The Contribution of the Division of Radiophysics Potts Hill and Murraybank Field Stations to International Radio Astronomy

Thesis
submitted by

Harry Wendt
Centre for Astronomy, James Cook University, Townsville, Queensland 4811, Australia.
E-Mail: Harry.Wendt@jcu.edu.au

or

18 Boambillee Avenue, Vaucluse, New South Wales 2030, Australia.
E-Mail: h.wendt@bigpond.com

in October 2008

for the degree of Doctor of Philosophy
in the School of Maths, Physics and IT
James Cook University
1. **STATEMENT OF ACCESS**

I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Thesis network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and I do not wish to place any further restriction on access to this work.

2. **STATEMENT OF SOURCES**

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

3. **DECLARATION**

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library is an accurate copy of the print thesis submitted, within the limits of the technology available.

Harry Wendt
4. ACKNOWLEDGEMENTS

Firstly, I would like to thank my principal supervisor Dr. Wayne Orchiston for suggesting the topic of this thesis and for his advice and guidance throughout this research project. I would also like to thank Dr. Bruce Slee for taking the time to read and provide detailed comments on the drafts of my thesis. I thank Dr. Miller Goss for discussing Ruby Payne-Scott’s early work and for sharing archive and interview material with me, and for taking the time to read and comment on my draft thesis. I very much look forward to reading Miller’s book on Payne-Scott’s life. I would also like to thank my fellow ‘post-grad student’, Ron Stewart for many discussions and e-mail exchanges particularly on the early solar research at Radiophysics.

I am grateful to John Murray for sharing his recollections of the early years of Radiophysics and to his wife Joan for their hospitality during my visits. I would also like to acknowledge the assistance of Kathryn Brennan of the National Archives of Australia for her help with access to archive material and to Christine Van Der Leeuw of the A.T.N.F. Library at Marsfield. I also made extensive use of the NASA Astrophysical Data Service, hosted by the Harvard-Smithsonian Centre for Astrophysics in preparation of this thesis.

In addition to the referenced material I would like to acknowledge the following individuals and organisations for the contribution of photographs or diagrams:

ATNF Historical Photographic Archive, CSIRO
CE LCMS Historical Office, Department of the Army, U.S.A.
Daily Telegraph Newspaper
European Space Agency
Goss, M.
Hill, G.
MapData Science Pty. Ltd.
Mercury Newspaper
National Archives of Australia
People Magazine
Queen Victoria Museum and Art Gallery, Tasmania
TheSky Astronomy Software
Science Foundation for Physics, University of Sydney
Sullivan, W.T.
Sun Herald Newspaper
Sydney Morning Herald Newspaper

Finally I would like to thank my wife, Susan for proof reading and my son, Tom and dog Charlotte for their support during this project.
5. ABSTRACT

During the 1950s Australia was one of the world’s foremost astronomical nations owing primarily to the work of the dynamic Radio Astronomy Group within the Commonwealth Scientific and Industrial Research Organisation’s Division of Radiophysics. Most of the observations were made at the network of field stations maintained by the Division in or near Sydney, and one of the most notable of these was located at Potts Hill, the site of Sydney’s major water-distribution reservoirs. Another smaller field station called Murraybank was later established specifically to exploit the discovery of the hydrogen emission-line and together with Potts Hill these were the two research stations conducting hydrogen-line studies in Australia until 1962.

This paper examines the amazing range of radio telescopes developed at these field stations; the types of solar, galactic and extragalactic research programs to which they were committed; and the pioneering young men and women who played a key role in the early development of radio astronomy.
6. TABLE OF CONTENTS

1. STATEMENT OF ACCESS ... 2
2. STATEMENT OF SOURCES .. 2
3. DECLARATION .. 2
4. ACKNOWLEDGEMENTS ... 3
5. ABSTRACT ... 4
6. TABLE OF CONTENTS ... 5
7. TABLE OF FIGURES .. 5
8. INTRODUCTION TO THESIS ... 13
9. RADIO ASTRONOMY IN AUSTRALIA ... 15
 9.1. The Division of Radiophysics ... 24
10. RADIO ASTRONOMY AT POTTS HILL ... 30
 10.1. The Potts Hill Site History ... 30
 10.2. The Potts Hill Site Map .. 31
 10.3. The Potts Hill Researchers ... 39
 10.3.1. Christiansen ... 40
 10.3.2. Davies ... 42
 10.3.3. Hindman .. 43
 10.3.4. Kerr ... 44
 10.3.5. Labrum .. 46
 10.3.6. Little .. 47
 10.3.7. Mills ... 48
 10.3.8. Minett .. 49
 10.3.9. Parthasarathy .. 50
 10.3.10. Payne-Scott ... 51
 10.3.11. Piddington ... 52
 10.3.12. Robinson ... 54
 10.3.13. Smerd ... 55
 10.3.14. Stahr-Carpenter .. 56
 10.3.15. Swarup ... 57
 10.3.16. Thomas ... 59
 10.3.17. Trent ... 59
 10.3.18. Wade ... 60
 10.3.19. Warburton ... 60
 10.3.20. Yabsley .. 60
 10.4. The Instruments .. 61
 10.4.1. 16-ft x 18-ft Paraboloid (A) .. 64
 10.4.2. Portable 10-ft Parabola (B) .. 72
 10.4.3. Ex-Searchlight 44-in Parabola (C) ... 75
 10.4.4. 88-in Parabola (D) ... 78
 10.4.5. Swepl-Lobe Interferometer (E) ... 82
 10.4.6. The Solar Grating Arrays (F) .. 91
 10.4.7. 36-ft transit Parabola (G) ... 103
 10.4.8. Mills Cross Prototype (H) ... 118
 10.4.9. Miscellaneous Instruments .. 124
 10.4.9.1. Yagi Arrays (I) .. 124
 10.4.9.2. Suspended Dipole (J) .. 125
 10.4.9.3. Spectrohelioscope ... 126
 10.4.10. Fate of Instruments .. 127
 10.5. Major Research Contributions ... 128
 10.5.1. Solar Research ... 129
 10.5.1.1. 1948 Eclipse Observations .. 129
 10.5.1.2. Multi-Year Solar Observations .. 144
 10.5.1.3. Solar Brightness Distributions ... 148
 10.5.1.4. Solar Burst Observations ... 167
 10.5.2. Cosmic Research ... 183
 10.5.2.1. Discrete Sources and Surveys ... 184
 10.5.2.2. H-line Investigations .. 215
 10.5.3. Jupiter Burst Observations .. 255
 10.5.4. 1952 URSI General Assembly .. 256
 11. RADIO ASTRONOMY AT MURRAYBANK 261
 11.1. Murraybank Researchers ... 261
 11.1.1. J.D. Murray ... 261
 11.1.2. R.X. McGee ... 262
 11.2. The Establishment of Murraybank .. 263
 11.3. Murraybank Equipment .. 268
 11.4. Murraybank Research ... 284
 12. CONCLUSION .. 313
 13. REFERENCES ... 318
 14. APPENDICES ... 341
 14.1. Appendix A – Publications from Potts Hill 341
 14.2. Appendix B – Publications from Murraybank 343
 14.3. Appendix C – Radio-Frequency Spectral-Line Programs 343
7. TABLE OF FIGURES

Figure 1: The twenty different sites in the Greater Sydney-Wollongong regions associated with radio astronomy. These were Badgerys Creek (1), Collaroy (2), Cumberland Park (3), Dapto (4), Dover Heights (5), Fleurs (6), Freeman's Reach (7), Georges Heights (8), Hornsby Valley (9), Llandilo (10), Long Reef (11), Marsfield (12), Murraybank (13), North Head (14), Penrith (15), Potts Hill (16), the Radiophysics Laboratory in the gym (17), Rossmore (18), Wallacia (19), West Head (20). The dotted outline shows the current approximate boundaries of Greater Sydney and Greater Wollongong (after Orchiston and Slee, 2005a: 121).

