþ σðtn,XnÞΔW (3)

where Xn is the value of the process at the nth step. Simulation of
the SDE involves iterating this equation for a desired amount of
time steps, where the size of the time steps dictates the accuracy
of the solution. The Euler–Maruyama method aforementioned
converges strongly with order 1/2, which means that it has
the following relation between the error and the step size

E½XðTÞ � wΔtðTÞ� ¼ OððΔtÞ12Þ (4)

where XðTÞ is the continuous stochastic process (true solution)
and wðΔtÞ is the discrete approximation that we obtain using a
differential equation solver. As we reduce the time step size Δt,
the error decreases. We can also consider convergence in the
weak sense, which has the definition that

E½f ðXðTÞÞ� � E½f ðwΔtðTÞÞ� ¼ OðΔtÞ (5)

for all polynomials f of the stochastic process, continuous or
approximate. This means that the distribution of the trajectories
is guaranteed to converge in the limit of small time steps. Note
that the Euler–Maruyama converges with order 1 in the weak
sense. Because of the relaxed definition, it is possible to get solv-
ers with higher weak convergence orders for less computational
complexity.

2.2. Applications

Taking advantage of the instantaneous noise modeled by the sto-
chastic term, SDEs are suitable for modeling dynamic systems
that evolve randomly with time.[22] They generalize real-world
random phenomena including financial pricing with volatil-
ity,[23,24] stochastic thermodynamics,[25] and biological modeling
of stochastic voltage-gated channel operation in the deterministic
Hodgkin–Huxley model.[26] Recent work in machine-learning
frameworks also consider stochastic noise injection modeled
by neural SDEs.[22,27,28] The randomness of the model covers
the Gaussian noise injection, dropout, and other perspectives
of the neural network,[27] and can be solved by fitting the SDE
into Wasserstein generative adversarial network.[28]

3. Scientific Computing Hardware and Methods

The two core operations in solving an SDE are the generation of a
random Brownian path and the computation of matrix–vector

multiplication, which can be efficiently implemented using an
in-memory architecture. For this architecture, a nonvolatile
memory is needed for both recording the data and performing
arithmetic operations, in-memory.

3.1. Memristor Crossbars

Based on the programmable resistance nature, memristors
provide a promising way for performing analogue computations
by directly modulating the current passing through them. By
arranging such a device in a crossbar structure, with a word line
representing the input voltage and the output currents
summed up in the bit line, the whole system can perform the
“multiply-and-accumulate” operation and is thus used for VMMs.

Within the crossbar structure, all the calculations can be per-
formed in parallel simultaneously.[7] This reduces the time and
power used to perform computations. Commonly seen memris-
tor crossbars include a gateless passive (1 R) structure (Figure 1e)
or a one-transistor-one-memristor (1T1R) structure (Figure 1f ).
The memristor-only structure has lower power consumption but
suffers from sneak-path current problems. The 1T1R structure
resolves the sneak-path problem by controlling the transistor
states, with only leakage current when a gate is turned OFF.
Both structures suffer from device and crossbar nonidealities
such as ageing issues, wire resistance, and imprecise writing
of memristor conductance, which limit the precision of calcula-
tions. To date, the focus of memristive crossbar computing sys-
tems has been mostly on tasks such as inference and training of
artificial neural networks,[29–31] which usually have a high
tolerance to errors. Numerical computation tasks which have
high-precision requisites are challenging to implement on such
systems. Therefore, to compensate for the loss, a series of
precision–extension steps have been developed to be carried
out during the numerical calculations using memristive
crossbars.[20]

3.2. Stochastic Switching Behavior

A memristor’s conductance is dependent on the previous
amount of electric charge that has flown through it.[32]

Therefore, the conductance or resistance is nondeterministic
and varies with the voltage pulse applied (Figure 2a). The conduc-
tance is also bounded by a set of minimum and maximum val-
ues, known as the ON and OFF resistance, following a normal
distribution at the device level (Figure 2b,c). The outputs of the
high-resistance state (HRS) and low-resistance state (LRS) are
then defined as logic 0 and 1. To perform a SET operation, a posi-
tive input voltage is applied to one terminal until an abrupt jump
in the current flows out of the other terminal. The RESET opera-
tion can be performed in the reversed direction or by applying a
negative input, switching the memristor from the ON to the OFF
state. The actual switching between the two states is nondeter-
ministic, depending on the structure and doping material from
which the memristor has been manufactured. For example, in
filament-based devices, the formation or dissolution of conduc-
tive filament between the top and bottom electrodes is completely
random and device independent. Therefore, the actual resistance
and the resultant current at LRS and HRS vary from device to

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300008 2300008 (3 of 16) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300008 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [23/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


device and can be scattered in a wide range. To systematically
analyze the switching behavior of memristors, present
works such as refs. [12,33,34] have conducted experiments by
repeatedly performing the SET/RESET operation and statistically
analyzing the resultant switching delays. They have revealed that
the switching probability of a memristor model can be fitted into
two distributions, the Poisson (Figure 2d–f ) or the log-normal
distribution. For a particular memristive device, the switching
probability is yielded by the magnitude of the input voltage
and the width of each pulse and correlated to the wait time until
the switching event.

3.3. Gaussian RNG

GRNGs are the essential elements for performing Monte Carlo
simulation, which constantly generates random numbers that
are drawn from a standard normal distribution.[35] To perform
Monte Carlo simulation in solving SDEs, high-quality GRNs
are required for generating the Wiener process. Existing hard-
ware GRNG can be separated into four categories based on the
algorithm they use, 1) cumulative distribution function (CDF)
inversion, which infers GRNs from the standard Gaussian
CDF;[36,37] 2) transformation methods which convert uniform
random numbers into GRNs with arithmetic manipulations;[38,39]

3) acceptance–rejection methods which conditionally rejects
some values after applying the transformation method;[40] and
4) the recursion method which iteratively generates new GRNs
through a pool of old GRNs.[41] The first three methods involve
the evaluation of mathematical expressions, such as sine, cosine,

and logarithms. These evaluations are expensive to be imple-
mented on hardware, especially under power/area-limited scenar-
ios. The recursion method, in contrast, requires memory for
storing all the old GRNs but performs simply a linear combina-
tion of the old numbers which reduces the computational com-
plexity. In the GRNG design of this work, we take advantage of the
crossbar manner of memristors such that these transformations
can be done within one clock cycle, hence saving time and power
for generating GRNs for Monte Carlo simulation.

Another consideration of the GRNGs is the uniform random
number generator (URNG) which is responsible for generating
addresses of random numbers in memory. Commonly seen
pseudo RNGs are derived from mathematical concepts, where
the output is a deterministic function of the previous iteration.[42]

Though this deterministic property can be useful in some cases,
the pseudo RNGs suffer from vulnerabilities such as repeated
patterns.[43] In this work, we use true RNGs built on memristors’
stochastic switching behaviors to enhance the quality of random-
ness in the Gaussian paths generated. Existing work such as pro-
vided in refs. [44–46] each proposed a different memristor-based
RNG structure, and the quality of the numbers generated had
been proven with the National Institute of Standards and
Technology test suite.

