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Abstract

Systematic conservation planning requires spatial information on biodiversity.

Such information is often unavailable, forcing spatial planning to rely on

assumed relationships between species and environmental features. This prob-

lem is particularly acute in large, remote marine protected areas that are prolif-

erating rapidly. Here, we use models to predict whether (a) macrobenthic

biodiversity across four taxa (gorgonians, soft corals, hard corals, and sponges)

with different life histories are congruent within seascape features through

regional space; and (b) models generated in an intensively-sampled area in

one region can predict the occurrence of habitat-forming macrobenthos in

neighboring ones. All four taxa studied showed similar habitat preferences,

but high variability in distributions among and within features suggesting fac-

tors other than simple geomorphology influence these regional biodiversity

patterns. Nonetheless, models derived from one region accurately predicted

the presence and absence of the same taxa hundreds of kilometers away. This

transferability of models of species occurrences has the potential to deliver

improved reserve design in data-deficient regions.
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1 | INTRODUCTION

Systematic conservation planning requires data on the
spatial distributions of species among regions (Margules
& Pressey, 2000). However, such spatial data are often
incomplete, particularly in remote areas, where data col-
lection can be difficult because of high costs of data
acquisition and other logistical challenges. Consequently,
broad-scale habitat types, or taxonomic groups are often
used as surrogates of biodiversity (Lombard, Cowling,
Pressey, & Rebelo, 2003; Mellin et al., 2011; Sutcliffe,
Mellin, Pitcher, Possingham, & Caley, 2014). In such
cases, the effectiveness of conservation actions depends
on the ability of such surrogates to adequately represent
biodiversity patterns. However, the effectiveness of these
surrogates can vary considerably depending on a range of
factors including the taxon or spatial scale examined
(Grantham, Pressey, Wells, & Beattie, 2010; Lombard
et al., 2003; Mellin et al., 2011; Sutcliffe, Pitcher, Caley, &
Possinghan, 2012), the nature of the surrogate (e.g., rich-
ness, vs. abundance vs. biomass, Yates, Mellin, Caley,
Radford, & Meeuwig, 2016), the predictors used and how
they are weighted (Mellin, Mengersen, Bradshaw, &
Caley, 2014), the method of data collection (e.g., remotely
sensed vs. observer classified, Yates et al., 2016), and the
nature and extent of the extrapolation required to predict
biodiversity patterns in an unsampled location (Sequeira,
Bouchet, Yates, Mengersen, & Caley, 2018; Yates
et al., 2018).

Physical surrogates such as topography, altitude,
depth, broad-scale habitat types, or distance to domain
boundaries can be useful for planning at regional spatial
scales where detailed biological data are sparse (Bridge,
Grech, & Pressey, 2015; Mellin, Bradshaw, Meekan, &
Caley, 2010; Sarkar et al., 2005; Williams et al., 2009).
However, care must be taken to avoid false homogeneity,
where apparently similar geomorphic features support
different ecological communities (Williams et al., 2009).
Biological surrogates based on higher taxonomic levels
(e.g., phylum) can represent biodiversity patterns more
effectively than other forms of biological surrogates
(Mellin et al., 2011), particularly at very large spatial
scales (Last et al., 2009); however, biological data for par-
ticular taxa are often lacking in more remote areas. Pre-
dictive models emphasizing collective properties of
biodiversity rather than individual entities could help
overcome some of these issues associated with data defi-
ciency and help inform effective conservation and man-
agement (Ferrier, 2002).

In recent years, there has been an increasing trend
towards the designation of very large marine protected
areas, or “VLMPAs,” in remote locations (Singleton &

Roberts, 2014). While VLMPAs have greatly increased
the proportion of the oceans nominally incorporated in
protected areas, questions have been raised regarding the
conservation value of VLMPAs with respect to key mea-
sures such as representativeness and conservation impact
(Baylis et al., 2016; Jones & De Santo, 2016; Smallhorn-
West & Govan, 2018; Welch, Pressey, & Reside, 2018). A
key problem with assessing the effectiveness of VLMPAs
is the lack of data on biological communities at appropri-
ate spatial and temporal scales; indeed, with the excep-
tion of shallow coastal habitats, spatial information on
the distribution of biodiversity is particularly sparse in
the oceans (McArthur et al., 2010; Butler, Rees, Beesley, &
Bax, 2010, but see Letessier et al., 2019). Furthermore,
knowledge of marine biodiversity and ongoing research
tends to be concentrated in regions convenient for sam-
pling and where funding is comparatively more available,
rather than areas supporting the highest biodiversity, fac-
ing the greatest threats, or most in need of conservation
(Fisher et al., 2011).