Figure 2: Dr. J.L. Pawsey (Courtesy of ATNF Historical Photographic Archive: B7454-1). .. 25

Figure 3: Potts Hill (circled) is located 23km to the south west of the central business district of Sydney (©2007 MapData Science Pty. Ltd, PSMA). .. 32

Figure 4: The vacant land used by Radiophysics Division is shown marked by a dashed box. In this diagram North is up. (©2007 MapData Science Pty. Ltd, PSMA). .. 33

Figure 5: An aerial view of Potts Hill taken from the north looking south. The main part of the field station is in the immediate foreground (Courtesy of ATNF Historic Photographic Archive: B3253-1 Image Date: 19 March 1954). .. 33

Figure 6: Potts Hill in 2007. The image shows a similar aspect to Figure 4 (©2007 DigitalGlobe). .. 34

Figure 7: A sketch plan for the Potts Hill field station from mid June 1948. At this stage only the Swept-Lobe Interferometer, the 16-ft x 18-ft and two Yagi arrays appear on the plan (Courtesy of the National Archives of Australian – 972098 - C3830 - A1/1/1 Part 3 Box 1). .. 35

Figure 8: Site Map showing location of major radio telescopes used at Potts Hill .. 36

Figure 9: A closer aerial view of the Potts Hill field station looking toward the south. The E-W and N-S Solar Grating Arrays are visible on the far and left banks of the reservoir respectively. The main field station with instruments marked by circles is visible in the foreground. From left to right these are the 16-ft-18-ft Paraboloid, the Four Element Yagi, the central Yagi of the Swept-Lobe Interferometer, the Single Yagi used in conjunction with the Swept-Lobe Interferometer, the 36-ft Transit Parabola and its reference aerial. The 68-in and 44-in Paraboloids are just outside the image located to the left of the site (due east) of the 16-ft-18-ft Paraboloid (Courtesy of ATNF Historical Photographic Archive: B3475-2 Image Date: 19 March 1954). .. 37

Figure 10: Potts Hill field station looking west with visible instruments marked by circles and the crossed lines. The Mills Cross prototype is in the foreground. Next to it is the 10-ft Portable Parabola and the 16-ft x 18-ft Paraboloid. In the background are the 36-ft Transit Parabola and its reference aerial. The Yagi arrays are just out of the picture to the left, however one of the equipment trailers is visible. The 68-in and 44-in Paraboloids are behind the photograph and to the left (Courtesy of ATNF Historical Photographic Archive: B3171-4 Image Date: 7 October 1953). .. 38

Figure 11: Potts Hill in 1948-9. From left to right are Ruby Payne-Scott, Alec Little, George Fairweather, Alan Carter and Joe Pawsey (Courtesy of ATNF Historical Photographic Archive: B12759-1). .. 39

Figure 12: W.H. Christiansen in 1957 (Courtesy of National Archives of Australia: Image No. A1200, L23898). .. 41

Figure 13: R.D. Davies in 2001 (Courtesy of the European Space Agency). .. 42

Figure 14: J.V. Hindman in 1952 (Adapted from ATNF Historic Photographic Archive: B2842 Image Date: 8 August 1952). .. 43

Figure 15: F.J. Kerr in 1952 (Adapted from ATNF Historic Photographic Archive: B2842 Image Date: 8 August 1952). .. 45

Figure 16: N.R. Labrum in 1948 at Potts Hill attending to the 68-in Paraboloid (Adapted from ATNF Historical Photographic Archive: B1581-3 Image Date: 26 October 1948). .. 46

Figure 17: A.G. Little in about 1948-49 (Adapted from ATNF Historical Photographic Archive: B12759-1). .. 47

Figure 18: B.Y. Mills in the mid 1950s (Adapted from W.T. Sullivan). .. 48

Figure 19: H.C. Minnert (after Thomas and Robinson, 2005). .. 50

Figure 20: R.V. Payne-Scott (Courtesy of Miller Goss). .. 51

Figure 21: J.H. Piddington (Courtesy of ATNF Photographic Archive: SP014). .. 53

Figure 22: A drawing of Piddington in 1952 (Courtesy of the Daily Telegraph Newspaper). .. 54

Figure 23: B.J. Robinson (Courtesy of ATNF Historic Photographic Archive: SR017-2). .. 55

Figure 24: S.F. Smerd in 1952 (Adapted from the ATNF Historical Photographic Archive: 2842-43 Image Date: 8 August 1952). .. 56

Figure 25: Martha Stahr-Carpenter in 1954 (Courtesy of Sydney Morning Herald Newspaper). .. 57

Figure 26: G. Swarup in 2007 (Courtesy of Queen Victoria Museum and Art Gallery, Launceston Australia). .. 58

Figure 27: Interferometer Paraboloid at George's Heights Field Station (Courtesy of ATNF Historical Photographic Archive: B1164 Image Date: 13 Sep 1947). .. 61

Figure 30: Example of 'picket fence' recording as a result of the drift/scan observation technique (after Lehany and Yabsley, 1949: 50). .. 65

Figure 31: 16-ft-18-ft Paraboloid on the new polar mount at Potts Hill field station (Courtesy of ATNF Historic Photographic Archive: B2649-3 Image Date: 2 January 1952). .. 66

Figure 32: Close-up of the prime focus plate showing the three different feed dipoles. Note that a pair of dipoles was used at the two higher frequencies (after Lehany and Yabsley, 1949: Plate 2). .. 67

Figure 33: Block diagram of the 1,210 MHz receiver system (after Piddington and Minnert, 1951a: 460). .. 68

Figure 34: 16-ft-18-ft Paraboloid showing guide wires supporting the prime focus receiver plate (Adapted from ATNF Historic Photographic Archive: B2649-3 Image Date: 2 January 1952). .. 69

Figure 35: Block diagram of the H-line Receiver (after Christiansen and Hindman, 1952b: 439). .. 70

