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Abstract
Natural hazard risk is assessed by leveraging, among other things, the historical record. 
However, if the record is short then there is the danger that risk models are not capturing 
the true envelope of natural variability. In the case of tropical cyclones in Australia, the 
most reliable observational record spans less than 50 years. Here, we use a much longer 
(ca. 6000-year) chronology of intense paleo-cyclones and, for the first time, blend this 
information with a catastrophe loss model to reassess tropical cyclone wind risk in North-
east Australia. Results suggests that the past several decades have been abnormally quies-
cent compared to the long-term mean (albeit with significant temporal variability). Cat-
egory 5 cyclones made landfall within a section of the northeast coast of Australia almost 
five times more frequently, on average, over the late Holocene period than at present. If the 
physical environment were to revert to the long-term mean state, our modelling suggests 
that under the present-day exposure setting, insured losses in the area would rise by over 
200%. While there remain limitations in incorporating paleoclimate data into a present-day 
view of risk, the value of paleoclimate data lies in contextualizing the present-day risk 
environment, rather than complementing it, and supporting worst-case disaster planning.

Keywords Paleoclimate · Tropical cyclone · Catastrophe loss modelling · Climate 
variability · Australia

1 Introduction

The present-day natural catastrophe risk environment is often necessarily framed in 
terms of the available historical record. Risk models can be augmented using statisti-
cal and machine-learning techniques to include consideration of ‘grey swan’ weather 
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events (Lin and Emanuel 2016) that may be unprecedented in terms of historical experi-
ence but foreseeable given our ability to extrapolate beyond the limits of our observa-
tions. Extrapolated or resampled extremes are, however, still reflective of the statistical 
properties of the observations on which they are based. Climate change presents a new 
challenge as it suggests that historical experience alone may no longer be a good indica-
tor of future risk (Collins et al. 2012; Jewson et al. 2021). At a time when there is much 
effort focused on attributing the impacts of the recent warming trends on extremes (Stott 
et al 2016; Bellprat et al. 2019; Perkins-Kirkpatrick et al. 2022), it is opportune to con-
sider the degree to which the climate system is inherently non-stationary (Obeysekera 
and Salas 2016; Slater et al 2021) and the risk envelope of longer-term natural climate 
variability may be larger than our recent experience suggests.

A powerful tool to help understand the dollar-loss impact of weather extremes is the 
natural catastrophe loss (CAT) model. CAT models are decision support tools widely 
used within the (re)insurance industry over the past several decades to help price natural 
hazard risk and for aggregate risk management. They are complex probabilistic mod-
els that frame risk in terms of the hazard, exposure and vulnerability. In this frame-
work, risk is measured in terms of the fractional loss incurred on a property relative 
to its insured value due to damage from natural hazards. An overview of many of the 
approaches used in CAT modelling can be found in Grossi and Kunreuther (2005), 
Mitchell-Wallace et  al. (2017) and Michel (2018). The hazard event set of a cyclone 
CAT model may comprise hundreds of thousands of synthetic tropical cyclone events 
with the aim of augmenting the sparse observational record using stochastic modelling 
techniques.

In the case of tropical cyclones in Australia, the observational record extends back 
to 1909, although due to varying rates and methods of data assimilation, is considered 
homogenous only since 1981 (BoM 2018; Courtney et al. 2021). This 40-year period sam-
ples predominantly from the positive (El Niño like) phase of the Interdecadal Pacific Oscil-
lation (IPO). The IPO is a multi-decadal signal of climate variability in the Pacific and has 
been shown to exert an important influence on tropical cyclone frequency in Australia, by 
modulating the intensity of shorter-term regional modes of variability such as the Indian 
Ocean Dipole (IOD) and El Niño-Southern Oscillation (ENSO) (Power et al 1999; Grant 
and Walsh 2001; Magee et al. 2017). Positive (negative) IPO, El Niño (La Niña) and posi-
tive (negative) IOD are all associated with a reduction (increase) in tropical cyclone fre-
quency along the east coast of Australia. In addition, external influences such as volcan-
ism (Pausata and Camargo 2019; Altman et al. 2021) and solar activity (Elsner and Jagger 
2008; Haig and Nott 2016) have also been suggested to drive periods of lower or higher 
cyclone frequency on long timescales, although their effect is less certain than shorter-term 
drivers (Camargo and Polvani 2019). Given the importance of low-frequency climate vari-
ability on tropical cyclone activity via the modulation of shorter-term modes, the observa-
tional record is almost certainly too short to capture the full envelope of natural variability 
in tropical cyclone risk in Australia.

Paleoclimate data comprise proxy observations of past extreme weather events that 
have left an imprint in the physical environment in some form. These imprint records can 
be reconstructed to infer timeseries of extreme weather events that far exceed the direct 
observational record in length. However, these records often only capture high magnitude 
‘tail’ events which makes it difficult to reconcile with higher resolution observational data. 
Paleotempestology is a sub-field of paleoclimatology which uses geohistorical proxies to 
infer characteristics of past storm activity. Examples of paleotempestology proxies include 
overwash deposits preserved in coastal sediments, microfossils such as pollen or diatoms, 
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or wave- and flood-generated sedimentary deposits in marine sediments, coral shingle or 
shore-parallel beach ridges (Bradley 2014).

