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Lightweight and efficient 
dual‑path fusion network for iris 
segmentation
Songze Lei 1, Aokui Shan 1, Bo Liu 1, Yanxiao Zhao 2 & Wei Xiang 3,4*

In order to tackle limitations of current iris segmentation methods based on deep learning, such 
as an enormous amount of parameters, intensive computation and excessive storage space, a 
lightweight and efficient iris segmentation network is proposed in this article. Based on the classical 
semantic segmentation network U‑net, the proposed approach designs a dual‑path fusion network 
model to integrate deep semantic information and rich shallow context information at multiple 
levels. Our model uses the depth‑wise separable convolution for feature extraction and introduces 
a novel attention mechanism, which strengthens the capability of extracting significant features 
as well as the segmentation capability of the network. Experiments on four public datasets reveal 
that the proposed approach can raise the MIoU and F1 scores by 15% and 9% on average compared 
with traditional methods, respectively, and 1.5% and 2.5% on average compared with the classical 
semantic segmentation method U‑net and other relevant methods. Compared with the U‑net, the 
proposed approach reduces about 80%, 90% and 99% in terms of computation, parameters and 
storage, respectively, and the average run time up to 0.02 s. Our approach not only exhibits a good 
performance, but also is simpler in terms of computation, parameters and storage compared with 
existing classical semantic segmentation methods.

With the development of technology, safety and privacy topics become progressively significant, and identity 
authentication is widely considered as a concern. Biometric technology is commonly used in various iden-
tity authentication scenarios. Biometrics has the characteristics of convenience, universality, security, unique-
ness, etc.1. Among various biometrics, iris recognition is considered the most prospective identity recognition 
approach due to its stabilization, reliability and contactless nature of the recognition procedure. A whole iris 
recognition procedure consists of iris picture acquisition, image preparation, iris segmentation, iris feature 
extraction, and iris comparison, in which iris segmentation plays a crucial part and has a large effect on the iris 
recognition’s precision.

Traditional iris segmentation approaches consist of two major classes, namely border-based approaches and 
pixel-based approaches. The first type of methods obtains the complete and independent iris region by obtaining 
the segmentation boundaries of the iris, the position of the topmost and lower eyelids, and reducing the effects 
of eyelash occlusion and mirror refraction. This type of methods can achieve good segmentation results on 
clear iris images under ideal conditions, but the segmentation is not satisfactory when dealing with iris images 
obtained at long distances and under visible light. These methods usually require manual feature design, and 
feature selection and training of classifiers are performed separately. Consequently, they face significant chal-
lenges in dealing with iris segmentation in complex scenes.

Recently, along with the continuous increased of computer computing capability and the application of big 
data, deep learning approaches have gradually come into the limelight and been increasingly applied to iris 
segmentation. Iris segmentation methods in the context of deep learning are superior to traditional iris seg-
mentation methods, but they cannot achieve high efficiency and accuracy simultaneously. The large number of 
participants and the storage space taken up are the issues facing practical iris recognition systems. Given these 
challenges, a lightweight iris segmentation network is proposed in this paper, which uses the U-net as the back-
bone framework and has a parallel branch with an attention mechanism and a feature fusion module. The main 
contributions are three-fold in this article:
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1. A dual-path fusion network structure is proposed. Parallel branches are designed to extract shallow spatial 
features into the main network and to fuse shallow spatial information with deep semantic information in 
an attempt to improve the performance of the network as well as segmentation accuracy.

2. We introduce a novel attention mechanism, which embeds position details into the channel attention by 
encoding the feature map along two spatial directions. Then, it captures the global receptive field and encodes 
the accurate position information simultaneously. In this way, the weight of the iris region is increased, and 
the effect due to unrelated information and noise is reduced.

3. We design a lightweight network, which can decrease the quantities of both network parameters and com-
putation, while assuring the network capability and segmentation precision.