Figure 36: Illustration of H-line receiver operation and theoretical output signal - R = receiver pass-bands, H = H-line signal, D = Recorder signal output (after Christiansen and Hindman, 1952b: 440). .. 71

Figure 37: AN/TPS-3 Radar Set in operation at Camp Evans, New South Wales, Australia (Courtesy of CE LCMS Historical Office Department of the Army, USA). .. 73

Figure 38: A 10-ft Paraboloid undergoing trials at the Georges Heights field station in August 1948 (Courtesy of ATNF Historical Photographic Archive: B1511 Image Date: 13 August 1948). .. 74
Figure 39: Portable 10-ft Parabola at Potts Hill showing crossed dipoles and reflectors at the prime focus feed (Courtesy of ATNF Historic Photographic Archive: B1803-2 Image Date: 29 May 1949). 75

Figure 40: The ex-Searchlight 44" Paraboloid shown mounted on the 'Eagle's Nest' on top of the Radiophysics building in the grounds of Sydney University (Courtesy of ATNF Historic Photographic Archive: B1641 Image Date: 4 January 1949). 77

Figure 41: Block diagram of the receiver used in both Lunar and Solar observations (after Kerr et al., 1954: 260). 78

Figure 42: The 68-in Parabola at Potts Hill (Piddington and Hindman, 1949: Plate 1). 79

Figure 43: Front view of the 68-in Paraboloid (Courtesy of ATNF Historic Photographic Archive: B2475-1 Image Date: 24 April 1951). 80

Figure 44: 68-in and 44-in aerials at Potts Hill with associated equipment (Courtesy of ATNF Historic Photographic Archive: B3171-1 Image Date: 7 October 1953). 81

Figure 45: The western aerial of the swept-lobe interferometer at Potts Hill (Courtesy of ATNF Historic Photographic Archive: 2217 Image Date: 28 July 1950). 83

Figure 46: Site map showing aerial locations of the swept-lobe interferometer (after Little and Payne-Scott, 1951: 494). 84

Figure 47: Block diagram of swept-lobe interferometer (after Little and Payne-Scott, 1951: 494). 86

Figure 48: Example recording showing three photographed frames of a circularly-polarised source (Little and Payne-Scott, 1951: Plate 4). 87

Figure 49: Keith McAlister, the resident Mechanical Engineer at Radiophysics who was responsible for the mechanical design of many of the aerials (Courtesy of ATNF Historic Photographic Archive). 92

Figure 50: The 32-element array at Potts Hill (Courtesy of ATNF Historic Photographic Archive: 2976-1 Image Date: 14 January 1953). 93

Figure 51: The array showing the bracing weights for the open-wire transmission lines (Courtesy of ATNF Historic Photographic Archive: B2976-1 Image Date: 28 November 1951). 94

Figure 52: Schematic of the branching transmission lines on the 32-element solar grating array (after Christiansen and Warburton, 1953a: 192). 95

Figure 53: Beam response diagram for the 32-element array. The power received from the source is shown on the Y-axis and that direction of the array beam on the X-axis (after Christiansen and Warburton, 1953a: 192). 96

Figure 54: An example of the output recording showing the passage of the Sun through several beams of the array (after Christiansen and Warburton, 1953a: 193). In this example a strong source of emission is present near the right-hand limb of the Sun. 96

Figure 55: Range of scanning angles covered by the arrays (after Christiansen and Warburton, 1953a: 479). 97

Figure 56: North-South Array (Courtesy of ATNF Historic Photographic Archive: 3116-1 Image Date: 20 July 1953). 98

Figure 57: Aerial view of the 32-element east-west and the 16-element north-south arrays (Courtesy of ATNF Historic Photographic Archive: 3474-1 Image Date: 25 September 1954). 99

Figure 58: The prototype of the larger aerial in the background that was to be used in the new crossed array being tested at Potts Hill (Courtesy of ATNF Historic Photographic Archive: B3881-2 Image Date: 13 December 1955). 101

Figure 59: Another view of the cross grating prototype aerial being tested at Potts Hill (Courtesy of ATNF Historic Photographic Archive: B3881-14 Image Date: 13 December 1955). 102

Figure 60: Construction of the foundations for the 36 Transit Parabola (Courtesy of ATNF Historical Photographic Archive: B2768-1 Image Date: 6 June 1952). 104

Figure 61: The two major support posts of the 36-ft aerial during construction (Courtesy of ATNF Historical Photographic Archive: B2778-5 Image Date: 19 June 1952). 105

Figure 62: The on-site assembly of the 36-ft Parabola in its construction jig (Courtesy of ATNF Historical Photographic Archive: 2774-2 Image Date: 3 September 1952). 106

Figure 63: The 36-ft Parabola being lifted by crane into the transit mounting (Courtesy of ATNF Historical Photographic Archive: B2975-19 Image Date: 14 January 1953). 107

Figure 64: The 36-ft Transit Parabola in final assembly in its mounting (Courtesy of ATNF Historical Photographic Archive: 2975-1 Image Date: 14 January 1953). 108

Figure 65: The measured shape (open circles) of the main lobe radiation pattern of the 36-ft parabola at 1,400 MHz compared to a Gaussian curve (solid line) (after Hindman and Wade, 1959: 260). 109

Figure 66: The 36-ft Transit Parabola ready for H-line observations (Courtesy of ATNF Historical Photographic Archive: 3170-2 Image Date: 14 January 1953). 110

Figure 67: A block diagram of the "single-channel" multi-channel receiver prototype (after Kerr et al., 1954: 301). 111

Figure 68: The 36-ft aerial showing the four-arm prime focus supports (Courtesy of ATNF Photographic Archive: 3679-1 Image Date: 1 June 1955). 112

Figure 69: Example of the H-line profiles produced by the prototype multi-channel receiver (after Kerr et al., 1954: Adapted from Figure 3. 303). 113

Figure 70: The modified late stages of the four-channel receiver (after Kerr et al., 1959: 274). 114

Figure 71: Example of the "Picket Fence" effect where the 36-ft aerial was pointed at the south celestial pole between declination track scans (after Kerr et al., 1959: 280). 115

Figure 72: The 36-ft transit parabola with the 6-ft reference aerial in the right foreground. The people in the image are from left to right Kerr, Hindman, Robinson and Pawsey (Courtesy of ATNF Historic Photographic Archive). 116

Figure 73: Block diagram of the modified receiver to allow broadband detection around 1,400 MHz (after Hindman and Wade, 1959: 261). 117

Figure 74: The 21-ft Parabola at the Murraybank field station (Courtesy of ATNF Historic Photographic Archive). 118

Figure 75: Diagram of the dipole arrangement of the prototype Mills Cross array (after Mills and Little, 1953: 275). 120

Figure 76: A close up view of the prototype Mill Cross at Potts Hill (ATNF Historic Photographic Archive: B3064-3 Image Date: 21 April 1953). 121

Figure 77: Block diagram of the receive-only prototype Mills Cross array (after Mills and Little, 1953: 275). 121