In 2012, the Australian Federal Government desig-
nated a network of marine protected areas (Australian
Marine Parks; AMPs) covering 3.1 million km2 of its
exclusive economic zone (EEZ), which came into effect
in 2018. Within this national framework, the North
Marine Parks Network covers a large area of offshore
northern Australia, including the Timor Sea, Arafura
Sea, and the Gulf of Carpentaria. Located adjacent to the
Coral Triangle, the region supports high biodiversity
(Fisher et al., 2011; Tittensor et al., 2010), but is increas-
ingly impacted by human activities such as offshore oil
and gas extraction and fishing. The Oceanic Shoals
Marine Park, named for its extensive areas of submerged
carbonate terraces and banks that characterize the conti-
nental shelf of the region, is one of eight large, remote
reserves in the North Marine Parks network and covers
an area of 71,744 km2 (Figure 1). Water depths across the
terraces and banks (hereafter termed “shoals”) range
from 30 to 70 m, and are characterized by mixed sand
and gravel substrata and hardground that support key
habitat-forming benthic fauna, including hard corals,
octocorals, and sponges, as well as a diverse assemblage
of reef-associated fishes (Nichol et al., 2013; Przeslawski
et al., 2011; Przeslawski et al., 2015). However, spatial
heterogeneity in biodiversity patterns among and within
shoals is currently poorly known, and some shoals may
exhibit higher conservation value than others. Identifying
the best set of shoals to protect within a large geographic
area such as the Oceanic Shoals remains problematic—a
challenge common to many VLMPAs.

The effectiveness of conservation planning and man-
agement at large spatial scales, particularly in data

2 of 12 BRIDGE ET AL.



deficient regions, could be improved considerably if pre-
dictive models from better sampled areas could be trans-
ferred to data-deficient areas to predict biodiversity
patterns effectively (e.g., Sequeira et al., 2016; Sequeira
et al., 2018; Yates et al., 2018). Here, we generate predic-
tive models based on geophysical variables and ecological
surveys to predict the spatial distributions of four key
habitat-forming macrobenthic taxa (hard corals, soft
corals, gorgonians, and sponges) in the Oceanic Shoals
Marine Park. These four taxa were chosen because they
are the most important habitat-forming benthos in the
region, and have been shown as reliable proxies for over-
all biodiversity (Przeslawski et al., 2015; Przeslawski,
Alvarez, Battershill, & Smith, 2014). Specifically, we
investigate the extent to which (a) model predictions of
biodiversity patterns across different taxa with different
life histories are congruent within and among shoals; and
(b) models generated in an area of extensive sampling
can predict the occurrence of habitat-forming

macrobenthos in other previously surveyed regions. Pre-
dictive models that transfer well across regions could sig-
nificantly assist conservation planning in regions where
ecological data are scarce. Therefore, our analyses pro-
vide a novel example of the potential of such model
transfers for broader application in the world's oceans.

2 | METHODS

2.1 | Data collection

Four study sites were extensively sampled in each of two
regions (“West” and “East”) within the Oceanic Shoals
Marine Park (Figure 1) as part of three separate cruises
on RV Solander. The first two cruises (SOL4934,
SOL5117) sampled in the eastern region of the Oceanic
Shoals Marine Park in the vicinity of the Van Diemen
Rise (11.6�S, 129.7�E), and the third (SOL5650) in the

FIGURE 1 Map of study site; (a) regional map showing study region (red square); (b) close-up of the Oceanic Shoals Australian Marine

Park showing location of study sites
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western region between the Malita Shelf and the London-
derry Rise (11.8�S, 127.0�E) in the Timor Sea (Figure 1).
Surveys were conducted between August 27 and Septem-
ber 24, 2009 (SOL4934; Heap et al., 2010); July–August
2010 (SOL5117; Anderson et al., 2011); and September–
October 2012 (SOL5650; Nichol et al., 2013).