The ‘beach ridge method’ is a paleotempestology technique used to derive multi-mil-
lennial proxy chronologies of intense paleo-cyclones and has been used along the tropical 
coastal areas of Australia (e.g. Nott and Hayne 2001; Nott 2003; Nott and Jagger 2013). At 
many coastal locations in the Australian tropics, strand plains comprising series of shore-
parallel beach ridges have developed over the late Holocene period as a result of sea-level 
fall of approximately 1–1.5 m over this period (Lewis et al. 2012) and consequential pro-
gradation of the coastline. This means the oldest ridges are furthest landward from the pre-
sent-day coastline (Fig. 1).

Sea-level rise since the end of the last glaciation (circa 20 ka BP [1000 years before 
present]) had overrun earlier storm deposits, meaning beach ridge paleo-data rarely extend 
back further than 6–7  ka BP when global sea level stabilized and locally, began to fall 
(Lewis et al. 2012).

Over this 6–7000-year period, it is assumed that each prominent beach ridge—over a 
certain elevation threshold and comprising marine-origin sediment—was produced by a 
paleo-cyclone. Aeolian-capped (wind-blown) ridges and ridges under 2 m AHD (Austral-
ian Height Datum) are disregarded as potentially having been formed by the prevailing 
trade wind–wave climate.

The elevation of each of the prominent, marine-origin beach ridges represents the mini-
mum height at which the paleo-cyclone storm tide (i.e. astronomic tide plus meteorological 
storm surge component) must have reached to have produced the ridge. By dating each 
relevant beach ridge using Optically Stimulated Luminescence (OSL, see Bateman 2019 
for a review), a ca. 6000-year chronology of paleo-cyclone storm tide heights are derived.

There has been some discussion in the literature on the validity of the beach ridge 
method as an indicator of paleo-cyclones, centring on the role of aeolian transport and the 
possibility of tsunami processes also leading to ridge development (Tamura 2012, 2014; 
Nott 2013). Tamura (2014) acknowledged that the ridges were likely largely deposited by 
wave/storm tide action. Nott (2013) further highlighted that these ridges can be initiated by 

Fig. 1  Beach ridge plain at Cowley Beach, south of Cairns. Darker colours represent swales between the 
lighter colour ridge crests; black line represents shore-parallel transect taken through ridges to derive paleo-
cyclone chronology. Figure modified from Nott et al. (2009)
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aeolian activity but once they reach a height of approximately 1.5 m (AHD) aeolian pro-
cesses no longer play a role.

It is also important to note that there may be multiple cyclones contained in a single 
ridge, and thus cyclones of lesser magnitude are not counted (Nott and Jagger 2013). We 
focus on the last (highest in the stratigraphy) unit to be deposited onto each ridge within a 
ridge plain. Hence, our records are censored, meaning we are dating only the most extreme 
events. Extensive observations indicate that the most extreme events are overwhelmingly 
depositional, and not erosional, as this is the net response of the cross-shore profile when 
the level of inundation is higher than the existing first ridge (Dolan and Godfrey 1973; Sal-
lenger 2000; Nott and Hubbert 2005; Fritz et al. 2007; Nott 2011). We deliberately miss 
most events that occurred to develop a ridge plain. As a result, this study only focusses on 
the tail events. The way in which we deal with the rest of the frequency—magnitude distri-
bution within a contemporary loss modelling framework is described in Sect. 3.1. Here, we 
use beach ridge chronologies compiled by Nott and Hayne (2001) and Nott (2003) at five 
spatially discrete coastal sites in North Queensland, Australia, to reassess tropical cyclone 
wind risk in this area. The physical parameters of paleo-cyclones have been inverse-mod-
elled prior to this study from storm surge heights derived by Nott and Hayne (2001) and 
Nott (2003). In this previous work, hydrodynamic modelling was undertaken to determine 
the conditions necessary to generate a marine inundation equal to or greater than the height 
of the ridges.

We use the model results of Nott and Hayne (2001), Nott (2003) to calibrate an Aus-
tralian tropical cyclone loss model—used by the (re)insurance industry—to reproduce the 
derived frequency/magnitude distribution of tropical cyclones along this section of coast 
according to paleo-proxies and calculate property losses accordingly. We then compare 
these paleo-derived loss estimates to those using the contemporary observational record 
in the tropical cyclone model to examine present-day cyclone risk within the context of 
longer-term natural climate variability.

2  Data and methods

2.1  Study area and datasets

The available paleo-data cover a 400-km length of coastline in North Queensland, Aus-
tralia, extending from approximately 15  km north of Port Douglas to 30  km south of 
Townsville (Fig. 2).

