Characterisation of anterior patterning genes in the staghorn coral, *Acropora millepora* (Cnidaria; Anthozoa; Scleractinia)

Thesis submitted by

Nikki Rochelle HISLOP B. Biomed. Sc. (Hons) JCU

in April 2003

Thesis submitted in fulfillment of the requirements of the degree of Doctor of Philosophy in the School of Pharmacy and Molecular Sciences at James Cook University

I. STATEMENT OF ACCESS

I, the undersigned, the author of this thesis, understand that James Cook University will make this thesis available for use within the University Library and, by microfilm or via the Australian Digital Thesis network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and:

I do not wish to place any restriction on access to this work.

Nikki R. Hislop

II. ELECTRONIC COPY DECLARATION

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library is an accurate copy of the print thesis submitted, within the limits of technology available.

Nikki R. Hislop

III. ABSTRACT

To a surprising extent, molecular mechanisms underlying many aspects of development are conserved across the higher (bilateral and triploblastic) Metazoa, but the degree to which similar mechanisms apply to non-bilateral and diploblastic animals such as cnidarians is unclear. The aim of this thesis was to characterise genes homologous to those that play key roles in anterior patterning in bilaterians, in the basal cnidarian *Acropora millepora*.

In Acropora, a gene clearly related to the ems/Emx family was shown to be expressed in a subset of presumed neurons, restricted along the oral-aboral (O/A) axis to the aboral end of the planula larva, in a pattern overlapping that of cnox2-Am, the Acropora ind/Gsx homolog. Hence, key components of both anterior-posterior (A/P) and dorsalventral (D/V) patterning systems of higher animals are differentially expressed along the single (O/A) overt body axis of the Acropora planula. During metamorphosis, emx-Am expression is significantly reduced, corresponding to the degeneration of the nervous system observed prior to settlement (Ball et al., unpublished). After settlement, expression of emx-Am is again detected in a subset of neurons, although an axis-related pattern of distribution is not apparent. Yeast-one hybrid and electrophoretic mobility shift assays (EMSA) were used to identify candidate target sites for the Emx-Am homeodomain and to examine its DNA-binding behaviour in vitro. Yeast-one hybrid experiments identified three regions within the Acropora genome containing putative Emx-Am binding sites, and further characterisation of these regions attempted to identify potential downstream targets of the Emx-Am homeodomain. Data regarding downstream targets of Ems/Emx proteins is limited, but EMSA provided novel evidence that Ems/Emx homeodomains may be able dimerise on TAAT half sites, a characteristic feature of many ANTP-related proteins.

In *Drosophila*, the Tailless nuclear receptor is a direct regulator of *ems*; for this reason the expression of *tlx-Am*, an *Acropora* gene encoding a protein clearly related to Tailless, was studied. In addition to its patterns of expression, the *tlx-Am* locus was also characterised, but this analysis revealed that a similar regulatory relationship with *ems* is unlikely to exist in the coral.

Attempts to clone the *Acropora* homolog of a *Hydra prdl-a* gene led to the fortuitous identification of four *paired*-like genes. Although none of these appears to be strictly orthologous with *prdl-a*, the sequences and expression patterns of these genes provided some novel insights into the evolution of the Paired superfamily of homeodomain proteins. One of these genes (*hbn-Am*) is orthologous with *Drosophila homeobrain*, and appears to be a very early ectodermal marker during coral development. *hbn-Am* is expressed in a region corresponding to the presumptive ectoderm, in a pattern that is complimentary and mutually exclusive to that of the coral *snail* homolog (*snail-Am*), suggesting that these genes interact.

Two of the *paired*-like genes identified are clearly related and were shown to be organised in tandem in the *Acropora* genome. Two other cases of tightly linked pairs of related genes were also identified, suggesting that a high proportion of coral genes may be organised in this way.

IV. STATEMENT OF CONTRIBUTIONS BY OTHERS

I, the undersigned author of this thesis, wish to acknowledge the collaborative research efforts by others that has contributed to the data presented here in this thesis. The individual research contributions of these people are outlined below, and are additionally acknowledged throughout this thesis.