4. Proposed Architecture

Presented here is a general structure for iteratively solving SDEs
within a hardware–software combined system using the

(a) (b) (c)

(d) (e) (f)

Figure 2. a) The bipolar switching behavior of two memristor models, VTEAM and Stanford-PKU, simulated on the MemTorch platform[29] within the
voltage range of �1.5 V. The memristors used for crossbar simulation are set with b) OFF and c) ON resistance in a crossbar following a normal
distribution. The distribution of the switching time simulated on a stochastic memristor model following a Poisson distribution. The switching time
is defined as the difference between the onset of the applied pulse and the jump of output current from the memristor. Logic bits 0 and 1 can be
determined by comparing the output current at a certain timestamp with a threshold. The simulation is carried out with three voltage levels:
d) 2.8, e) 3.0, and f ) 3.3 V. As the applied voltage increases, the mean switching time of memristor (λ) decreases.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300008 2300008 (4 of 16) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300008 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [23/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


algorithm depicted in Figure 3a, which will be further explained
later. An overall 16-bit fixed-point arithmetic (Q3.13), with 3 bits
for the integer part and 13 bits for the fraction part, is used for
representing the number manipulated within the computing sys-
tem. The negative values in the crossbars are represented by the
sum of a differential pair in the crossbar. For each number, one
column Vþ=Iþ represents the positive part and one column
V�=I� represents the negative part and the number in
voltage/current is represented by V ¼ Vþ � V� or I ¼ Iþ � I�.

4.1. Technology Selection

The deterministic and stochastic solution paths to the SDE can
each be evaluated by an iterative Euler solver and a GRNG,
respectively. Previous work on Euler solvers or Monte Carlo
simulators focused on either CMOS[47,48] or fully analog
implementations.[49,50] These structures suffer from high
energy consumption or large footprint area due to the serial
multiply-and-accumulate (MAC) operations. Similarly, digital
GRNGs have the same issue in time and energy cost when
evaluating the expensive mathematical expressions with the
Box–Muller[38] or Ziggurat algorithms.[40] Therefore, in this
work, we propose a novel approach to building SDE solvers based
on memristive devices, taking advantage of both the VMM oper-
ations in the crossbar for iterative MAC and intrinsic stochastic-
ity for random number generation. Moreover, the devices can be
manufactured on a nanometer scale with promising read speed
which shortens the execution time and reduces the power and
area consumption of the system.[7,11]

4.2. General Structure

The solver structure is divided into two parts, in correspondence
with the two terms in the SDE.

4.2.1. Stochastic Term

The stochastic term is generated by GRNs that follow a normal dis-
tribution with zero mean and standard deviation Δt (Figure 3b).
The GRNs are generated by a memristor-based GRNG named
WALLAX, iteratively. The structure uses the Wallace method[51]

to take advantage of the crossbar structure for linear transforma-
tions while harnessing the intrinsic stochastic nature of memristors
for randomness. At the beginning of the process, a software algo-
rithm such as the Box–Muller transform is used for generating an
initial pool of N GRNs (Figure 3a, software part). These generated
GRNs are normalized to achieve an average squared sum equal to
one.[51] The normalized values are stored in memory and randomly
fetched per iteration. The fetching addresses are generated from a
URNG[44] which produces a bitstream with length log2N and is
made up of three components, start, stride, and mask. The three
components are transformed into database addresses by adding
multiples of stride to start and XORed with a mask (i.e.,
add ri ¼ ðstartþ stride� iÞ⊕mask, i ∈ f0, 1, 2, 3g). This approach
ensures that the addresses are decorrelated and have minimal
chance of overlapping.[52] Accordingly, the hardware structure iter-
atively fetches the old-pool GRNs, organizes them into a vector, and
multiplies the vector with a Hadamard matrix for linear transfor-
mation. New GRNs are collected as the output current
flowing from each pair of differential columns. The new GRNs

(a) (b) (d)

(c)

Figure 3. a) Workflow of the proposed stochastic differential equation (SDE) solver, with the function values evaluated in software and iterative paths
calculated in hardware. b) The Gaussian random numbers (GRNs) generated, with zero mean and variance equals step size to be used as the stochastic
term of the SDE solver. c) The initial value and stochastic term to be fed into the rows of crossbar and the resultant current sensed at the end of each
column. d) The architecture hierarchy of the proposed SDE solver.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300008 2300008 (5 of 16) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300008 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [23/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


are written back into memory to allow for the recycling of numbers,
eliminating the need for further generation of GRNs by software
(Figure 3a). Before outputting to the peripherals, the new GRNs
are corrected by a factor G where

G ¼
ffiffiffiffi
S
N

r
¼

ffiffiffiffiffiffiffi
1
2N

r
ðx þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N � 1

p
Þ (6)

to rewind the normalization process in the first step. The output
Gaussian random vectors (ΔW) are multiplied with the coefficient
functions and fed into the deterministic crossbar. The advantage of
using such a system for random number generation is that it only
requires software to generate one pool of initial GRNs and the sub-
sequent values can be completely produced by hardware. Moreover,
there can be multiple numbers generated per iteration, meaning
that the random numbers can be each fed into a different determin-
istic term system to allow parallel computations.

4.2.2. Deterministic Term

The deterministic crossbar is responsible for summing the three
components (Xn, μΔt, and σΔW) in Equation (3). Each column
j ∈ f1, 2, ..,Ng of the crossbar represents the time-step jΔt and
has its value updated at the ðj � 1Þth iteration, N is the total num-
ber of steps, and the 0th iteration is a direct assignment of the
initial value X0. The matrix to be mapped into the crossbar con-
tains “1"s in the diagonal and superdiagonal elements, and “0"s
in the rest. At each iteration i, the ith row and the (iþ 1)th row
are fed with the value of Xi�1 and μðtn,XnÞΔtþ σðtn,XnÞΔW ,
respectively, as shown in Figure 3c. Only the sensing current
at the ðiþ 1Þth column is collected and directed to the
ðiþ 1Þth row for the next iteration. In a total of ðN � 1Þ itera-
tions, we are able to obtain the numerical solution path to the
SDE. In most of the SDEs, the two coefficient functions,
μðtn,XnÞ and σðtn,XnÞ, are nonlinear and can be merely evalu-
ated on a normal computer. In case the functions are linear, they
can also be evaluated on the crossbar, with the diagonal element
still being “1,” the super-diagonal elements mapped to the value
of σðtn,X , nÞΔt and an additional set of sub-diagonal elements
representing μðtn,X , nÞΔt.

4.2.3. Overall Structure

As shown in Figure 3d, the overall structure composes of one
large memristor crossbar system for summing up the determin-
istic and stochastic term, an RNG containing two crossbars for
simulating the Brownian motion and peripheral circuits includ-
ing amplifiers, analog-to-digital converters (ADCs) and digital-to-
analog converters (DACs). Memories are required for storing the
random numbers and the solution paths before and after the
computations.

4.3. Precision Extension

The precision of calculation is critical to the numerical solver of
SDEs. Due to the iterative nature, inaccurate results in earlier
steps can be accumulated and exaggerated in the later steps, lead-
ing to implausible results that are deviated from the actual

solution. Moreover, during each iteration, the numbers manip-
ulated can pertain to multiple significant figures and result in a
long bitstream. To ameliorate the potential loss in accuracy dur-
ing calculation, a set of techniques has been adapted to the struc-
ture, targeting 16-bit fixed-point arithmetic. The precision
extension method can be generalized as a two-step process,
applied to the bitstreams in each calculation and the iteration
steps for the overall solver. The first slicing determines the num-
ber of crossbars within each iteration group, and the second slic-
ing determines the size of each crossbar and the number of
iterations to be carried in each slice.