Related work
The current mainstream research directions on iris segmentation are divided into traditional methods based 
on the supposition that the inside and outside circles of iris are circular, and deep learning-based segmentation 
approaches. Traditional iris segmentation approaches mainly include  Daugman2 and  Wildes3. Both methods 
assume that the interior and exterior borders of the iris are circular and that the variance in pixel gray values at 
the iris border is large. There are many subsequent and improved works based on these two types of methods. 
He et al.4 proposed a series of robust operations to implement iris segmentation, Tan Tieniu et al.5 proposed 
a coarse iris localization approach based on clustering and noisy region detection and improved the integral 
differential operator method, and Sutra et al.6 used the Viterbi algorithm for iris segmentation. Traditional iris 
segmentation methods entail a lot of preprocessing and manual operations, which inevitably have a significant 
impact on the precision and thus affect the quality of iris segmentation results.

Recently, deep learning technology has been applied to iris segmentation’s field, and the problem of iris 
segmentation is concerned mainly with the development of semantic segmentation networks. Long et al.7 first 
applied the Fully-connected Convolutional Network (FCN) to pixel-level image segmentation based on the 
CNN, and then various semantic segmentation networks have emerged. In response to the problems of the fixed 
perceptual field and easy loss or smoothing of segmented object details during semantic segmentation,  SegNet8 
was propose that the downsampling is made up of convolutional layers and pooling layers of VGG16 network, 
the corresponding upsampling, and the final classification results are yielded by Softmax. The U-Net9 has been 
extensively applied in medical imaging segmentation with a U-shaped symmetric structure consisting of an 
encoder–decoder pair. The encoder is used to obtain context related information, while the decoder is used to 
precisely locate the segmentation boundary. The  DeepLab10 proposes a new dilated convolutional semantic seg-
mentation network that utilizes the spatial coherence between pixels and thus can increase the perceptual field 
without increasing the quantity of parameters. The researchers introduced the semantic segmentation network 
into the iris segmentation problem based on the fact that iris segmentation is a binary semantic segmentation 
problem. Gangwar et al.11 proposed a dual-structure network based on the CNN dubbed the iris boundary detec-
tion network and segmentation network, which offers a good performance under non-ideal conditions. Wang 
et al.12 proposed a deep multitask learning framework IrisParseNet to improve the performance of iris segmenta-
tion and localization by using the intrinsic correlation between the pupil, iris and sclera. Chen et al.13 proposed a 
DFCN network combining the FCN and dense block, and achieved F1 scores of 0. 9828, 0. 9812 and 0. 9606 on 
the CASIA-Iris-interval, IITD and UBIRIS. v2 datasets, respectively, with a network model size of 138. 91 MB.

We also report on some recent works on lightweight models. Zhou et al.14 improved on the U-net by proposing 
the PI-Unet, which is a network structure capable of heterogeneous iris segmentation. The MIoU scores achieved 
on the CASIA-Iris-interval and UBIRIS. v2 were 97. 50% and 95. 95%, respectively. Zhang et al.15 proposed the 
FD-Unet for iris segmentation by combining the U-Net structure and null convolution, and severally achieve 
F1 scores of 0. 9481 and 0. 9736 on the UBIRIS. v2 and CASIA-Iris-interval dataset. Wang and  Wang16 proposed 
a new lightweight deep neural network based on the CNN, which provides an end-to-end iris segmentation 
solution and can be integrated into any conventional iris recognition system.

Proposed approach
Overall network structure. The main structure of the proposed iris segmentation model is divided into 
two paths as illustrated in Fig. 1. The first path is improved based on the U-net and comprises of an encoder and 
a decoder. The purpose of the encoder is to extract features of iris image, which includes feature details such as 
the position and texture. The purpose of the decoder is to switch the iris feature details acquired by the down-
sampling module into iris semantic details. The second path is the fast down-sampling module, which aims to 
obtain richer spatial location information.

An input iris image is first fed into the network through a 3 × 3 convolution module, where the size of the 
convolution filter is 16 and the stride is 1. The purpose is to expand the number of channels of the image for 
initial extraction of the iris features without changing the image size, and then output the feature map to both 
the encoder and the fast down-sampling module.