Figure 78: Example output recording of the Sun passing through the pencil beam of the prototype Mills Cross. The upper graph shows the phase-detected output while the lower graph shows the receiver output level (after Mills and Little, 1953: 277). 122

Figure 79: The Mills Cross Prototype at Potts Hill. In the background is the 16-ft×18-ft Paraboloid and the 36-ft Transit Parabola (Courtesy of ATNF Historic Photographic Archive: B3171-7 Image Date: 7 October 1953). 123

Figure 80: A four-element Yagi array at Potts Hill (Courtesy of ATNF Historic Photographic Archive: P12205-1). 125
Figure 81: Dr. Giovannelli and Miss Marie McCabe examining a spectroheliograph photograph (Courtesy of Sun-Herald, Sydney 16 September 1956). ... 127
Figure 82: A 10-ft Parabola showing damage to one of its eight sections at Potts Hill in the 1950s (Adapted of the ATNF Historical Photographic Archive: B2639 Image Date: 28 November 1951). ... 128
Figure 83: Circumstances of the partial solar eclipse of November 1, 1948 as observed from Potts Hill (after Piddington and Hindman, 1949: 529). ... 130
Figure 84: Correlation diagram between apparent temperature and sunspot area given as units of 10³ of solar disk (after Pawsley and Yabsley, 1949: 208). ... 131
Figure 85: Sunspot groups visible on the solar disk immediately prior to the partial solar eclipse of 1 November 1948 (Christiansen et al., 1949b: Plate 2). ... 132
Figure 86: The Sydney Technical College telescope used for solar imaging during the eclipse observations. Photographs were taken using the 15 cm (6-in) guide-scope attached to the 46 cm (18-in) reflector (Courtesy of the ATNF Historical Photographic Archive: B1899-7). ... 133
Figure 87: Eclipse record taken at Potts Hill at 600 MHz (after Christiansen et al., 1949b: 510). ... 134
Figure 88: Eclipse record taken at Rockbank in Victoria at 600 MHz (after Christiansen et al., 1949b: 511). ... 134
Figure 89: Eclipse record taken at Strahan in Tasmania at 600 MHz (after Christiansen et al., 1949b: 512). ... 135
Figure 90: The location of the discrete radio sources on the solar disk, VS = Visible sunspot, FS = Position of a visible 27 days earlier sunspot, P = Solar prominence (after Christiansen et al., 1949b: 513). ... 136
Figure 91: Correlation of sunspot area to 3,000 MHz radiation (after Piddington and Hindman, 1949: 527). ... 138
Figure 92: A reconstruction of the scatter plot used to determine the ‘quiet’ Sun temperature at 3,000 MHz. The graph is based on data used to produce Figure 91. ... 139
Figure 93 (a): A 1,200 MHz sunspot sunspot temperature area versus apparent temperature for a fit of the best fit and base temperature changes for three different periods in 1950. ... 140
Figure 93 (b): The theoretical distribution of temperature as a function of distance from the centre of the solar disk. Temperatures of 3 × 10⁷ K and 10⁸ K are assumed for the chromosphere and corona respectively (after Smerd, 1950b: 46). ... 147
Figure 94: Scatter plot showing the correlation between sunspot area and solar disk temperature and used to establish the temperature ‘quiet’ Sun at 10⁸ K (after Minnett and Labrum, 1950: 65). ... 141
Figure 95: Correlation of sunspot area and radiation at 9,428 MHz (after Minnett and Labrum, 1950: 65). ... 141
Figure 96: Sunspot temperatures showing the period 1947 to 1951 (Based on data from the National Geophysical Data Centre). ... 144
Figure 97: Scatterplot showing the correlation between sunspot area and solar disk temperature during 1947 and 1949-50 at 1,200 MHz (after Christiansen and Hindman, 1951: 636). ... 145
Figure 98: Photograph of the Sun during the total solar eclipse of June 30, 1954 (after Christiansen and Warburton, 1953b: 198). ... 150
Figure 99: Corrected correlation of apparent temperature at 600 MHz to composite rotational average sunspot area based on observations from December 1949 to April 1951 (after Piddington and Davies, 1953b: 629). ... 149
Figure 100: Daily records of one-dimensional brightness distributions across the solar disk from 20 to 28 October 1952 (after Christiansen and Warburton, 1953b: 198). ... 150
Figure 101: Twenty individual daily one-dimensional brightness distribution scans superimposed. The visual solar disk is indicated by the black bar on the x-axis (after Christiansen and Warburton, 1953b: 200). ... 151
Figure 102: Radial distributions of brightness across the solar disk based on one-dimensional scan observations (after Christiansen and Warburton, 1953b: 268). ... 152
Figure 103: A reconstruction of the scatter plot used to determine the ‘quiet’ Sun temperature at 3,000 MHz. The graph is based on data used to produce Figure 91. ... 139
Figure 104: Two examples of one-dimensional brightness distribution scans superimposed. The visual solar disk is indicated by the black bar on the x-axis (after Christiansen and Warburton, 1953b: 200). ... 151
Figure 105: Photograph of the Sun during the total solar eclipse of June 30, 1954 (after Christiansen and Warburton, 1953b: 198). ... 150
Figure 106: Radial distributions of brightness across the solar disk based on one-dimensional scan observations (after Christiansen and Warburton, 1953b: 268). ... 152
Figure 107: An example of the Sun passing through several of the beams of the east-west (a) and north-south (b) beams of the Grating Arrays (after Christiansen and Warburton, 1955a: 477). ... 153
Figure 108: An example of a one-dimensional scan taken for two different scans taken on the same day (after Christiansen and Warburton, 1955a: 478). ... 153
Figure 109: An example of the derived two-dimensional image of the radio brightness distribution across the Sun at 1,420 MHz. The central brightness temperature is 4.7 × 10⁷ K and the maximum peak temperature is 6.8 × 10⁷ K. Contours are spaced at equal intervals of 4 × 10⁷ K (after Christiansen and Warburton, 1955a: 482). ... 154
Figure 110: Photograph of the Sun during the total solar eclipse of June 30, 1954 (after Christiansen and Warburton, 1955a: Plate 2). ... 155
Figure 111: CSIRAC at the Radiophysics Laboratory in June 1952 (Courtesy of Geoff Hill). ... 156
Figure 112: Superimposed one-dimensional brightness distributions at 500 MHz taken between July 1954 and March 1955. Observations were taken from (a) 18 July to 5 August 5:30; (b) 9 August to 1 September 5:11; (c) 15 December to 3 January 5:30; (d) 7 February to 4 March 5:26; (e) represents the angle in arc minutes between the Sun’s central meridian and the aereal beam (after Swarup and Parthasarathy, 1955b: 490). ... 157
Figure 113: Radial brightness distributions at 500 MHz comparing Stanier’s result (dotted) and Swarup and Parthasarathy’s observations (after Swarup and Parthasarathy, 1955b: 493). ... 158
Figure 114: Brightness distributions at 500 MHz for the aerial beam at 90º (solid line) and 64º (dotted line) to the Sun’s prime meridian (after Swarup and Parthasarathy, 1955b: 491). ... 159
Figure 115: The location of the discrete radio sources on the solar disk. Photographs of the one-day development of radio flux. The day before the mature sunspot are shown by line connected points with arrows showing the direction of development (after Christiansen et al., 1957: 511). ... 157
Figure 116: Spectroheliograms showing plague faculiare (Ca K) regions with maximum 1,420 MHz emission position lines from one-dimensional scans show as vertical lines (after Christiansen et al., 1957: 506). ... 160
Figure 117: The location of the discrete radio sources on the solar disk. Photographs of the one-day development of radio flux. The day before the mature sunspot are shown by line connected points with arrows showing the direction of development (after Swarup and Parthasarathy, 1955: 345). ... 158
Figure 118: The circumstances of the 8 April 1948 partial solar eclipse as viewed from Potts Hill (after Krishnan and Labrum, 1961: 406). ... 162
Figure 119: The brightness distribution during the partial solar eclipse of 8 April 1959 as observed by the Chris Cross. The contour spacing unit is 10,000 K, aerial beamwidth 4 arc minutes (after Krishnan and Labrum, 1961: 407). ... 163
Figure 120: The eclipse curve obtained at Potts Hill for the 8 April 1959 partial solar eclipse (after Krishnan and Labrum, 1961: 408). ... 164

