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Abstract: 12 
 13 
High-performance electrochemical energy storage devices concurrently require enhanced 14 
energy density, power density, and long lifespan, which has led to the emergence of 15 
supercapattery technology. Supercapatteries are on a rapid development path with the 16 
emergence of suitable electrode materials and befitting device architecture that integrates high 17 
energy density of batteries with the high-power density and cyclability of supercapacitors in a 18 
single device. Transition metal compounds have achieved a benchmark in supercapatteries, but 19 
these compounds face challenges in controllable structure and porosity to achieve better 20 
electrochemical performance. Multifunctional metal-organic frameworks (MOFs) appear as 21 
the next-generation material and have fascinated immense consideration in supercapattery 22 
applications. Their outstanding properties like high specific surface area with controllable pore 23 
structure and architectural tunability has resulted in the advancement of active electrode 24 
materials for supercapatteries. This review critically examines the current progress in transition 25 
metal compound based electrode materials and advancement of MOF-derived structures and 26 
their composites for supercapattery applications. This review article highlights the potential in 27 
MOF-based supercapatteries that provides a blueprint for next-generation, high performance 28 
electrochemical energy storage systems. 29 
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1. INTRODUCTION 11 
 12 

Electrochemical energy storage (EES) devices are crucial for storing and delivering energy 13 
at every scale while eliminating the reliance on renewable sources such as tidal energy, solar 14 
energy, wind energy, etc. [1]. EES devices can hold large amounts of energy, deliver high 15 
power, have a long lifespan, and are viably affordable. EES devices like rechargeable batteries 16 
[2]–[4] possess adequately high energy densities, whereas supercapacitors [5]–[8] own high 17 
power densities and extensive cycle lifespans. Despite a lot of advancement in both these 18 
technologies, they cannot embark on the desirable commercialization for a wide range of 19 
applications. Rechargeable batteries suffer from low power density, less cycle life, and joule 20 
heating [9]. On the other hand, supercapacitors suffer from low energy density and inadequate 21 
potential [6]. To resolve this, ongoing research is focused on combining the merits of 22 
rechargeable batteries and supercapacitors into a single device known as supercapattery [10]. 23 
The Ragone plot given in Figure 1 displays the difference between various EES devices based 24 
on their energy density and power density. The plot also demonstrates that supercapattery 25 
bridges the gap between the batteries and the supercapacitors as summarised in Table 1. 26 
 27 

 28 
Figure 1. Ragone plot of the different electrochemical energy storage devices 29 

 30 
Performance of EES devices prominently relies on the choice of electrode materials; 31 

therefore, majority of the research is focused on integrated electrode architectures built with 32 
nanomaterials available in numerous chemical configurations and morphologies. Among them, 33 
metal-organic frameworks, abbreviated as MOFs, are currently receiving much attention in the 34 
pursuit of the best electrode materials for potential applications in rechargeable batteries [11], 35 
supercapacitors [12], and supercapattery [13]. MOFs have unique morphologies with iso-36 
reticular structures that exhibit incredible properties like high and uniform porosity, large pore 37 
volume, high surface area (≈2000-8000 m2/g), structural uniformity, tuneable functionality, 38 
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and structural diversity achieved with simple synthesis methods. They are formed by 1 
combining metal ions (such as Zn2+, Cu2+, Ni2+, Al3+, Cr3+, Fe3+, Zr4+, etc.) with multidentate 2 
organic linkers via coordination bonding. The organic linkers range from the vast family of 3 
carboxylic acids, bipyridine, benzoic acids, phenylene, and terephthalic acids. MOFs can be 4 
produced in innumerable combinations for targeted purpose due to the vast range of available 5 
metal species and organic linkers. MOF structures can be made in one dimension (1-D), two 6 
dimensions (2-D), or three dimensions (3-D), depending upon the organic and inorganic 7 
structural units [14]–[16]. 8 

 9 
Table 1. Comparison of different electrochemical energy storage devices  10 

 Capacitors 
[17]   

Supercapatteries  Batteries Supercapacitors 
[17] 

Energy 
density  

< 0.1 Wh/kg 10-100 Wh/kg 
[18]–[22] 

120240 Wh/kg 
[23] 

1-10 Wh/kg  

Power 
density 

>>10,000 
W/Kg 

100-1000 W/kg 
[24]–[28] 

  1-3 kW/kg 
(Li-ion battery) 
[23] 

500-10 kW/kg  

Cycle life Infinite  > 10,000 [29] About 1000 
[17] 

> 500,000 

Charging 
time 

10-6 to 10-3 
sec 

 1-5 h [17] Sec to mins 

Discharging 
time 

10-6 to 10-3 
sec 

 0.3 to 3 h [17] Sec to mins 

 11 
A variety of synthetic techniques exist to synthesize MOFs by combining metal ions with 12 

organic linkers using high boiling point solvents such as N, N-dialkyl formamides or even 13 
deionized water. These techniques include botconventional synthesis methods like  heating in 14 
the oven and also specific ones such as microwave [30], electrochemical [31], ultrasonic [32], 15 
and mechanochemical processing. The obtained MOF structures possess distinctive structural 16 
properties which makes them extensively useful in a number of applications such as gas storage 17 
and separation [33]–[35], MOF magnets  [36]–[41], catalysis [42], [43], sensors [44]–[46], 18 
drug delivery [47]–[49], bioimaging [37]-[38], luminescence [52], and electrochemical energy 19 
storage [53]–[58] as illustrated in Figure 2. 20 
                                                                                                                                                   21 

 22 
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Figure 2. Properties and applications of multifunctional MOFs 1 
 2 

 MOF-based electrodes in electrochemical systems provide inherent redox-active sites 3 
and improved storage capacity. Recent advancements in the MOFs include deriving 4 
nanoporous carbon [59]–[61], metal oxide/hydroxides nanostructures, and nanocomposites that 5 
make them applicable as cathode, anode, matrix, and precursors in EES devices [5]. The 6 
relevance of MOFs as potential electrode material has led to a new area of research with efforts 7 
to amalgamate the charge storage mechanisms prevalent in supercapacitors and rechargeable 8 
batteries towards a hybridized supercapattery mechanism. In this review paper, the current 9 
research progress, challenges, and scope for future work in the emerging field of 10 
supercapatteries is outlined with the aim to understand the working and charge storage 11 
mechanism to achieve significantly high energy density and power density for idealistic EES 12 
devices. 13 
 14 