Unlike the classical U-net, we use depth-separable convolution (Des-convolution)17 to substitute the con-
volution and pooling layers in the encoder. Des-convolution has a smaller number of parameters and faster 
computation compared to normal convolution, and can make the network deeper with the same number of 
parameters. The Des-convolution with a stride of two is used to replace the pooling operation in the encoder, 
which can reduce the loss of information such as pose and space in the image caused by the pooling operation. 
The down-sampling module is divided into five modules, each of which consists of 3 layers of Des-convolution 
and has a convolution filter size of 3. Except the first layer, which uses a step-2 convolution for down-sampling, 
the rest are all step-1 convolutions, followed by down-sampling to ensure the accuracy of segmentation with 
reduced parameters and lower computation. The up-sampling component is also made up of five modules with 
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each module consisting of a deconvolution and a Des-convolution, where the Des-convolution filter size is 3. 
The feature image is up-sampled to the primary size by the deconvolution and Des-convolution, and the feature 
image of each stage of the decoder is up-sampled to the same resolution of the feature map of the corresponding 
stage of the encoder, and the feature converge is carried out by means of concatenation. This effectively enhances 
the feature capture capacity of the network and avoid the matter of sharp gradient fluctuations and consequent 
degradation of model performance.

The second path in the fast down-sampling module consists of three layers of depth-separable convolutions, 
in which the filter size is 3 × 3 and the stride is 2. Fast down-sampling is performed on 1/8 of the original image, 
and this module can encode rich low-level spatial and detail information. The first path is deep enough to have 
a large perceptual field, and the network output is high-level contextual information. The outputs of the two 
paths are merged in the final stage of the network, and the segmented images are finally classified by the Sigmoid 
activation function.

Feature fusion part. The feature fusion part in this paper is represented by two structures in the network, 
namely the attention-weighted U-shaped path fusion module and the dual paths fusion module.

Attention‑weighted U‑shaped path fusion. When an input iris image is fed to the network for feature extraction, 
some useless location or spatial information may be retained, which in turn affects the precision of iris segmen-
tation. To tackle the problem, the attention mechanism is introduced. In the attention mechanism, the important 
information of iris image is enlarged and useless information is suppressed.

The attention mechanisms are divided into diverse categories of channel, spatial, and mixed domain attention 
mechanisms. Channel attention encodes the nonlinear relationship between channels through convolutions to 
obtain the weights of each channel and then weights the feature map, which makes the model more capable of 
discriminating the features of each channel and thus can prominently raise the model performance. However, 
the disadvantage is that it usually ignores location details, which is crucial for spatially selective weighted maps 
generation. Spatial attention introduces spatial information encoding to exploit location information by reduc-
ing the number of channels and using large-sized convolutions for feature encoding. However, the convolution 
operation is only able to acquire local correlations and cannot model long-term dependencies of the downstream 
visual task.

To address the above issues, the CA (coordinate attention) mechanism is  introduced18. The CA attention 
mechanism adopts a more effective method to capture the correlation between spatial location information 
and channels to enhance the expressiveness of feature maps in neural networks. As shown in Fig. 2a,b, the CA 

Figure 1.  Overall network architecture.
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encoding phase is repartitioned into two stages, namely embedding coordinate information and generating 
coordinate attention. In the first step, as seen in Fig. 2a, a feature map of size H × W × C is the input, and each 
channel is first encoded towards the horizontal and vertical directions using pooling layers of kernel sizes of (H, 1) 
and (1, W), respectively, so as to obtain a pair of direction-aware feature maps Fh and Fw. This approach enables 
attention module to catch the channel dependencies in one spatial direction while also preserving the accurate 
location detail of other different spatial direction. This aids the network precisely localize interest regions.