Figure 121: Line-A represents the eclipse observation adjusted for the emissions to lie radially at a height of 70,000 km above the photosphere. A theoretical model based on enhanced ears in the limb-brightening is then used to obtain the quiet Sun component during the eclipse (Line-B). Line-B is then subtracted from the eclipse curve to produce Line-C. The close fit of Line-A and Line-C indicates that the model enhanced limb brightening was the best representation of the quiet Sun’s distribution (after Krishnan and Labrum, 1961: 415). ... 165

Figure 122: Four different quiet Sun models were tested against the eclipse observations. Model (1) assumes a uniform disk of radius 1.3 times the photospheric radius. Model (2) assumes a uniform disk of radius 1.2 times the photospheric radius containing 75% of the quiet Sun flux with a narrow ring around the limb containing the remaining 25%. Model (3) was based on the Christiansen and Warburton (1955) distribution with temperature scaled up by a factor of two to account for the sunspot maximum. Model (4) is the same type of distribution as Model (3) but with the temperature gradient in the ear component of limb-brightening scaled up by a factor of 2. The upper graph shows the model distribution along the solar axis and the lower graph across the solar axis (after Krishnan and Labrum, 1961: 417). ... 165

Figure 123: Idealised examples of solar radio sources in three broad frequency bands. The base level (B) increases approximately linearly with wavelength from an apparent temperature of \(10^6 \text{K} \) at 1 cm to \(10^5 \text{K} \) at 1 m (after Piddington and Bracewell, 1955: 147). ... 165

Figure 124: Examples of 200 MHz measurement of burst and outbursts (after Allen, 1947: 388). ... 166

Figure 125: Power flux records for the seven frequencies observed on 17 (left) and 21-22 (right) February 1950. The top record is of the field strength for the radio station VLO-3 from Brisbane, measured at Sydney. The 200 MHz record is from Mt Stromlo (after Christiansen et al., 1951: 53). ... 166

Figure 126: Schematic of the start of the outbursts at the different frequencies, together with the radio fade out and magnetic crochet. February 17th (left) and 21-22nd (right) (after Christiansen et al., 1951: 57). ... 167

Figure 127: The outburst of 17 February 1950, showing the flare position on the solar disk, the outburst position movement and polarisation measurements. The lower chart shows the overall emission measurement at 98 MHz with timing marks indicated by the downwave Scott and Little, 1952) (after Payne-Scott and Little, 1956). ... 167

Figure 128: The earlier published version of the outburst of February 17, 1950 (after Bracewell, 1950: 186). ... 168

Figure 129: The outburst of 22 February 1950, showing flare position on the solar disk, the outburst position movement and polarisation measurements. The lower chart shows overall emission measurements at 98 MHz with timing marks indicated by the downwave ticks (after Payne-Scott and Little, 1952: 35). ... 168

Figure 130: The 11 August 1950 outburst showing the inward movement of the outburst structure (after Payne-Scott and Little, 1952: 34). ... 168

Figure 131: Storm source position lines from the swept-lobe interferometer shown on sunspot sketches from Mount Stromlo (after Payne-Scott and Little, 1951: 514). ... 169

Figure 132: Scatter diagram of sunspot groups from Mount Wilson Observatory May 1949 to July 1950 overlaid with Noise observations (after Payne-Scott and Little, 1951: 515). ... 169

Figure 133: Model showing the relation between the apparent positions of a 100 MHz source and the associated sunspot group, assuming the source is in the corona (after Payne-Scott and Little, 1951: 522). ... 169

Figure 134: Observation summaries of the six noise storms observed in detail using the swept-lobe interferometer. Note graph (d) contains two storm records (after Payne-Scott and Little, 1951: 516). ... 170

Figure 135: Example of the seven radio frequency records together with fadeout, magnetic crochet and optical solar flare records taken on 22 June 1951 (after Davies, 1954: 77). ... 170

Figure 136: Analysis of the average number of solar bursts per hour by frequency for the period January 1950 – June 1951 (based on data from Davies, 1954: 78). ... 170

Figure 137: Count of solar and cosmic research papers based on research performed at Potts Hill during the life of the field station. ... 171

Figure 138: A typical record of Cygnus source transiting the interferometer beams (after Piddington and Bracewell, 1955: 181). ... 171

Figure 139: Optical Image of Cygnus A (after Piddington and Bracewell, 1955: 147). ... 171

Figure 140: The original image plate (colour inverted) with the position estimate rectangle shown together with the actual position of Cygnus A marked by the cross hair (after Mills and Thomas, 1951: Plate 1A). ... 172

Figure 141: Examples of fluctuations observed in the emissions from Cygnus A. The top chart shows an example of the ‘fast’ fluctuations. The middle chart shows an example of the ‘slow’ fluctuations, and the bottom two charts show the correlation of signals between to aerials spaced 300 metres apart (after Mills and Thomas, 1951: 166). ... 172

Figure 142: Position estimate for Cygnus A with position of faint extra-galactic nebula shown (Mills, 1952b: 460). ... 172

Figure 143: Plot of Position (1950) estimates for Cygnus A. (A) = Mills and Thomas (1951) radio position. (B) = The optical position of the nebulae (in error) suggested by Mills in letter to Minkowski, (C) = actual position of nebulae. (D) = Smith (1951) revised position. The square markers indicate the error estimate on Mills’ and Thomas’ (1951) radio position. ... 173

Figure 144: Example of 1,210 MHz records of Cygnus A and Cygnus X for three different declinations (after Piddington and Minnett, 1952: 18). ... 173