2. Charge storage mechanism in electrochemical energy storage devices 15 
The term supercapattery is designed with the word “supercap” (from the term 16 

supercapacitor) and “attery” (from the term battery) because of the involvement of both types 17 
of charge storage technologies. It is essential to understand the charge storage mechanism in 18 
batteries and supercapacitors to comprehend the working mechanism of supercapatteries. 19 
 20 

2.1. Batteries 21 
Rechargeable batteries are composed of two electrodes, cathode and anode, and an 22 

electrolytic solution (Figure 3a). The rechargeable batteries store energy electrochemically 23 
within the bulk of the electrodes, which act as host materials for the electrolyte ions.  The 24 
electrode materials are chosen in such a way that the electrolyte ions can 25 
intercalate/deintercalate during the charging and discharging processes. During the charging 26 
cycle, the positive electrolyte ions are deintercalated (extracted) from the cathode and 27 
intercalated (inserted) into the anode. The reverse process occurs during the discharging cycle 28 
where the positive ions transport from the anode to the cathode. This charge transfer 29 
mechanism involves Faradic reverse oxidation and reduction reactions that occur between the 30 
electrodes when a battery is connected to an external electric load. Thus, energy in batteries is 31 
stored through reversible redox reactions. The Faradic charge storage mechanism is evident 32 
from the peaks in cyclic voltammetry (CV) and asymmetric curve in galvanostatic charge-33 
discharge (GCD) measurements as shown in Figure 3b,c. Transition metals and their 34 
derivatives of oxides [62]–[65], hydroxides, phosphides [66]–[68], nitrides [69][70], and 35 
different polymers [71] are utilized as electrode material in batteries. The most prominent 36 
batteries in the current scenario are Li-ion batteries [2][72], Na-ion batteries [73][74], and Li-37 
metal batteries [75]–[77]. Li-ion batteries are environmentally friendly and have tremendous 38 
energy density (LiS 2600 Wh/kg, LiO 3505 Wh/kg). In addition, Li-metal batteries (Li-cobalt 39 
oxide, Li-phosphate, etc.) are also gaining immense interest because of their higher energy 40 
capacity of 3860 mAh/kg and low-cost electrolyte additives. Thus, batteries give tremendous 41 
results when we consider the energy density parameter but power density and cyclability are 42 
still very low [78]. Supercapacitors resolve this issue to great extent and are considered to 43 
bridge the gaps between batteries and capacitors [17]. 44 
 45 
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1 
Figure 3. Schematic diagram of battery: (a). charge storage mechanism of battery; (I) discharging; 2 
(II) charging; (b)(d). schematic cyclic voltammograms; (c). galvanostatic charge-discharge curve. 3 
(b). Reproduced with permission copyright 2017, John Wiley and Sons; [79] (c,d). Reproduced 4 

with permission copyright 2017, John Wiley and Sons [80] 5 
  6 

2.2. Supercapacitors 7 
Supercapacitors (SCs), also recognised as ultracapacitors, are composed of two electrodes 8 

with high surface area and separated by a thin cellulose separator dipped in an electrolytic 9 
solution (Figure 4a). SCs offer remarkable capacitance and energy density in comparison to 10 
conventional capacitors [17]. Based on the technique for storing charges, SCs are commonly 11 
categorized as electric double layer capacitor (EDLC) and pseudocapacitors (Figure 4a). EDLC 12 
SCs are chiefly governed by the charge accumulation on the electrode-electrolyte interface, 13 
which is non-faradaic and electrostatic in nature. There is no chemical or physical 14 
transformation inside the electrode surface resulting in the high cyclability of these devices 15 
[61]. The CV curves of EDLC devices are rectangular in shape, and ideally, GCD curves 16 
(Figure 4b) are symmetric. The most popular materials for EDLC supercapacitors are carbon-17 
based materials [81]–[83]. 18 

Another charge storage mechanism involving interface-confined redox reactions or 19 
intercalation/deintercalation of electrolytic ions, i.e., pseudocapacitance, results in higher 20 
specific capacitance and energy density than EDLC SCs but is still lower than rechargeable 21 
batteries. The CV and GCD graphs of pseudocapacitors (Figure 4c,d,e), clearly show 22 
distinguished peaks of redox reactions and asymmetric charging-discharging behaviour. The 23 
materials employed in pseudocapacitors are composites of conducting polymers (polyaniline 24 
(PANI), polythiophene, polypyrrole (Ppy), polyacetylene, etc.) and transition metal oxides 25 
(RuO2, MnO2, Co3O4, V2O5, Fe3O4, etc.) [84]–[86]. Pseudocapacitors suffer from several 26 
drawbacks including low power density and are more likely to alter their density during 27 
charging and discharging cycles, which reduces their cyclability [7][60]. 28 

 29 

 30 
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Figure 4. (a). Different energy storage mechanisms in supercapacitors: (I). carbon particles; (II). 1 
Redox pseudocapacitance; (III). Intercalation pseudocapacitance [87]. Schematic CV curves of: 2 

(b). EDLC; (c). redox pseudocapacitance; (d). intercalation pseudocapacitance; and (e). 3 
comparison of galvanostatic discharge plots for different energy storage mechanisms in 4 

supercapacitors; (a). Reproduced with permission copyright 2017, John Wiley and Sons; (b-e). 5 
Reproduced with permission copyright 2018, American Chemical Society [88]  6 

 7 
2.3. Supercapattery 8 

Combining two different technologies, i.e., rechargeable batteries and supercapacitors gave 9 
an upsurge to a newly established technology termed “supercapattery” as shown in Figure 5. 10 
Supercapattery provides an energy storage mechanism displaying high energy density and 11 
power density as well as fast charging and discharging capabilities [89]. The basic structure of 12 
asupercapattery device is similar to the supercapacitor comprising two electrodes separated by 13 
an electrolytic solution and a separator. A supercapattery can be described via Dunn’s power 14 
law formula in accordance with the equation given below: 15 

                                                     i = kvb…………………………………….(1) 16 
                                                   ln(i) = ln(k) + b ln(v)……………………(2) 17 