The number of quantized levels is correlated to the precision
of the overall calculation since each device can only store a
limited amount of bit width. For example, to perform a 16-bit
calculation with a single memristor cell, it acquires a 16-bit
DAC and 216 resistance levels within the memristive device.
As the number of resistance levels increases, the allowable range
for each level decreases and the result obtained from the read
operation can be deviated because of the nonidealities in the
structure and inherent noises with the circuit. The need for
peripheral devices handling over 16 bits also employs enormous
overheads, resulting in large power consumption.

To ensure the exact computation, the numbers to be pro-
grammed onto an individual crossbar are limited to less than
4 bits. To generalize the process, we assume that each crossbar
is designed to represent n bits. Thus, we need l ¼ 16

n crossbars in
parallel to perform the calculation, indexed from 0 to l� 1. To
perform the 16-bit calculation, a multiple crossbar system with
a parallel connection is introduced to minimize the time taken
for each step. The kth iteration’s input Xk

i and deterministic con-
stant terms Ck

i are sliced into bitstreams aij and cij starting from
the least significant bit into the form

Xk
i ¼ faiðl�1Þ, : : : , ai2, ai1, ai0g (7)

with first index i ∈ f0, 1, : : : ,m � 1g representing the number
from which the slice comes and the second index representing
the crossbar index the slice feeds in and

Ci ¼ fciðl�1Þ, : : : , ci2, ci1, ci0g (8)

with the same naming convention as the inputs. All the iteration
inputs are then piled up into

~X ¼

a0ðl�1Þ, : : : , a01, a00
a1ðl�1Þ, : : : , a11, a10

..

.

aðm�1Þðl�1Þ, : : : , aðm�1Þ1, aðm�1Þ0

2
666664

3
777775 (9)

¼ ð~Xl�1, : : : ,~X1,~X0Þ, (10)

where ~Xl�1, : : : ,~X1,~X0 are n-bit vectors withm entries, and serve
as inputs to each crossbar. Since the coefficient matrices for each
iteration contain only 0 and 1 s (Figure 4a), there is no need to
further slice them. The coefficient matrix and constant terms are
then written to the conductance of memristors and the inputs are
applied to the word lines of the crossbar with the corresponding
index as seen in Figure 4b,c. The result of each slice is

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300008 2300008 (6 of 16) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300008 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [23/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


X 0
ij ¼ fa00j, a01j, : : : , a0m�1jgwhere a0ij is the corresponding crossbar

output of input term aij, j ∈ f0, 1, : : : , l� 1g. These results will
be saved in registers and summed up in the end of each iteration
by following the equation

Xkþ1
i ¼ a0i0 � 2�

8
l þ a0i1 � 2�ð8l�1Þ þ : : : þ a0iðl�1Þ � 2

8
l (11)

where all the multiplications are realized by bit shifting.
When converting back to a floating point number after a fixed-

point VMM operation is completed, the transform is reversed by
rescaling the output vector and adding a constant vector with all
identical elements containing the offset term. Figure 4d
shows the solution paths generated from VMM with different
slicing widths and compared to the analytical solution of the
Black–Scholes equation.

5. Simulation

5.1. Methodology

The implementation of the Euler–Maruyama method on
memristive crossbar is simulated on the MemTorch[29] platform
for its compatibility with different memristor models, that is,
Stanford-PKU[53] and voltage ThrEshold adaptive memristor
(VTEAM)[54] and the effect of different nonideal conditions,
including the stuck rate of memristors and conductance
variations. The line resistance of the crossbar, and ambient

temperature, in contrast, are examined on the passive crossbar
simulation platform built from.[55] All simulation parameters
have been included in Table 1. The VTEAMmodel acts as a base-
line for simulating the correctness of the proposed algorithm,
while the Stanford-PKUmodel and the passive crossbar platform
are used for nonideality tests. In all simulations, we take into
account the device-to-device Ron/Roff variation by randomly
sampling the resistance from a Gaussian distribution with a var-
iance equal to 10% of its mean. Another form of device variation,
switching time variation is not considered as all the program-
ming of devices can be done prior to computations. The solution
path generated from the hardware VMM technique is directly
compared with the one that is generated by direct software
VMM using the Euler–Maruyama method. In the nonideality
test, to better visualize the effect, we calculated the absolute dis-
tance between the correct solution path and the generated path
under nonideal conditions.

The simulation of a crossbar at a very large size could poten-
tially last for a long time since the matrix is large in size and
complex in the computations to be performed. To reduce the
time elapsed, we developed another scheme that further slices
the process to ensure that the size of the crossbar remains at
a small scale. As shown in Figure 5e,f, for a solution path that
contains 128 steps, we divided them into slices of three-step
paths; hence, for each slice, we only need crossbars at the size
of 3� 3. The last solution step in the last slice will be propagated
to the initial value of the next slice such that the sliced paths can

(a) (b) (d)

(e)

(f)

(g)

(h)

(c)

Figure 4. a) The overall Gaussian random number generator (GRNG) architecture that contains four stages: first two stages for random address gener-
ation and the third and fourth stage for GRN fetching and transformation. b) The address crossbar for accumulating the “strides” on the “start”. Black
memristors are “OFF” and the blue memristors are “ON.” c) The transformation crossbar for linear combination of old GRNs. Each two columns of the
crossbar are treated as differential pair and subtracted negative from positive to represent values. In actual simulation, the resistance of the d) address
crossbar and e) the transformation matrix are marked in heatmaps. f ) The memristive URNG structure that is proposed in ref. [44]. g) The write and verify
process for simulating the mapping of matrices to the crossbar. h) The crossbar model for the deterministic term of the SDE solver with iterative and
recursive calculation steps.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300008 2300008 (7 of 16) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300008 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [23/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


be concatenated into the solution path. As shown in Figure 5g,
the runtime of simulation is reduced significantly by the
reduction in slice size. The minimum mean absolute error of
the 128-step path occurs when slice size= 8. This then becomes
the size we kept for future simulations.

5.2. Validation of Correctness

To verify the correctness of matrix and operations mapped to the
crossbar, we simulate the solver structure with an SDE that has
analytical solution. The Black–Scholes asset pricing model[23] is
used for monitoring the stock exchange process and has the
following form

dXðtÞ ¼ αXðtÞdtþ βXðtÞdBðtÞ,Xð0Þ ¼ X0 (12)

where α, β ∈ ℝ. The model has an exact analytical solution

XðtÞ ¼ Xð0Þeðα�β2

2 ÞtþβBðtÞ (13)

where BðtÞ is the value of the Brownian motion path generated at
time t. Euler–Maruyama Monte Carlo simulation is used in all
cases to obtain the numerical solutions to the SDE with the initial
value X0 ¼ 1 in 128 steps. The result obtained for each solution
path is then compared with the analytical solution under the
same stochastic process.

As shown in Figure 6a, the resultant numerical solution
obtained from the proposed structure coincides with the solution
path generated by software VMM using the same stochastic path
and initial condition with the Stanford-PKU model.[53] The aver-
aged absolute difference between hardware and software VMM
solution paths is 0.057. The performance of the system is also
compared across memristor models with the same settings to
test the compatibility of the structures. In Figure 6b, paths

generated by the two models have been recorded and compared
visually. There is no significant observable difference between
them. The mean absolute difference between the paths from
the two models is 0.0508.