Chapter 3

Heather Dodd	Generation of emx homeobox PCR product
Patricia Pontynen	Isolation and sequencing of emx-Am cDNA clone
Dr. Julian Catmull	Isolation of <i>emx-Am</i> genomic clone
Dr. Eldon Ball	Collaborative emx-Am in-situ hybridization experiments

Chapter 4

Lauretta Grasso	Isolation and sequencing of the <i>tlx-Am</i> cDNA clone
Dr. David Hayward	Northern blot analysis of <i>tlx-Am</i> temporal expression
Christine Dudgeon	Isolation of a partial <i>tlx-Am</i> genomic clone
Dalma Soebok	Sequencing of a partial <i>tlx-Am</i> genomic clone

cDNA clones

Chapter 5Dalma SoebokIsolation and sequencing of the hbn-Am and arx-Am

Nikki R. Hislop

V. ACKNOWLEDGEMENTS

I thank my supervisor Dr. David Miller for having faith in my abilities and first entertaining the insane notion that I embark on a PhD. I am grateful for his fruitful discussions and assistance in the preparation of this thesis.

I thank my supervisor Dr. Eldon Ball for his endless enthusiasm, mentoring motivation and boundless energy both inside and outside the lab. He encouraged me to look at things from both sides with hesitant optimism and a lot of controls! Thank you for kindly allowing access to coral larvae, in situ and antibody data and passing on the tricks of the trade.

I thank Dr. David Hayward for sharing with me his wisdom, protocols and threeday-old milk. It was a breath of fresh air to share his lab and I wish him the best of luck in his future research.

I thank Prof. Rob Saint and the members of his lab at the Research School of Biological Sciences at ANU, Canberra. To Rob, Nelida, Anne, Masha, Greg, Peter and Michael – a huge thank you is extended for generous sharing of equipment, reagents, skills and time.

I thank the members of the Coral Genomics Group at James Cook University for sharing research, ideas and the occasional beer. I would especially like to thank Danielle, Luis, John R-H, Madeleine, Karin, Hiroki, Lucija, and the many other students who have passed through the Miller Lab over the last few years. I also thank all members of the Biochemistry and Molecular Biology Department at James Cook University for their friendship, advice and generous sharing of resources.

I thank the many volunteers who have participated in coral spawning field trips each year. It is an enormous effort that requires the combined efforts of many people to willingly donate their time to spend two weeks in the field to collect the coral material that made this project possible. I thank my family, Rod, Kaye, Carly, Nana and Isabel, for their love, encouragement and support, both financially and emotionally. Thank you for the hugs and advice when I needed them the most.

I thank my friends for their encouragement, support, motivation and friendship during the good times and the bad. You are all spread far and wide, but never more than a phone call away. To Emma, Katherine Michelle, Elly, Nisrine and Kylie.

I wish to acknowledge the collaborative research efforts of others that have provided data that has been included in this thesis. In this growing filed of evolutionary developmental biology, collaborative research seems inevitable. Their contributions are appreciated and have been acknowledged throughout this thesis.

I wish to acknowledge the financial support of the Australian Government in the provision of an Australian Postgraduate Research Award Scholarship. I also wish to acknowledge the financial support of the Research School of Biological Sciences at the Australian National University in Canberra through a Collaborative Research Scholarship.

VI. TABLE OF CONTENTS

Statement of Acce	ess	I
Electronic Copy I	Declaration	ii
Abstract		iii
Statement of Cont	tribution by Others	v
Acknowledgemen	ıts	vi
List of Figures		xiv
List of Tables		xvii
Statement of Sour	ces	xvii
Chapter 1. An Int	roduction	1
1.1. Comm	on principles of animal development	1
1.2. Axis sp	pecification of the nervous system	
1.3. Evoluti	ionary origins of the body axes	6
1.4. Cnidar	ian Hox-related genes	7
1.5. Ancest	ral history of anterior patterning	
1.6. The sig	nificance of the Cnidaria	11
1.6.1.	Cnidarian nervous systems	13
1.7. A mod	el cnidarian – Acropora millepora	15
1.7.1.	The life cycle of Acropora millepora	15
1.7.2.	Coral cell biology	19
1.8. Project	objectives	21
Chapter 2. Mater	ials and methods	22
2.1 Animal	S	
2.1.1	Animal collections	22
2.1.2	Embryo fixation	22
2.2 Bacteria		
2.2.1	Bacterial strains used	23
2.2.2	Media and solutions	23
2.2.3	Competent cells	24
2.2.4	Bacterial transformations	24