Figure 145: Upper graph shows contours of equal aerial beam temperature at 1,210 MHz. Lower chart shows the derived flux density of the sources Cygnus A and X (after Piddington and Minnett, 1952: 19). ... 173

Figure 146: Reber’s 480 MHz observation at a declination of +40° showing both Cygnus A (left) and the extended Cygnus X source (after Reber, 1948: Figure 5). ... 174

Figure 147: The Cygnus source interference pattern from the Dover Heights 100 MHz sea-interferometer. The record was interpreted as showing an interference pattern from the discrete source in Cygnus superimposed on the local diffuse maximum in galactic noise (after Bolton and Westfold, 1950a: 24). ... 174

Figure 148: Reber’s 480 MHz observation of Cygnus A and X (top chart). The orientatoin with enhanced ear component of X is perpendicular to that observed by Piddington and Minnett (after Reber, 1948: Figure 3). ... 175

Figure 149: The radio spectra of Cygnus A and Cygnus X with comparison spectrums of the general galactic radiation and radiation from a theoretical gas cloud. Note that the value of flux densities for Cygnus A have been multiplied by 10 to avoid overlapping the curves (after Piddington and Minnett, 1952: 22). ... 176

Figure 150: Scatter chart showing Hilbert transform of the lower vertical grid line of Cygnus X. The black diagonal line in the bottom right indicates the Galactic Plane. Cygnus A is marked by the cross hair (Courtesy of TheSky © Astronomy Software 1984-1998). ... 177
Figure 151: Examples of earlier surveys around the Galactic Centre (Bolton and Westfold, 1950b: 255).

Figure 152: Example of a drift scan at 1,210 MHz across the Galactic Plane and showing the discrete source Sagittarius A. The beam width was ±1.4°. Note that the original caption published with this figure incorrectly referred to the beam width of the 68-in Parabola that was used for the 3,000 MHz observations (Piddington and Minnett, 1951a: 463).

Figure 153: Aerial temperature contours at 1,210 MHz showing the discrete source Sagittarius A (Piddington and Minnett, 1951a: 465).

Figure 154: The radio spectra for the Large Magellanic Cloud (Vaucouleurs, 1955: 515). Centaurus A and Sagittarius A flux density scale for Taurus A has been changed by a factor of 10 to separate the curves (after Piddington and Minnett, 1951a: 468).

Figure 155: Radio spectrum of coldest parts of the background sky based on prior surveys (after Piddington and Trent, 1956b).

Figure 157: A more recent 408 MHz survey showing the equivalent region to the 600 MHz survey (after Haslam et al., 1982).

Figure 158: The position of the ridge of maximum radio emission at 600 MHz plotted in galactic coordinates. The dotted line represents a hypothetical galaxy model. 242 MHz observations near the Galactic Pole are also shown (after Piddington and Trent, 1956b: 491).

Figure 159: Variation of intensity at 600 MHz along the Galactic Plane. Individual sources, marked with their catalogue number, are shown. Source 37 is Sagittarius A (after Piddington and Trent, 1956a: 81).

Figure 160: Example of a drift scan through the Eta Carinae Nebula (NGC 3372) (after Hindman and Wade, 1955: 262).

Figure 161: A map of aerial temperature at 1.400 MHz versus position showing the Eta Carinae Nebula (NGC 3372) (after Hindman and Wade, 1959: 263).

Figure 162: Ha image of the ETA Carinae Nebula taken with the 8-inch f1 Meinel-Pearson Schmidt camera at Mount Stromlo Observatory. The line at position angle 335° indicates the line along which Gum measured the surface brightness of the Nebula. East is to the left of the image (after Wade, 1959a: Plate 1).

Figure 163: Wade’s model of the Eta Carinae Nebula (after Wade, 1959a: 426).

Figure 164: A contour map of aerial temperature for Centaurus-A at 1,400 MHz. The dotted lines are estimates of the contour lines which were below the detection threshold of the equipment (after Hindman and Wade, 1959: 268).

Figure 165: Hand-drawn sketch by Kerr of the Hα response detected by Ewen, included in a letter to Fawsey dated 30 March 1951 (National Archives – C8350 – A13/Part 1).

Figure 166: Example of H-line observation in the Taurus region (after Christiansen and Hindman, 1952b: 444).

Figure 167: Example of H-line detection made on 9 April 1951, approximately two weeks after the initial discovery (courtesy Ewen, 2003).

Figure 168: A series of six records taken along the Galactic Equator. A check record was performed near the end of each observing run to test receiver stability (after Christiansen and Hindman, 1952b: 445).

Figure 169: An example of the peak brightness profile in a strip along declination +10° (after Christiansen and Hindman, 1952b: 445).

Figure 170: Full sky contour map of hydrogen-line emission. The peak brightness of 25 units corresponds to a brightness temperature of approximately 100 K (after Christiansen and Hindman, 1952b: 446).

Figure 171: Example line profiles (a) and the corresponding receiver outputs (b). The sweep (s) of the two pass-bands (black boxes) is shown in the top left (after Christiansen and Hindman, 1952b: 442).

Figure 172: Examples of smoothed records and the calculated line profile in the region of the Galactic Centre (a), the Anti-centre (b) and the Cygnus region (c) (after Christiansen and Hindman, 1952b: 447).

Figure 173: An example of the smoothed record and the resulting double line profile (after Christiansen and Hindman, 1952b: 448).

Figure 174: example of smoothed records obtained from the Small Magellanic Cloud (after Kerr et al., 1951). The flux density scale for the Eta Carinae Nebula (NGC 3372) (after Haslam et al., 1982). The equivalent region to the 600 MHz survey (after Haslam et al., 1982).

Figure 175: Plot of central frequencies for line profiles showing double line profiles (a) and single line profile (b) regions. Line (c) is the expected frequency variation due to the Earth’s relative motion (after Christiansen and Hindman, 1952b: 448).

Figure 176: Calculated brightness peaks due to galactic rotation for given hydrogen densities (n). Dots indicate actual observations (after Christiansen and Hindman, 1952b: 449).

Figure 177: Gathering at the 1952 URSI meeting in Sydney of those involved in the initial detection and confirmation of the Hα line. From left to right: Kerr, Wild, Hindman, Ewen, Muller and Christiansen. Note also the special URSI ‘Kangaroo’ lapel buttons being worn (courtesy of ATNF Historic Photographic Archive: B2842-4SR Image Date: 8 August 1952).

Figure 178: Example of Hα profiles obtained from the Small Magellanic Cloud (after Kerr et al., 1951).

Figure 179: An example of the brightness distribution of line emission from the Small Magellanic Cloud at four different radial velocities (after Kerr et al., 1954: 302).

Figure 180: Integrated brightness contours of H-line emission from the Magellanic Clouds (after Kerr et al., 1954: Plate 2).

Figure 181: Median radial velocity contours, corrected for galactic rotation and motion of the Sun (after Kerr et al., 1954: Plate 2).