5.3. Solution Convergence

The final numerical solution to an SDE can be obtained by
averaging the solution paths with different stochastic processes
considered following the Monte Carlo simulation. In this section,
we tested the Ornstein–Uhlenbeck process for the convergence
of solution paths. The Ornstein–Uhlenbeck process[56] is consid-
ered as a univariate continuous Markov process with its solution
evolving with time.[57] The process is defined over the state space
X ∈ ℝ with the SDE

dXðtÞ ¼ � x � μ

τ
dtþ σ

ffiffiffi
2
τ

r
dBðtÞ (14)

where μ ¼ 10 is the mean, σ ¼ 1 is the standard deviation, and
τ ¼ 0.05 is the time constant. The simulation results are shown
in Figure 6c with the initial value of X0 ¼ 0. The gray-dashed
lines depict the minimum/maximum values in all solution paths
at each time step. We averaged all simulated solutions every 50
trials (Figure 6c) and observed that the resultant curve gradually
converges in the center of the margin despite the perturbations
introduced by the stochastic process.

5.4. Ambient Temperature Effect

The current–voltage (I–V ) characteristic of the memristor is
dependent on the temperature it operates in ref. [58]. In this
section, the performance of the memristive solver is rendered

Table 1. Simulation parameters for SDE solver.

MemTorch Passive

Crossbar properties

Ron [kΩ] 1 Ron [kΩ] 0.54 Ron [kΩ] 10

Roff [kΩ] 100 Roff [kΩ] 218.6 Roff [kΩ] 100

Ron/Roff variation range 10% Ron/Roff variation range 10% Ron/Roff variation range 10%

Wire resistance [Ω] – Wire resistance [Ω] – Wire resistance [Ω] 20

Stuck probability 1% Stuck probability 1% Stuck probability 1%

Memristor model parameters

VTEAM Stanford-PKU

D 3.00 E-09 gap_init 2.00 E-10 t_ox 1.20 E-08 Vdd [V] 0.2

k_on �10 g_0 2.50 E-10 F_min 1.40 Eþ 09 Resolution 2 bits

k_off 0.0005 V_0 0.25 vel_0 10 Bias_scheme 1/3

Alpha_on 3 I_0 0.001 E_a 0.6 Conductance model linear

Alpha_off 1 Read_voltage 0.1 a_0 2.50 E-10

v_on [V] �0.2 T_init 298 Delta_g_init 0.02

v_off [V] 0.02 R_th [Ω] 2100 Model type Standard

x_on 0 Gamma_init 16 T_crit [K] 450

x_off 3.00 E-09 Beta 0.8 T_smth 500

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300008 2300008 (8 of 16) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300008 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [23/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


at various temperature settings by calculating the mean-squared
errors between the hardware solver path and the analytical
software path per time step. As shown in Figure 7a,b, the
root-mean-squared errors (RMSE) are recorded at every 10
Kelvin steps. The best proximity occurs when the ambient tem-
perature is close to the room temperature at around 25 °C
(298 K). The error increases consequently as the temperature
further deviates from the room temperature with escalating
magnitude. As the path length grows, the influence brought by
temperature variation becomes more prominent. The increment
between the minimum and maximum errors rises from 36.6%
to 117.5%.

5.5. Device Variation Effect

The accuracy of inference on the crossbar can be influenced by
nonidealities in the crossbar system, such as wire resistance,
stuck probability of memristors, and the sneak-path current.[29]

The value collected from the crossbar inevitably deviates from the
supposed correct value. In this section, we examine the extent of
the error to which different crossbar nonidealities bring by
showing the variation in RMSE for each path or time step as
the nonideal situation varies. The simulations are run through
a passive crossbar platform built upon.[55] The platform assumes
accurate programming of the memristors, such that we focus

(a)

(e) (f) (g)

(b) (c) (d)

Figure 5. Precision extension methods: a) the input and matrix to be mapped to crossbar at each iteration. b) The slicing and collection of the input and
output on the crossbar. c) The reconstruction of the output according to the bit-slicing scheme. d) The solution paths generated from VMMwith different
slicing widths and compared to the analytical solution of the Black–Scholes equation. The analytical path overlaps with the 1-bit sliced path. e) The
iterative solver calculations without process slicing applied. f ) The current flow of input and output of each crossbar with process slicing of size 3
applied. g) The fluctuation of mean absolute error of solution path and the elapsed time of simulation with different slice sizes on a 128-step solution
path. The elapsed time decreases with the process slice size and the minimum error appears at slice size= 8.

(a) (b) (c)

Figure 6. a) Result of the path correctness test: the upper figure contains the solution path generated by hardware and software VMM based on the
Euler–Maruyama method and the lower figure plots the corresponding stochastic and deterministic path, respectively. b) The solution path generated by
both VTEAM and Stanford-PKUmodel comparing to the software VMM path. c) The averaged solution path every 50 trials. The gray-dashed line indicated
the minimum/maximum solution value at each time step.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300008 2300008 (9 of 16) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300008 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [23/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


on investigating how the nonideal conditions impact the compu-
tation accuracy. Thus, it is considered together with the wire
resistance and stuck probability of the crossbar.

The wire resistance here is defined as the resistance between
individual elements of the crossbar. Therefore, the total resistance
of wires in a crossbar is proportional to the number of elements in
it. Wire resistance degrades the signal passing through it and can
potentially change the results. For testing the influence of various
wire resistance (½10, 110�Ω) on the accuracy of calculation, we cal-
culated the absolute error (jcrossbar½i, j� � sof tware½i, j�j) between
the crossbar solution and the software solution with an increasing
number of steps in the solution path ([16, 128]). As shown in
Figure 7c, the error increases proportionally to the wire resistance
and path length from 0.2560 at (10Ω, 16 steps) to 9.90 at (110Ω,
128 steps). The magnitude of increment decreases as the wire
resistance approaches the highest values for the same path length
and as the path length increases with the same resistance settings
as shown in Figure 7d with continuous scales.

Since we are only mapping binary numbers to the crossbar,
the stuck state of memristors will lead to wrong calculation
if the state is incorrect. The error further propagates through
the path and results in exponentially growing errors. As shown
in Figure 7e, the RMSE increases with the stuck probability and
the path length, from 0.023 at (0.1%, 16 steps) to 28.11 at
(30%, 128 steps). The impact of rising stuck probability is more
significant than the wire resistance. Since the probability chosen
is not equally spaced, we plot all the points together in Figure 7f
and the trend shows that as the stuck probability and path length
increase, the magnitude of increment in error also grows.

6. Results and Discussion

The reliability of the SDE solver system is tested against several
applications. The quality of the numerical solution is evaluated
based on the differences between the generated result and the

(a) (b)

(c) (d)

(e) (f)

Figure 7. Nonideality test results: a,b) the variation of root-mean-squared errors (RMSE) with the ambient temperature in Kelvin and the solution path
length. c,d) The variation of absolute error between the analytical and the hardware VMM path with the wire resistance in Ohm and the solution path
length. e,f ) The variation of RMSE with the change in memristor stuck probability and the solution path length.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300008 2300008 (10 of 16) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300008 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [23/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


solution produced by software-based SDE solvers and analytic
solutions when they exist. In the previous section, we demon-
strated the reliability of the solver for solving some simple
SDE problems. Here, we will demonstrate that the system can
be used to solve a variety of interesting and useful problems,
where the power and speed of our system will be of significant
use.