2.2.5	Bacterial glycerol stocks	24
2.3 Bacterio	phage	
2.3.1	Phage plating and titration	26
2.3.2	cDNA libraries	27
2.3.3	Genomic library	27
2.3.4	Screening phage libraries	28
2.3.5	Identification of overlapping genomic clones	29
2.3.6	Phage amplification	29
2.3.7	In vivo excision of cDNA clones	30
2.3.8	Extraction of bacteriophage DNA from	
	λGEM-12 phage clones	30

2.4 DNA manipulation methods

2.4.1	Plasmid vectors	33
2.4.2	Restriction endonucleases	33
2.4.3	Agarose gel electrophoresis of DNA	34
2.4.4	Purification of DNA fragments from agarose gels	34
2.4.5	DNA quantification	34
2.4.6	Phenol:chloroform extraction	35
2.4.7	DNA precipitation	35
2.4.8	Generation of radioactive probes	35
2.4.9	Determination of specific activity	36
2.4.10	Cloning and ligation reactions	36
2.4.11	Plasmid DNA preparation	37
2.4.12	DNA sequencing	37
2.4.13	Southern blotting	38
2.4.14	Polymerase Chain Reaction	38
2.4.15	Oligonucleotides	39

2.5 RNA manipulation methods

2.5.1	Removing ribonucleases from equipment and work area	40
2.5.2	Extraction and purification of RNA from coral tissue	40

2.5.3	RNA quantification	. 40
2.5.4	Quantitative PCR	. 40
2.5.5	Agarose gel electrophoresis of RNA	42
2.5.6	Northern blotting	. 42
2.5.7	Coral embryo in situ hybridization	43
2	2.5.7.1 Embryo preparation	. 43
2	2.5.7.2 Riboprobe synthesis	. 44
2	2.5.7.3 Riboprobe hybridisation and detection	45

2.6 Protein manipulation methods

2.7 Antibodies methods

2.7.1	Generation of antibodies	52
2.7.2	Indirect ELISA	52
2.7.3	Western blotting	53
2.7.4	Affinity purification of antibodies	54
2.7.5	Embryo immunohistochemistry	54

2.8 Yeast methods

2.8.1	Yeast strains	56
2.8.2	Yeast media	56
2.8.3	Preparing competent yeast cells	56
2.8.4	High efficiency transformation of yeast	57
2.8.5	Yeast-one hybrid plasmid construction	57

2.8.6	Verification of activator-dependent interactions	57
2.8.7	Isolation of plasmid DNA from yeast cells	58

Chapter 3. emx-Am, a cnidarian ortholog of the Drosophila gene empty spiracles

3.1 Introdu	ction	61
3.1.1	The <i>ems/Emx</i> gene family	62
3.1.2	Statement of goals	65
3.2 Results		
3.2.1	The <i>emx-Am</i> cDNA	. 66
3.2.2	The Emx-Am protein	66
3.2.3	Evolutionary relationships amongst the <i>ems/Emx</i> gene class.	69
3.2.4	Expression patterns of <i>emx-Am</i>	72
	3.2.4.1 Temporal patterns of expression	72
	3.2.4.2 Spatial patterns of expression	75
3.2.5	Location of the nerve network in coral development	82
3.2.6	Localisation of the Emx-Am protein in situ	82
3.2.7	The <i>emx-Am</i> genomic locus	88
3.2.8	Characterisation of the <i>emx-Am</i> promoter region	88
3.2.9	DNA-binding characteristics of Emx-Am	90
	3.2.9.1 Yeast-one hybrid screen	90
	3.2.9.2 Electrophoretic Mobility Shift Assays (EMSA)	95
3.3 Discuss	ion	
3.3.1	Conserved protein motifs	101
3.3.2	Phylogenetic relationships within the <i>ems/Emx</i> gene class	101
3.3.3	Expression of <i>emx-Am</i> in developing coral larvae	102
3.3.4	The genomic structure and its evolutionary implications	104
3.3.5	Regulation of <i>emx-Am</i>	104
3.4 Conclus	sions	106
3.5 Future	Directions	107