Figure 182: Optical view of the Large and Small Magellanic Clouds. This image should be compared with Figure 175 (after Kerr et al., 1954: Plate 2).

Figure 183: The relationship of the Large and Small Magellanic Clouds to our Galaxy and the Sun. The dotted line shows the approximate extent of HI (after De Vaucouleurs, 1955b: 229).

Figure 184: Optical rotation curve for the Large Magellanic Cloud with respect to the optical centre. The top chart is the full scatter diagram with solid dots representing points within ±90° of the centre with . The bottom chart is the best fit curve (after Kerr and De Vaucouleurs, 1955: 512).

Figure 185: The H-line rotation curve for the Large Magellanic Cloud based on the radio centre (after Kerr and De Vaucouleurs, 1955: 512).

Figure 186: H-line rotational curve for the Small Magellanic Cloud based on the radio centre of rotation (after Kerr and De Vaucouleurs, 1955: 515).

Figure 187: Corrected peak and median rotational curves for the Large Magellanic Cloud (after Kerr and De Vaucouleurs, 1956: 93).

Figure 188: H-line survey paths through the Galactic Equator. Both pre- and post-1959 Galactic Equators are shown. Celestial coordinates (top scale) are epoch 1955. Galactic co-ordinates (bottom scale) are pre-1959 coordinates (after Kerr et al., 1959: 277).

Figure 189: The provisional diagram of the galactic spiral structure based on the Potts Hill observations (after Carpenter, 1957: 15).
Figure 190: H-line radial velocity contour profiles for the three galactic longitude sections l = 260° (top), 270° (middle) and 275° (bottom) showing three spiral arms in this direction (after Carpenter, 1957: 15)...242

Figure 191: Composite diagram of the spiral structure of the Galaxy based on observations from Potts Hill (left half) and Leiden (right half). The Galactic Centre is marked by a cross and the Sun's position and assumed circular orbit is also shown. A distance of 8.2 kpc from the Sun to the Galactic Centre is assumed (after Kerr et al., 1957: 677)...243

Figure 192: A revised spiral arm map based on optical and radio data with the major arms and sub arms annotated. Note that the Orion arm was not considered a major feature in this map (after Georgelin and Georgelin, 1976: 74)...244

Figure 193: Relief map of the Galaxy with contours indicating the departure in parsecs from the Galactic Plane. The lower portion (b) shows a cross section in the direction of the Large Magellanic Cloud (after Kerr et al., 1957: 678)...245

Figure 194: The measured ratio of neutral hydrogen to total mass in the Galaxy with the space density in the equatorial plane compared to the projected density that corresponds to the distribution that would be seen from outside of the Galaxy (after Kerr and Hindman, 1957: 559)..246

Figure 195: An example of the H-line intensity contour diagram. The galactic latitude b is the 1932 Galactic coordinate system.247

Figure 196: Derived rotation curve of the Galaxy based on the Leiden (dots) and Potts Hill (crosses) H-line observations. The assumed distance of the Sun from the Galactic Centre is 8.2 kpc (after Oort et al., 1958: 381)...248

Figure 197: The density distribution of neutral hydrogen in the Galactic Plane. The maximum densities in the z direction are plotted on the Galactic Plane and the points of common density are joined by contours (after Oort et al., 1958: Plate 6)..249

Figure 198: Deviation of neutral hydrogen from the principle plane of the Galaxy. Note the image has been colour inverted from the original (after Oort et al., 1958: Plate 5)..250

Figure 199: Revised density distribution of neutral hydrogen in the Galactic Plane based on a new rotation model and assuming an outward motion of the Sun of 7 km/s (after Kerr, 1962: 340)..251

Figure 200: Position of the new (1958 revision) of the Galactic Pole relative to Olsson's 1932 Pole (after Blauw et al., 1960: 129)..253

Figure 201: Distribution of points of maximum density of neutral hydrogen. Solid circles indicate tangential points measured from Potts Hill. Open circles indicate tangential points measure from Leiden. The small dots are all measure points from the two surveys (after Gun et al., 1960: 141)..253

Figure 202: Wide beam (left), narrow beam (centre) and neutral hydrogen (right) radio continuum 'ridge-lines'. Data plotted using the 1932 galactic coordinates. The dotted sine curve indicates the newly-derived Galactic Equator (after Gum and Pawsley, 1960: 153)...254

Figure 203: The spaced-receiver records for Potts Hill (top) and Fleurs (bottom) taken at 19.6 MHz on February 26, 1956 (after Gardner and Shain, 1956: 60)..256

Figure 205: From Left to Right are Christiansen, Appolton and van der Pol inspecting the E-W Solar Grating Array during the 1952 URSI meeting (Courtesy of ATNF Historical Photographic Archive: B2842-R61 Image Date: 8 August 1952)...260

Figure 206: John Murray in 1949 (Adapted from the Mercury Newspaper, Tasmania)..262

Figure 207: Dick McGee working on the 48-channel receiver at Murraybank (courtesy of Miller Goss)..263

Figure 208: The Chris Cross at Fleurs Field station. The Murraybank aerial was based on this aerial design with an increased diameter and strengthened structure (Courtesy of the ATNF Historical Photographic Archive)...267

Figure 209: The ex-British Gun-laying trailer with the Yagi Array used by Bolton and Stanley (Courtesy of the ATNF Historical Photographic Archive: B2831 Image Date: 3 May 1948)..269

Figure 210: The ex-British Army gun-laying 200 MHz radar trailer which was used for the alt-azimuth mounting for the Murraybank 21-ft aerial (Adapted from ATNF Historical Photographic Archive: B3973-1 Image Date: 18 May 1956)..269

Figure 211: The 21-ft aerial being in the immediate background (Courtesy of the ATNF Historical Photographic Archive: B3973-4 Image Date: 18 May 1956)..270

Figure 212: The 21-ft aerial at Murraybank with its new feed system. The smaller reference aerial is also visible in the background (Courtesy of the ATNF Historical Photographic Archive)...271

Figure 213: Dick McGee working on the primary feed of the 21-ft Murraybank aerial (Courtesy of ATNF Historical Photographic Archive: R5698-9)...272

Figure 214: A view of the multi-channel receiver equipment inside the receiver hut at Murraybank (Courtesy of ATNF Historical Photographic Archive: R5695-18)...274

Figure 215: A later view of the receiver and recording equipment following the relocation of the recorder (Courtesy of ATNF Historical Photographic Archive: B6222-1 Image Date: 28 September 1960)..275

Figure 216: The filters used in the Murraybank receiver (Courtesy of ATNF Historical Photographic Archive: B9985-1 Image Date: 17 December 1959)...276

Figure 217: John Murray at the Speedomax recorder in the receiver hut at Murraybank (Courtesy of ATNF Historical Photographic Archive: R5695-9)...277

Figure 218: An example of the two minute H-line profiles produced as an output on the Speedomax chart-recorder (Courtesy of the ATNF Historical Photographic Archive: B5849-1 Image Date: 22 June 1956)...278

