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Abstract
The biosphere is changing rapidly due to human endeavour. Because ecological com-
munities underlie networks of interacting species, changes that directly affect some 
species can have indirect effects on others. Accurate tools to predict these direct 
and indirect effects are therefore required to guide conservation strategies. However, 
most extinction- risk studies only consider the direct effects of global change— such 
as predicting which species will breach their thermal limits under different warm-
ing scenarios— with predictions of trophic cascades and co- extinction risks remaining 
mostly speculative. To predict the potential indirect effects of primary extinctions, 
data describing community interactions and network modelling can estimate how ex-
tinctions cascade through communities. While theoretical studies have demonstrated 
the usefulness of models in predicting how communities react to threats like climate 
change, few have applied such methods to real- world communities. This gap partly 
reflects challenges in constructing trophic network models of real- world food webs, 
highlighting the need to develop approaches for quantifying co- extinction risk more 
accurately. We propose a framework for constructing ecological network models rep-
resenting real- world food webs in terrestrial ecosystems and subjecting these models 
to co- extinction scenarios triggered by probable future environmental perturbations. 
Adopting our framework will improve estimates of how environmental perturbations 
affect whole ecological communities. Identifying species at risk of co- extinction (or 
those that might trigger co- extinctions) will also guide conservation interventions aim-
ing to reduce the probability of co- extinction cascades and additional species losses.

K E Y W O R D S
climate change, co- extinctions, conservation, ecological network models, terrestrial 
ecosystems, trophic cascades

1  |  INTRODUC TION

Over the last 50 years, much of the biosphere has been destroyed 
or degraded (Díaz et al., 2020) as a result of human endeavour. 
Unsustainable land use, resource- intensive agriculture, invasive 

species, emerging diseases and natural resource extraction have 
degraded environments and exacerbated the impacts of natu-
ral disasters (e.g. droughts and fires; Heleno et al., 2020; Shukla 
et al., 2019). Among current pressures, climate change is one of the 
greatest threats to biodiversity (Newbold, 2018), with expectations 

www.wileyonlinelibrary.com/journal/gcb
mailto:
https://orcid.org/0000-0002-1826-7569
https://orcid.org/0000-0002-5040-3911
https://orcid.org/0000-0002-5379-5631
https://orcid.org/0000-0003-2294-4013
https://orcid.org/0000-0002-2510-7408
https://orcid.org/0000-0002-5328-7741
http://creativecommons.org/licenses/by/4.0/
mailto:seamus.doherty@flinders.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.16836&domain=pdf&date_stamp=2023-06-29


    |  5123DOHERTY et al.

that it will soon become the primary driver of species extinctions 
(Urban, 2015). According to the Intergovernmental Panel on Climate 
Change (Allen et al., 2019), even under the unlikely lowest rates of 
projected warming (SSP1- 1.9: <2°C above pre- industrial tempera-
tures by 2100; Masson- Delmotte et al., 2021), climate change is 
expected to disrupt ecological communities and processes beyond 
natural variation, degrading their structure (Holmgren et al., 2013), 
composition (de la Fuente et al., 2022) and function (Garcia 
et al., 2014; Seddon et al., 2016). Together, human modification of 
the biosphere will likely continue in the short term and amplify the 
effects of climate change in the long term.

Ecological communities— assemblages of species living together 
in a particular area— are simultaneously threatened by anthropo-
genic climate change and other perturbations (Barnosky et al., 2011; 
Pecl et al., 2017), with these changes having already simplified the 
structure and complexity of most ecological communities (Heleno 
et al., 2020; Ledger et al., 2013; Woodward et al., 2012), and mod-
ified species' distributions, body size, abundance, and seasonal 
movements (Brondizio et al., 2019; Ernakovich et al., 2014; Hatfield 
& Prueger, 2015; Shukla et al., 2019). Natural communities are organ-
ised into multiple networks (see Glossary) where species are linked 
to one another based on different kinds of ecological interactions, 
such as those between plants and pollinators, predators and prey 
and hosts and parasites. Both the species in a community and the 
interactions among them are necessary for sustaining biodiversity 
overall and are a fundamental component in determining how com-
munities respond to ecological disruption (Ives & Carpenter, 2007; 
Suttle et al., 2007). It is because of these interactions and interde-
pendencies, however, that threats directly affecting some species 
often also have secondary effects on others in the same community 
(Ripple et al., 2016; Strona & Bradshaw, 2018). Therefore, quantify-
ing how species interact within their community and modelling how 
biodiversity loss can propagate through network links (ecological 
cascades) are important to predict entire community responses to 
future environmental conditions.

The component of climate change expressed as global warm-
ing directly affects species by challenging their thermal tolerances 
(Hickling et al., 2006), with predictions of how it threatens species 
relying primarily on estimating when temperatures will breach these 
tolerance limits. However, the indirect effects of these threats on 
communities through species interactions (Dorresteijn et al., 2015) 
are less clear. For example, if a species depends on the persistence of 
another, the extinction of the latter can cause the former to become 
co- extinct, which can in turn elicit a trophic cascade leading to more 
co- extinctions in a community (Garcia et al., 2014). These cascades 
are generally either bottomup (affecting consumers losing their food 
resources) or topdown (affecting resources losing their consumers; 
Feit et al., 2020; Letnic et al., 2009), potentially disrupting entire 
ecological communities and increasing the overall rate of extinction.

These changes to species assemblages often involve the arrival 
of new species (e.g. invasive or naturally range- expanding) that have 
never interacted with endemic species, generating new interactions 
(Wallingford et al., 2020). Measuring the cascading implications of 

invading alien species will become increasingly important as no- 
analogue climate change will engender no- analogue communities 
(Williams et al., 2007). Most research on trophic networks (food 
webs) has focused on examining the effects of environmental per-
turbations on trophic guilds (Feit et al., 2020), with many examples 
documented in marine (Batten et al., 2018) and freshwater (Jones 
et al., 2017) environments. Yet, there has been little focus on terres-
trial ecosystems, suggesting that we have underestimated extinction 
risks in that realm. Understanding the effects of environmental per-
turbations from a more complete ecological perspective will provide 
greater insights into how ecosystems respond to climate change 
and other pressures, thereby guiding more effective conservation 
strategies.