This area covers the three main population centres of Cairns (150,000), Townsville 
(180,000) and Mackay (130,000). The relatively high frequency of cyclone events, low-
lying coastal topography and moderate exposure (with reference to the built environment) 
means this region makes a significant contribution to the national tropical cyclone risk. 
Within this area, five spatially discrete field sites were used. These were (north to south):

• Wonga Beach (− 16.34° S, 145.41° E)
• Cowley Beach (− 17.70° S, 146.01° E)
• Rockingham Bay (− 18.14° S, 146.08° E)
• Curacao (Noogoo) Island (− 18.67° S, 146.55° E)
• Cungulla (− 19.41° S, 147.10° E)



575Natural Hazards (2023) 118:571–588 

1 3

Table  1 details the data available at each field site. Each site comprised a single, 
shore-normal transect taken through the beach ridge series, except for Wonga Beach 
where two transects were surveyed (Wonga Beach north and south, Forsyth et al. 2012).

Supporting Information further details the beach ridge record at each site and exclu-
sions of particular ridges in the series.

Fig. 2  Location map of study area showing the five study sites relative to the major population centres of 
Cairns, Townsville and Mackay in North Queensland, Australia. Green dots represent mainland sites and 
the yellow dot is an island site. Also shown are the boundaries of the model gates of the Risk Frontiers 
tropical cyclone loss model, CyclAUS, used in this study

Table 1  Field sites, published references and data used in this study

Site (N to S) References Record length No. data points Average 
interval 
(years)

Wonga Beach (N) Forsyth et al. (2012) 4550 years BP 8 569
Wonga Beach (S) Forsyth et al. (2012) 3130 years BP 8 391
Cowley Beach Nott et al. (2009) 5740 years BP 29 198
Rockingham Bay Forsyth et al. (2010) 5010 years BP 18 278
Curacao Island Nott and Hayne (2001) 5620 years BP 19 296
Cungulla Nott et al. (2015) 6095 years BP 35 174
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2.2  Sea‑level fall

Since approximately 5 ka BP, paleoclimate indicators suggest that sea level has fallen 
by approximately 1.5 m in Queensland relative to the present-day mean sea level (Lewis 
et al. 2012). At the end of the Last Glacial Maximum, approximately 20 ka BP, sea lev-
els began to rise rapidly as temperatures warmed and ice melted—a period known as the 
Holocene Marine Transgression. A sea-level high stand was reached between 8 and 5 ka 
BP, after which hydro-isostatic adjustments (elastic response of the continental crust to 
varying water loads) led to a gradual sea-level fall of approximately 1.5 m to present 
day.

A falling sea level may mean that older beach ridges were not produced by a storm 
surge relative to the present-day mean sea level; rather, the surge may have been relatively 
smaller (and the tropical cyclone relatively weaker) and the mean sea level higher. Indeed, 
many (but not all) of the shore-normal dune transects exhibit a gradual decrease in beach 
ridge height in a seaward direction (Figure S1), suggestive of the influence of gradual sea-
level fall on ridge elevations.

The beach ridge elevations at each site were adjusted to ‘correct’ for this effect by 
assuming a linear sea-level fall of 1.5  m over 5000  years. If the chronology extended 
beyond 5000 years, the linear trend was extended back to the oldest date in the timeseries.

2.3  Wave exposure

The results of Nott and Hayne (2001) and Nott (2003) were used in this study to build 
linear relationships between TC central pressure (CP) to beach ridge elevation for a range 
of CPs for each site. At most sites modelled in the studies referred to in Table 1, the beach 
ridge elevation was assumed to be equivalent to the flow depth, i.e. the astronomic tide plus 
storm surge. However, at exposed coastal locations, the height of storm tide inundation 
during a TC event is equivalent to the astronomic tide plus storm surge (inverse barometric 
effect and wind setup) plus wave effects.

At wave-exposed, open coast locations, wave effects can add a considerable amount on 
top of a storm surge. For example, Mortlock et  al. (2018) found that on average waves 
added 16% to water levels along the Mackay coast during TC Debbie in 2017, but this var-
ied considerably between sheltered (2%) and exposed (> 50%) locations.

At each site, the exposure to waves was assessed based on the beach ridge morphology 
and coastal planform orientation relative to the TC angle of approach that produced the 
largest surge. We make the assumption that the coastal planform orientation at the time 
of cyclone landfall is similar to that of today, with respect to the line drawn perpendicu-
lar from one end of the embayment to the other. This is because, despite undoubted wave 
climate variability during this period of time, the directional modal wave climate has a 
limited impact on shoreline planform at these sites because of the protection afforded by 
the Great Barrier Reef (GBR) matrix. Details of the wave exposure analysis are provided in 
Supporting Information.

At sites with little to no wave exposure, the elevation of the beach ridge was assumed 
to be equal to the surge flow depth (i.e. with no additional wave component on top). At 
sites with high wave exposure, the beach ridge height was assumed to represent the com-
bined height of the storm surge with additional wave effects. This means that for the wave-
exposed sites, the surge component and TC intensity needed to be reduced.
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The reduction factor for wave-exposed sites was estimated using numerical wave model-
ling undertaken by Nott et al. (2009) at Cowley Beach. Further information on the wave 
reduction correction is provided in Supporting Information. The tropical cyclone central 
pressure was then calculated based on the wave-reduced ridge heights.

2.4  Tidal uncertainty

The estimated CPs have uncertainty margins which are associated with not knowing the 
height of the tide during the paleo-TC event. For example, if the TC made landfall at high 
tide the surge component (and TC intensity) necessary to equal the beach ridge height 
would be smaller than if the TC had crossed the coast at low tide.

