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ABSTRACT The beak and feather disease virus (BFDV) is a pathogen of psittacine
birds. BFDVs infecting nonpsittacine birds remain largely uncharacterized. We report
the genome of a BFDV from a boobook owl (Ninox boobook), a nonpsittacine bird. The
genome consisted of 1,993 bp containing two major bidirectionally transcribed open
reading frames.

Beak and feather disease virus (BFDV) is a member of the family Circoviridae. Like
other circoviruses, BFDV possesses a circular single-stranded, approximately 2.0-kb

DNA genome that is encapsidated into a nonenveloped, spherical icosahedral virion (1),
and it contains two bidirectionally transcribed genes. BFDV infection was thought to be
restricted to Psittaciformes (2–6), but evidence of infection in distantly related Australian
avian species was demonstrated in the rainbow bee-eater (Merops ornatus) (7), powerful
owl (Ninox strenua) (8), and finches (9). Many other nonpsittacine birds are also likely sus-
ceptible to sporadic spillover infection (10). Here, we report the characterization of a
BFDV genome in a nonpsittacine bird, the boobook owl (Ninox boobook), a species of
Strigiformes.

Kidney tissue was collected from a dead boobook owl (Ninox boobook) submitted to
the Avian, Reptile, and Exotic Pet Hospital of the University of Sydney, Camden Campus
(34°0910.610S, 150°37927.840E), between December 2018 and April 2019. Total genomic
DNA was extracted using a PureLink genomic DNA minikit (Invitrogen, CA). The library was
prepared using Illumina DNA prep (Illumina, San Diego, CA), starting with 250 ng of DNA
(11). The quality and quantity of the prepared library were assessed by the Australian
Genome Research Facility, Melbourne, Australia, and the library was sequenced using the
Illumina NovaSeq sequencing platform, generating 150-bp paired-end reads.

Sequencing data were analyzed as per established pipeline (12–15) using Geneious
(version 10.2.2; Biomatters, New Zealand) and CLC Genomics Workbench (version 9.5.4).
Briefly, a total of 37,770,262 raw reads were preprocessed to remove the Illumina
adapter, ambiguous base calls, and poor-quality reads (trim using quality score, limit
0.05; trim ambiguous nucleotides up to 15 using CLC Genomics Workbench), followed
by mapping against barn owl (Tyto alba) (16) and Escherichia coli (GenBank accession no.
U00096) to remove nonviral DNA. A total of 37,612,162 trimmed and unmapped reads
were used as input data for de novo default assembly in CLC Genomics Workbench (ver-
sion 9.5.4). This resulted in the generation of a 1,993-bp BFDV genome with an average
coverage of 39.61�. Annotation and circularization of the assembled genome were per-
formed using in Geneious (version 10.2.2). All software was used with default parameters
except where stated.

The genome has 1,993 bp, with a G1C content of 53.8%. A BLASTn analysis (under
GenBank database parameters, maximum target sequences: 100) (17) of the sequenced
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BFDV genome in this study showed an overall 78.75 to 98.54% pairwise identity with
other BFDV genomes, showing highest sequence similarity to BFDV (98.54%) from a lit-
tle corella (Cacatua sanguinea) from Australia (GenBank accession no. KY189060.1). In
addition, when we compared a segment of capsid gene of BFDV sequenced (;407 bp)
in this study, we found a 82.3% pairwise identity with a previously sequenced partial
capsid gene from a boobook owl (Ninox boobook) (GenBank accession no. KY410375.1)
(10). The genome architecture of boobook BFDV sequence had characteristics of other
Circoviridae, including two major open reading frames (ORFs): ORF1, encoding a repli-
cation-associated protein (293 amino acids), and ORF2, encoding the capsid protein
(247 amino acids).

This study provides evidence of BFDV infection in an Australian boobook owl, as an
unusual nonpsittacine host. Its apparent origin from a corella host suggests that the
infection occurred from a contaminated nest hollow.

Data availability. The complete beak and feather disease virus genome sequence of
N. boobook has been deposited in DDBJ/ENA/GenBank under accession no. OL762453.
The version described in this paper is the first version, OL762453.1. The data that support
the findings of this study are accessible via GenBank accession no. OL762453. The raw
sequencing data from this study have been deposited in the NCBI Sequence Read Achieve
(SRA) under accession no. SRR17163735 (BioProject accession no. PRJNA787018).
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