In this review, we delve into the complexities of characterising 
and measuring species interactions and community responses to 
environmental change, while highlighting the intricacies of defining 
ecological communities and the consequential implications of devel-
oping comprehensive food webs. This exploration is underpinned 
by a critical assessment of the limitations, issues and methods as-
sociated with quantifying and modelling biotic interactions. To en-
hance our understanding of biotic interactions in ecosystem- level 
processes and consequences, we introduce a novel framework for 
constructing ecological network models that can capture food webs 
more realistically within terrestrial ecosystems. We further discuss 
how this framework can allow researchers to simulate trophic cas-
cades that are influenced by plausible future environmental pertur-
bations, with a focus on advancing environmental policies and the 
management of terrestrial biodiversity (Figure 1).

2  |  CHALLENGES IN ME A SURING 
SPECIES INTER AC TIONS AND COMMUNIT Y 
RESPONSES TO ENVIRONMENTAL CHANGE

Our understanding of why some species in a community interact 
and others do not is relatively nascent (Blanchet et al., 2020), com-
pared to what we now understand about species distributions, de-
spite this information being essential to predict community change 
(Bartomeus et al., 2016). Indeed, measuring interactions and de-
termining how they change through time as part of complex, inter-
connected structures are challenging endeavours (Jordano, 2016). 
This is made even more difficult because most trophic interactions 
include >2 species (Golubski et al., 2016), and current and histori-
cal interaction data are sparse (Hortal et al., 2015). Data describing 
phenotypic plasticity and genetic variation that permit species some 
capacity for adjustment or adaptation in terms of the species with 
whom they interact and the strength/importance of these interac-
tions are also rare. This rarity thereby weakens inferences on the ex-
tent to which food webs can ‘rewire’ (e.g. develop new interactions 
between previously non- interacting species or shift the strength/
importance of pre- existing interactions) following the loss or gain 
of species in a community (Gilljam et al., 2015). Moreover, this pau-
city of information prevents discriminating potential and realised 
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5124  |    DOHERTY et al.

interactions (Strona & Veech, 2017), further masking how ecological 
communities might respond to environmental change.

Anthropogenic threats can affect interactions among species 
in terrestrial ecosystems. However, data regarding the impacts of 
such threats on interactions among species are rare, largely due to 
the difficulty of distinguishing the effects of human- driven envi-
ronmental change, such as climate change, from changes attributed 
to natural stochasticity (McCann, 2007). For example, while we 
know that climate change can alter plant– herbivore interactions 
by directly and indirectly inducing greater food consumption by 
herbivores (Lemoine et al., 2013), comprehensive data document-
ing these impacts is scarce (Tylianakis et al., 2008). Despite these 
challenges, recent research has begun to examine the potential for 
extinction cascades in marine and freshwater ecosystems (Donohue 
et al., 2017). Global estimates of species extinction rates from cli-
mate change initially excluded co- extinctions (Thomas et al., 2004), 
but recent research has attempted to include their contribution 
(Hughes, 2013; Strona & Bradshaw, 2018, 2022). However, this 
empirical research has predominantly focused on marine and fresh-
water ecosystems (Anaya- Rojas et al., 2019; Donohue et al., 2017; 
Hayden et al., 2015; Smith et al., 2011) because aquatic communi-
ties include species with predictable, linear relationships between 
predator and prey body sizes (Arditi & Ginzburg, 2012), and many 
studies (especially in fisheries) provided detailed diet information 

from gut- content and stable- isotope analyses (Davis et al., 2012). 
Aquatic ecosystems (e.g. lakes) also tend to function as quasi- closed 
systems with more distinct trophic levels than in terrestrial ecosys-
tems (Estes et al., 1998), making the former easier to model. In con-
trast, co- extinction processes in terrestrial systems remain poorly 
understood and have garnered comparatively less attention (Strona 
& Bradshaw, 2018).

The sparser literature on terrestrial ecosystems has con-
trarily focused more on networks of plants and pollinators 
(Dallas & Cornelius, 2015), and plants and herbivores (Pearse & 
Altermatt, 2013); even the few studies on terrestrial predator– prey 
networks are concentrated mainly on specific taxonomic groups such 
as invertebrates, mammals, or birds (Letnic et al., 2009). Furthermore, 
most terrestrial networks consider only top- down effects, with few 
exceptions (Kagata et al., 2005; Scherber et al., 2010), likely due to 
the complexity and lack of data on basal resources (e.g. plants and 
invertebrates) needed to predict bottom- up processes. For example, 
the reintroduction of wolves (Canis lupus) in Yellowstone National 
Park in the United States elicited a trophic cascade, positively in-
creasing woody browse species and bison (Bison bison), while simul-
taneously decreasing elk (Cervus canadensis), the wolf's main prey 
(Ripple & Beschta, 2012). Most other terrestrial ecological networks 
have been constructed to estimate the impacts of invasive species 
because of the availability of research funding for investigating the 

F I G U R E  1  Main steps for estimating co- extinction risks in terrestrial ecosystems. The process involves five main steps: (1) define 
ecological communities —  identify specific biotic components that make up a community of interest, for example, a list of species observed 
in a given space and time (see Section 3). (2) collate biotic interaction data —  gather pre- existing data on biotic interactions within defined 
communities (Figure 2); gaps filled by (i) collecting new interaction data, for example, by making field observations or running feeding trials, 
and/or (ii) inferring interactions using, for example, machine- learning algorithms (see Section 4). (3) construct ecological network models 
of defined communities based on collated biotic interaction data; modelling communities can apply network theory to make realistic 
networks (see Section 5). (4) simulate environmental perturbations, for example, use models to simulate probable future environmental 
perturbations and apply these disturbances to the network models to investigate the trophic cascades they trigger (see Section 6). (5) inform 
environmental management & conservation interventions, for example, identifying conservation target such as key species that, if lost, could 
have significant detrimental effects on communities (see Section 7).
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economic costs of their impacts (Bradshaw et al., 2021; Crystal- 
Ornelas et al., 2021). For example, the invasion of the cane toad 
(Rhinella marina) across mainland Australia (Doody et al., 2015), and 
the yellow crazy ant (Anoploepis gracilipes) on oceanic archipelagos 
(Sugden, 2003), have caused both trophic cascades and species 
compositional changes in their respective communities. Despite the 
challenges and limitations in quantifying the effects of co- extinction 
cascades in terrestrial ecosystems, additional research is neces-
sary to predict future community change and guide conservation 
interventions.