The second stage is to generate Coordinate Attention. As can be observed from Fig. 2b, a pair of feature 
vectors generated in the first stage have a good perceptual field and accurate location information, and then are 
concatenated and subjected to a 1 × 1 convolution, and the dimensionality is reduced to the initial C/r. After 
that, the feature extracted by batch normalization is input into the sigmoid function to acquire a feature map of 
1 × (H + W) × C/r F. The activation function enables the attention layer to have a non-linear mapping capability 
for encoding spatial information in both horizontal and vertical directions. The feature map F is convolved with 
a filter of size 1 × 1 in the height H and width W directions. After that, two separate tensor sums of dimensions 
H × 1 × C and 1 × W × C are obtained, and the weights Gh and Gw in the height and width directions are obtained 
after the activation function sigmoid. The weight information and the initial stage feature map vector are mul-
tiplied and weighted to obtain the feature map in the direction of height H and width W.

As can be seen from Fig. 3, the attention fusion block is repartitioned into two stages. In first stage, the 
encoder feature map is weighted. The feature vector of the down-sampling module is fed to the CA module to 
obtain a weighted feature map, which has two types of representational information, namely spatial location 
information and inter-channel dependencies. In second stage, the feature image output by the decoder is up-
sampled to the identical resolution as the feature map output by the encoder, and then the weighted feature 
map is concatenated with the up-sampled feature to obtain the fused feature map, which carries more powerful 
representational information and greatly improves the model segmentation performance. By incorporating 
the weighted feature map into the up-sampling stage, this operation is more beneficial to convert the feature 
information of the iris image into iris semantic information, which is beneficial to the final segmentation result.

Figure 2.  (a) Coordinate information embedding. (b) Coordinate attention generation.

Figure 3.  Attention fusion module.
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Dual‑path fusion. The feature map yielded by the fast downsampling module has rich spatial location informa-
tion, while the feature map produced by the U-path contains high-level contextual information. Since the two 
features are mismatched, we propose a feature encoding module. As seen in Fig. 4, this module consists of 1 × 1 
convolution, normalization function, and ReLU function, which serves to increase the nonlinear characteristics 
substantially and improves the representation ability of feature map without altering its structure.

As can be observed for the fusion of dual paths from Fig. 5, the feature maps from the fast down-sampling 
module are first encoded using the feature encoding module to obtain feature maps with rich spatial location 
information. Meanwhile, the decoder of the U-path outputs feature maps at every stage that are up-sampled to 
the same size as the feature maps produced by the feature encoding module, and then these features are summed 
and normalized to produce a feature map rich in advanced contextual information. Then the characteristic dia-
gram produced by the two paths are concatenated, and the final output feature vector contains both high-level 
semantic information and low-level spatial position information.

Loss function. The goal of the loss function is to make the result close to ground-truth label by computing 
the difference between the network prediction result and actual label, and then the weights yielded from the 
network training are renewed by backward propagation. For sorting tasks, the network output is the predicted 
likelihood of each class, followed by how to structure the loss function so that the possible value of the class with 
positive label is higher.

In this article, the BCE_loss (Binary Cross Entropy) function is added to the network for training, and the 
loss function is defined as

where n denotes the number of samples, zn denotes the probability of predicting the n-th sample to be a positive 
case, and yn means the label of the n-th sample.

(1)loss
(

z, y
)

= mean{l0, ....lN − 1 }

(2)ln = −
(

yn ∗ log(zn)+
(

1− yn
)

∗ log(1− zn)
)

Figure 4.  Feature encoding module.