Chapter 4. tlx-Am, a cnidarian ortholog of the Drosophila gene tailless

4.1	Introduc	ction	109
	4.1.1	A superfamily of nuclear receptors	109
	4.1.2	The <i>tll/Tlx</i> gene family	110
	4.1.3	Statement of goals	112
4.2	Results		
	4.2.1	The <i>tlx-Am</i> cDNA	113
	4.2.2	Evolutionary relationships amongst the <i>tll/Tlx</i> gene family	116
	4.2.3	Expression patterns of <i>tlx-Am</i>	121
	Z	4.2.3.1 Temporal distribution of the <i>tlx-Am</i> transcript	121
	Z	4.2.3.2 Spatial distribution of the <i>tlx-Am</i> message	124
	4.2.4	The <i>tlx-Am</i> genomic locus	124
	4.2.5	Characterisation of the <i>tlx-Am</i> promoter region	126
4.3	Discuss	ion	
	4.3.1	Structural differences in the DNA-binding domain	.128
	4.3.2	Expression patterns of <i>tlx-Am</i>	.128
	4.3.3	Regulation of <i>tlx-Am</i>	128
	Z	4.3.3.1 Possible interactions of tlx-Am and emx-Am	129
	4.3.4	Genomic structure and its evolutionary implications	130
4.4	Conclus	ions	133
4.5	Future d	lirections	134

Chapter 5. Paired-like genes in the cnidarian, Acropora millepora

5.1	1 Introduction		
	5.1.1	The Paired-type superclass	135
	5.1.2	Paired-class genes in the Cnidaria	138
	5.1.3	Statement of goals	138
5.2	Results		
	5.2.1	Isolation of the <i>paired</i> -like genes	139
	5.2.2	The <i>hbn-Am</i> cDNA	140
	:	5.2.2.1 Temporal expression patterns of <i>hbn-Am</i>	142
	:	5.2.2.2 Spatial patterns of expression	148

5.2.3	The <i>arx-Am</i> cDNA	150
5.2.4	The Arx-Am protein	150
5.2.5	The arx-Am genomic locus	152
5.2.6	Temporal expression patterns of <i>arx-Am</i>	152
5.2.7	Spatial patterns of expression of <i>arx-Am</i>	157
5.2.8	Paired-like genes: the K ₅₀ subclass	157
5	5.2.8.1 The <i>dmbx1-Am</i> cDNA	157
5	5.2.8.2 The <i>dmbx2-Am</i> cDNA	158
5.2.9	Genomic structure of <i>dmbx1-Am</i> and <i>dmbx2-Am</i>	161
5.2.10	The Dmbx1-Am and Dmbx2-Am proteins	157
5.3 Discuss	ion	
5.3.1	Conserved protein motifs	164
5.3.2	Evolutionary relationships amongst Paired-like	
	homeodomains	165
5.3.3	<i>arx-Am</i> expression during coral development	169
5.3.4	<i>hbn-Am</i> expression during coral development	169
5.3.5	Duplicates of <i>dmbx</i> -related homeobox genes	172
5.4 Conclus	ions	173
5.5 Future d	lirections	174
Chapter 6. Genera	al conclusions	.175
References		181
Appendix A. Abb	previations	202

VII. LIST OF FIGURES

Figure 1.1	The zootype	2
Figure 1.2	Comparison of nerve cord formation	3
Figure 1.3	Establishing the dorsoventral axis within the CNS	5
Figure 1.4	Evolutionary relationships within the Metazoa and Cnidaria	12
Figure 1.5	Whole-mount in situ hybridization of Hydra with probes	
	coding for <i>Hydra</i> RFamide preprohormones	14
Figure 1.6	Micrographs of the embryonic development of A. millepora	17
Figure 1.7	Formation of the two tissue layers in the coral, A. millepora	18
Figure 1.8	Morphology and anatomy of developing embryos of A. millepora	20

Figure 3.1	The <i>emx-Am</i> cDNA	67
Figure 3.2	A comparison of the Emx-Am homeodomain with other	
	Ems/Emx family members	68
Figure 3.3	A comparison of the complete Ems/Emx proteins from	
	representative organisms	70
Figure 3.4	How is Emx-Am related to other Ems/Emx proteins?	71
Figure 3.5	Temporal patterns of <i>emx-Am</i> expression during development	73
Figure 3.6	Localisation of <i>emx-Am</i> mRNA during embryonic and planulae	
	development	76
Figure 3.7	Two cellular morphologies of cells expressing <i>emx-Am</i> in pear	
	and pre-settlement stage planulae	78
Figure 3.8	Spatial patterns of emx-Am expression in whole mounts of	
	developing polyps post settlement	79
Figure 3.9	Spatial patterns of emx-Am expression in sectioned post-	
	settlement polyps	80
Figure 3.10	Two cellular morphologies of cells expressing emx-Am in post-	
	settlement polyps	81
Figure 3.11	The nervous system of Acropora millepora in pre- and post-	
	settlement tissue	83
Figure 3.12	Expression of a recombinant EmxAm-HD fusion protein for	
	raising polyclonal antibodies	85