3  |  INCOMPLETE FOOD WEBS

Model food webs are simplified representations of real food webs 
constructed to study the dynamics of an ecosystem or test hypoth-
eses about how it functions (Susanne et al., 2015). However, despite 
their efficacy, these models have inherent limitations for capturing 
the complexities of real ecosystems. Such food web models, that 
quantify the trophic interactions among species or feeding guilds, 
provide an objectively useful starting point to predict community 
responses to environmental change (Pringle & Hutchinson, 2020) 
and to estimate extinction risk more generally (Llewelyn et al., 2022; 
Strona & Bradshaw, 2018). Yet, the intricate nature of real food webs 
makes the construction of realistic models for entire communities 
challenging. Indeed, it is not logistically practicable to record all the 
interactions among species in complex communities, especially due to 
variation in species composition and interactions through space and 
time. By virtue of this variation, the few detailed food webs that have 
been built are necessarily incomplete at one spatial and/or temporal 
scale or another, such as at the microhabitat or seasonal scale, making 
most available empirical food webs snapshots that are not necessarily 
loyal to ecological reality— an observation supported by the scarcity 
of relevant literature on terrestrial food webs (Pocock et al., 2012). 
Although many data on species interactions exist (e.g. open- access 
databases like Global Biotic Interactions—  GloBI; Bohan et al., 2017; 
Carscallen et al., 2012; Poelen et al., 2014), these data often refer to 
a few known pairwise interactions with a focus on individual species, 
and cannot therefore be used to build complete food webs (Figure 2).

Despite the higher taxonomic resolution of contemporary data 
used in food web models (Ings et al., 2009), the prediction accuracy 
of these models remains hindered by persistent issues and limita-
tions, particularly the lack of a standard method for defining a ‘com-
munity’ (Herrando- Pérez et al., 2012, 2014; Krebs, 1985). Ideally, 
one can quantify trophic interactions among species without consid-
ering how its associated community is defined, but clearly defining 
the community can help researchers ensure that all relevant species 
are considered, and standardise the terminology used to describe 
trophic interactions. Furthermore, a well- defined characterisation of 
the community structure offers insight into the intricate trophic re-
lationships between various species in a complex food web (e.g. bet-
ter characterising the relationships or interdependencies between 
different trophic levels).

While ecological communities can be defined simplistically as ‘all 
organisms within a prescribed area’ (Diamond, 1986), there is a more 
nuanced understanding that acknowledges temporal scales and the 
variability of species' presence and their contribution to community 
processes within these boundaries. For instance, some definitions 
describe a community as the ‘group of species that occur together 
in space and time’, indicating that temporal scale is an equally im-
portant component of the definition (Harper et al., 1990; Stroud 
et al., 2015). Among the various methods for defining a community, 
spatiotemporal movement data are required when defining bound-
aries (Harper et al., 1990; Stroud et al., 2015) because implicit tem-
poral averaging means that not all species are always present in a 
defined area, such that membership and relative importance vary 
through time. In terms of categorical boundaries, a community can 
also be defined by a taxonomic group (e.g. mammals), or by a group of 
species serving a specific ecological function or role (e.g. herbivores; 
Begon et al., 2006). This is often defined artificially to suit a study's 
criteria or by outlining the boundary where separately defined com-
munities (i.e. using the aforementioned definitions) overlap. This 
boundary can be defined, often in combination, by the number of 
species observed in a given area (Cadotte & Tucker, 2017), biotic in-
teractions (Dodds et al., 2006), diversity indices or rank- abundance 
diagrams (Begon et al., 2006; Shaheen et al., 2012), pattern limits 
(e.g. checkerboarding; Cody et al., 1975), comparing local and re-
gional species richness (Szava- Kovats et al., 2013), species traits 
(Kraft & Ackerly, 2014), and/or by functional trait diversity (Lamanna 
et al., 2014), or using other variables (Begon & Townsend, 2020).

Carefully considering the methods for defining a community 
should be an essential first step, with elements such as structure, 
biotic interactions, spatiotemporal scale and the specific research 
questions asked playing important roles in this determination. This 
process demands collecting as much data as possible, taking into 
account the spatial and temporal scale of the study. The resultant 
improvement in the accuracy and reliability of model outputs can ul-
timately reveal more practical and effective conservation strategies 
for at- risk communities. But, obtaining comprehensive data on tro-
phic interactions within ecological communities can be challenging 
due to the lack of clear boundaries and the difficulties in collecting 
data describing interactions. Historically, the primary method for 
assigning biotic interactions was via directly observed relationships 
in terrestrial ecosystems (e.g. through standardised field surveys, 
feeding trials, and gut/faecal content analyses; Carmel et al., 2013; 
Figure 2). However, collecting empirical interaction data is usually 
costly and onerous, meaning that incomplete data are often used to 
construct entire networks (Lau et al., 2017). The questionable ac-
curacy of such networks has been compounded by sampling biases 
(Blüthgen, 2010) and an unknown proportion of misidentified spe-
cies (Egli et al., 2020), meaning that past inferences made from tro-
phic networks need to be interpreted with caution (Bortolus, 2008).

The presence of cryptic species, which are commonly found across 
a variety of taxonomic groups and regions (Struck et al., 2018), can un-
dermine the realism of resultant networks (Pringle & Hutchinson, 2020). 
For example, treating two morphologically identical species as a single 
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species (i.e. by observation) (Parker, 2004) could overestimate or un-
derestimate diet breadths (Smith et al., 2008). Cryptic interactions 
(those that are not easily observed) generally missed by conventional 
field surveys (e.g. interaction observation, scat analyses) can arise from 
intraspecific variation in size, behaviour, habitat, and activity (Pringle & 
Hutchinson, 2020). Furthermore, cryptic, non- consumptive predator– 
prey interactions (e.g. the mere presence of predators creating ‘land-
scapes of fear’) in ecological communities can potentially limit the 
distribution, habitat use and abundance of species, and therefore, the 
interactions in a community (Pringle et al., 2019).

Considering that most interactions among species are infre-
quent and fluctuate across diverse spatial and temporal scales 
(Parker, 2004), they are not likely detected by short- term or seasonal 
field surveys. Although an interaction might be rare, it can still po-
tentially alter community processes (Arditi & Ginzburg, 1989; Leitão 
et al., 2016), especially if it involves top predators (Duffy, 2003). 
Additionally, intraspecific variation (e.g. phenotypic plasticity) can 
indirectly modify the true expression of an individual's diet (e.g. on-
togenetic shifts, behavioural specialisation and habitat- restrictive 
prey availability; Pringle & Hutchinson, 2020), but it is so far unclear 
if such variation affects the accuracy of inferred trophic interactions, 
and therefore, the ecological realism of constructed networks.