6.1. First-Passage Time and Moments

To show the usefulness of our simulator for the common appli-
cations of stock prices modeled by geometric Brownian motion,
we simulate 500 Black–Scholes trajectories with a VTEAMmem-
ristor model with a process slice size of 8, as shown in Figure 8a,b.
We then calculate various statistics using these simulations.

The first-passage time or first hitting time of an SDE is
roughly the amount of time it takes for a stochastic process to
reach a threshold which may be time dependent. This concept
is useful in the modeling of physical and economic systems, such
as economic bubbles and credit defaults.[59] Here, the stochastic
process is the value of the stock price, and the first-passage time
is some threshold when we may decide to sell the stock (or in the
case of barrier options, the value of the stock depends on the time
it takes to reach the barrier, if at all). We want to calculate the
expected time until we can recoup our investment for this kind
of contract. For a general time-dependent threshold and SDE,
there may not exist a closed-form solution for the first-passage
time, which would generally be found by solving the correspond-
ing partial differential equation with appropriate boundary con-
ditions. Here, we derive the first-passage time computationally
using our hardware solution utilizing a VTEAM memristor

(a) (b)

(c) (d)

Figure 8. a) A total of 500 simulated Black–Scholes trajectories between times 0 and 1 with 96 timesteps using the VTEAMmemristor model. The vertical
line shows the slice of the joint probability density in time and in space that corresponds to the final state. The horizontal line shows the level with which
the first-passage time is calculated. b) The final-state distribution at time 1. The analytic solution marginalized over all values of Brownian motion is
plotted along with the software solution given the same realizations of noise using our WALLAX GRNG. The distributions are all in good agreement.
c) The first-passage probability density with respect to the level X= 12, given that the process did reach the level. The VTEAM model simulation path is
plotted along with a separate simulation on the software of 5000 paths with 20 000 timesteps. d) The mean and standard distribution of the VTEAM
simulation, software, and analytic distributions.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300008 2300008 (11 of 16) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300008 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [23/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


model, as shown in Figure 8c, and compare it with a software
simulation with a much finer time step (20 000) and more
paths (5000). The distributions are in good agreement, indicating
the utility of our hardware for performing first-passage
computations.

We also compute the time evolution of the moments of the
distribution by computing them for each timestep, as shown
in Figure 8d. These computations are useful for example to value
options and quantify risk. We also use them later to infer param-
eters of the stochastic process via stochastic gradient descent.

6.2. Stochastic Van der Pol Oscillator

To demonstrate the possible application of our proposed
hardware solution in higher-dimensional nonlinear systems,
we demonstrate a stochastically perturbed Van der Pol
(Equation (15)) that uses a 1D noise process[60]

d
X

Y

� �
¼ Y

μð1� X2ÞY � X

� �
þ λ

0

Y

� �
dW (15)

The simulations use the Stanford-PKU model with a process
slice size of 8, and take 256 timesteps between times 0 and 30,
with parameters μ ¼ 4 and λ ¼ 0.3. We see that the system is
capable of converging to the limit-cycle characteristic of the
non-stochastic ODE, but the noise causes the spikes to happen
at different times with a similar height (Figure 9a,b), and in
fact raising the noise amplitude reduces the period of the spikes.

This model is useful for nonlinear circuits such as those contain-
ing memristors,[61] and as a model for a neuron.[62]

6.3. Fitting Parameters and Learning Dynamics of SDEs

As already mentioned, SDEs can be used to model the dynamics
of physical systems. If the functional form of the physics is
known, then the SDE can be discretized and techniques such
as maximum likelihood can be used to infer the parameters
of the model.[63] However, if the functional form is not known,
such as in the case of a highly nonlinear system, neural networks
can be used to model f and g functions[64] as shown in Figure 9c.
This method is especially suitable for memristor crossbar hard-
ware as it uses many linear computations and simple nonlinear
computations to approximate general nonlinear functions.

As a simple first test of the utility of this method, we use our
hardware solution to run forward passes of the Black–Scholes
equation to fit the parameters of the SDE. The data was generated
using 10 000 software solutions of the Black–Scholes equation
starting from the same initial condition with 1000 time steps,
which were interpolated into 30 length time series to ensure min-
imal error due to the inaccuracy of the Euler–Maruyama solver
that generated them.

The hardware solver was then used to generate 30 solution
paths with 30 time steps. The errors and weight updates were
calculated in software and used to update the mean and variance.
The hyper-parameters were chosen by hand to ensure reasonable
convergence. The search is shown in Figure 9d, depicting
the path in parameter space toward the actual μ and σ which

(a)

(c) (d)

(b)

Figure 9. a) One sample trajectory of the stochastic Van der Pol oscillator. b) Phase portrait of the stochastic process showing all 48 paths. The noise
causes slightly different paths through phase space. c) Scheme under the Sparse, Physics-based, and partially Interpretable Neural Networks frame-
work[64] for training learnable functions to approximate stochastic dynamics. In our problem, we fix the functional form and learn the parameters; how-
ever, the functions could be learned as well by parameterizing them as neural networks. d) The evolution of the Black–Scholes parameter estimates. The
initial guess is (1.0, 0.6), starting in the top left corner. The solution converges to the true parameters that generated the data, shown by a red dot. The
solution does not quite converge to the true answer due to the noise in the simulation, but increasing the number of paths that the hardware solver
generates and the amount of data allows the search to converge closer to the true answer.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300008 2300008 (12 of 16) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300008 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [23/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


generated the data. The search does not quite converge to the true
solution due to the coarseness of the hardware trajectories and
their small number. Increasing them slows down the speed of
the simulation but ensures better convergence. Figure 9c shows
the trajectories of the mean and variance using the current esti-
mate of the SDE parameters.

7. Analysis and Comparison

7.1. Resource Consumption Estimation

The resource requirement of the proposed SDE solver, including
power, area, and latency consumption, is estimated based on the
following assumptions: a constant reading voltage of 0.3 V[65] is
used, and the digital peripherals are scaled to 32 nm technology
with factors introduced in ref. [66]. Each memristor device has a

read latency of 6 ns[20] and a fixed area.[67] Other circuits and
crossbar parameters are consistent with the simulation settings
as indicated in Table 1 and the path lengths are fixed to 128 time
steps. Since the matrices mapped to the crossbars are fixed, all
programming can be done ahead of calculations performed on
the crossbar. Therefore, the cost of device programming is
not considered in resource consumption.

The estimation of the resource consumption of the proposed
structure has been broken down in Table 2 according to the
two-term SDE solver structure proposed. The stochastic term
is simulated by a GRNG which contains a total of 51 memris-
tors (one 4 � 4 crossbar, one 4 � 8 crossbar, and 3 for RNG), 9
ADCs[67] each with 8-bit resolution and 8 DACs[67] with 1-bit
resolution as a result of the accuracy enhancement method
applied. The deterministic term is considered without any
accuracy enhancement method applied. Both ADC[68] and

Table 2. Resource consumption estimation of SDE solver without slicing.

