Structural characterization of a Gcn5-related N-Acetyltransferase from staphylococcus aureus

Srivastava, Parul, Khandokar, Yogesh B., Swarbrick, Crystall M.D., Roman, Noelia, Himiari, Zainab, Sarker, Subir, Raidal, Shane R., and Forwood, Jade K. (2014) Structural characterization of a Gcn5-related N-Acetyltransferase from staphylococcus aureus. PLoS ONE, 9 (8). e102348.

[img]
Preview
PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview
View at Publisher Website: https://doi.org/10.1371/journal.pone.010...
 
11
81


Abstract

The Gcn5-related N-acetyltransferases (GNATs) are ubiquitously expressed in nature and perform a diverse range of cellular functions through the acetylation of small molecules and protein substrates. Using activated acetyl coenzyme A as a common acetyl donor, GNATs catalyse the transfer of an acetyl group to acceptor molecules including aminoglycoside antibiotics, glucosamine-6-phosphate, histones, serotonin and spermidine. There is often only very limited sequence conservation between members of the GNAT superfamily, in part, reflecting their capacity to bind a diverse array of substrates. In contrast, the secondary and tertiary structures are highly conserved, but then at the quaternary level there is further diversity, with GNATs shown to exist in monomeric, dimeric, or tetrameric states. Here we describe the X-ray crystallographic structure of a GNAT enzyme from Staphyloccocus aureus with only low sequence identity to previously solved GNAT proteins. It contains many of the classical GNAT motifs, but lacks other hallmarks of the GNAT fold including the classic β-bulge splayed at the β-sheet interface. The protein is likely to be a dimer in solution based on analysis of the asymmetric unit within the crystal structure, homology with related GNAT family members, and size exclusion chromatography. The study provides the first high resolution structure of this enzyme, providing a strong platform for substrate and cofactor modelling, and structural/functional comparisons within this diverse enzyme superfamily. © 2014 Srivastava et al.

Item ID: 79873
Item Type: Article (Research - C1)
ISSN: 1932-6203
Copyright Information: © 2014 Srivastava et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Date Deposited: 19 Dec 2023 00:08
FoR Codes: 32 BIOMEDICAL AND CLINICAL SCIENCES > 3207 Medical microbiology > 320701 Medical bacteriology @ 100%
SEO Codes: 20 HEALTH > 2001 Clinical health > 200105 Treatment of human diseases and conditions @ 100%
Downloads: Total: 81
Last 12 Months: 7
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page