Figure 3.13	Affinity purification of the Emx-Am homeodomain antibody	
	and expression of a GST-EmxHD fusion protein	87
Figure 3.14	Genomic organisation of the <i>emx-Am</i> locus	89
Figure 3.15	Basal promoter of <i>emx-Am</i>	91
Figure 3.16	The yeast-one hybrid screen for potential targets of the	
	Emx-Am homeodomain	93
Figure 3.17	Positive clones from the yeast-one hybrid screen of the	
	Acropora reporter library	96,97
Figure 3.18	Electrophoretic Mobility Shift Assays (EMSA) using the	
	recombinant GST Emx-Am homeodomain fusion protein	100
Figure 3.19	Comparative genomic structure of <i>ems/Emx</i> genes	105

Figure 4.1	The <i>tlx-Am</i> cDNA114,	115
Figure 4.2	A comparison of Tll/Tlx DNA-binding domains	117
Figure 4.3	A comparison of complete Tll/Tlx proteins from representative	
	organisms	118
Figure 4.4	How is Tlx-Am related to other Tll/Tlx proteins? 119,	120
Figure 4.5	Temporal patterns of <i>tlx-Am</i> expression during development	122
Figure 4.6	Genomic organisation of the <i>tlx-Am</i> locus	125
Figure 4.7	The basal promoter of <i>tlx-Am</i>	127
Figure 4.8	Comparative genomic structure of <i>tll/Tlx</i> family representatives	128

Figure 5.1	Phylogenetic relationships between 146 Prd-class genes	137
Figure 5.2	The <i>hbn-Am</i> cDNA	141
Figure 5.3	A comparison of the homeodomains of Acropora Paired-like	
	proteins with other Prd-class family members	143
Figure 5.4	Temporal patterns of <i>hbn-Am</i> expression during development	146
Figure 5.5	Spatial patterns of <i>hbn-Am</i> expression during development	149
Figure 5.6	The <i>arx-Am</i> cDNA	151
Figure 5.7	Genomic organisation of the arx-Am locus	153
Figure 5.8	Temporal patterns of <i>arx-Am</i> expression during development	155
Figure 5.9	The <i>dmbx1-Am</i> cDNA	159

Figure 5.10	The <i>dmbx2-Am</i> cDNA1	60
Figure 5.11	Genomic organisation of <i>dmbx1-Am</i> and <i>dmbx2-Am</i> genomic loci 10	62
Figure 5.12	A comparison of the Dmbx1-Am and Dmbx2-Am homeodomains	
	with other K_{50} Prd-type homeodomains	63
Figure 5.13	Relationships within the Prd-type superclass 10	66
Figure 5.14	The spatial expression pattern of <i>snail-Am</i> in an Acropora embryo 17	71

VIII. LIST OF TABLES

Table 1.1	Cnidarian orthologs of triploblastic genes involved in	
	organiser activity	10
Table 2.1	Bacterial strains and associated applications	23
Table 2.2	Media and solutions for bacterial manipulation methods	25
Table 2.3	Lambda vectors and their applications	26
Table 2.4	Media and solutions for phage manipulation methods	32
Table 2.5	Plasmid vectors and their applications	33
Table 2.6	Solutions associated with DNA manipulation methods	39
Table 2.7	Solutions associated with RNA manipulation methods	46
Table 2.8	Solutions associated with protein manipulation methods	51
Table 2.9	Solutions associated with antibody manipulation methods	55
Table 2.10	Media and solutions associated with yeast manipulation methods	59
Table 3.1	Temporal patterns of <i>emx-Am</i> expression during development	74
Table 4.1	Temporal patterns of <i>tlx-Am</i> expression during development	123
Table 5.1	Temporal patterns of <i>hbn-Am</i> expression during development	147
Table 5.2	Temporal patterns of <i>arx-Am</i> expression during development 1	156

IX. STATEMENT OF SOURCES

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Nikki R. Hislop