Figure 219: An example of a composite H-line profile produced by the Murraybank multi-channel receiver. The profile consists of 6, two-minute profiles taken over a period of 12 minutes while the aerial was held at a fixed declination in a meridian transit position (after Murray and McGee, 1959: 128)...278

Figure 220: A block diagram of the digital recording system used at Murraybank together with the 48-channel hydrogen-line receiver (after Hindman et al., 1963b: 554)...280

Figure 221: A schematic diagram of the digital shaft encoder in the Murraybank digital recorder program control unit (after Hindman et al., 1963b: 556)...281

Figure 222: A close-up view of the encoding disk pattern which divided the 324° of shaft rotation into 1024 steps (after Hindman et al., 1963b: 567)..281

Figure 223: The SILLIAC computer of the Adolph Basss Computing Laboratory of the School of Physics at the University of Sydney (Courtesy of the Physics, University of Sydney Foundation for Physics, Sydney)...283

Figure 224: A simplified flow chart of the reduction program run on the SILLIAC computer (after Hindman et al., 1963b: 562)...284
Figure 225: A contour diagram of the H-line brightness temperature in the Taurus-Orion region. Contour spacing is 7.5 degrees of peak temperature. The large numbers represent the mean radial velocity in k.ms⁻¹ over areas 10° by 10° (after Murray and McGee, 1959: 130).

Figure 226: A contour diagram of peak H-line brightness temperature at intervals of 5° K. Radial velocity in km/sec is indicated as integers on the chart. The shaded area represents a HII region sketched from the National Geographic-Palomar Sky Survey. The arrow indicates the direction from the centre of the contours of two stars believed to be responsible for the ionisation of the HII region (after Murray and McGee, 1958: 243).

Figure 227: A comparison of neutral hydrogen density and Hubble’s zone of avoidance (after Murray and McGee, 1959: 132).

Figure 228: A contour diagram of peak H-line radial velocities from the Murraybank southern sky survey. Dark grey areas represent negative velocities. Light grey areas represent positive velocity areas. The hatching denotes areas where the radial velocity exceeds 15 km sec⁻¹. Co-ordinates are in the old 1950 Ohlsson scheme (after McGee et al., 1961: 958).

Figure 229: A comparison of observed velocity curves to the predicted velocity curve assuming differential galactic rotation. The dotted line and shading represent the predicted curve. The solid line represents the actual observations. The thickened sections of the line represent the main deviations from the prediction (after McGee et al., 1961: 958).

Figure 230: A contour diagram of the local distribution of neutral hydrogen shown as the number of hydrogen atoms/cm² in a line-of-sight column. The contour interval is 0.2 × 10¹⁸ H atoms cm⁻². The hatched area encloses regions where the profile half-widths were in the range 12-20 km/s. The Galactic co-ordinates are the old system after Ohlsson (after McGee and Murray, 1961b: 264).

Figure 231: The variation of neutral hydrogen (NHI) density compared to the cosecant curve NHI = [0.3 × 10¹⁸] cosec b]. The left-hand column are +ve latitudes and the right-hand column are -ve. Longitudes 0° to 150° (after McGee and Murray, 1961b: 269).

Figure 232: The variation of neutral hydrogen (NHI) density compared to the cosecant curve NHI = [0.3 × 10¹⁸] cosec b]. The left-hand column are +ve latitudes and the right-hand column are -ve. Longitudes 180° to 330° (after McGee and Murray, 1961b: 268).

Figure 233: Radial velocity as a function of galactic longitude compared to predicted velocities at points 11 kpc above and below the galactic plane. The thick lines indicate areas of major discrepancies between the prediction and observations (after McGee and Murray, 1961b: 276).

Figure 234: Radial velocity observations as a function of galactic longitude. The dots represent neutral hydrogen observations. The + points and X points are derived radial velocities using the relation v = 19.5r sin 2(θ-238°). The + points are positive latitudes X the negative. Curve (i) is the theoretical differential rotation curve assuming a 1.4 kpc estimated mean distance of hydrogen in the galactic plane. Curve (ii), (iii) and (iv) are those derived by Feast and Thackeray based on ionised calcium (Ca II) absorption lines in the spectra of B-type stars reduced to mean distances of 2, 1.15 and 0.75 kpc respectively (after McGee et al., 1963: 154).

Figure 235: An example of the peak temperature of neutral hydrogen contour diagram produced in the Murraybank survey (after McGee et al., 1963: 139).

Figure 236: An example of the radial velocity contour diagram corresponding to the brightness peak of neutral hydrogen from the Murraybank survey (after McGee et al., 1963: 147).

Figure 237: A composite contour diagram of peak temperature with contours limited to 4, 8, 16, 32 and 64 °K (after McGee et al., 1963: 156).

Figure 238: Examples of triple-peaked H-line profiles from the Murraybank survey (after McGee and Milton, 1964: 129).

Figure 239: Examples of the peak brightness temperature (left) and radial velocity (right) contour diagrams along the galactic equator from the Murraybank survey (after McGee and Milton, 1964: 143).

Figure 240: The ridges of maximum intensity of neutral hydrogen for four spiral arm outside of the Sun’s galactic orbit over-laid on Kerr’s (1962) map of hydrogen distribution (after McGee and Milton, 1964: 149).

Figure 241: HII Cloud thickness at half-power points plotted as a function of distance from the galactic centre. The different symbols and associated numbers refer to the groups of observations. The triangles are from within the solar orbit. The other represents the four different spiral arms (after McGee and Milton, 1964: 152).

Figure 242: The contours of integrated brightness of neutral hydrogen in the Magellanic System from the Murraybank survey. The contour units = 2 × 10⁻¹⁶ Wm⁻² sr⁻¹ (after Hindman et al., 1963a: 572).

Figure 243: Contours of surface density of neutral hydrogen from Parkes 18-m (ex-Kennedy dish). The Magellanic Stream is seen extending from the Magellanic Clouds (left) across the sky (after Mathewson et al., 1974: Plate 6).

Figure 244: The rotation curve for the LMC derived from median velocities of neutral hydrogen profiles. The centre of rotation was R.A. 05:25, Dec. -68° (1960). The position angle of major axis: 5°-185°. A tilt of 55° was assumed. Note that both sides of the curve are plotted together (after Hindman et al., 1963a: 580).

Figure 245: The contours of median radial velocity of the Magellanic System. The contour interval is 10 Km/s (after Hindman et al., 1963a: 579).

Figure 246: Line profile per square degree of sky from the LMC. The vertical line on each profile is +50 km/s (after Hindman et al., 1963b: 568).

Figure 247: Line profile per square degree of sky from the SMC. The vertical line on each profile is +50 km/s. Note the large area of double-peaks, (after Hindman et al., 1963b: 568).

Figure 248: Velocities of the main peaks of neutral hydrogen in the SMC showing the systematic separation into two groups separated consistently by ~28 km/s (after Hindman et al., 1963a: 581).