Information on bathymetry and backscatter at each
site was collected using multibeam sonar and used to
estimate 10 geophysical variables used as explanatory
variables in our predictive models (Table 1). Geophysical
characteristics of the seafloor were derived from bathym-
etry and backscatter data collected with a Kongsberg
EM3002D (300 kHz) multibeam sonar system. Raw
bathymetry data were processed using the Caris™ HIPS/
SIPS software. The processing involved first applying
algorithms to correct for tides and vessel pitch, roll, and
heave, and then using software filters and visual inspec-
tion of each swath line to remove any remaining artifacts
(e.g., nadir noise and data outliers). Raw backscatter data
were processed using CMST-GA MB Process v8.11.02.1, a
multibeam backscatter processing toolbox co-developed
by Geoscience Australia and the Centre for Marine Sci-
ence and Technology at Curtin University of Technology.
The backscatter processing included correction for trans-
mission loss and ensonification area, and removal of the
system-implemented model and angular dependence
(Gavrilov, Siwabessy, & Parnum, 2005). Backscatter
processing resulted in two separate outputs: (a) a back-
scatter mosaic (grid) where the equalized backscatter
strengths were normalized to the backscatter strength at
an incidence angle of 25�; and (b) angular backscatter
response curves generated by calculating backscatter
returns as a function of incidence angles (Huang,
Siwabessy, Nichol, Anderson, & Brooke, 2013; Siwabessy
et al., 2018). Each angular backscatter response curve

was derived from a sliding window, the size of which
increased with the water depth (see Huang et al., 2013;
Siwabessy et al., 2018). Consequently, the gap between
adjacent points (e.g., centers of adjacent sliding windows)
could be up to �10 m along track and �170 m across
track at the deepest locations of the study area.

The remaining geophysical predictors were derived
from the multibeam bathymetry data. Depth can be a
powerful predictor of benthic species distributions
(Gogina, Glockzin, & Zettler, 2010; McArthur et al., 2010),
because it is a proxy for light availability, water tempera-
ture, and many nutrients that cannot be accurately quan-
tified across large spatial scales. Acoustic backscatter
correlates with sediment properties and substrate compo-
sition (Kloser, Bax, Ryan, Williams, & Barker, 2001;
Huang et al., 2013, Huang, McArthur, et al., 2014), and
can also be a useful predictor of benthic biodiversity
(McArthur et al., 2010; Huang, Siwabessy, et al., 2014).
Six additional geophysical variables were derived from
the bathymetry grid: slope, relief, surface area
(Jenness, 2004), topographic position index (Weiss, 2001),
planar curvature, and profile curvature (Table 1). The
morphological and terrain variables describe seabed
rugosity and heterogeneity and can also be effective prox-
ies for seabed hydrodynamic regime, which in turn can
affect species distributions among patches and habitats
(Holmes, Radford, & Grove, 2008; Kostylev, Erlandsson,
Ming, & Williams, 2005; McArthur et al., 2010). In addi-
tion to the backscatter mosaic (grid), we also calculated
local Moran's I (Anselin, 1995) to estimate the extent of
spatial autocorrelation. All processed bathymetry and
backscatter data, including all derived predictor variables,
were gridded to a 10 × 10 m spatial resolution.

A towed sled fitted with video and digital still cam-
eras was used to characterize benthic ecological

TABLE 1 Geophysical variables used in the model

Variable Description

Bathymetry Bathymetry Water depth

Slope Slope gradient

Relief Topographic relief

Surface area “true” surface area in relation to “planar” surface area,
an indicator of surface rugosity (Jenness, 2004)

TPI Topographic (Benthic) Position Index (Weiss, 2001)

Planar curvature The curvature of the surface perpendicular to the slope
direction

Profile curvature The curvature of the surface in the direction of slope

Backscatter Backscatter intensity

Backscatter Local Moran I An indicator of spatial autocorrelation
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communities in the Oceanic Shoals CMR. The cameras
fitted included a single forward-facing video camera
(Watec color D250) and two still cameras, one forward-
facing and one downward-facing (Sea & Sea DX2G 12
megapixel). The sled was towed at 1–1.5 knots and its
position tracked using a ultra-short baseline (USBL)
acoustic tracking system. Ecological data for the western
region were derived from 10,785 still images collected at
10-s intervals along 52 transects each 1,500 m long, cho-
sen using a Generalized Random Tessellation Sampling
(GRTS) design with site selection weighted towards
shallower areas (less than 50 m water depth) likely to
support greater biodiversity (Nichol et al., 2013). Images
were annotated by scoring biota and substrate beneath
five random points overlaid on each image.