Where i defines current density (A/g), v (mV/s) defines scan rate, and b and k are adjustable 18 
parameters. b is an important parameter whose value changes in accordance with the charge 19 
storage mechanism. Ideally, b is found to be 1 for EDLC SCs and capacitors, where charge 20 
storage is mainly through the electrostatic mechanism. In the case of batteries value of b is 21 
found to be 0.5, as charge storage is through a faradic mechanism (oxidation-reduction) and 22 
for supercapattery device fitting value of b is in the region of 0.5–0.8, which is midway between 23 
battery and supercapacitors. Supercapattery is likely to attain high performance and long cycle 24 
life as it utilizes both capacitive and battery-grade material [90]. 25 
Generally, the hybridisation of two types of charge storage mechanisms can be carried out 26 
either at the device level or at the electrode material level. In the former case, battery-grade 27 
materials are combined with capacitive electrode materials to make a composite [91][92]. In 28 
the latter case, the individual electrode of battery type and capacitive electrode are combined 29 
to form the device. Carbon materials like graphene oxide, reduced graphene oxide, activated 30 
carbon (AC), carbon nanotubes (CNT), and fullerenes possessing high specific surface area 31 
(500-2500 m2/g) are utilized as capacitive electrode materials [92][93].  32 
While combining a battery-grade negative electrode and a capacitive positive electrode in one 33 
cell, the following charge conservation equation is obeyed [21]:  34 

                        Q− = m−Csp−ΔU− = m+Csp+ΔU+ = Q+……………(3) 35 
where m is the effective mass of the electrode. Csp is specific capacitance, Q is the total charge 36 
stored on the respective electrode and ΔU is the potential range. The “-" and “+” superscripts 37 
are used for negative and positive electrodes, respectively.  Here, Q = nF/m where F represents 38 
Faraday constant, and the mass ratios of the electrodes are: 39 

                                 𝑚𝑚
+

𝑚𝑚− = 𝐶𝐶
𝑠𝑠𝑠𝑠−ΔU−

𝐶𝐶𝑠𝑠𝑠𝑠+ΔU+
 …………………………………(4) 40 

The architecture of the electrodes is engineered according to equation (4). In case of hybrid 41 
supercapacitors, the two electrodes have different capacitances and/or different operating 42 
voltages. This leads to unbalanced charge storage and the excess charges on one electrode do 43 
not contribute to the total capacitance. To account for this difference and achieve optimum cell 44 
voltage, the active mass of the electrodes is adjusted based on equation (4) leading to mass 45 
balancing and higher energy density.    46 

In a nutshell, there are three charge storage techniques involved in supercapatteries. The 47 
first technique uses EDLC, based on porous materials like carbon nanotubes, activated carbon, 48 
and graphene to store charge reversibly on the electrode surface. The second mechanism is a 49 
non-capacitive Faradaic process, which is employed in rechargeable lead-acid batteries and 50 
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zinc-manganese dioxide batteries. The transfer of localised valence electrons is described by 1 
the Nernst equation. The third mechanism uses pseudocapacitance, also known as the 2 
capacitive Faradaic process, and describes the transport of delocalized valence electrons. This 3 
mechanism is usually seen in transition metal oxides (TMOs), which include RuO2, SnO2, 4 
MnO2, etc. and electrically conducting polymers (ECPs) like poly (3,4-ethylene 5 
dioxythiophene) (PEDOT), polyaniline (PANI), and polypyrrole. Here, all three methods of 6 
charge storage can be used for electrode materials in supercapatteries [94][29]. 7 

The different materials utilized in supercapattery applications for battery type electrodes 8 
are transition metal phosphates, sulphides, oxides/hydroxides conducting polymers, and MOFs 9 
that are summarised in Table 2-6. 10 

 11 

 12 
Figure 5. Integration of battery and supercapacitor technology 13 

     14 

3. Supercapatteries based on transition metal compounds 15 

The performance of supercapattery majorly relies on the electrode material, therefore, 16 
scientists and researchers have worked out on integrating different electrode architectures. 17 
Among them, a number of transition metal-based oxides/phosphides/sulphides are selected for 18 
a hybrid system under the chase to search for the best available metal resources, tenable 19 
electrode materials, and low cost materials leading to increased volumetric and gravimetric 20 
energy densities [95]. A brief study on transition metal-based oxide/phosphide/sulphide 21 
materials for supercapatteries is summarised below. 22 

Metal oxides offer abundant active sites, high electrochemical stability, and different 23 
oxidation states that result in substantial advancement in the electrochemical properties of 24 
supercapattery devices. The oxygen vacancies in metal oxides serve as shallow donors and as 25 
electrochemically active sites, which together boost the material's overall utilisation rate. 26 
Presently, metal oxides including cobalt oxide, molybdenum dioxide, manganese oxide, nickel 27 
oxide, and strontium oxide are extensively employed as an electrode material for 28 
supercapatteries [18], [96]–[98]. Along with mono metal oxides, multi-metal oxides are also 29 
largely employed in supercapattery applications for enhancing the redox-active sites for 30 
electrochemical properties. Multi-metal oxides offer multiple oxidation states and the metal 31 
species synergize to deliver more Faradaic active sites with an increase in conductivity of 32 
electroactive material [19], [20], [91], [93], [99], [100]. Table 2 summarizes the performance 33 
of metal oxide-based supercapatteries. Liang et al. [93] synthesized and studied 2D 34 
Mn0.4Ni0.1Co-OA thin sheets. SEM images (Figure 6a,b,c) of Mn0.4Ni0.1Co-OA demonstrates a 35 
honeycomb structured 3D network made of disordered interwoven 2D nanosheets with 36 
numerous pore walls and open channels that allow easy access to the electrolyte and boost the 37 
material's active surface area. 38 

 39 
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 1 
Figure 6. SEM images of Mn0.4Ni0.1Co-OA thin sheets at different magnifications: (a). 30 µm; (b). 2 