Tides follow an 18.6-year lunar tidal cycle, which can be predicted at any location from 
astronomic constituents. The 18.6-year tidal constituents were derived for each survey site 
from which the 2σ probability tidal range was defined. This tidal range represents 95% of 
all possible tidal states at each site. It is larger than the mean spring tidal range but does 
not include the highest and lowest astronomical tides (HAT and LAT, respectively). The 2σ 
tidal range and associated CP values for each site are given in Table 2.

The influence of tidal state on paleo-cyclone CP estimates was represented as a cosine 
function with an amplitude defined by the 2σ tide range and the associated CP values given 
in Table 2 for each site.

For each paleo-cyclone event, the cosine was randomly sampled 10,000 times at 
equally-spaced intervals between two consecutive high tides. The median value from these 
10,000 samples was then used as our estimate of paleo-cyclone intensity. The 5th and 95th 
percentiles, estimated from Monte Carlo sampling, were used to represent tidal uncertainty 
margins around each CP estimate. This approach accounts for the random coincidence of 
TC landfall and tidal state, rather than assuming the tidal state is the same for all events. 
Other sources of uncertainty in this study are discussed in Sect. 3.3.

2.5  Average recurrence intervals

A generalized extreme value (GEV) distribution was fitted to the paleo-CP estimates at 
each site to estimate average recurrence intervals (ARIs) to 50,000 years (the length of the 
stochastic TC event set in the probabilistic loss model, CyclAUS, discussed in Sect. 2.6). 
The 5th and 95th percentiles obtained during the randomization of the tide represent the 
uncertainty of a given event. The GEV fits and ARI estimates with 95% confidence bounds 
for each site are given in Supporting Information. In each case, the GEV distribution was 
selected based on a two-sample Kolmogorov–Smirnov (K–S) test. The two-sample K–S 

Table 2  2σ tidal range and associated central pressure (CP) values for study sites

Site (N to S) + 2σ (m AHD) − 2σ (m AHD) 2σ range (m) Associated CP (hPa)

Wonga Beach + 0.92 − 0.90 1.82 − 26, + 25
Cowley Beach + 1.15 − 1.16 2.31 − 26, + 26
Rockingham Bay + 0.97 − 0.94 1.91 − 18, + 17
Curacao Island + 1.15 − 1.02 2.17 − 22, + 20
Cungulla + 1.19 − 1.12 2.31 − 24, + 23
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test is a nonparametric test of the equality between an empirical and fitted cumulative 
distribution function (cdf) of the data. The null hypothesis is that the samples are drawn 
from the same distribution. The two-sample K–S test can also be modified to serve as a 
goodness-of-fit test between fitted distributions. Here, the maximum absolute difference 
between the cdfs of the empirical and fitted distributions is used as the test statistic (Mas-
sey 1951; Marsaglia et al. 2003). The fitted distribution that returns the lowest maximum 
absolute difference when compared with the empirical cdf, is selected as the ‘best-fitting’ 
distribution. For extrapolating extreme values, an empirical cdf cannot be used as it is 
finite. Extreme value distributions, by comparison, are continuous and allow for extrapola-
tion. Weibull, Gumbel, Fréchet, Exponential and Pareto distributions were tested for (see 
Kotz and Nadarajah 2000, for an overview on these extreme value distributions).

The ARIs at each site represent the expected value of time in years between single tropi-
cal cyclones exceeding a certain intensity at that site, or within a specific radius of the site. 
The radius over which these values are relevant can be estimated from the local geomor-
phology, based on the alongshore extension of the beach strandplain. The distance north 
and south of the east-facing sites—where surveying the same transect would return broadly 
the same ridge sequence—is indicative of the spatial extent of the homogenous paleo-TC 
chronology.

The site geomorphologies extend between 3 and 50  km with a combined shoreline 
length of approximately 100 km. The five sites cover a total shoreline length of 600 km. 
They are all spatially discrete, i.e. none overlap. Assuming the TC risk environment 
is broadly consistent in this area, we can assume that the paleo-data represent a sixth 
(100/600 km) of the number of events that would be expected to make landfall over the 
total (600 km) shoreline over the time period sampled (~ 6000 years).

This assumes that each site contains a unique set of paleo-cyclone storm tide markers 
in the sedimentary record, i.e. that no one single event caused a paleo-ridge at multiple 
adjacent sites. While there is no way of knowing this with certainty, contemporary cyclone 
observations suggest this would be unlikely. The distance between adjacent sites range 
from between 50 km (Rockingham Bay to Cowley Beach) to 170 km (Cowley Beach to 
Wonga Beach). Observations from TC Debbie, which crossed the North Queensland coast 
as a Category 3 cyclone in 2017, indicate the maximum storm surge occurred approxi-
mately 50  km south of landfall, with sites as little as 20  km adjacent to the location of 
surge maximum experiencing over 50% less surge (Mortlock et al. 2018). Given our neigh-
bouring sites are at least 50  km apart, the chance of a single event leaving an extreme 
paleo-storm tide ridge at multiple sites is considered low.