Due to uneven taxonomic/disciplinary foci and research spe-
cialisations, the quantification of ecological interactions, especially 
in terrestrial ecosystems, often falls short, exacerbating the existing 

methodological limitations and data gaps in species interactions. For 
example, there are geographical biases in study location and a dispro-
portionate focus on functions indirectly related to interactions per 
se (e.g. invasion biology; Cameron et al., 2019). Although alternative 
methods to observational field surveys have been developed (e.g. fae-
cal microhistology and dietary databasing), such methods are labour- 
intensive, exceed the budget and time frames of most studies and 
have limited resolution and accuracy (Pringle & Hutchinson, 2020). 
While other methods, such as DNA metabarcoding, are emerging, 
they can be costly (Bohan et al., 2017). Citizen science and public plat-
forms are also a potential source of species interaction data (Maritz & 
Maritz, 2020), but these too have their own issues with quality control 
(Anhalt- Depies et al., 2019) and coverage. Together, these method-
ological limitations create data gaps in species interactions that have 
flow- on consequences for inferring high- resolution trophic networks 
and quantifying the relationships between biotic components in com-
munities (mainly terrestrial). However, the increasing accessibility and 
development of new technologies will provide more relevant data.

4  |  INFERRING BIOTIC INTER AC TIONS

Awareness of the importance of biotic interactions in determining 
species' responses to environmental change has motivated a recent 
surge in modelling ecological communities and associated methods 

F I G U R E  2  Sources, gaps, and pathways for interaction data. For species interactions (yellow: start), known interactions (green) are 
typically derived from one of three sources: (i) observed interactions (e.g. GloBi, iNaturalist, Mangal, and Facebook), (ii) gut contents and faecal 
histology (e.g. Carscallen et al., 2012), or (iii) DNA metabarcoding (e.g. Bohan et al., 2017). Several interrelating factors have made classifying 
the interactions for most species difficult (red). Methods to infer interactions (blue) (e.g. Desjardins- Proulx et al., 2017) have been used to 
address this gap, including supervised machine- learning methods. Known biotic interaction data derived from various sources, combined 
with methods to address unknown interactions, can provide a more comprehensive list of all assigned (or potential) interactions (purple: 
finish) within an ecological community.
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to infer species interactions (Gravel et al., 2013). However, due to 
the limitations in documenting new interactions, such as those be-
tween previously non- co- occurring species, predicting potential 
interactions is necessary to predict and potentially manage the im-
pacts of changing environments, and the consequences of emerging 
alien species.

Earlier methods to infer trophic interactions were generally de-
rived from predator– prey body- size relationships (Gravel et al., 2013; 
Warren & Lawton, 1987), but these inferences are limited in ecosys-
tems with poorly resolved diversity, or for whose interactions are 
not easily described by such relationships, particularly in terrestrial 
ecosystems. This limitation has spawned the development of al-
ternative techniques for inferring biotic interactions. Examples in-
clude calculating the probability of interactions among species using 
functional traits (e.g. morphological, physiological, behavioural) or 
phylogeny as a proxy of these traits (Morales- Castilla et al., 2015), 
or abundance data to infer pairwise interactions among species. 
However, these methods are also limited by the data available to con-
struct matching relationships empirically (Bartomeus et al., 2016). 
Co- occurrence data have been used to infer species interactions 
(Ibarra- Cerdena et al., 2017), but these have been criticised as poor 
proxies (Blanchet et al., 2020; Yackulic et al., 2018). Joint species 
distribution models can also be adapted to infer species interac-
tions based on environmental conditions and presence/absence or 
abundance data. By combining multispecies occurrences with hy-
pothesised environmental predictors, these models can assess the 
residual probability of co- occurrence after controlling for environ-
mental conditions (Momal et al., 2020), although co- occurrence is 
not always evidence of direct interaction (Anhalt- Depies et al., 2019; 
Blanchet et al., 2020), and such models require expansive datasets 
(Sinclair et al., 2010). Trait- matching using generalised linear mod-
els (Desjardins- Proulx et al., 2017; Pichler et al., 2020) can also infer 
species interactions, although other methods often have higher pre-
dictive capacity (Caron et al., 2022).

To alleviate issues of data scarcity and inference limitations, 
newly emerging tools such as supervised machine- learning algo-
rithms have become popular means for predictive interactions for 
different network types (Murphy, 2012). In particular, k- nearest 
neighbour and random forest have been applied to infer species in-
teractions accurately by using both trait and observed trophic inter-
action/non- trophic interaction data (Desjardins- Proulx et al., 2017; 
Llewelyn et al., 2022; McConkey & Brockelman, 2011), providing 
a tool to predict novel species interactions under environmental 
change (Pomeranz et al., 2019). Despite supervised algorithms like 
random forest requiring extensive training data to be used effec-
tively and having uncertainties about their ability to infer trophic 
interactions in highly nested networks, machine learning remains 
one of the most promising methods available for inferring biotic in-
teractions (Desjardins- Proulx et al., 2019). While predicting individ-
ual interactions can provide insight into the dynamics of food webs, 
the methods used might not be sufficient for quantifying the overall 
food web structure of communities (Poisot, 2023). Predicting inter-
actions alone does not necessarily reveal the real position of each 

species in a food web nor the relationships between species that 
are not directly linked by trophic interactions. For example, methods 
that perform well when inferring species interactions might not do 
as well when inferring whole community structures (Poisot, 2023). 
Deciding which methods to use should depend on whether infer-
ring more realistic trophic interactions or constructing more realistic 
food web structures are more important for addressing particular 
research aims.

