Determining the utility of diagnostic genomics: a conceptual framework
Mallett, Andrew, Stark, Zornitza, Fehlberg, Zoe, Best, Stephanie, and Goranitis, Ilias (2023) Determining the utility of diagnostic genomics: a conceptual framework. Human Genomics, 17. 75.
|
PDF (Published Version)
- Published Version
Available under License Creative Commons Attribution. Download (984kB) | Preview |
Abstract
Background: Diagnostic efficacy is now well established for diagnostic genomic testing in rare disease. Assessment of overall utility is emerging as a key next step, however ambiguity in the conceptualisation and measurement of utility has impeded its assessment in a comprehensive manner. We propose a conceptual framework to approach determining the broader utility of diagnostic genomics encompassing patients, families, clinicians, health services and health systems to assist future evidence generation and funding decisions.
Body: Building upon previous work, our framework posits that utility of diagnostic genomics consists of three dimensions: the domain or type and extent of utility (what), the relationship and perspective of utility (who), and the time horizon of utility (when). Across the description, assessment, and summation of these three proposed dimensions of utility, one could potentially triangulate a singular point of utility axes of type, relationship, and time. Collectively, the multiple different points of individual utility might be inferred to relate to a concept of aggregate utility.
Conclusion: This ontological framework requires retrospective and prospective application to enable refinement and validation. Moving forward our framework, and others which have preceded it, promote a better characterisation and description of genomic utility to inform decision-making and optimise the benefits of genomic diagnostic testing.
Item ID: | 80296 |
---|---|
Item Type: | Article (Research - C1) |
ISSN: | 1479-7364 |
Keywords: | Diagnostic genomics, Framework, Implementation, Ontology, Utility |
Copyright Information: | © The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data |
Date Deposited: | 01 Feb 2024 01:23 |
FoR Codes: | 32 BIOMEDICAL AND CLINICAL SCIENCES > 3206 Medical biotechnology > 320602 Medical biotechnology diagnostics (incl. biosensors) @ 100% |
SEO Codes: | 20 HEALTH > 2001 Clinical health > 200101 Diagnosis of human diseases and conditions @ 100% |
Downloads: |
Total: 18 Last 12 Months: 8 |
More Statistics |