5 µm; (c). 500 nm; (a-c). Reproduced with permission copyright 2021, Elsevier [93]  3 
 4 
Mn0.4Ni0.1Co-OA was investigated as a positive electrode of the supercapattery and AC was 5 
used for the negative electrode. These electrodes provided an energy density, Es, of 32.2 Wh/kg 6 
and power density, Ps, of 770.2 W/kg, respectively. The constructed device showed high 7 
stability and projected a coulombic efficiency of 88.1% over 15,000 cycles [93]. Further, 8 
defects in metal oxides play an additive role in enhancing the energy densities and power 9 
densities of the devices. Dominant oxygen deficiencies cause in situ crystal defects at various 10 
lattice sites, which is typically accomplished by the elimination of terminal oxygen using 11 
reducing reagents (NaBH4, LiAlH4) and high-temperature annealing [101] that increases the 12 
conductivity and open new paths for electron transfer in electroactive materials [102], [103]. 13 
Gurusamy et al. [97] reported the study of 2D MoO3-x (x indicates oxygen vacancy) as an 14 
electrode material. Oxygen deficiencies and defects in 2D MoO3-x (x indicates oxygen vacancy) 15 
nanoplates led to an improvement in the electrochemical properties of the supercapattery. It 16 
was observed from the HR-TEM images that the 2D MoO3-x nanoplates consisted of regions 17 
having screw dislocations, amorphous boundaries, grain boundaries, and twin grain 18 
boundaries. Figure 7a depicts the screw dislocation as compared to a perfect crystal in which 19 
vacancies are simultaneously created. These vacancies are used up for energy storage by 20 
allowing the electrolyte ions to quickly adsorb/desorb on the surface of the electrodes. Fig. 7b 21 
shows the diffusion pathways of the electrons across grain boundaries, while Fig. 7c depicts 22 
the diffusion pathways along amorphous boundaries. The CV graphs of 2-D MoO3-x in a three-23 
electrode arrangement depict redox peaks that represent the behaviour of a battery. With a 24 
power density of 11.6 kW/kg (1 A/g) and a cell voltage up to 1.6 V, MoO3-x demonstrates an 25 
excellent energy density of 129.6 Wh/kg due to the absence of oxygen, which acts as highly 26 
reactive sites for the adsorption of electrolyte ions. Even after 10,000 GCD cycles the device 27 
kept a phenomenal capacitance retention of 98.6% [97]. 28 

 29 

 30 
Figure 7. Screw dislocation: (a). grain boundary; diffusion pathways of (b). grain boundary and 31 

(c) amorphous boundary; (a-c). Reproduced with permission copyright 2020, Elsevier [97] 32 
 33 

Further, the integration of mono metal and multi-metal oxides with conducting materials like 34 
conducting polymers, metal nanoparticles (Ag, Au, etc.), and carbonaceous materials (rGO, 35 
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CNT, etc.) [21][103][104] [105] are beneficial for improving the mechanical stability and ion 1 
diffusion rate due to increased conductivity for enhanced electrochemical properties [19][103]. 2 
Iqbal et al. [19] synthesized SrO@PANI composite through physical blending. The 3 
composites’ specific conductivity and electrochemical performance were improved by the 4 
interphase region between PANI and SrO. Initially, the samples were analysed in a three-5 
electrode configuration at varying scan rates ranging between 0 and 0.6 V. The CV curves 6 
showed the redox peaks which depict the behaviour of a battery. Conducting matrix of PANI 7 
offers an electroactive pathway for ion diffusion and boosts the electrochemical reversibility 8 
as evident from the CV curve that have a sharp horizontal shift with incorporation of PANI in 9 
SrO. GCD curve showed an increase in the discharging time due to large surface area offered 10 
to electrolytic ions by SrO@PANI. For supercapattery analysis, the SrO@PANI is employed 11 
as the anode and AC as the positive electrode. The potential window of the assembly 12 
SrO@PANI//AC is improved (1.6 V) as compared to SrO@PANI (0.6 V) and AC electrode (1 13 
V). Furthermore, the device shows cyclic stability of 114% after 3000 charge-discharge cycles 14 
[19].         15 

Metal oxides exhibit a high surface-to-volume ratio, yet in their pristine form they coalesce 16 
leading to reduction of electroactive sites thereby deteriorating specific capacity [106]. 17 
Although substantial work is done on metal oxides-based electrodes, the commercial 18 
applicability of these materials is obstructed by poor electrical conductivity and low 19 
electrochemical cycling stability. Further, phosphides-based materials have been used for 20 
supercapatteries due to their good electrical conductivity and fast ion transport mechanism. 21 
Metal phosphides are expected to show metallic and semiconducting behaviour because of the 22 
abundant strong metal-phosphorus bonds and metal–metal bonds, that give rise to high 23 
electrical conductivity with significant chemical stability [107]. Due to their rapid ion transport 24 
mechanism, metal phosphates such as cobalt, manganese, and nickel phosphate and their multi-25 
metal phosphates can be ideal electrode materials for supercapatteries [108]–[113]. Table 3 26 
summarizes the performance of metal phosphate-based supercapatteries.  27 

Shao et al. [114] reported cobalt phosphate nanoflakes grown in situ on Ni foam using the 28 
hydrothermal technique and employed as supercapattery electrode with AC. The samples were 29 
tested in three electrodes configuration. Battery-like behaviour was confirmed by the quasi-30 
reversible plots with distinct potential plateaus in GCD. It was found that 3D networks of thin 31 
nanoflakes of cobalt phosphate project a large contact area with lots of nano/microscale gaps. 32 
This favored fast charge transport and deeper electrolyte access to the interior surfaces of the 33 
electrode yielding specific capacitance of 1990 F/g. Further, the high thermal stability of the 34 
supercapattery was demonstrated by operating it as a pacemaker power source at average 35 
human body temperature (25–45 °C) (Figure 8). 36 

 37 



10 
 

 1 
Figure 8. (a). Pacemaker supercapattery self-discharge curves at various temperatures from 25°C 2 
to 45°C; (b). a plot of forward anodic peak current density and the square root of the scan rate for 3 

CP/NF at various temperatures from 25 to 45 °C; (c, d). discharge curves (at 40 mA/cm2), and 4 
Nyquist plots (with equivalent circuit and magnified view of the graph); (a-d). Reproduced with 5 

permission copyright 2019, American Chemical Society  [114] 6 
 7 

Similar to multi-metal oxides, multi-metal phosphides are employed for enhanced redox 8 
active sites [108][115][111][112]. Alam et al. [108] synthesized bi-metallic phosphates of 9 
NiMn(PO4)2 using the sonochemical method. The CV curve (Figure 9) shows that the area 10 
under the curve for NiMn(PO4)2 was higher as compared to Mn(PO4)2 and Ni(PO4)2.  11 

 12 

 13 
Figure 9. CV curves of all samples with varying Mn content in Ni: (a). at 3 mV/sec; (b) 30 14 

mV/sec; (c). 50 mV/sec; (d). evaluation of specific capacity in relation to scan rates across all 15 
samples; (a-d). Reproduced with permission copyright 2021, Elsevier  [108] 16 