Ecological data from the eastern region were derived
from 122 towed video transects each approximately
500 m long. The locations of transects were chosen to
represent geomorphic feature types (bank, terrace, plain,
and valley) interpreted from multibeam sonar mapping,
with individual transects located randomly within fea-
tures. Biota were recorded in real-time using the three-
tiered C-BED classification scheme, which records the
presence of key biota in real time for 15-s intervals every
30 s (Anderson, Van Holliday, Kloser, Reid, & Simard,
2008), and validated post-survey from georeferenced
video footage combined with high-resolution photos
recorded every 5 s along the video transects (Przeslawski
et al., 2011). The total sample size for the eastern region
was 2,703 annotated 15-s intervals. The variability in
sampling design among regions was primarily due to a
focus on investigating depth zonation on raised geomor-
phic features in the western region. In order to standard-
ize the two different annotation techniques, four
taxonomic groups (hard corals, soft corals, gorgonians,
and sponges) common to both techniques were chosen,
and the associated presence/absence of them recorded for
each georeferenced image or video window. The vast
majority of habitat-forming macrobethos in the region
was contained within these four groups, resulting in a
large enough sample size in each group for predictive
modeling.

2.2 | Statistical analyses

The relationships between geophysical variables and the
four taxonomic groups in the western region were esti-
mated using boosted regression trees (BRTs) (Elith,
Leathwick, & Hastie, 2008). BRTs are a machine-learning
algorithm that incorporates multiple individual trees,
and use a stage-wise approach where the largest devia-
tion in the response variable is explained by the primary

split in the tree, with remaining trees built using the
residual data. This process enables identification of
lower-order interactions in the predictor variables, which
is not possible from other approaches that use multiple
trees but average the results (Elith et al., 2008). BRTs
have the additional advantage of being capable of identi-
fying nonlinear responses to predictor variables
(De'ath, 2007). All BRT models were fitted using the
“gbm” package (Ridgeway, 2006) with extensions in Elith
et al. (2008) in R version 3.3.3 (R Core Team, 2014).

We constructed three different models for each taxon
using different parameters in order to ensure that our
results were robust to variation in learning rate (i.e., that
the results were not overly-influenced by the primary set
of trees), tree complexity (to test for overfitting) and num-
ber of trees. Model parameters for the first set of models
(tree complexity and learning rate) were assigned such
that the number of trees was as close as possible to 1,500,
ensuring that the models include enough trees (>1,000)
to ensure stability, but also a consistent number of trees,
enough to allow comparison among models (Elith
et al., 2008). Tree complexity, the number of splits in
each tree, was varied between three and five to prevent
over-fitting while allowing the identification of interac-
tions between variables. For all models, we used as low a
learning rate as possible (0.005) to reduce the influence
of the primary set of trees on the models. These initial
models were then compared to two additional sets of
models to examine the robustness of our results: the first
set of models used an increased learning rate (0.01) to test
the influence of the primary set of trees on the results,
and the second set used simplified models, which utilized
a reduced number of variables. The number of variables
dropped varied from 2 to 6 depending on the taxon
modeled, and were chosen using the “gbm.simp” func-
tion in “gbm.step.”

Semivariograms were used to test for spatial autocor-
relation in the occurrence dataset, which indicated an
asymptote in semivariance for all four taxa at a distance
of �70 m (Figure S1). To account for spatial autocorrela-
tion, we added a residual autocovariate term as an addi-
tional predictor variable to explicitly account for spatial
autocorrelation in the occurrence data. The residual
autocovariate approach (Crase, Liedloff, & Wintle, 2012)
calculates the similarity between the values of the
response variable relative to neighbouring cells based on
model residuals, rather than directly from the response
variable. Models using residual autocovariates provide
superior performance to traditional autologistic
approaches because spatial autocorrelation in the
response variable may be explained by autocorrelation in
the predictor variables, therefore calculating the
autocovariate term using model residuals allows the
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explanatory variables to account for spatial autocorrela-
tion between the occurrence data and the environmental
predictors (Crase et al., 2012). Building the autocovariate
term on model residuals therefore better captures the
true influence of the predictor variables, and also allows
delineation of spatial autocorrelation deriving from exog-
enous sources (e.g., geophysical variables such as depth
or temperature) or endogenous sources specific to the
taxon of interest (e.g., dispersal capacity; Crase
et al., 2012). We calculated the autocovariate term for
windows of 3 × 3 pixels surrounding each occurrence
record. This window size equates to the scale at which
spatial autocorrelation was evident in the occurrence
data based on examination of the semivariograms
(Figure S2).