To generate ARI estimates relevant for the whole coast between Cairns and Towns-
ville, we pooled the five site CP estimates together (114 events), fitted a single GEV curve 
through all of them, then rescaled to a time interval six times longer. A new GEV curve 
was then fitted through the resampled data. This increased the probability of landfall occur-
rence from a site-by-site basis by an approximate factor of six, consistent with the total 
shoreline length of analysis.

2.6  Tropical cyclone loss model

CyclAUS is a stochastic tropical cyclone wind loss model used widely within the reinsur-
ance market in Australia (e.g. Haig et al. 2014). Three modules are incorporated to simu-
late the TC hazard and calculate resulting losses. First, a TC generation module, which 
contains historical information and TC data to generate TC events that reflect the varying 
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probable magnitude and frequency for events within the study area. Second, an exposure 
module which contains data on property location, age and concentration. Third, a vulner-
ability module, which contains functions that relate wind speed to property damage level. 
Vulnerability functions vary based on building design and age.

The TC generation module is based on the characteristics of approximately 300 his-
torical TC events since the 1969/70 austral season. Monte Carlo sampling of log-normal 
probability distributions is used to initialize synthetic TC events at ‘gates’ and in ‘cells’ 
around the Australian coast, after which autoregressive modelling is used to generate a 
50,000-year event set of approximately 370,000 synthetic TC tracks and parameters. The 
maximum 3-s gust wind speeds of each event are mapped onto a variable resolution grid 
with the highest resolution of 90 m reserved for the most populous areas of the coast.

In this analysis, a market portfolio representing the total insured value across the four 
major population centres in the study area (Mackay, Bowen, Cairns and Townsville) was 
used. In our use of CyclAUS here, we only modify the hazard component of the model to 
reflect the longer-term cyclone activity regime based on the paleo-cyclone ARI estimates. 
We make no modifications to the exposure or vulnerability components, to represent the 
present-day ‘as-is’ property distribution and characteristics.

2.7  Model validation

To validate the modelled representation of recent cyclone activity, the modelled frequency/
magnitude estimates from CyclAUS were compared to the recent observational record for 
the Cairns to Townsville area. The landfalling CP values of each TC event were extracted 
from the Bureau of Meteorology (BoM) historical catalogue and a GEV distribution was 
fitted to the tail of the observations (Fig. 3a).

Fig. 3  A Comparison of landfalling TC ARI estimates based on the historical event catalogue (green cir-
cles), and extrapolation to 50,000 years using a GEV fit (black line), and ARI estimates from the CyclAUS 
50,000-year stochastic event set (grey circles). B Comparison of landfalling TC ARI estimates using the 
CyclAUS event set (grey circles), the ~ 6000-year resampled paleo-data (red circles) and the adjusted 
CyclAUS event set (blue circles). Also shown are the 95% confidence intervals for the paleo-GEV curve 
fit at mean tide (dotted black lines) and the paleo-GEV curves for high and low tide scenarios (dotted red 
lines). The paleo-data begins at an ARI of 50 years. In both (A) and (B), solid black horizontal lines denote 
the central pressure of Category 2 and Category 5 tropical cyclones based on the Australian Cyclone Sever-
ity Scale
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The comparison of the BoM curve to the paleo-curve was first limited to the study area 
(~ 600 km shoreline length, approx. Bowen to Cooktown, see Fig. 2) but it was found that 
a lack of historical data in this area hindered a robust extreme value analysis. The compari-
son was expanded to include ~ 1000 km shoreline length (approx. Mackay to Cape Melville 
National Park), which increased the sample size from 26 to 43 landfalling events.

Figure 3a shows that there is a good comparison between the fit of the historical obser-
vations (black line) and the CyclAUS event set (grey circles) from the 5 to 50,000-year 
ARIs. The annual frequency of landfalling events also compares well (0.89, BoM record, 
and 0.88, CyclAUS). These results suggest that the model is replicating the present-day 
risk environment well.

2.8  The average annual loss and occurrence exceedance probabilities

To quantify the change in risk between the present-day risk environment (reflective of the 
past ~ 50 years of cyclone observations) and the longer-term risk environment (reflective 
of the past ~ 6000 years from paleo-proxies), we use the change in the average annual loss 
(AAL) metric, expressed in Australian Dollars (AUD). The AAL is the average annual 
expected insured loss due to property damage resulting from tropical cyclone winds and 
associated water ingress. Here, we use the aggregate AAL for the study area—that is, the 
AAL expected across all of the modelled addresses. The AAL within the model is calcu-
lated as the sum of all cyclone events that produce a loss, divided by the number of syn-
thetic years in the simulation (in this case, 50,000). By adjusting the frequency of cyclone 
events within the model based on the paleoclimate analysis, the number of loss-producing 
events changes between the present-day/longer-term model runs, resulting in a differential 
in the AAL. This differential is the primary metric we use for expressing the change in 
risk on the present-day exposure environment between our short and long-term view of the 
tropical cyclone hazard.