 17 
Additionally, the biphosphate was employed as positive electrode and AC as negative 18 
electrode for supercapattery investigation. The device was found to have a good Es of 63.8 19 
Wh/kg and a Ps of 11,892 W/kg due to the presence of both electrostatic capacitive and 20 
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diffusive charge storage mechanism [108]. Alam et al. [111] further enhanced the 1 
electrochemical properties of the NiMn(PO2)4 by insertion of the PANI matrix as a 2 
conducting polymer. NiMn(PO4)2-PANI-based ternary composites were synthesized using 3 
the facile sonochemical method. The inclusion of PANI in the NiMn(PO2)4 composites 4 
increases the reversibility of electrochemical reactions in redox processes and provides 5 
electroactive sites for ion diffusion. Thus, the supercapattery assembly demonstrates an Es 6 
of 71 Wh/kg and the Ps of 12686 W/kg. Additionally, the device offers a cycle stability of 7 
97.6% after 5000 GCD cycles [111]. Among the most important problems in metal 8 
phosphates that need to be resolved are the need of optimal bandgap, structural flexibility, 9 
electrical conductivity, and carrier mobility [108]. 10 
 Transition metal sulphides have gained a lot of consideration because of their overall 11 
high conductivity and high electrochemical performance making these materials capable of 12 
storing high energy. Metal sulphides of nickel, manganese, and cobalt show the highest 13 
electrochemical properties. Like multi-metal oxides, multi-metal sulphides provide 14 
abundant electrochemical active sites that increase the reaction kinetics and 15 
electrochemical activity of the device [116]. In order to further increase the capabilities, 16 
composites of metal and multi-metal sulphides with MXene, conducting polymers, and 17 
carbonaceous composites are extensively employed for supercapattery devices. MXene 18 
possesses a 2D-layered structure that provides massive surface area and excellent electronic 19 
properties resulting in substantial partial pseudocapacitance and high double-layer 20 
capacitance. Table 4 summarizes the performance of metal sulphide-based 21 
supercapatteries.  22 

Surendran et al. [117] created a binder-free electrode with a 3D array of flower-like NiS 23 
nanostructures on carbon cloth (CC) using an in situ hydrothermal technique (Figure 10). 24 
Nickel sulphides have finely tailored morphologies with high specific surface area, whereas 25 
CC is an electroconductive substrate employed to enhance the performance of the material 26 
[117].  27 
 28 

 29 
Figure 10. Illustrative diagram for the intermittent progression of the evolution of 3D flower-like 30 
β-NiS nanostructure; Reproduced with permission copyright 2017, John Wiley and Sons [117]  31 

 32 
The same group also reported a binder-free electrode of nanoflake-like CoS nanostructure 33 
on CC by using an in situ hydrothermal technique. The FE-SEM (Figure 11 a,b,c,d) images 34 
show that CoS nanoflakes uniformly distribute over the CC substrate with irregular edges. 35 
While the irregular edges provided deeper penetration to the electrolyte that improved the 36 
active surface area and electrical conductivity, essential for obtaining high electrochemical 37 
activity, the uniformity allows enough space for rapid ion transfer. 38 
                                                                   39 
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 1 
Figure 11. FESEM images of the CoS//CC with varying magnification levels: (a). 100µm; (b). 20 2 

µm; (c). 10 µm; (d). 1 µm; (a-d). Reproduced with permission copyright 2019, Elsevier  [118]  3 
 4 

The CoS//CC electrode achieved a specific capacitance of 937 F/g having a plateau region 5 
in the GCD curve related to its battery-like behaviour. For supercapattery analysis, the 6 
CoS//CC and rGO were employed as positive and negative electrodes, respectively. The 7 
assembly showed a specific capacitance of 127 C/g and an energy density of 38 Wh/kg. 8 
The device also delivered a consistent capacity for ~5000 cycles [118]. Wang et al. [119] 9 
synthesized NiCo2S4 using the hydrothermal method and the synthesized samples were 10 
exposed to a plasma generated by a dielectric barrier discharge in different time intervals. 11 
It was observed that the 30 second exposure to plasma generated an abundant amount of 12 
sulphur vacancies (Figure 12) and resulted into the reduction of Nickel and Cobalt valence 13 
states in NiCo2S4 nanostructure leading to higher specific capacitance (782 F/g) as 14 
compared to the pristine NiCo2S4 (590.4 F/g). Additionally, due to the plasma treatment, 15 
tiny voids were created in the material’s interior that could better withstand the NiCo2S4’s 16 
volume change during the faradic charge transfer process, which boosts reaction kinetics. 17 
A supercapattery device was fabricated using plasma-induced NiCo2S4 (positive electrode) 18 
and AC (negative electrode), which delivered a high Es of 181.75 Wh/kg with a capacitance 19 
retention of 91% over 10,000 cycles [119]. 20 
 21 

 22 
Figure 12. Specific capacity at 0.5 A/g vs S-vacancies concentration plot of NiCoS-12 at different 23 

plasma treatment duration; Reproduced with permission, Royal Society of Chemistry [119] 24 
 25 

Nasrin et al. [120] synthesized MnCo2S4(MCS)@MXene composites using an effective 26 
hydrothermal method. MCS nanostructure shows fast electron transfer with considerable 27 
redox reactions of electrolytic ions that increase the electrochemical activity of the device. 28 
Integration of MCS particles between the MXene layers provides synergetic effect by 29 
avoiding the restacking of MXene layers which enlarged the interlayer spacing and boosted 30 
the diffusion of electrolyte ions with improved conductivity (Figure 13). 31 
 32 
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 1 
Figure 13. MCS@MXene hybrid material synthesis and supercapattery mechanism are shown 2 

schematically; Reproduced with permission copyright 2021, Elsevier [120] 3 
 4 

CV curve of the MCS@MXene has a quasi-rectangular shape that shows dominant 5 
capacitive behaviour by MXene which is also confirmed by the smaller plateau region in 6 
the GCD curve. For supercapattery analysis, MCS@Mxene and aloevera-derived AC were 7 
assembled as positive electrode and negative electrode, respectively. The assembly shows 8 
a capacitance of 600 C/g at 1 A/g and a very prominent capacitance retention of 100% over 9 
12,000 cycles [120]. 10 
 11 

Table 2. Metal oxides and their composites as an electrode material for the fabrication of 12 
supercapattery 13 

Cell configuration Specific 
capacity 
(C/g) 

Energy 
density 
(Wh/kg) 

Power 
density 
(W/kg) 

Cycle life Ref. 