Predictive performance of each model was compared
using two metrics: Area Under the Receiver Operating
Characteristic Curves (AUC; Fielding & Bell, 1997), and
the total amount of deviance explained (DE) by each
model. DE was calculated by dividing the difference
between the mean total deviance (td) and the estimated
tenfold cross-validated deviance (cvd) by the mean total
deviance (deviance explained = 1 − cvd/td), that is,
DE=1− cvd

td:
The proportion of the total deviance explained by

each predictor variable was assessed using partial depen-
dency plots. Model performance was evaluated using the
tenfold cross-validation (see Elith et al., 2008).

For each taxon, model transferability was assessed by
investigating whether habitat suitability thresholds based
on BRT models for the western region could predict the
presence or absence of the same taxon in the towed video
surveys from the eastern region. For each BRT model,

the predicted probabilities for every grid cell for each
model were converted into binary (suitable/unsuitable)
predictions across the entire western region. We calcu-
lated thresholds for habitat suitability using an “opti-
mize” function that searches a parameter space via a
combination of parabolic interpolation and Goldern-sec-
tion search. We then use these optimized values to calcu-
late three metrics: sensitivity (the proportion of true
positives identified correctly), specificity (the proportion
of true negatives), and classification rate (the proportion
of positives/negatives identified correctly). Transferability
was evaluated by investigating the proportion of times
the habitat suitability thresholds for the models from the
western region correctly predicted the location of the
same taxon from the towed video surveys in the eastern
region using each of the three metrics identified above.
Three different metrics were used because they provide
slightly different indicators of model performance; for
example, where occurrence records are sparse (as in our
data set and most other ecological data), predicting where
something does not occur (i.e., specificity) is generally
easier than predicting where it does (sensitivity), since
high success in predicting absences would be expected by
chance regardless of model performance. We also com-
pared the range of values for each variable used in the
model to that the range of predictors matched the range
of values for both regions (Figure S2).

3 | RESULTS

The results of all three sets of models were virtually iden-
tical (Table 2, Figure S3), indicating our results were

TABLE 2 Summary of model results

Model Taxon
N.
tree

t.
complex

L.
rate

Training
correlation

CV
correlation CVD TD DE

Training
AUC

CV
AUC

rac_ArbSC10 Gorgonians 1,450 3 0.005 0.494 0.402 0.248 0.353 0.30 0.925 0.908

rac_SC10 Soft corals 1,450 3 0.005 0.452 0.368 0.322 0.427 0.25 0.894 0.873

rac_Sponge10 Sponges 1850 3 0.005 0.523 0.391 0.204 0.293 0.30 0.936 0.912

rac_HC10 Hard corals 1700 3 0.005 0.752 0.668 0.124 0.286 0.57 0.964 0.957

rac_ArbSC10.Lr Gorgonians 650 5 0.01 0.543 0.392 0.249 0.353 0.29 0.932 0.906

rac_SC10.Lr Soft corals 550 5 0.01 0.485 0.362 0.323 0.427 0.24 0.902 0.872

rac_Sponge10.
Lr

Sponges 550 5 0.01 0.55 0.381 0.206 0.293 0.30 0.94 0.912

rac_HC10.Lr Hard corals 600 5 0.01 0.774 0.668 0.124 0.286 0.57 0.964 0.957

ArbSC.Simp Gorgonians 1,250 5 0.005 0.541 0.4 0.248 0.353 0.30 0.933 0.907

SC.Simp Soft corals 1,200 5 0.005 0.491 0.369 0.322 0.427 0.25 0.904 0.875

Sponge.Simp Sponges 1,000 5 0.005 0.539 0.389 0.204 0.293 0.30 0.939 0.912

HC.Simp Hard corals 1,200 5 0.005 0.773 0.68 0.122 0.286 0.57 0.964 0.959
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robust to variability in parameters (i.e., not overly
influenced by initial trees or overfit). The results for all
three sets of models are provided in Table 2, but given
the similarity between all sets of models, the results
below refer specifically to the initial set of models. All
four taxa were predicted to occur on the hard substratum
on the tops of submerged shoals, but not in deeper areas
with soft substrata between reefs (Figure 2). AUC values
indicated good predictive performance for all models
(0.87–0.94), indicating that the model was capable of dis-
criminating between occupied and unoccupied sites
(Table 2). Total deviance explained by the models varied
from 24% for soft corals to 58% for hard corals (Table 2).
The autocovariate term explained approximately half of
the total deviance for heterotrophic taxa (gorgonians and
sponges), but only �30% for phototrophs (hard and soft
corals; Figure 3). Backscatter intensity, depth, and topo-
graphic position index were also important predictors of
species' distributions.