Figure 5.  Feature fusion module.
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Experimental results and discussions
Dataset and data augmentation. There are four public datasets used in the experimental studies in this 
paper, namely CASIA-Iris-Mobile19,  IITD20, CASIA-Iris-Thousand and UBIRIS.V221. CASIA-Iris-Mobile con-
tains totally 11,000 images from 630 Asian subjects. It includes three subsets: CASIA-Iris-M1-S1, CASIA-Iris-
M1-S2, and CASIA-Iris-M1-S3. Al mages were collected under NIR illumination and two eyes were captured 
simultaneously. In this paper we choose the CASIA-Iris-M1-S1 dataset and partial images in the CASIA-Iris-
M1-S2 dataset and CASIA-Iris-M1-S3 dataset, which is repartitioned into training set (4000 iris images) and 
test set (500 iris images) which includes right and left eye images. The IITD iris dataset is provided by the Indian 
Institute of Technology Delhi and was captured in near-infrared conditions, which includes right and left eye 
images and the corresponding masked labeled images collected from 224 volunteers. In this paper, this dataset 
is repartitioned into training set (1120 iris images) and test set (1120 iris images), each of which is of an equal 
dimension of 224 × 224 pixels. The UBIRIS.V2 dataset is provided by the SOCIA Lab of The University of Beira 
Interior, which is composed of 261 volunteers’ left and right iris pictures taken at different shooting distances 
and angles under indoor visible light conditions. In this paper, 2250 iris images of dimension 600 × 800 pixels 
and their corresponding mask annotations are selected as the dataset, which is partitioned into a training set 
and a test set at a 3:1 ratio. CASIA-Iris-Thousand contains 20,000 iris images from 1000 subjects. In this paper, 
this dataset is repartitioned into training set (4000 iris images) and test set (1500 iris images). Each of the above 
four datasets has unique characteristics due to different specifications, acquisition environments, and image 
resolutions, which makes it trustworthy to validate the versatility of the proposed network model. Some example 
images from these datasets and the corresponding mask are shown in Fig. 6.

Due to the insufficient number of available labeled samples, to tackle the problem of overfitting in the pro-
posed network during training, a data augmentation based data processing method is used to improve robustness 
and to reduce sensitivity to images. In this paper, we use several methods such as flipping, scaling and cropping 
to extend the dataset and improve the model’s generalization ability. We divide the dataset randomly according 
to the scaling required, and there may be cases in the experimental phase where the human eye image of the 
same person appears in both the training dataset and test dataset, and the following experiments are based on 
the current conditions.

Training details. The experiments undertaken in this article are based on the PyTorch platform with the 
following hardware configuration, i.e., the server has 128 GB of running memory and is equipped with four 
NVIDIA 2080Ti GPUs, each with 12 GB of graphics memory. The model is trained with the Adam optimizer. 
Initial learning rate is 0.001, the first attenuation rate is set to be 0.9, the second attenuation rate is set to be 0.999, 
the batch-size is set to be 8, and 200 batches are trained.

Evaluation indicators. A diverse assessment metrics are used to evaluate the proposed network model to 
account for performance, efficiency, and accuracy. The assessment metrics employed include the pixel accuracy 
(PA), Mean Intersection Over Union (MIoU) and F1-score. An iris image is classified at the pixel level, so indi-
vidual iris pixels can be split into iris regions or non-iris regions. The iris areas are noted as Positive (P) and non-
iris regions are noted as Negative (N), the correct output is noted as True (T) and the wrong output is noted as 
False (F). The classification results are divided into four classes, i.e., True Positive, True Negative, False Positive, 
and False Negative. The following are formulas for computing the above evaluation metrics:

(3)MIoU =

[

TP
TP+FP+FN + TN

TN+FP+FN

]

2

Figure 6.  Example datasets.
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The PA, MIoU and F1 scores fall between 0 and 1 in value. The closer the value is to 1, the higher the accuracy 
and precision.

Methods comparison. Comparison of different methods. Traditional iris segmentation methods such as 
the  Caht19,  Ifpp20 and  Wahet21, and the proposed approach are evaluated on the CASIA-IRIS-Mobile dataset 
with near-infrared iris pictures, IITD dataset, CASIA-Iris-Thousand, UBIRIS dataset with visible iris picture. As 
shown in Table 1, the proposed segmentation approach can significantly improved the PA, MIoU and F1 scores 
on all the four datasets compared to the traditional iris segmentation methods. The PA, MIOU and F1 scores 
are 0.9634, 0.9547 and 0.9781 on the CASIA-Iris-Mobile dataset, 0.9840, 0.9601 and 0.9825 on the IITD dataset, 
and 0.9913, 0.9510 and 0.9960 on the UBIRIS dataset, 0.9863, 0.9621 and 0.9747 on the CASIA-Iris-Thousand 
dataset, respectively. The DL-based iris segmentation approaches are more accurate and robust.