In addition to the AAL, we also compare losses at various occurrence exceedance prob-
abilities (OEPs) out to an ARI of 1000 years. An OEP is the probability that the largest loss 
each year exceeds a certain amount of loss and the relationship to ARI is given by OEP = 1/
ARI. For example, an OEP of $5 million at an ARI of 100 years means that there is a 1% 
chance each year of a single cyclone event causing a property damage loss greater than $5 
million.

The AAL is a useful metric for assessing the technical insurance premium, in other 
words, the cost (and affordability) of insurance to the insured. OEPs can be used to under-
stand disaster management requirements or critical infrastructure planning for government, 
or capital retention and risk transfer requirements for (re)insurance. Simply put, change 
in (“delta”) AAL is a metric for mean shift changes, whereas delta OEP at high ARIs is a 
metric for changes in tail risk.

3  Results and discussion

3.1  Comparison of present‑day and long‑term cyclone probabilities

Recurrence estimates from the present-day CyclAUS event set were compared to those 
derived from the paleo-data (Fig. 3b). After sensitivity testing, an adjusted event set was 
generated that better matched the paleo-data for this area (blue circles, Fig. 3b).
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The event set was adjusted by varying intensity modelling within CyclAUS to produce a 
curve with frequency/intensity characteristics resembling the paleo-record. Intensity mod-
elling refers to the rate at which TCs intensify in the model domain (i.e. the drop in central 
pressure per time step) after they are initiated.

It was found that increasing the rate of TC intensification per timestep by up to 100% 
(0% increase at ≤ − 20 hPa changes up to a 100% increase at 0 hPa change) produced the 
best fit to the paleo-data. At very long ARIs (1000–50,000 years), the modified CyclAUS 
event set falls below the paleo-curve but is still within the bounds of tidal uncertainty 
(Fig.  3b). At these very low probability ranges, differences in the tail of the curve are 
unlikely to significantly impact AALs because there are very few of them in the event set.

In Fig. 3b, the paleo-data begin at an ARI of 50 years. This is because the ARI sur-
veyed at each study site was around 300  years (Table  1), which equates to an ARI of 
around 50 years for the whole study area due to the multiple sites. Recurrence estimates 
< 50 years, therefore, are not based on paleo-evidence. The impact of the paleo-adjusted 
event set on expected property damage losses is discussed in Sect. 3.2.

We also compared the TC landfall probabilities using the observational (~ 50-year) 
record, to those using the paleo-data (~ 6000-year) (Fig. 4). The lack of data in the observa-
tional record (26 events in total, 8 which follow an extreme value distribution) means there 
is very low confidence in fitting and extrapolating to high ARIs. In addition, extrapolation 
of extreme events is generally considered reliable for periods up to three times the data 
period (Harper 1996) which restricts the use of the observational record to the 150-year 
ARI level. By comparison, the larger amount of available paleo-data provides a better con-
fidence in the extrapolation, although the uncertainty associated with not knowing the state 
of tide at the time of the paleo-cyclone landfall remains a significant limitation.

In Fig. 4, the data have been extrapolated forward (observational) and back (paleo) to 
the TC Cat. 5 threshold to compare estimates at this level. The observational record sug-
gests that Cat. 5 TCs can be expected to make landfall somewhere within the study area, 
on average, once every ~ 90 years (based on the past ~ 50 years of data). The paleo-record 
indicates that, over the late Holocene period (past ~ 6000 years), Cat. 5 TCs have made 
landfall in this area with much greater frequency—on average, once every ~ 20 years. It 
remains unknown whether this is due to an increase in TC intensity or TC frequency. For 

Fig. 4  Comparison of landfall-
ing TC occurrence estimates 
in North Queensland using the 
observational ~ 50-year record 
and the ~ 6000-year resampled 
paleo-record. The GEV fit and 
95% confidence intervals (CI) are 
shown for both datasets. The Cat. 
5 TC threshold on the Australian 
Cyclone Severity Scale (929 hPa) 
is shown to compare ARIs at 
this level
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instance, a greater number of intense tropical cyclones making landfall may be due to an 
increase in the intensity of all tropical cyclones, an increase in the total number of tropical 
cyclones forming, or both.

In summary, this work supports the assertion of Nott (2003) and Nott et al. (2007) that 
the short (~ 50-year) observational record under-samples the long-term landfall probability 
of high intensity TCs in North Queensland. This is consistent with other studies that sug-
gest that the past 50 years have been unusually quiescent for TC activity in the context of 
the past few centuries to millennium (Callaghan and Power 2011; Haig et al. 2014).

3.2  Changes in expected property damage losses

The paleo-adjusted event set was run through CyclAUS to compare estimates of insured 
property damage losses within the study area with the present-day estimate. The model was 
run on a market portfolio, which is representative of the total present-day insured exposure 
in the area and does not represent the results of any single insurer. Since we are not con-
cerned with absolute values here, and to further preserve anonymity, we only report the 
estimated relative change in AAL and OEP, when using the paleo-adjusted view of risk 
compared to the present-day view of risk (Table 3).

Results show that there is a significant increase in the level of modelled insured losses 
for the study area when incorporating the ~ 6000-year paleo-cyclone data, compared to the 
present-day estimate based on the recent observational record.