Partial dependency plots (Figure S4) showed that the
probability of occurrence for all taxa was highest at
shallower depths (40–60 m) and very low at depths
>80 m. All four taxa were more likely to occur on hard
substrata. However, hard substrata alone did not predict
suitable habitat for any of the four taxa, and models
predicted low biodiversity on hard substratum on the

FIGURE 2 Example showing differences in predicted likelihood of occurrence between raised geomorphic features1a). Depth (a);

predicted likelihood of occurrence for sponges (b); predicted likelihood of occurrence for hard corals (c); total number of taxa predicted for

section of the western Oceanic Shoals AMP. Predictions cover Area 4 from regional overview (Figure 1)
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tops of deeper shoals (Figure 3). The considerable influ-
ence of the autocovariate for some taxa indicated that
their distributions were highly clumped spatially. Five
variables: topographic relief, slope gradient, “true” sur-
face area, planar curvature and profile curvature of the
seafloor contributed little to model predictions for any of
the four taxa.

BRT models for the western region performed excep-
tionally well at predicting the presence and absence of
the same taxon in the eastern region (Table 3). Classifica-
tion rate (proportion of 1 and 0 s identified correctly)
ranged from 0.90 for sponges to 0.99 for hard corals and
gorgonians. For all taxa except sponges, sensitivity values
were greater than specificity, indicating that the models
were slightly better at predicting where a species did not
occur than where it did.

4 | DISCUSSION

Our BRT models predicted well the presence or absence
of a taxon outside the modeled region (i.e., they displayed
high transferability). Specifically, these models trans-
ferred well for benthic communities at lower taxonomic
resolution (order or higher) across 100 s of km, using a
set of predictors that were largely overlapping in central
tendency and variability. These transfers would therefore
be best categorized as internal transfers with respect to
the predictor variables used (sensu Sequeira et al., 2018).
The success of the transfer of these models also indicates
that these predictive models can support conservation
planning beyond areas subjected to ecological sampling,
particularly when predicting into unsampled regions
with similar geophysical characteristics. This result is sig-
nificant because it suggests that positive conservation
outcomes could be achieved in some situations on the
basis of relatively rudimentary ecological knowledge, and
is particularly pertinent given the rapid implementation
of large, remote MPAs and the impediments to collecting
ecological data in the marine realm. Our results suggest
that predictive models such as these could provide impor-
tant tools to identify key habitats, or biodiversity

“hotspots,” to maximize the effectiveness of large, remote
reserves (see also Bouchet et al., 2017).

Despite high predictive performance across regions,
our models also suggested some degree of false homoge-
neity among shoals: not all the shoals in the Oceanic
Shoals Marine Park support equivalent biodiversity. Con-
siderable variability in benthic composition among
geomorphically-similar shoals appears to be common on
the NorthWest Shelf (Heyward, 2011; Heyward,
Pinceratto, & Smith, 1997; Wahab et al., 2018) and else-
where (Bridge et al., 2011). Spatial variability, therefore,
must be considered to avoid false homogeneity in repre-
sentativeness and maximize the likelihood that robust
predictions of biodiversity patterns are achieved in
regions where considerable uncertainty exists. The exten-
sive heterogeneity observed among shoals in the biodiver-
sity they support indicates that the inclusion of ecological
predictors of distributions may enable better predictions
of biodiversity hotspots than geophysical data alone.
Although raised features with hard substrata in the Oce-
anic Shoals MP clearly support a greater abundance and
diversity of macrobenthos than adjacent areas of soft sub-
strata, not all raised features, or parts thereof, were
equally likely to support abundant macrobenthos. These
modeled results are consistent with observations for
sponges based on specimen collections (Przeslawski
et al., 2014, 2015) with high variability in community
composition among and between shoals. Therefore, fine-
scale variability within and among apparently similar
geomorphic features should also be considered to maxi-
mize the conservation benefits of reserves designs where
ecological data are sparse.

