Structural and functional characterization of the paai thioesterase from Streptococcus pneumoniae reveals a dual specificity for phenylacetyl-CoA and medium-chain fatty Acyl-CoAs and a novel CoA-induced fit mechanism
Khandokar, Yogesh B., Srivastava, Parul, Sarker, Subir, Swarbrick, Crystall M.D., Aragao, David, Cowieson, Nathan, and Forwood, Jade K. (2016) Structural and functional characterization of the paai thioesterase from Streptococcus pneumoniae reveals a dual specificity for phenylacetyl-CoA and medium-chain fatty Acyl-CoAs and a novel CoA-induced fit mechanism. Journal of Biological Chemistry, 291 (4). pp. 1866-1876.
PDF (Published Version)
- Published Version
Restricted to Repository staff only |
Abstract
PaaI thioesterases are members of the TE13 thioesterase family that catalyze the hydrolysis of thioester bonds between coenzyme A and phenylacetyl-CoA. In this study we characterize the PaaI thioesterase from Streptococcus pneumoniae (SpPaaI), including structural analysis based on crystal diffraction data to 1.8-Å resolution, to reveal two double hotdog domains arranged in a back to back configuration. Consistent with the crystallography data, both size exclusion chromatography and small angle x-ray scattering data support a tetrameric arrangement of thioesterase domains in solution. Assessment of SpPaaI activity against a range of acyl-CoA substrates showed activity for both phenylacetyl-CoA and medium-chain fatty-acyl CoA substrates. Mutagenesis of putative active site residues reveals Asn37, Asp52, and Thr68 are important for catalysis, and size exclusion chromatography analysis and x-ray crystallography confirm that these mutants retain the same tertiary and quaternary structures, establishing that the reduced activity is not a result of structural perturbations. Interestingly, the structure of SpPaaI in the presence of CoA provides a structural basis for the observed substrate specificity, accommodating a 10-carbon fatty acid chain, and a large conformational change of up to 38 Å in the Nterminus, and a loop region involving Tyr38-Tyr39. This is the first time PaaI thioesterases have displayed a dual specificity for medium-chain acyl-CoAs substrates and phenylacetyl-CoA substrates, and we provide a structural basis for this specificity, highlighting a novel induced fit mechanism that is likely to be conserved within members of this enzyme family.
Item ID: | 79860 |
---|---|
Item Type: | Article (Research - C1) |
ISSN: | 1083-351X |
Copyright Information: | © 2016 by The American Society for Biochemistry and Molecular Biology, Inc. |
Date Deposited: | 06 Sep 2023 00:54 |
FoR Codes: | 32 BIOMEDICAL AND CLINICAL SCIENCES > 3207 Medical microbiology > 320701 Medical bacteriology @ 50% 31 BIOLOGICAL SCIENCES > 3101 Biochemistry and cell biology > 310112 Structural biology (incl. macromolecular modelling) @ 50% |
SEO Codes: | 20 HEALTH > 2001 Clinical health > 200105 Treatment of human diseases and conditions @ 100% |
Downloads: |
Total: 4 |
More Statistics |