Stochastic term─GRNG

Component Params Specification Power [mW] Area [mm2] Latency [μs]a)

ADC Resolution 8 bits 18 0.0108 0.00166

Number 9

Frequency 1.2 GHz

DAC Resolution 1 bit 0.0313 1.33 E-06 1.60 E-03

Number 8

Transistor Number 3 0.03 3.10 E-05 23.333

Comparator Number 3 0.542 5.83 E-05

Counter Number 3 0.0321 1.68 E-03

Exclusive-OR gates Number 4 0.0207 1.78 E-05 8.20 E-05

Serial-to-parallel converter Number 4 0.126 2.02 E-02 0.01

Subtractor Number 4 5.6 2.12 E-03 5.00 E-06

Multiplexer Number 8 2.40 E-01 5.21 E-05 2.25 E-05

Dual-port random-access memory Size 2KB 4.59 2.48 E-03 8.21 E-05

Input register (IR)þ output register (OR) Size 256B 0.23 7.70 E-04 8.21 E-05

Memristors Size 51 0.08958 1.07 E-04 2.00 E-02

Bit per cell 2

Total 29.53 0.0383 23.41

Deterministic term─processing engine (no slicing)

Component Params Specification Power [mW] Area [mm2] Latency [μs]a)

ADC Resolution 16 bits 81.024 66.56 0.1

Number 128

Frequency 10MHz

DAC Resolution 16 bits 2150.4 67.84 1.00

Number 128

Sþ A – – – – –

IRþOR Size 1 KB 0.674 8.10 E-01 8.21 E-05

Memristors Size 128� 128 69.648 1.15 E-03 6.00 E-03

Bit per cell 2

Total 2301.75 135.21 141.57

a)Latency of individual component.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300008 2300008 (13 of 16) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300008 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [23/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


DAC[69] in this case are considered with 16-bit resolution, no
digital shift and add (SþA) blocks are required. For a total of
128 iterations, the proposed deterministic term solver con-
sumes 2301.75 mW of power and 135.21mm2 area, while tak-
ing 141.57 μs for the whole execution. The stochastic term is
aimed at generating 128 random numbers either before the
execution of the deterministic term or in parallel with it. In
the former case, the stochastic term generates 4 GRNs per
23.41 μs which results in a total of 749.12 μs for generating
all the GRNs as needed. All the random numbers and the equa-
tion parameters are stored in an embedded dynamic random-
access memory buffer[67] with a size of 64KB in the tile.

Table 3 records the estimated resource consumption of the
proposed SDE solver with no, as well as two different accuracy
enhancement techniques applied. The bit slicing method
reduces the resolution requirement of both ADC and DAC,
which now requires only 15.45[70] and 8mW[67] of power, respec-
tively. The matrix slicing also effectively reduces the total area

consumed by memristors by 94% as only the diagonal and
super-diagonal elements remained in the latter approach.

7.2. Comparison Against Iterative Differential Equation Solvers

Many of the differential equation solutions are approximated
by iterative solvers such as Euler and Runge–Kutta. These
methods start from time step 0 and progressively evaluate and
update the value of the following time step. In this section,
we compare the performance of the proposed hardware with
similar iterative solvers that are implemented on either
CMOS,[47,48,71,72] or fully analog computing.[73,74] These works
have shed light on enhancing the accuracy of numerical solvers
to differential equations while achieving a minimal execution
time. In Table 4, we compare the performance of our proposed
memristive crossbar SDE solver with the mentioned literature
using similar metrics.

Table 3. Resource consumption of the deterministic term with different enhancement techniques applied.

Deterministic term (no slicing) Deterministic term (bit slicing only) Deterministic Term (Bit and Matrix Slicing)

Component Params Specification Power
[mW]

Area
[mm2]

Latency
[μs]

Specification Power
[mW]

Area
[mm2]

Latency
[μs]

Specification Power
[mW]

Area
[mm2]

Latency
[μs]

ADC Resolution 16 bits 81.024 66.56 0.1 8 bits 15.450 1.5744 0.02 8 bits 15.450 1.5744 0.02

Number 128 128 128

Frequency 10MHz 50MHz 50MHz

DAC Resolution 16 bit 2150.4 67.84 1.00 1 bit 8.00 2.13 E-05 1.60 E-03 1 bit 8.00 2.13 E-05 1.60 E-03

Number 128 128 128

Sþ A – – – – – 128 34.12 0.02 8.33 E-04 128 34.12 0.02 8.33 E-04

IRþOR Size 1KB 0.674 8.10 E-01 8.21 E-05 1KB 0.674 8.10 E-01 8.21 E-05 1KB 0.674 8.10 E-01 8.21 E-05

Memristors Size 128� 128 69.648 1.15 E-03 6.00 E-03 128� 128 69.648 1.15 E-03 6.00 E-03 8� 8 1.088 7.17 E-05 6.00 E-03

Bit per cell 2 2 2

Total 2301.75 135.2111 141.57 Total 127.89 2.4079 56.5383 Total 59.33 2.4086 56.5383

Table 4. Comparison between SDE solver and other iterative solvers.

Design [47] [48] [71] [72] [73,74] This work

Equation ODE ODE ODE SDE ODE/PDE/SDE SDE

Technology CMOS (28 nm) CMOS (Xilinx Virtex-6) ASIC CMOS (Altera
Stratix)

Analogþ CMOS
(65 nm)

CMOS (32 nm)þ resistive random-access
memory

Method Stochastic
computing

Forward/modified
Euler

Runge–Kutta schemes

Runge–
Kutta

Weak approximation
Monte Carlo

Euler’s method Euler–Maruyama
Monte Carlo

Bit length 8 32/64 – 32 – 16

Arithmetic Floating point Floating point Fixed point Floating point Fixed/floating point Fixed point

Hardware performance

Path/block size 256 60 10 000 – 256 256

Best Accuracy (RMSE) 3.88 E-03 1.85 E-05 – – 1/256 0.0072

Best execution time
[ms]

1.05 E-04 0.52 (CPU double FP) 11 8 E-06 (per
number)a)

0.2a) 5.66 E-02b)

a)Estimated from given result. b)Considered only the iterative deterministic solver.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300008 2300008 (14 of 16) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300008 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [23/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


The RMSE of the proposed SDE solver, though very small, is
still higher than the digital counterparts. This is due to the non-
idealities in the crossbar during the simulation and the limited
precision brought by fixed-point arithmetic. The truncated preci-
sion brings an approximately 0.05% error to each number with-
out consideration of crossbar nonidealities. The iterative
deterministic part of our SDE solver also has an execution time
lying between the benchmark works. The most delay resulted
from the DAC which is associated with the bit length and the
path length, and in trade-off with the total power consump-
tion.[20] In this work, we selected existing DAC technology that
has equally well performance in power consumption and sam-
pling frequency. Since the power consumptions of the bench-
marked iterative solutions are mostly unstated, it is hard to
evaluate the performance of the proposed SDE solver in terms
of both power and time consumption.

The solvers we compared report on the accuracy of their designs
using different metrics. The accuracy is also influenced by the
numerical method implemented, the arithmetic, and the hardware
platforms used. Since we propose a novel architecture for iteratively
and numerically solving the SDEs, the comparison table is aimed
at providing information on how our design trades off between
execution time and accuracy compared with existing work.