Depth and variables associated with substrate type
best predicted the occurrence of habitat-forming benthic
macrofauna, indicating their preference for the tops of
seabed features where hard substrata are present (Fig-
ure 3). The importance of depth for predicting biodiver-
sity patterns in the Oceanic Shoals Marine Parksupports
their use in Australia's national marine bio-
regionalisation (Last et al., 2009). Unsurprisingly, depth
was a particularly good predictor of phototrophic taxa,
where banks with tops shallower than 45 m supported

TABLE 3 Transferability of model

results from western to eastern regions
Taxon Suitability threshold Sensitivity Specificity Classification rate

Gorgonians 0.19 0.93 0.97 0.99

Soft corals 0.13 0.93 0.95 0.95

Hard corals 0.11 0.95 0.99 0.99

Sponges 0.21 0.92 0.89 0.90

Note: Four metrics were used to quantify transferability: sensitivity (the proportion of presences
correctly identified); specificity (the proportion of absences correctly identified); classification
rate (the proportion of both presences and absences correctly identified).
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greater biodiversity than deeper banks. This result is con-
sistent with Williams et al. (2009), who also reported that
depth generated considerable heterogeneity in ecological
communities among similar geomorphic features over a
much larger depth range (thousands of meters) than
explored here.

Spatial autocorrelation is common in ecological data,
and may arise from both exogenous environmental fac-
tors such as rainfall, or depth, and endogenous ones,
such as species-specific factors including dispersal limita-
tion (Crase et al., 2012; Keitt, Bjørnstad, Dixon, & Citron-
Pousty, 2002; Legrende, 1993; Legendre et al., 2002). The
importance of the spatial autocovariate indicates that the
clumped distributions of taxa observed here were
strongly influenced by factors other than the broad-scale
environmental predictors used. Potential causes of these
patterns could include ecological factors (e.g., settlement
processes) or additional environmental factors not con-
sidered here (Keitt et al., 2002), such as disturbance his-
tory, oceanography, and turbidity. For example,
gorgonians rely on currents for food, and commonly
occur in areas of high current (Fabricius &
Alderslade, 2001). Most gorgonians are also brooders,
where planulae typically settle within a few meters of the
parent colony. The patchy distribution of gorgonians in
the Oceanic Shoals MP may therefore be due to a variety
of ecological and environmental factors that cannot be
identified from broad-scale geophysical data, including
variability in current flows both among and within shoals
and/or their reproductive ecology. Accounting for this
spatial autocorrelation in predictive models can help pre-
dict patchy species occurrences even if the underlying
causes are unknown.

Although all four focal taxa showed similar habitat
preferences, our models investigated patterns of biodiver-
sity at a low taxonomic resolution of order, or above, to
ensure reasonable sample sizes and potentially improve
their utility as biological surrogates. Many of these taxa
might exhibit greater spatial variability if greater taxo-
nomic resolution was applied. Spatial distribution pat-
terns for other taxa are poorly known, and our “coarse-
filter” approach provides no information on the suitabil-
ity of surrogates for planning specifically for species that
may be more in need of conservation action. Identifica-
tion of particular species or habitats of conservation con-
cern (e.g., spawning aggregation sites) should therefore
be an additional consideration when designing any
marine reserve network (Hamilton, Potuku, &
Montambault, 2011; Weeks et al., 2014).

Our results provide evidence that, at low taxonomic
resolution, protecting raised features with hard substrate
will benefit a wide range of taxa in the Oceanic Shoals

MP. Importantly, models based on one region success-
fully predicted species presence in another, suggesting
predictive models have considerable value for conserva-
tion planning in data-poor regions over large spatial
scales. However, even at low taxonomic resolution het-
erogeneity among similar geomorphic habitats within a
region can be high. Consequently, additional data,
including ongoing monitoring, may be required to
address more specific and finer-scale conservation and
management goals. Nonetheless, our results corroborate
previous studies that demonstrate predictive models can
provide valuable information on the distribution of biodi-
versity across large geographic areas. Importantly, our
models of the distributions of benthic taxa showed
greater capacity for transferability than previous studies
based on fishes (Sequieira et al., 2016). Given that biodi-
versity data are often scarce, particularly in biodiversity-
rich areas most in need of conservation, our findings pro-
vide further support for the notion that conservation ben-
efits can result from marine reserves designed on the
basis of relatively simple geophysical data with careful
consideration of the potential for false homogeneity and
the transfer of predictive models among locations.
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