α-Ni(OH)2//AC (activated carbon) 246 F/ g  
(2 A/g) 

49 696  87 % over 
2000 
cycles 

[96] 

Co3O4//1 KOH//rGO 620 mAh/g 40  742  97.8 % 
over 5000 
cycles 

[24] 

CeO2//1KOH//rGO 400 (1 
A/g) 

20  1475   [18] 

Bi2O3//graphite 559 F/g 
(0.4 A/g) 

8  2040  80% over 
5000 
cycles 

[121] 

Fe3O4@N-PCNR//rGO 495 (1 
A/g) 

46  750  80% over 
10,000 
cycles 

[27] 

SrO@PANI//AC  258 (0.8 
A/g) 

24  323  114% 
over 3000 
cycles 

[19] 

NiMoO4 NFs@NS//AC 1989 F/g 
(3 
mA/cm2) 

13.2  1644  104% of 
over 5000 
cycles 

[20] 

2-D MoO3-x//6 M KOH//rGO 573.7 Ah/g  
 (1 A/g) 

129.6  11600  98.6% 
over 
10,000 
cycles 

[97] 

Mn0.4Ni0.1Co-OA//AC 1141.6  
(1 A/g) 

32.2  770.2  88.1% 
over 
15,000 
cycles 

[93] 

CoMn2O/NG substrate  527   
(1 A/g) 

44.1  992.6  90.1% of 
over 

[99] 
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10,000 
cycles 

CNT-CuCo2O4@Ag//AC  590 mAh/g 
(0.5 A/g) 

50  4200 98% of 
over 
20,000 
cycles 

[21] 

Co3O4@C composite//PVA-
KOH//AC  

138 F/g    [104] 

CoMoO4//AC  64    
(1 A/g) 

18.89  10600  ~93% 
over 5000 
cycles 

[100] 

Co3O4//AC 108.8 (0.3 
A/g) 

23.7 307  88.5% 
over 2500 
cycles 

[122] 

rGO-Co3O4-Ag-NPs//AC  115.8 (0.6 
A/g) 

23.63  440  85.5% 
over 3000 
cycles 

[123] 

Ni/NiFe2O4@C//rGO  1710 (2 
A/g) 

62  3440  100 % 
over 5000 
cycles 

[22] 

Bi2MoO6//Bi2MoO6 485 F/g  
(5 A/g) 

45.6  989  82% over 
5000 
cycles. 

[91] 

Co(OH)2/Co nanosheets//AC 111 (0.5 
A/g) 

10 300  69.6 %  
5000 
cycles 

[98] 

CuFe2O4–NR@NiFe2O4–
NS//PVA-KOH//rGO  

1366 (1 
A/g) 

72  287  97% over 
10,000 
cycles 

[124] 

Li2MnSiO4/Al2O3//AC  141.5 F/g 
(1 A/g) 

12.5 4020.8  93.6 % 
over 100 
cycles 

[125] 

LiClO4//AC       [126] 
NiO-In2O3 (1:2) 766.65  26.24  1752.8  98 % 

50,000 
cycles 

[127] 

CuCoO4//AC 708   
(1 A/g) 

19.77  7910.4  89% over 
20000 
cycles 

[128] 

Ni/NiO/NC//rGO  37 2750   [129] 
SiC/BiCoZnOM//1 KOH+1 M 
Na2SO4//SiC/BiCoZnOM 

841.1 (1 
A/g) 

76.25  19000  84.2% 
over 
10000 
cycles. 

[130] 

MnCo2O4//AC  152.7 
mAh/g (5 
mA/cm2) 

33.8  318.9  85 % over 
10,000 
cycles 

[131] 

CoNiWO4//AC  626.4 F/g 
(1 A/g)  

42.2  1047.7  105.3% 
over 
10,000 
cycles 

[132] 

Co3O4//AC  171.8 
mAh/g (1 
A/g) 

45.8  725  83.4 % 
over 
10, 000 
cycles 

[133] 

CuCo2O4/Ni4Mo/MoO2@ALD-
Co3O4//AC  

367.6 (3 
A/g) 

110.4  2184 20,000 
cycles 

[134] 

Li2TiO3 317 F/g (1 
A/g) 

  95% over 
500 
cycles 

[135] 
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 1 
Table 3 Applications of metal phosphates as electrode materials in the design of supercapattery 2 

 3 
Table 4. Applications of metal sulphates as electrode materials in the design of supercapattery 4 

Ag/Co3O4@PANI//AC  262  
(3 mV/sec) 

14 165 121.03% 
over 3500 
cycles. 

[136] 

Graphene-NiO//Activated 
charcoal 

243  
(3 mV/sec) 

47.3 140 98.7% 
over 
5,000 
cycles. 

[105] 

Cell configuration Specific 
capacity 
(C/g) 

Energy 
density 
(Wh/kg) 

Power 
density 
(W/kg) 

Cycle life Ref. 

Strontium phosphide@PANI//AC 196 (0.4 
A/g) 

28.9  1020  149% 
over 2000 
cycles 

[137] 

NiMn(PO4)2//1 M KOH//AC  678  
(0.4 A/g) 

63.8  11892  99.2% 
over 5000 
cycles 

[108] 

Cobalt phosphate//AC 147.2 (0.5 
A/g) 

34.8  425  87.2% 
over 
10,000 
cycles 

[109] 

rGO//ZnP-rGO 102.78 (0.6 
A/g) 

24.26 2550  71% over 
2000 
cycles 

[22] 

g-C3N4 doped vanadyl phosphate  498   
(1 A/g) 

  72% over 
5000 
cycles 

[138] 

Cobalt phosphate//AC 1990 F/g 
(5 mA) 

43.2  5800 68% over 
100,000 
cycles 

[114] 

Co3(PO4)2·8H2O//AC 111.2 F/g  
(5 
mA/cm2) 

29  4687  77.9% 
over 1000 
cycles. 

[110] 

Ni2P//AC  206 mAh/g 
(5 
mA/cm2) 

42  2856  10000 
cycles 

[139] 

CNF/NiCoP//CNF/NiCoP 269 F/g 
(1.5 A/g) 

36  1200  25 000 
cycles 

[115] 

g NiMn(PO4)2-PANI//AC  847 (0.5 
A/g) 

71.3  12 686 97.6% 
over 5000 

[111] 

CuMnPO4//AC 247 F/g (1 
A/g) 

55  6400  90% over 
2500 
cycles 

[113] 

ZnCoMn(PO4)2//AC  1704.21 
F/g (1.2 
A/g) 

45.45  4250  93% over 
1500 
cycles 

[112] 

Co3(PO4)2@PANI  638 (0.8 
A/g) 

53.2  6027  97.6% 
over 
5000 
cycles 

[140] 

Cell configuration Specific 
capacity 
(C/g) 

Energy 
density 
(Wh/kg) 

Power 
density 
(W/kg) 

Cycle life Ref. 