Another issue beyond inferring just the potential interactions 
between biotic components is assessing the importance of those 
relationships, because quantifying the strength of interactions is 
necessary to attribute ecosystem dynamics and predict their re-
sponses to perturbation (Laska & Wootton, 1998). For example, the 
strength of a predator's interaction with a prey species depends 
on many components, including predator abundance (Yousef 
et al., 2021). However, how interaction strength is measured can 
complicate its quantification. For example, interaction strength can 
refer to different aspects of ecological relationships, from the in-
crease in fitness (e.g. thermal tolerance) that a species experiences 
in a mutualistic association (Xie et al., 2013), to the influence of 
cross- species reproductive disturbances and competitive struggles 
for resources (Kishi & Nakazawa, 2013). This multiplicity of mea-
sures and the inherent variability of ecological interactions poses a 
challenge to their comparison of, and integration into, model food 
webs, with choice depending on the assumptions underpinning par-
ticular ecological theories or the method of quantification applied. 
Although empirical data such as field observations quantifying in-
teraction frequency and intensity (Wootton & Emmerson, 2005) 
can be used to infer an interaction strength between species, al-
ternative approaches are necessary when such data are not avail-
able (as is often the case). Various mechanistic models can account 
for such effects, including those that use traits to incorporate the 
frequency of prey items in predator diets (Pocock et al., 2021), 
or those based on bioenergetic- mechanistic models that link the 
energy flow between species and describe how they acquire and 
transform resources into traits (e.g. body size) that influence rela-
tionships (Passoni et al., 2022).

Although the previous examples are valid methods to quantify 
interaction strengths, one should carefully consider the underly-
ing assumptions when evaluating co- extinction risks. Assuming the 
strength of interaction between any two species remains constant 
through time and regardless of changes in the ecological commu-
nity in which they occur, as well as assuming that interactions be-
tween species are linear and that their strength is invariant to the 
densities of interacting species (Vázquez et al., 2015) need to be 
determined. However, methods outlined to quantify interaction 
strengths demonstrate situations where these assumptions are not 
always met, and might, therefore, not fully mimic reality. For exam-
ple, ignoring the synergistic or antagonistic, non- additive effects of 
environmental perturbations on species interactions— that is, the 
effect of ≥2 species interacting is not equal to the sum of their in-
dividual effects— can modify estimated extinction risk (Thompson 
et al., 2018).
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5  |  MODELLING SPECIES INTER AC TIONS 
AND COMMUNIT Y CHANGE

Analytical, correlative and numerical simulation models are becom-
ing more tractable and popular for describing structure and pro-
cesses within ecosystems and to predict community changes arising 
from environmental perturbations (Strona & Bradshaw, 2018). 
Network models, such as those representing relationships between 
individual species (Llewelyn et al., 2022), can represent trophic, mu-
tualistic, competitive, or other interactions within a community, or 
be simplistic representations of pre- existing or existing ecosystems 
typically based on unweighted interaction links (Geary et al., 2020).

Basic predator– prey models describing the dynamic relationship 
between two guilds have long been used to characterise species in-
teractions (Lotka, 1910). Such models have traditionally been based 
on standard predator– prey differential equations like the Lotka- 
Volterra to quantify the effects of biodiversity loss on the vulnerabil-
ity of communities to secondary extinctions (Sanders et al., 2018), and 
the subsequent compensatory Rosenzweig- MacArthur (Rosenzweig 
& MacArthur, 1963) and ratio- dependent Arditi- Ginzburg variants 
(Arditi & Ginzburg, 1989), to model ecological systems (Åkesson 
et al., 2021; Nonaka & Kuparinen, 2021). These models highlight the 
importance of accounting for trophic interactions between organ-
isms when modelling ecosystems (McCann, 2007).

Single- species population and distribution models have been 
used to predict the implications of anthropogenic climate change 
(Araújo & Luoto, 2007), yet their inherent limitations prevent a com-
prehensive assessment of species extinction risk. These types of 
models do not consider biotic interactions and physical processes 
(Elith & Leathwick, 2009; Figure 3), and therefore, only provide a 
limited assessment of species vulnerability (Carmel et al., 2013); 
the exception is some studies modelling multispecies dynamics 
(Säterberg et al., 2013). Correlative species distribution models can 
include interactions, but they cannot predict variation in these inter-
actions under changing environmental conditions. As a result, such 
models cannot account for co- extinction processes and are likely to 
underestimate extinction risks under future climate change (Strona 
& Bradshaw, 2018).

As an alternative modelling tool, ecological network models 
based on network theory include interactions by using a flexible 
mathematical framework accounting for a specified number of bi-
otic components and relationships within a parameterised network 
(i.e. species interactions can be weighted or unweighted; Delmas 
et al., 2019). These models can be defined as a network (G) com-
prised of nodes (N) and edges or links (E) (Geary et al., 2020; Landi 
et al., 2018), formulated generically as G = (N, E), that represent one 
or more interactions between nodes (Lau et al., 2017). These models 
are typically represented as bipartite networks (Geary et al., 2020), 
although can also be used to represent trophic interactions among 
species in a community (Pocock et al., 2012).

Ecological network models representing biotic interactions 
can test hypotheses about variation in food web structure and 
resilience to perturbation (Säterberg et al., 2013). Because these 

models ideally encapsulate most nodes in a community and iden-
tify (and possibly quantify) the interactions among them, ecologi-
cal network models can simulate co- extinctions more realistically 
than other types of models (Geary et al., 2020; Figure 3), with 
many examples of network models applied to reveal ecosystem- 
wide effects or predict the relative impacts of different man-
agement scenarios (Wallach et al., 2017). Ecological network 
modelling can be applied not only to evaluate multiple extinction 
drivers in addition to co- extinction effects (e.g. invasive species 
or land- use changes; Strona & Bradshaw, 2022), they also assess 
how these stressors might, in turn, affect different parts of the 
same network. Furthermore, the graphical representation of spe-
cies interactions in ecological network models can be more effec-
tively used to explore the potential for cascading effects and other 
nonlinear interactions arising from anthropogenic threats. This is 
more useful compared to other mechanistic frameworks that can 
represent ecological communities, such as the Madingley model 
(Flores et al., 2019) that is more suited to studying ecological pro-
cesses and dynamics on species populations (e.g. competition) 
and how these affect communities. Although network models at-
tempt to represent entire ecological communities, they too have 
operational limitations beyond the availability and quality of the 
constituent data. Model nodes representing entire populations are 
necessarily oversimplified, given that these might not account for 
all the associated qualities of a biotic component. For example, 