Table 3 shows there is a ~ 250% increase in the AAL estimate for this area. The differ-
ence in losses is most pronounced at shorter ARIs, from around + 280% at the 10-year ARI 
to around + 200% at the 1000-year ARI.

These large differences reflect the substantial downward shift in the TC hazard recur-
rence curve when fitted to the paleo-data (Fig. 3b), difference between blue and grey cir-
cles). For frequently occurring natural hazards, any change to the AAL is usually driven in 
the most part by changes at lower ARIs (i.e. less intense, but more frequent events). This is 
because the AAL is the integral of all losses in the event set, and losses typically accumu-
late faster at lower ARIs because there are more of them in the event set, than at the tail, 
where a few extreme events do not add a significant amount to the AAL.

Table 3  Differences in modelled 
AALs and OEPs for the study 
area using the present-day view 
of risk based on the recent 
historical record, and the longer-
term, paleo-adjusted view

ARI OEP Difference in loss (paleo-
adjusted to present-day, %)

1 1 267
2 0.5 252
5 0.2 275
10 0.1 281
20 0.05 273
50 0.02 274
100 0.01 251
200 0.005 229
500 0.002 202
1000 0.001 196
Average annual loss 251
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Since these smaller-scale events are not preserved in the paleo-record, the curve was 
extrapolated back from evidence of the most intense paleo-cyclones that left a lasting 
marker on the coastal landscape.

This approach assumes that changes in the frequency of high magnitude landfalling TCs 
are synonymous with changes in lower magnitude events. However, both the TC frequency 
and magnitude distributions can change simultaneously with climate forcing. For exam-
ple, projections of near-future changes in TC activity are for an increase in intensity but 
decrease in frequency of cyclogenesis in the Southwest Pacific region (e.g. Knutson et al. 
2020).

While there is a significant level of uncertainty associated with this comparison, it is 
consistent with the existing body of literature (e.g. Callaghan and Power 2011; Haig et al. 
2014) that suggests that we are currently experiencing an abnormally quiescent period 
of TC activity along the Australian east coast compared to the longer-term average. This 
suggests that present-day loss estimates may be towards the lower end of what could be 
reasonably expected over the longer term within the bounds of natural climate variability 
experienced over the past 6000 years.

3.3  The value of paleoclimate data for tropical cyclone risk estimation

Paleo-records can be useful for providing a better estimate of the ‘worst-case scenario’ than 
observational data because very long records are more likely to sample very rare, cata-
strophic events with long recurrence intervals. Paleo-records can also be useful for provid-
ing analogues of past ‘hyperactive’ and ‘inactive’ periods of TC activity, as this study has 
shown.

Here, the beach sedimentary record was not of a sufficient temporal resolution to sub-
sample periods of TC hyper- and inactivity. Instead, we compared TC recurrence estimates 
using the full ~ 6000-year paleo-record to the past ~ 50 years of observations. While this 
highlighted, importantly, that the short historical record under-samples the landfall prob-
ability of high magnitude TCs compared to the long-term ‘average’, a direct comparison 
such as this assumes stationarity in the climate system and an invariant probability dis-
tribution over this ~ 6000-year period. However, because TCs are a manifestation of con-
stantly shifting climatic conditions, the spectrum of recurrence interval risk is also non-
stationary (Frappier et al. 2007). This suggests that if the same analysis was performed for 
the same area over a different time period, results would be different.

For paleo-data to be useful for contemporary risk modelling, they should capture infor-
mation on both the time-varying intensity and frequency of tropical cyclones and ideally, 
be of sufficient temporal resolution to resolve the full magnitude spectrum of events. In 
practice, it is rare to obtain a record that is both of high temporal resolution and that pro-
vides magnitude/frequency information. While the beach ridge method provides magni-
tude/frequency information, it does so at a low temporal resolution (~ 300-year event inter-
vals). This means it only provides direct information on the tail of the distribution (the high 
magnitude, infrequent events). Figure 4 shows, for example, that the paleo-data only record 
the long-term occurrence of Cat 5 events landfalling in this area, and no information on Cat 
4 s and below.

However, if we assume that the same physical relationships observed today are relevant for 
the late Holocene period in general, we can use the Cat 5 paleo-cyclone data to infer the rest of 
the distribution. As shown in Fig. 3b, we can fit the remainder of the distribution by generat-
ing a long-term stochastic TC event set using a tropical cyclone loss model that best matches 
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the paleo-data available. This approach potentially negates the need for explicit paleo-proxy 
information on low-magnitude, more frequent TC events and makes coarse resolution paleo-
data more readily applicable for modelling the entire risk spectrum.

Lastly, a limitation of using the beach ridge method for risk modelling is the multiple 
assumptions—and high uncertainty—associated with deriving CP estimates from the ridge 
elevations. Similar sources and magnitudes of uncertainty also exist in other paleoclimate 
analyses. We can summarize the sources of uncertainty in this study as follows:

1. The possibility that paleo-cyclone deposits have not been fully isolated from aeolian or 
paleo-tsunami processes in the beach ridge timeseries (see Tamura 2012, 2014; Nott 
2013).

2. The margin of error of the Optically Stimulated Luminescence (OSL) beach ridge dating 
method (which ranges from ± 10 to ± 400 years).