CoS@CC//rGO,  
 

127 (1 
A/g) 

38  533  5000 
cycles 

[118] 
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 1 
However, some of the crucial problems that need to be solved involve the optimization of 2 
several characteristics, including electrical conductivity, structural flexibility, and band gap. 3 
Despite the advancement in supercapattery technologies at a rapid pace, the aforementioned 4 
materials are still facing many challenges such as insufficient capacitance, and low-rate 5 
capability. Also, they are inept to handle the current energy demands.  6 

Hence, attaining supreme energy and power densities is still a big task for supercapattery 7 
devices. MOFs appear as promising candidates to cope up these issues to a great extent due to 8 
their unique morphology and outstanding stability. 9 
 10 
4. Supercapatteries based on metal-organic frameworks 11 

 12 
MOFs provide a reliable solution for high-rate performance, enriched redox-active sites, 13 

multi-electron transportation ways, and fast electrolyte diffusion channels as compared to the 14 
aforementioned materials. Due to the distinct features related to high specific surface area and 15 
tuneable porosity of MOFs, these materials have drawn attention for use in energy storage and 16 
conversion. MOFs are inorganic-organic hybrid porous materials consisting of metal ion linked 17 
by organic groups, forming a crystalline, nanoporous structure. MOFs may be able to compete 18 
with activated carbon electrodes in EDLCs due to their excellent surface area over 7000 m2/g, 19 
which is greater than that of activated carbons. The output of the device is greatly improved by 20 
the morphology of MOFs in terms of capacity and rate performance. As a result, MOFs have 21 
been explored as potential material for the synthesis of electrode materials for supercapattery.  22 

MnCo2S4@MXene 600  
  

25.6   6400  100% 
12,000 
cycles. 

[120] 

β-NiS@CC//rGO 
 

827 (1 
mA/cm2) 

38  800   [117] 

CuCo2S4@Ni//AC  160.4 F/g 
(1 A/g) 

50.125  750.04   98.6 % 
after 5000 
cycles 

[141] 

CuCo2S4@Ni//AC  578 (5 
mA/cm2) 

51.8   1039  90.8 % 
5000 
cycles 

[142] 

NiCo sulfide@selenide//AC 190  39.6  1501  80 % 
5000 
cycles 

[143] 

MnO2CoS//AC  781.1 (2 
mA/cm2) 

34.72  597.24  89.6% 
over 9000 
cycles 

[144] 

NiCuS//AC 688 C/g (2 
A/g) 

23  388  84% over 
5000 
cycles 

[145] 

CuS/CoS 138.75 
mAh/g (1 
A/g) 

  94.28% 
over 4000 
cycles. 

[92] 

CuS@Cu2O 145 mAh/g 52 Wh/kg 750 
W/kg 

80% over 
2000 
cycles 

[146] 

MoO3Ni3S2/NF-0.5//AC  1.47 C/cm2 

(5 
mA/cm2) 

4.18 
mWh/cm2 

0.34 mW
/cm2 

90.5% 
over 7000 
cycles 

[147] 

NiCoS//AC  215.3 
mAh/g (1 
A/g) 

181.75 
Wh/kg 

694.3 
W/kg 

91 % 
10,000 
cycles 

[119] 
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 1 
4.1. Synthesis and characteristics of MOFs 2 

 3 
The multitude of MOF synthesis methods aim at developing well-defined inorganic/organic 4 

building blocks without causing the organic linkers to break down. Simultaneously, the 5 
nucleation and development of the targeted phase are needed that require appropriate kinetics 6 
of crystallization [148]. Proper selection of starting materials and reaction conditions is crucial 7 
for the synthesis of MOF materials to obtain the desired morphologies. So far, an extensive 8 
range of synthesis methods have been furnished such as solvothermal, sonochemical, 9 
mechanochemical, and other similar processes. The availability of a large number of synthesis 10 
techniques and the choice of starting material makes it a diverse class of material to work with. 11 
So far, numerous MOF materials, including MOF-5 [149], MIL-88B [150], MOF-74 [151], 12 
ZIF-67 [152], ZIF-78 [153], ZIF-8 [154], and countless others have already been created. 13 

The multifunctional properties of MOFs make them a wise choice for EES applications. 14 
Due to their extremely low intrinsic conductivities, pure MOFs are typically regarded as being 15 
insufficient. Recently, 2-dimensional (2D) MOFs have been developed that not only have a 16 
large specific surface area but also have a high level of electronic conductivity in their purest 17 
form [155]. In-plane charge delocalization and extended pi-conjugation, which are facilitated 18 
by an electronic network through metal nodes, cause the conductivity in 2D MOFs [156]. To 19 
obtain further desired results, MOFs tend to be integrated with other suitable materials. 20 
However, inclusion should be done in such a way that it should not lead to a decline in their 21 
properties [157]. In this regard, modification in the structure of MOFs can be done in two 22 
different ways, i.e., during the synthesis or through post synthesis methods. In the former 23 
method, befitting materials are infused at the time of the synthesis of MOFs. Due to the 24 
exceptional bonding with the inorganic component or the organic linker, this approach 25 
produces a highly stable functional structure [158]–[160]. This strategy not only help in 26 
reaching the anticipated levels of conductivity but also has synergistic benefits on performance 27 
as a whole by enhancing the properties of individual components [161], [162]. Similarly, in 28 
later case, the post-synthesis modification is also implemented to meet the desired 29 
requirements. Integration of MOFs and other innovative materials like graphene oxide, reduced 30 
graphene oxide, MXene, metal oxides, transition metal dichalcogenides (TMDs), quantum 31 
dots, carbon nanotube, conducting polymers, and mixed metallic MOFs were evaluated 32 
critically [163]–[166]. Due to their ability to maintain an appropriate pore size distribution, 33 
which is necessary for the creation of competent supercapattery electrodes, these composites 34 
have become a popular choice [167], [168]. The subsections given below present the important 35 
developments made in transforming MOFs into more electrochemically active materials that 36 
are desirable for supercapattery applications. 37 