F I G U R E  3  Single-  versus multiple- species extinction models. 
Extinction estimates based on single- species models (solid red box) 
(e.g. species distribution models) can only predict direct effects 
caused by environmental perturbations (e.g. climate change; red 
circle ‘A’ representing a primary extinction). These models consider 
each species as a disconnected entity and do not account for the 
indirect effects of species co- extinctions and population changes. 
In contrast, multiple- species models (e.g. network- based models; 
dotted yellow box) consider both direct (red circles: primary 
extinctions) and indirect effects (yellow circles: co- extinctions and 
population changes). For example, a decline in the population of 
one species (B) can lead to the co- extinction of other species (D 
and E) that depend on B for food or other resources. By accounting 
for these indirect effects, multiple- species models provide a 
more accurate and comprehensive analysis of the impact of 
environmental perturbations on ecosystems and the risk of species 
extinctions.
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when a node represents an individual species, all associated traits 
(e.g. phylogeny, morphology, physiology) are encapsulated by this 
single node and can never fully represent the real- world vari-
ation within the species. This limitation can generate errors in 
inferred network dynamics and responses (Bolnick et al., 2011). 
Population dynamics (e.g. age structure, density compensation) 
within nodes are usually ignored, either because they can make a 
network unwieldy, or because of data gaps for all species within 
the community, preventing network models from weighting nodes 
by variation in abundance and its influence on extinction risk 
(Wilmers, 2007). However, community viability models where par-
ticularly influential nodes are expanded to account for population 
structure and abundance could potentially increase the ecological 
realism of network models.

Furthermore, it is possible to attach dynamical models to 
important nodes in a network. For example, in predator– prey 
systems with large fluctuations in abundances, such as cycling 
predator– prey dynamics (e.g. hare Lepus americanus– lynx Lynx 
canadensis; Elton, 1924), dynamical models can be used to mod-
ify edge weights when those fluctuations occur. This approach 
would enable network models to capture more of the complexity 
of fluctuating interactions between species. Beyond population 
dynamics, accounting for spatial and temporal dynamics associ-
ated with various ecological processes is also important for model-
ling biotic interactions. However, dividing community spatial units 
according to temporal processes that vary interaction potential, 
such as migration patterns, seasonal changes, or disturbances, can 
be challenging. For instance, the migration of one species could 
fundamentally alter the ecological interactions within a given spa-
tial unit (Bauer & Hoye, 2014), introducing new complexities into 
the community when that species is present. Likewise, natural 
disasters such as bushfires, floods, or other extreme events can 
alter food webs (e.g. by facilitating biological invasions; Spencer 
et al., 2020), leading to different dynamics that temporally static 
models are not able to capture. To account for such temporal vari-
ability in community composition, one could potentially iteratively 
modify a species' ability to interact as a proxy for time (e.g. through 
shifting migration patterns; Rickbeil et al., 2019), and by simulat-
ing the rate of movement (e.g. through elevation change; Freeman 
et al., 2018), by coupling network models with species distribu-
tion models. Of course, higher model complexity increases data 
requirements (e.g. ontogenetic variation in traits; Lau et al., 2017).

Modelling a subset of interactions within a community, al-
though useful for quantifying binary relationships (Dallas & 
Cornelius, 2015), can also limit the utility of network models. For 
example, focusing only on trophic interactions disregards the po-
tential offsetting effects of other interaction types, such as host– 
parasite (García- Callejas et al., 2018) or plant- pollinator relationships 
(Bartomeus et al., 2021), which could also bias estimates of extinc-
tion risk (Lafferty et al., 2008). A more realistic approach would ide-
ally include multiple interaction types simultaneously (Hutchinson 
et al., 2019). Such ‘multiplex’ networks could theoretically encapsu-
late most interaction types among species in a community, account 

for spatiotemporal heterogeneity, context dependency (Stella 
et al., 2016) and characterise the structure, function, dynamics and 
co- extinction risk of entire ecosystems (Pilosof et al., 2017). For ex-
ample, a multiplex approach has been used to produce a framework 
for a multispecies food web model that allows for non- trophic inter-
actions as functional classes (Kéfi et al., 2012). However, because 
most interaction types (e.g. plant- seed dispersers) are not linked 
explicitly to trophic interactions, they cannot be applied easily to 
all species in a community. Although some multiplex networks can 
bypass this problem by including both trophic (e.g. predator– prey re-
lationships) and non- trophic (e.g. mutualistic partnerships) interac-
tion networks represented as separate layers and interconnected by 
shared species (Pilosof et al., 2017; Figure 4), they require expansive 
datasets to build (Strona, 2022). For example, non- trophic interac-
tions such as predator interference (e.g. ‘landscape of fear’ exclusion 
of potential prey; Brown et al., 1999) can modify the functional re-
lationships between predators and prey beyond simple inference of 
potential trophic interaction. Accounting for such phenomena that 
modify the shape of the functional response (Kéfi et al., 2012) would 
require different network topologies to those inferred solely from 
trophic inference.

General consumer- resource models, which are fundamentally 
based on the direct relationships between consumer and resource 
species (MacArthur, 1970), have also been designed to integrate 
multiple interaction types (Lafferty et al., 2015). Furthermore, there 
is still no unifying theory to account for the trait space a species 
occupies, and therefore, no method for weighting the links between 
species in different networks (Figure 4). Developing methods to 
allow node parameters to affect different types of interactions with 
other parts of the network, with additional consideration to spatial 
and temporal influences, is a clear avenue for development.

While methods have been developed to quantify co- 
extinction risk across non- trophic interactions networks (Dallas & 
Cornelius, 2015), few studies have constructed complex networks 
consisting of multiple, mutualistic networks (e.g. facilitation, polli-
nation, seed dispersal; Valiente- Banuet & Verdú, 2013) or interac-
tion types (e.g. predation, mutualistic, parasitic interactions; Pocock 
et al., 2012). In contrast, most research on ecological networks has 
focused on comparatively simplified, empirically based parasitic 
(e.g. host– parasite; Dallas & Cornelius, 2015) and mutualistic (e.g., 
plant– pollinator) networks (Koh, Sodhi, et al., 2004), with no cur-
rent framework developed for quantifying the co- extinction risk for 
many other non- trophic interaction networks.