As shown in Table 2, deep learning (DL)-based iris segmentation methods such as the  Unet15,  DeepLabV327 
and FD-Unet16 evaluated on the CASIA-Iris-Mobile dataset, IITD dataset, CASIA-Iris-Thousand with near-
infrared iris images and UBIRIS dataset with visible iris images. In comparison with the U-net, the proposed 
approach also achieves a good performance, improving 0.03 and 0.05 in PA, 0.03 and 0.02 in MIoU, and 0.03 
and 0.04 in F1 score on the CASIA-Iris-Mobile and UBIRIS datasets, respectively.

Table 3 lists the number of parameters, computation (number of floating-point computations per second), and 
storage space of the DL-based segmentation methods when the input image size is 280 × 280 pixels. The number 
of network parameters, computation, storage space and running time of the proposed approach are superior 
to the DL-based segmentation methods of the U-net, DeepLabV3, and Linknet. Compared with lightweight 
networks such as Shufflenet, Mobilenet and Ghostnet, the proposed network achieves a superior performance. 
We generally used a simple and directly connected encoder and decoder structure. The Shufflenet, Mobilenet 
and Ghostnet were used as the backbone of the encoder module and used the same decoder module, which 
consists of three convolutional layers and activation functions alternately, making the images unsampled to the 
appropriate scale and finally classified by the softmax layer.

Experimental results. In this section, we exhibit the performance of the proposed approach and visualize the 
iris segmentation results. Figure 7 plots the segmentation results of the proposed approach on the CASIA-Iris-
Mobile dataset of near-infrared, Fig. 8 shows the network predict results of the proposed approach on the near-
infrared dataset IITD, and Fig. 9 depicts the sorting results of the proposed approach on the UBIRIS dataset 

(4)F1 =
2TP

2TP + FP + FN

(5)PA =
(TP + TN)

TP + TN + FP + FN

Table 1.  Evaluation matrices of the comparison traditional methods on the four datasets.

Iris segmentation method

CASIA 
Moible
PA

CASIA 
Moible
MIoU

CASIA 
Moible
F1

IITD
PA

IITD
MIoU

IITD
F1

UBIRIS
PA

UBIRIS
MIoU

UBIRIS
F1

CASIA 
Th-d
PA

CASIA 
Th-d
MIoU

CASIA 
Th-d
F1

Caht22 – 0.7612 0.7314 – – – – – 0.1048 – – –

Ifpp23 0.6597 0.7571 – – – – – – 0.2899 – – –

Wahet24 0.7630 0.7745 0.8512 – – – – – 0.1977 – – –

Ahmad25 0.8716 – – 0.9314 – 0.9520 0.8927 – – – – –

GST26 – – – – – 0.9393 – – – – – –

Our approach 0.9634 0.9547 0.9781 0.9840 0.9601 0.9825 0.9913 0.9510 0.9960 0.9851 0.9612 0.9714

Table 2.  Evaluation matrices of the comparison DL-based methods on the four datasets.

Iris segmentation method

CASIA 
Moible
PA

CASIA
MoibleMIoU

CASIA
MoibleF1

IITD
PA

IITD
MIoU

IITD
F1

UBIRIS
PA

UBIRIS
MIoU

UBIRIS
F1 Score

CASIA 
Th-d
PA

CASIA 
Th-d
MIoU

CASIA 
Th-d
F1

Unet15 0.9363 0.9219 0.9422 0.9571 0.9501 0.9618 0.9314 0.9362 0.9553 0.9367 0.9374 0.9421