8. Conclusion

In this article, we proposed a memristor-based SDE solver that
takes advantage of the inherent stochasticity and crossbar operation
of memristors. It iteratively computes the numerical solution to the
SDEs based on the Euler–Maruyama method and generates the
final result with Monte Carlo simulation. The proposed system
was tested on the correctness of computation and the tolerance
of device nonidealities. The presented results showed that the pro-
posed solver generates paths in high proximity to the software-
generated analytical path despite the inaccuracy caused by extreme
nonideal situations. The reliability of the proposed system was also
tested with various application scenarios, and its capability of
providing a great solution to practical problems is demonstrated
despite the limited simulation speed and inaccuracy from fixed-
point representation. For future work, the accuracy of the SDE
solver can be further enhanced by floating point arithmetic and
the solver itself can be expanded to adapt to multidimensional
SDE systems where no analytical solutions exist and the accelera-
tion effect of crossbars could be more significant.

Acknowledgements
A.A. acknowledges financial support by Natural Sciences and Engineering
Research Council of Canada (DGECR-2022-00101). [Correction added on
August 21, 2023, after first online publication: In the abstract, the sentence
“Herein, the tolerance of the system is also accessed to crossbar nonideal-
ities by comparing the numerical and analytical paths’ variation in error”
was corrected to “The tolerance of the system to crossbar nonidealities is
also accessed by comparing the numerical and analytical paths’ variation
in error.”]

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Keywords
Black–Scholes equation, Brownian path, memristor crossbar, stochastic
differential equation, vector–matrix multiplication

Received: January 9, 2023
Revised: March 8, 2023

Published online: April 18, 2023

[1] M. Bayram, T. Partal, G. Orucova Buyukoz, Adv. Differ. Equations
2018, 2018, 1.

[2] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon,
B. Poole, ArXiv 2021, abs/2011.13456.

[3] T. Szabados, Stud. Sci. Math. Hung., 2010, 53, 93.
[4] H. Gilsing, T. Shardlow, J. Comput. Appl. Math. 2007, 205, 1002.
[5] G. Ansmann, Chaos: Interdiscip. J. Nonlinear Sci. 2018, 28, 043116.
[6] R. Nair, Proc. IEEE 2015, 103, 1331.
[7] M. Rahimi Azghadi, Y.-C. Chen, J. Eshraghian, J. Chen, C.-Y. Lin,

A. Amirsoleimani, A. Mehonic, A. Kenyon, B. Fowler, J. Lee,
Y.-F. Chang, Adv. Intell. Syst. 2020, 2, 1900189.

[8] D. Ielmini, H.-S. P. Wong, Nat. Electron. 2018, 1, 333.
[9] A. Amirsoleimani, F. Alibart, V. Yon, J. Xu, M. Pazhouhandeh,

S. Ecoffey, Y. Beilliard, R. Genov, D. Drouin, Adv. Intell. Syst. 2020,
2, 2000115.

[10] M. R. Azghadi, C. Lammie, J. K. Eshraghian, M. Payvand, E. Donati,
B. Linares-Barranco, G. Indiveri, IEEE Trans. Biomed. Circuits Syst.
2020, 14, 1138.

[11] C. Lammie, J. K. Eshraghian, W. D. Lu, M. R. Azghadi, IEEE Trans.
Circuits Syst. II Express Briefs 2021, 68, 1650.

[12] S. Gaba, P. Knag, Z. Zhang, W. Lu, in 2014 IEEE Int. Symp. Circuits and
Systems (ISCAS), IEEE, Piscataway, NJ 2014, pp. 2592–2595.

[13] L. Primeau, A. Amirsoleimani, R. Genov, in 2022 IEEE Inte. Symp.
on Circuits and Systems (ISCAS), Austin, TX, USA 2022,
pp. 1867–1871, https://doi.org/10.1109/ISCAS48785.2022.9937861.

[14] C. Lammie, M. R. Azghadi, in 2019 IEEE Int. Symp. Circuits and
Systems (ISCAS), IEEE, Piscataway, NJ 2019, pp. 1–5.

[15] F. Zahari, E. Pérez, M. K. Mahadevaiah, H. Kohlstedt, C. Wenger,
M. Ziegler, Sci. Rep. 2020, 10, 1.

[16] S. Lv, J. Liu, Z. Geng, Adv. Intell. Syst. 2021, 3, 2000127.
[17] X. Dong, A. Amirsoleimani, M. R. Azghadi, R. Genov, in 2022 IEEE

Inter. Conf. Omni-layer Intelligent Systems (COINS), IEEE, Piscataway,
NJ 2022, pp. 1–5.

[18] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, K. N. Salama,
Microelectron. J. 2013, 44, 176.

[19] C. Yakopcic, T. M. Taha, in 2013 Int. Joint Conf. Neural Networks
(IJCNN), Dallas, TX, USA 2013, pp. 1–8.

[20] M. A. Zidan, Y. Jeong, J. Lee, B. Chen, S. Huang, M. J. Kushner,
W. D. Lu, Nat. Electron. 2018, 1, 411.

[21] N. G. Van Kampen, Phys. Rep. 1976, 24, 171.
[22] P. Kidger, J. Foster, X. Li, H. Oberhauser, T. Lyons, in Int. Conf.

Machine Learning, virtual 2021.
[23] F. Black, M. Scholes, World Scientific Reference on Contingent Claims

Analysis in Corporate Finance: Volume 1: Foundations of CCA and Equity
Valuation, World Scientific, Singapore 2019, pp. 3–21.

[24] T. Sauer, Handbook of Computational Finance, Springer, Berlin/New
York 2012, pp. 529–550.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300008 2300008 (15 of 16) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300008 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [23/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1109/ISCAS48785.2022.9937861
http://www.advancedsciencenews.com
http://www.advintellsyst.com


[25] K. K. Andersen, H. Madsen, L. H. Hansen, Energy Build. 2000,
31, 13.

[26] A. Saarinen, M.-L. Linne, O. Yli-Harja, PLOS Comput. Biol. 2008, 4,
e1000004.

[27] X. Liu, T. Xiao, S. Si, Q. Cao, S. Kumar, C.-J. Hsieh, arXiv preprint
arXiv:1906.02355, 2019.

[28] X. Li, T.-K. L. Wong, R. T. Q. Chen, D. Duvenaud, in Int. Conf. Artificial
Intelligence and Statistics, IEEE, Piscataway, NJ 2020.

[29] C. Lammie, W. Xiang, B. Linares-Barranco, M. R. Azghadi,
Neurocomputing 2020, 485, 124.

[30] Z. Wang, C. Li, P. Lin, M. Rao, Y. Nie, W. Song, Q. Qiu, Y. Li, P. Yan,
J. P. Strachan, N. Ge, Nat. Mach. Intell. 2019, 1, 434.

[31] C. Li, D. Belkin, Y. Li, P. Yan, M. Hu, N. Ge, H. Jiang, E. Montgomery,
P. Lin, Z. Wang, W. Song, Nat. Commun. 2018, 9, 2385.

[32] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams,Nature 2008,
453, 80.

[33] S. H. Jo, K.-H. Kim, W. Lu, Nano Lett. 2009, 9, 496.
[34] G. Medeiros-Ribeiro, F. Perner, R. Carter, H. Abdalla, M. D. Pickett,

R. S. Williams, Nanotechnology 2011, 22, 095702.
[35] J. Malik, A. Hemani, ACM Comput. Surv. 2016, 49, 1.
[36] R. C. Cheung, D.-U. Lee, W. Luk, J. Villasenor, IEEE Trans. Very Large

Scale Integr. VLSI Syst. 2007, 15, 952.
[37] J. Chen, J. Moon, K. Bazargan, IEEE Trans. Magn. 2004, 40, 1744.
[38] G. Box, M. Muller, Ann. Math. Stat. 1958, 29, 610.
[39] N. Kasiviswanathan, K. Srivatsan, in 2017 Int. Conf. Nextgen Electronic

Technologies: Silicon to Software (ICNETS2), Chennai, India 2017, pp.
327–331.