6  |  SIMUL ATING TROPHIC C A SC ADES IN 
ECOLOGIC AL NET WORKS

Simulation models are a common tool applied to predict relative ex-
tinction risk, encompassing diverse methodologies and approaches. 
These approaches range from simple statistical models to estimate 
secondary extinctions as an effect of primary extinctions, to model-
ling co- extinctions and trophic cascades accounting for the rewiring 
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of interaction matrices (Colwell et al., 2012). Various hypothetical 
and empirically based co- extinction simulation models have been 
constructed across different biome and interaction network types 
(Strona & Bradshaw, 2018), with a particular focus on simulating 
primary and secondary extinctions in unipartite and bipartite net-
works (Dallas & Cornelius, 2015; Koh, Dunn, et al., 2004; Strona & 
Bradshaw, 2018; Valiente- Banuet & Verdú, 2013).

While showing that the primary extinction of a species can pre-
cipitate the secondary extinction of others, the process of predicting 
relative extinction risk is a more complex task. Computer simulations 
and network theory are modern tools that can evaluate extinction 
risk (Traveset et al., 2017), facilitated by simulations in large- scale 
studies (Baumgartner et al., 2020) and by supervised inferences of 
the relationships between biotic components (Poisot et al., 2016). 
Simulations are generally constructed under a set of user- defined 
assumptions, with extinction risk for a given species estimated 
from different exposures to a theoretical list of different conditions 
(Baumgartner et al., 2020). However, the main challenges limiting 
the realism of such simulations are devising realistic assumptions 
to trigger secondary extinctions for species in a network, and the 
difficulty of accounting for the effects of complex trophic and non- 
trophic interactions.

Co- extinction simulations, conventionally derived from 
probability- based co- extinction models (Koh, Dunn, et al., 2004; 
Memmott et al., 2004), provide estimations of potential species 

extinctions linked to the loss of associated species. Such simula-
tions rely on the premise that affiliated extinctions occur in a ran-
dom sequence, typically within bipartite networks, and have since 
developed into an array of more advanced methods. These include 
topological models that simulate co- extinction when a non- basal 
species loses all or most other species in the food chain on which 
it relies (Dunne et al., 2002), stochastic models that also account 
for variation in demographic dependencies among species (Vieira 
& Almeida- Neto, 2015), and hybrid co- extinction models that com-
bine topological and simulation models for different species types 
(Traveset et al., 2017) to estimate complex extinction probabilities 
based on the removal and persistence of nodes. Other approaches 
include the dependent random- search co- extinction model 
(Baumgartner et al., 2020) that improves the realism of extinction 
estimates by accounting for how extinction processes affect not 
only node removal, but also how their interactions change or are re-
wired following node extinctions where novel interactions are desig-
nated randomly ‘depending’ on similarities among nodes.

Although many existing simulation models can account for 
processes of co- extinction and trophic cascades, several compli-
cations and limitations need to be addressed. Techniques to sim-
ulate co- extinctions are usually designed for specific studies or 
network types (Dunn et al., 2009; Koh, Dunn, et al., 2004). For ex-
ample, simulations designed for bipartite networks with two trophic 
guilds cannot normally accommodate the multiple trophic levels 

F I G U R E  4  A theoretical multiplex network. A multiplex network can include two or more network layers (e.g. layers 1, 2 and 3). Using a 
model based on network theory, nodes (represented as letters) can be used to characterise biotic components such as species or functional 
groups, while edges or links represent their interactions within each interaction network. For example, nodes ‘D’ and ‘I’ could represent 
shared prey or host species from predation and parasitic networks, respectively. These nodes could be connected by ‘C’ as a shared host in 
both the parasite and mutualism networks, connecting all biotic components trophically, either directly or indirectly. The thickness of the 
black arrows representing these interactions can be weighted according to ecological effect. However, full- community multiplex networks 
are difficult to construct because they require extensive datasets that are unavailable for most systems. Interactions between networks can 
be linked by shared species, but no current theory exists for weighting links between trophic and non- trophic networks (indicated by red 
dotted lines).
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making up entire food webs. Much of the research in community 
ecology has also attempted to estimate the resilience of ecological 
networks under various perturbations (Dallas & Cornelius, 2015; 
Wilmers, 2007), as opposed to quantifying the co- extinction risk of 
specific nodes within networks. Moreover, simulation methods that 
can be applied to networks with multiple trophic guilds are primar-
ily restricted to simulating hypothetical scenarios that are focused 
on either top- down or bottom- up trophic cascades, but not both 
(Llewelyn et al., 2022; Strona & Bradshaw, 2018).

While many existing simulation models consider processes of co- 
extinction and trophic cascades, the functional importance of dif-
ferent species within a community can potentially alter how inferred 
linkages emerge (Brodie et al., 2014). Functional importance can be 
quantified by relative position within a trait hypervolume— that is, all 
traits (e.g. morphology, behaviour, life history; Kissling et al., 2018) 
represented by all species within a given space and time. These traits 
together represent the functional diversity or richness of a particular 
hypervolume (Lundgren et al., 2020; Pimiento et al., 2020) describ-
ing the community's total trait variation (Roscher et al., 2012). The 
more trait redundancy in the hypervolume, the greater a communi-
ty's resilience to perturbation, and therefore, its potential to resist 
extinction cascades (Lundgren et al., 2021). Species- level trait data-
bases (Pimiento et al., 2020) analysed using Gower similarity or dis-
similarity matrices (Gower, 1971) can be used to construct such trait 
hypervolumes (Lundgren et al., 2020; McLean et al., 2019) that con-
textualise community composition and interaction potential based 
on their functional compatibility. The position of species within a 
network can also be used as a measure of functional importance 
(Bello et al., 2023), although different measures (e.g. degree, which 
surmises the total number of edges connected to a node) reflect dif-
ferent aspects of ‘importance’ (Cirtwill et al., 2018).

By ascertaining the functional importance of species within a 
community, we are equipped to determine the functional compat-
ibility and potential interactions between species. This process can 
reveal which traits play pivotal roles in facilitating interactions with 
other species (Lavorel & Garnier, 2002). Furthermore, estimating 
the functional importance of a species within a community can re-
veal emergent properties of the relative functional roles of specific 
taxonomic groups (Dehling & Stouffer, 2018). Species that are func-
tionally unique or that contribute disproportionately more to the 
functional diversity of a community are more likely to form founda-
tional linkages within that community (Estes et al., 2016). The loss of 
such species might, therefore, have a higher relative probability of 
eliciting cascades.