DeepLabV327 0.8633 0.8734 0.8921 0.9161 – – 0.8947 0.7024 0.8755 0.8867 – –

FD-Unet16 0.9312 – 0.9476 0.9413 – 0.9481 0.9356 – – 0.9417 – 0.9183

Shufflenet 0.9412 0.9341 0.9521 – – – 0.9213 0.9102 0.9142 – – –

Mobilenet 0.9321 0.9264 0.9481 – – – 0.9341 0.9356 0.9471 0.9421 0.9441 0.9401

Ghostnet28–30 – – – 0.9541 0.9647 0.9531 – – – 0.9402 0.9353 0.9325

Our approach 0.9634 0.9547 0.9781 0.9840 0.9601 0.9825 0.9913 0.9510 0.9960 0.9851 0.9612 0.9714
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under visible light conditions. These experimental results revealed that our proposed approach is able to show 
superior segmentation results on both the CASIA and IITD datasets due to the high quality of NIR iris images 
and distinct iris contours. Compared to the UBIRIS dataset, the dataset images have unique characteristics such 
as out-of-focus blur, contact lens occlusion, and hair occlusion due to its variable imaging distance. It is more 
challenging for Dl-base segmentation approach, and the proposed approach achieves better segmentation results 
on this dataset. Figure 10 plots the segmentation results of the proposed approach on the CASIA-Iris-Thousand 
dataset.

Ablation experiments. To validate the parallel branch, feature blend block, and the attention mechanism 
in the proposed network model in enhancing the precision of iris segmentation, four ablation experiments were 
carried out. The benchmark network used in the experiments is the original U-net using the depth-separable 
convolution, to which the parallel branch, feature fusion module, and attention mechanism are added to form 
three different networks. The MIoU and F1 scores of the four networks on the four iris datasets are compared.

As can be observed from the comparison results in Tables 4, 5, 6 and 7, the MIoU scores of our proposed 
approach on the four datasets are 0.9547, 0.9601, 0.9510 and 0.9721, respectively, corresponding to 1.8%, 1%, 
1.5% and 3% improvements against the benchmark network. The experiments also show that the parallel branch, 
the feature blend block, and the attention mechanism in the proposed network all contribute significant enhance-
ments to the network.

In order to more intuitively demonstrate the ability of the network in extracting the iris feature area and 
the improvement of the attention mechanism on the network performance, we use heat maps to display the 
relevant content, as shown in Fig. 10, where Fig. 11a represents the original iris image and Fig. 10b represents 
the network’s perception ability of the iris feature without attention. The light blue area of the iris circumference 

Table 3.  Number of parameters, computation, storage space, and running time of comparison methods.

Method Params/M FLOPs/GMac Storage space/MB Average time/s

U-Net15 34.53 65.51 517 0.65

DeepLabV327 18.86 – – 0.44

Linknet31 9.82 0.822 35 –

Shufflenet28 0.88 3.26 3.56 0.12

Mobilenet29 3.21 3.70 12.72 0.23

Ghostnet30 5.18 0.25 20.45 0.16

Our approach 1.99 1.16 7.4 0.02

Figure 7.  Segmentation results on the CASIA-Iris-Mobile.
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Figure 8.  Segmentation results on the IITD.

Figure 9.  Segmentation results on the UBIRIS v2.
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Figure 10.  Segmentation results on the CASIA-Iris-Thousand.

Table 4.  Results of the ablation experiments on the CASIA-Iris-Mobile.

Parallel branch roads Feature fusion module Attention mechanism MIoU F1 score

– – – 0.9219 0.9422

√ – – 0.9321 0.9534

√ √ – 0.9476 0.9680

√ √ √ 0.9547 0.9781

Table 5.  Results of the ablation experiments on the IITD.

Parallel branch roads Feature fusion module Attention mechanism MIoU F1 score

– – – 0.9501 0.9618

√ – – 0.9556 0.9694

√ √ – 0.9583 0.9763

√ √ √ 0.9601 0.9825

Table 6.  Results of the ablation experiments on the UBIRIS.

Parallel branch roads Feature fusion module Attention mechanism MIoU F1 score

– – – 0.9362 0.9553

√ – – 0.9401 0.9534

√ √ – 0.9455 0.9746

√ √ √ 0.9510 0.9960
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in the figures represents the irrelevant feature, and the iris area is light yellow. Figure 11c shows the perception 
ability of the network to the iris features after adding the attention mechanism. Compared with Fig. 11b, the 
color of the iris region is darker, indicating that the proposed network has a stronger perception ability to the 
iris region. Figure 11d shows the final perception ability of the network to the characteristics of the iris region, 
which is shown in green more obviously.