3. The homogeneity of sea-level fall over the past ~ 6000 years in the North Queensland 
area, and the contribution of sea-level variations on beach ridge heights.

4. The contribution of wave effects to total water levels at each site and during each paleo-
TC.

5. The tidal state at the time of paleo-TC landfall.
6. The paleo-TC parameters (radius of maximum winds, forward speed, track angle relative 

to coast and distance of landfall from site).

As can be seen in Fig. 3b, tidal uncertainty has a large effect on the central pressure esti-
mation (± 23 hPa, see Table 2). The underlying assumption of this method—that the beach 
ridge height is equivalent to the paleo-cyclone water level—can be regarded as a conservative 
estimate of the storm intensity because observations (Sallenger et al. 2006; Nott et al. 2009; 
Mortlock et al. 2018) have shown that TC water levels often exceed the coastal ridge that is 
produced by deposition of sediments after inundation. The selection of TC parameters in the 
hydrodynamic modelling by Nott et al. (various, see Table 1) also provides the most conserva-
tive estimate of the storm intensity required to generate the indicative level of inundation.

Even after all the limitations of paleoclimate proxies are considered, the question still 
remains as to whether we should be accounting for the longer-term variability if it does not 
reflect the present-day and near-future risk environment. For example, if periods of enhanced 
TC activity during the course of the late Holocene were driven by external forcing such as low 
solar activity (Elsner and Jagger 2008; Haig and Nott 2016) and enhanced volcanism (Pausata 
and Camargo 2019; Altman et al. 2021), this may not be a relevant analogue for the present. It 
is important to acknowledge these and other factors given the magnitude of the changes in loss 
and the implications of this for the insurance industry and beyond.

Instead, the real value of paleoclimate information for natural hazard risk assessment may 
lie in ‘worst-case’ scenario planning, and—perhaps more academically—contextualizing the 
current risk environment.

4  Conclusions

Results here and those of others (Callaghan and Power 2011; Haig et  al. 2014; Good-
win et al. 2015) indicate that the observational period is unusually quiescent for tropical 
cyclones in Australia in the context of the past several millennia. As a result, the recur-
rence probabilities of cyclones differ considerably. For example, the observational record 



585Natural Hazards (2023) 118:571–588 

1 3

suggests that a Cat 5 event has a ~ 90-year recurrence interval on the North Queens-
land coast, whereas the paleo-record indicates that it has a ~ 20-year average period of 
recurrence.

The lowest recorded central pressure in Australia is 900 hPa, attained by TC Gwenda in 
1999 and TC Inigo in 2003 (BoM 2021). However, recent work suggests that TC Mahina—
which made landfall on the Cape York Peninsula in Far North Queensland in 1899 (about 
500 km north of our study sites)—may have reached a central pressure as low as 880 hPa 
(Nott et al. 2014). During this event, a 13 m storm tide was observed, and 300 lives were 
lost. This makes it the largest recorded storm surge in the world, and potentially the most 
intense tropical cyclone on record in the Southern Hemisphere.

It is no coincidence that only a very small portion of disaster spending (3% in Australia, 
4% in the US) goes towards mitigation (Coppel and Chester 2014; Cigler 2017). The rest 
(i.e. > 95%) is spent on disaster recovery. The cycle of disaster, reaction and complacency 
has been well studied by economists and psychologists alike (Meyer and Kunreuther 2017). 
Protective actions, whether by individuals or governments, are usually designed to be ade-
quate to the worst disasters experienced because, simply put, images of an even worse dis-
aster do not come easily to mind (Kahneman 2011).

Paleoclimate data can help risk managers re-imagine the worst case and mitigate with 
this upper limit in mind. Our study suggests that a plausible worst-case scenario for North 
Queensland would be a landfalling TC in the Cairns area with a coastal-crossing central 
pressure of 870 hPa.

While the paleo-cyclone record may be useful in painting grew swans a lighter shade of 
grey, there is still some way to go before they can be incorporated into contemporary risk 
modelling. The first limitation is the cascading uncertainties in the process of inverse mod-
elling cyclone parameters from paleo-proxy observations.

The second limitation is the inability of paleo-cyclone data to capture a chronology of 
both small, frequent events and the large, infrequent events. For example, the beach ridge 
data used here had an average spacing of 300 years at each site. To address this issue, we 
adjusted the intensity modelling in the cyclone loss model such that the probability distri-
bution matched the paleo-data at the tail, therefore obtaining inferred information on the 
‘small, frequent’ portion of the curve. However, this is less than ideal because we assume 
that the shift in the probability distribution is due to a change in intensity, and not fre-
quency. For instance, a greater number of intense tropical cyclones making landfall may be 
due to an increase in the intensity of all tropical cyclones, an increase in the total number 
of tropical cyclones forming, or both.

In summary, this study represents the first published account of blending paleoclimate 
data with contemporary tropical cyclone risk modelling. We find that while there are some 
critical limitations of incorporating paleo-data into a present-day view of risk, the value 
of paleoclimate data lies in contextualizing the present-day risk environment, rather than 
complementing it, and supporting worst-case disaster planning.
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