[40] W. Tsang, G. Marsaglia, J. Stat. Software 2000, 05, 1.
[41] C. Wallace, ACM Trans. Math. Software (TOMS) 1996, 22, 119.
[42] A. Marghescu, P. Svasta, in 2015 IEEE 21st Int. Symp. Design and

Technology in Electronic Packaging (SIITME), IEEE, Piscataway, NJ
2015, pp. 319–322.

[43] F. James, L. Moneta, Comput. Software Big Sci. 2020, 4, 1.
[44] H. Jiang, D. Belkin, S. Savel’ev, S. Lin, Z. Wang, Y. Li, S. Joshi,

R. Midya, C. Li, M. Rao, M. Barnell, Nat. Commun. 2017,
8, 882.

[45] S. Balatti, S. Ambrogio, R. Carboni, V. Milo, Z. Wang, A. Calderoni,
N. Ramaswamy, D. Ielmini, IEEE Trans. Electron Devices 2016, 63,
2029.

[46] K. S. Woo, J. Kim, J. Han, J. M. Choi, W. Kim, C. S. Hwang, Adv. Intell.
Syst. 2021, 3, 2100062.

[47] S. Liu, J. Han, in 2017 54th ACM/EDAC/IEEE Design Automation Conf.
(DAC), IEEE, Piscataway, NJ 2017, pp. 1–6.

[48] I. Stamoulias, M. Möller, R. Miedema, C. Strydis, C. Kachris,
D. Soudris, in Proc. 8th Int. Symp. Highly Efficient Accelerators and
Reconfigurable Technologies, ser. HEART2017, Association for
Computing Machinery, New York, NY 2017.

[49] G. Cowan, R. Melville, Y. Tsividis, IEEE J. Solid-State Circuits 2006,
41, 42.

[50] Y. Huang, N. Guo, M. Seok, Y. Tsividis, S. Sethumadhavan, IEEE
Micro 2017, 37, 30.

[51] R. Brent, Comput. J. 2010, 51, 579.
[52] D.-U. Lee, W. Luk, J. Villasenor, G. Zhang, P. Leong, IEEE Trans. Very

Large Scale Integr. VLSI Syst. 2005, 13, 911.
[53] Z. Jiang, Y. Wu, S. Yu, L. Yang, K. Song, Z. Karim, H.-S. P. Wong, IEEE

Trans. Electron Devices 2016, 63 1884.
[54] S. Kvatinsky, M. Ramadan, E. G. Friedman, A. Kolodny, IEEE Trans.

Circuits Syst. II: Express Briefs 2015, 62, 786.
[55] A. Chen, IEEE Trans. Electron Devices 2013, 60, 1318.
[56] G. E. Uhlenbeck, L. S. Ornstein, Phys. Rev. 1930, 36, 823.
[57] D. T. Gillespie, Phys. Rev. E 1996, 54, 2084.
[58] J. Singh, B. Raj, Eng. Sci. Technol. Int. J. 2018, 21, 862.
[59] C. Yi, Quant. Finance 2010, 10, 957.
[60] H. Leung, Phys. A 1995, 221, 340, proceedings of the Second IUPAP

Topical Conference and the Third Taipei International Symposium on
Statistical Physics.

[61] M. Ignatov, M. Hansen, M. Ziegler, H. Kohlstedt, Appl. Phys. Lett.
2016, 108, 084105.

[62] P. Ghorbanian, S. Ramakrishnan, A. Whitman, H. Ashrafiuon,
Biomed. Signal Process. Control 2015, 15, 1.

[63] A. W. Lo, Working Paper 59, National Bureau of Economic Research
1986.

[64] J. O’Leary, J. A. Paulson, A. Mesbah, J. Comput. Phys. 2022, 468,
111466.

[65] W. Shim, Y. Luo, J.-S. Seo, S. Yu, in 2020 IEEE Int. Reliability Physics
Symp. (IRPS), IEEE, Piscataway, NJ 2020, pp. 1–5.

[66] S. Sarangi, B. Baas, in 2021 IEEE Int. Symp. Circuits and Systems
(ISCAS), IEEE, Piscataway, NJ 2021, pp. 1–5.

[67] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian,
J. P. Strachan, M. Hu, R. S. Williams, V. Srikumar, SIGARCH
Comput. Archit. News 2016, 44, 14.

[68] Y.-H. Chung, C.-H. Tien, Q.-F. Zeng, in 2019 IEEE Asia Pacific Conf.
Circuits and Systems (APCCAS), IEEE, Piscataway, NJ 2019, pp. 5–8.

[69] Y. H. Chung, C. H. Tien, Q. F. Zeng, IEEE Trans. Circuits Syst. I Regul.
Pap. 2022, 69, 88.

[70] Z. Chen, M. Miyahara, A. Matsuzawa, in 2015 Symp. VLSI Circuits
(VLSI Circuits), Daegu, Korea 2015, pp. C64–C65.

[71] C. Huang, F. Vahid, T. Givargis, IEEE Embedded Syst. Lett. 2011, 3,
113.

[72] F. Martini, M. Piccardi, N. Liberati, E. Platen, in 2005 IEEE Int.
Symp. Circuits and Systems, Vol. 2, IEEE, Piscataway, NJ 2005,
pp. 1702–1705.

[73] Y. Huang, N. Guo, M. Seok, Y. Tsividis, S. Sethumadhavan, in 2016
ACM/IEEE 43rd Annual Int. Symp. Computer Architecture (ISCA), IEEE,
Piscataway, NJ 2016, pp. 570–582.

[74] Y. Huang, N. Guo, S. Sethumadhavan, M. Seok, Y. Tsividis, in 2018
IEEE 23rd Int. Conf. Digital Signal Processing (DSP), IEEE, Piscataway,
NJ 2018, pp. 1–5.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300008 2300008 (16 of 16) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300008 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [23/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com

	Efficient Memristive Stochastic Differential Equation Solver
	1. Introduction
	2. Stochastic Differential Equations
	2.1. Numerical Methods for SDEs
	2.2. Applications

	3. Scientific Computing Hardware and Methods
	3.1. Memristor Crossbars
	3.2. Stochastic Switching Behavior
	3.3. Gaussian RNG

	4. Proposed Architecture
	4.1. Technology Selection
	4.2. General Structure
	4.2.1. Stochastic Term
	4.2.2. Deterministic Term
	4.2.3. Overall Structure

	4.3. Precision Extension

	5. Simulation
	5.1. Methodology
	5.2. Validation of Correctness
	5.3. Solution Convergence
	5.4. Ambient Temperature Effect
	5.5. Device Variation Effect

	6. Results and Discussion
	6.1. First-Passage Time and Moments
	6.2. Stochastic Van der Pol Oscillator
	6.3. Fitting Parameters and Learning Dynamics of SDEs

	7. Analysis and Comparison
	7.1. Resource Consumption Estimation
	7.2. Comparison Against Iterative Differential Equation Solvers

	8. Conclusion