7  |  IMPLIC ATIONS FOR MANAGEMENT 
AND CONSERVATION

Not considering most biotic interactions in an ecosystem likely 
underestimates future extinction risk (Strona & Bradshaw, 2018); 
therefore, network- based analyses provide a relevant framework 
to clarify ecosystem- level processes and consequences (Harvey 

et al., 2017). Quantifying, inferring and simulating biotic interactions 
give deeper insights into how anthropogenic threats will erode en-
tire ecosystems via co- extinctions (Desjardins- Proulx et al., 2017; 
Pomeranz et al., 2019; Tylianakis et al., 2008). As climate disrup-
tion compounds other extinction drivers like habitat loss (Benton 
et al., 2021) and invasive species (Essl et al., 2020), network models 
offer a useful way to explore the potential ecosystem- wide effects 
of future biodiversity loss and change, by simulating emerging in-
teractions and the loss of existing interactions that can rearrange 
species assemblages in otherwise unpredictable ways. Measuring 
how the topology of interactions within a community degrades in 
response to perturbations can also identify the extent to which 
resilience to future environmental change declines concomitantly 
(Strona & Bradshaw, 2022).

Single- species management frameworks have historically dom-
inated environmental decision- making (Lindenmayer et al., 2007), 
but sensible environmental policy relies on identifying and avoid-
ing environmental tipping points (Hillebrand et al., 2020) (i.e. events 
that depend on species' interactions and multiple scales of complex-
ity; Landi et al., 2018; Wolanski & McLusky, 2011). Comprehensive 
ecological network models can represent these interactions over 
different scales of complexity and so improve the accuracy of 
predictions, enabling policies that will have a higher probability of 
avoiding negative tipping points (Dunne & Pascual, 2006). Ecological 
network modelling might better inform environmental management 
by simulating possible outcomes under a broad set of assumptions; 
for example, network models can be applied to predict and mitigate 
the effects of biological invasions on native communities, or even 
possibly to evaluate different intervention strategies and avoid in-
effective species translocations (Morris et al., 2021). Extended out-
comes of this type of research could also assist with recognising 
co- extinction risk in threatened- species assessments and policies 
(Moir & Brennan, 2020). As such, ecological network modelling is 
poised to add considerable power to the management of biodi-
versity (Schuwirth et al., 2019), although in practical applications, 
there are many issues relating to model feasibility, data availability 
and communication transparency that could limit the utility of these 
methods (Schuwirth et al., 2019).

8  |  CONCLUSIONS

The trophic complexity of some terrestrial ecosystems and the spa-
tial and temporal uncertainties of community boundaries have made 
resolving trophic networks difficult. Combined with the dearth of 
empirical data on species interactions (Momal et al., 2020) and the 
difficulty and costs associated with collecting such data (Pringle 
& Hutchinson, 2020), quantifying how species interact within a 
community remains a challenge. Comprehensive research for con-
structing trophic networks that realistically model ecological interde-
pendencies, coupled with robust methods for quantifying extinction 
risk, are still needed to predict and manage the indirect effects of 
climate change and other anthropogenic threats. More research to 
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test assumed processes and inference accuracy will make these ap-
proaches more realistic, guiding current and future decisions in the 
management of terrestrial ecosystems (see Section 9).

9  |  OUTSTANDING QUESTIONS

• How do anthropogenic threats like climate change affect the ex-
tinction risk of vertebrate species through the processes of co- 
extinction and trophic cascades at fine spatiotemporal scales? 
Previous research has tended to focus on either marine or fresh-
water ecosystems, with comparatively little research on terres-
trial ecosystems. Understanding how anthropogenic threats 
affect these communities, specifically between multi- trophic and 
non- trophic networks at fine spatiotemporal scales, will be neces-
sary for effective multispecies conservation.

• Can machine- learning algorithms be used to infer all predator– 
prey interactions for vertebrates in terrestrial communities? 
Although many trophic networks have been constructed, few 
studies have attempted to model all the interactions in entire (and 
diverse) terrestrial systems, with many difficulties surrounding 
the quantification of trophic relationships between species.

• How might a change in a community's detail (e.g. intraspecific 
variation) and composition affect how trophic cascades and co- 
extinctions occur in co- extinction models? Identifying all po-
tential trophic interactions among species in an ecosystem is a 
complex element that is typically neglected in many co- extinction 
models that instead progressively remove species and ignore how 
species might rewire their interactions when other species are 
lost or join the community. Furthermore, basal resources (e.g. in-
vertebrates and plants) in terrestrial network models are typically 
ignored or clumped due to a dearth of data, developing a gap in 
our understanding of the dynamics of food webs.

G LOSSARY

Bipartite network An interacting relationship between 
two groups of species, such as that 
between plants and pollinators within 
a biological community.

Co- extinction The cascading process in which the 
primary extinction of a species results 
in the secondary extinction of an-
other, dependent species.

Edge In an ecological network model, 
edges represent the relationship (e.g. 
biomass flow, trophic interaction) be-
tween nodes.

Nestedness The pattern in which species interactions 
within a network are organised such that 

less- connected species tend to interact 
with only a subset of the species that are 
more connected. This results in a nested 
structure, where the interactions of the 
less- connected species are a subset of 
those of the more connected species.

Networks A complex system of interactions be-
tween different biotic components, 
where the interactions can be direct or in-
direct and can involve a variety of mecha-
nisms and functions. These components 
can include individual organisms, popu-
lations, communities or ecosystems, and 
they can be connected through different 
types of relationships, such as mutual-
ism, predation, parasitism, competition or 
facilitation.

Node In an ecological network model, nodes 
can represent a biotic component (e.g. 
species, functional groups) connected 
by edges.

Random forest A supervised machine- learning algo-
rithm based on ensemble learning that 
uses input data to construct and merge 
decision trees to predict an outcome.

Single- species management frameworks 
 A management strategy that specifically 

focuses on conserving individual species, 
excluding other associated or dependent 
species from direct intervention.

Top- down and bottom- up trophic cascades 
 The process by which species going ex-

tinct at one trophic level (consumers) 
causes species occupying lower trophic 
levels (resources) also to go extinct (top- 
down) or vice versa (bottom- up).

Unweighted and weighted relationships 
 A weighted interaction link is a relation-

ship between two species in which a nu-
merical value represents the strength of 
the interaction; an unweighted link does 
not account for interaction strength.

Unipartite network An interacting relationship such as pre-
dation in which only one group of spe-
cies interacts with all other species 
within a biological community.

Quasi- closed ecosystem 
 An ecosystem that functions as if it is 

closed to external influences, with little 
exchange of matter or energy with its 
surroundings
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