In order to validate the rationality of the network input size chosen in this paper, three different input sizes 
widely used in the literature were selected for the ablation experiments. The experimental results are shown in 
Table 8.

According to the experimental results shown in the Table 8, when the input size is 280 × 280, the network 
performance is the best on all the three datasets.

This paper verifies the universality of the model by cross-training and testing the four datasets. As shown in 
Table 9 below, the cross-training and testing of the four datasets still offers a good performance.

Conclusion
Iris segmentation is one of the most critical components of building a trustworthy iris recognition system, and 
the result of iris segmentation directly affects the precision of iris recognition. The objective of this paper was 
to enhance both precision and efficiency of iris segmentation. Towards this end, a lightweight iris segmentation 
network was proposed in this article. The proposed approach adopts the classical semantic segmentation network 
U-net as the backbone and adds a parallel branch. While the original U-net captures deep contextual informa-
tion, the parallel branch obtains enough shallow contextual information for fusion. An attention mechanism was 

Table 7.  Results of the ablation experiments on the CASIA-Iris-Thousand.

Parallel branch roads Feature fusion module Attention mechanism MIoU F1 score

– – – 0.9374 0.9421

√ – – 0.9401 0.9556

√ √ – 0.9568 0.9679

√ √ √ 0.9612 0.9714

Figure 11.  Heat map comparison.

Table 8.  Results of different input size.

Input size

CASIA 
Mobile
PA

CASIA 
Mobile
MIoU

CASIA 
Mobile
F1

IITD
PA

IITD
MIoU

IITD
F1

UBIRIS
PA

UBIRIS
MIoU

UBIRIS
F1

CASIA 
Th-d
PA

CASIA 
Th-d
MIoU

CASIA 
Th-d
F1

224 × 224 0.9378 0.9224 0.9378 0.9321 0.9431 0.9467 0.9531 0.9303 0.9656 0.9421 0.9471 0.9507

320 × 320 0.9541 0.9416 0.9532 0.9565 0.9452 0.9610 0.9712 0.9478 0.9739 0.9701 0.9598 0.9641

280 × 280 0.9634 0.9547 0.9781 0.9840 0.9601 0.9825 0.9913 0.9510 0.9960 0.9851 0.9612 0.9714

Table 9.  Results of cross-training and testing on the four datasets.

Test training

CASIA-Mobile IITD UBIRIS CASIA-Thousand

PA MIOU F1 score PA MIOU F1 score PA MIOU F1 score PA MIOU F1 score

Mobile – – – 0.9323 0.9116 0.9321 0.9201 0.9341 0.9412 0.9223 0.9124 0.9013

IITD 0.9361 0.9256 0.9401 – – – 0.9365 0.9519 0.9561 0.9282 0.9175 0.9012

UBIRIS 0.9441 0.9415 0.9524 0.9652 0.9324 0.9531 – – – 0.9374 0.9346 0.9231

Thousand 0.9513 0.9356 0.9354 0.9554 0.9461 0.9353 0.9211 0.9374 0.9364 – – –
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introduced to enhance the network’s capability to extract important features and to enhance the robustness of the 
network. Extensive experimental results were presented to reveal that the proposed network model can not only 
improve performance but also reduce the amount of parameters, computation and storage space compared with 
existing semantic segmentation methods. It is concluded from the segmentation result images that our proposed 
approach achieved better segmentation results on the CASIA, IITD, and UBIRIS datasets. Future work will aim to 
further reduce the quantity of parameters and computation of the model without compromising model accuracy.

Data availability
The data that support the findings of this study are available from “the Chinese Academy of Sciences’ Institute of 
Automation (CASIA), Indian Institute of Technology Delhi and SOCIA Lab of The University of Beira Interior” 
but restrictions apply to the availability of these data, which were used under license for the current study, and 
so are not publicly available. Data are however available from the authors upon reasonable request and with 
permission of “the Chinese Academy of Sciences’ Institute of Automation (CASIA), Indian Institute of Technol-
ogy Delhi and SOCIA Lab of The University of Beira Interior”. Departmento de Informática, Universidade da 
Beira Interior, Covilhaa, Portugal.
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