4.2. MOF derivatives based supercapattery  38 
MOFs are used as precursors or sacrificial framework to derive the nanomaterials that 39 

inherit the structural cage-like properties of parent MOFs with high specific surface area and a 40 
rich porous structure. MOF-derived sulphides, oxides, phosphides, and nanoporous carbon are 41 
helpful for the enhancement of specific capacitance and rate capability of the electrode 42 
materials. In comparison to traditionally available activated carbon and metal oxides, pyrolysis 43 
of MOFs in an inert environment to create nanoporous carbon (NPC) structures [169]–[173] or 44 
in air to create metal oxides preserves the high specific surface area qualities while also 45 
providing the conductive frameworks [12]. Conversion into sulphides or phosphides in the 46 
presence of different reducing agent (thioacetamide, sodium sulphide, NaPO₂H₂⋅H₂O, etc.) not 47 
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only enhances the conductivity but also provides the porous framework for an enhanced 1 
stability. 2 

The most popular choice of metals for supercapattery electrodes are Nickel and Cobalt. Ni-3 
MOFs as electrode material possess high specific capacitance (Cs) but the rate capability is 4 
low, whereas Co-MOFs possess a low value of Cs with outstanding rate capabilities. As an 5 
effective method to overcome these limitations, Ni and Co metal ions are integrated together 6 
into MOF texture, which enhances the overall electrochemical performance [174]. To further 7 
improve the electrochemical properties, Ni, Co, and bi MOFs have been used as a precursor 8 
for obtaining various derivatives ranging from hydroxides, sulphides, and oxides [175]–[177]. 9 
The highly porous and hollow frameworks of metal oxides, hydroxides, sulphides, or 10 
phosphides derived from MOFs offer shorter paths for the electrolyte ions diffusion, 11 
facilitating near-surface and surface redox reactions with a striking enhancement in the reaction 12 
kinetics. Other than this, activated carbon is the most suitable counter electrode for 13 
supercapattery due to its high abundance, low cost, and good conductivity having a potential 14 
window of (-1 to 0 V) [178], [179] which enhances the overall potential window of 15 
supercapattery device. The most widely used electrolyte for MOF-derived supercapatteries is 16 
KOH because of its abundant ionic concentrations, low resistance, and smaller ionic radius 17 
[175]–[179]. Table 5 summarizes the performance of metal oxide-based supercapatteries.  18 

Wu et al. [177] synthesized carbon nanoparticles (NPs) of approximately 100 nm size 19 
derived from Co MOF using one-pot hydrothermal process. The uniform and suitable size of 20 
Co particles contributed to maximising the intrinsic faradaic reaction characteristics of Cobalt. 21 
Additionally, graphitized carbon peak is absent from the XRD curve of Co MOF-derived NPs 22 
(Figure 14 a), indicating poor crystallisation, which is further supported by Raman spectra 23 
(Figure 14 b), and results in better electrical conductivity [180]. 24 
 25 

 26 
Figure 14. Co@C/rGO material's: (a) X-ray diffraction; (b) Raman spectroscopy before and after 27 

calcination; (a,b). Reproduced with permission copyright 2022, Elsevier [180] 28 
Further, these nanoparticles were anchored on 3D rGO aerogel sheets to construct electric 29 
network for Co MOF-derived carbon matrix that facilitates ion diffusion during charge and 30 
discharge processes. Figure 15 of the SEM and TEM images demonstrates that the rGO has 31 
large-sized, highly transparent layers that aide in increasing specific surface area, electrical 32 
conductivity, and double-layer capacitance, all of which help to support long-term cyclic 33 
stability [179]. 34 
 35 
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 1 
Figure 15. SEM and TEM images of Co@C/rGO: (a). low magnification SEM picture taken 2 

before calcination; (b). high magnification SEM image; (c). low magnification TEM image taken 3 
before calcination; (d). High magnification TEM image; (e). high resolution TEM image taken 4 

after calcination; (a-e). Reproduced with permission copyright 2022, Elsevier [177] 5 
 6 

For supercapattery applications, Co@C/rGO (positive electrode) and AC (negative 7 
electrode) combination provides a specific capacitance of 810 C/g (current density of 1 8 
A/g), delivered a high Es of 29.5 Wh/kg at a Ps of 720 W/kg, and a very high capacitance 9 
retention of 93.7% after 10,000 cycles [177]. Karuppasamy et al. [179] synthesized 10 
polyhedrons structure of NiCo alloy derived from MOF on graphitic carbon nanostructure. 11 
In comparison to mono Ni@GC and Co@GC, the polyhedron structure of NiCo offers 12 
adequate routes for ionic migration and speeds up the fast charging-discharging of active 13 
species that is useful in delivering high specific capacity and coulombic efficiency with 14 
enhanced electrochemical performance (Figure 16). NiCo@GC material's surface-active 15 
sites participate in the electrochemical reactions, but its intrinsic active sites are less 16 
effective in participating in these reactions at higher current rates, leading to reduced 17 
capacitance. For improving the energy storage, a supercapattery was prepared by 18 
employing NiCo@GC and AC. This supercapattery exhibited a specific capacity of 74.3 19 
mAh/g with ES of 39.5 Wh/kg and having coulombic efficiency of 99.95% after 5000 20 
charge-discharge cycles [179]. 21 
 22 

 23 
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Figure 16. Electrochemical properties of pure Ni@GC, Co@GC, and NiCo@GC-nanostructured 1 
electrodes derived from MOFs: (a,b). CV curve at 20 mV/sec, relevant GCD plot at 2 A/g, and (c). 2 

comparable capacity curve at 2 A/g; (a-c). Reproduced with permission copyright 2022, John Wiley 3 
and Sons [179] 4 

 5 
By combining a MOF template driven method with surface amorphization strategy, 6 

Jiao-Jiao et al. [176] synthesized NiCo LDH/NiCoBi (Borate) nanosheet  derived from 7 
MOF. 8 
 9 
 10 

 11 
Figure 17. NiCo LDH/NiCo Bi nanosheet array formation process illustrated schematically; 12 

Reproduced with permission copyright 2020, American Chemical Society [176] 13 
 14 
When used in an electrochemical procedure, the MOF-derived LDHs have the ability to 15 
successfully overcome a variety of challenges such as low conductivity and easy 16 
aggregation. The NiCo LDH also possess a large number of oxygen vacancies 17 
with unsaturated surface atoms that absorb OH- and produce a large number of active sites 18 
[181]. Therefore, adding NiCo LDH will help create hierarchical composites with 19 
improved energy storage capabilities. Additionally, the presence of light weight boron 20 
element in the structure coordinates with the oxygen atom of an LDH forming various 21 
clusters and further transform borates into different structures. This provides plenty of 22 
redox active sites, that fill up the lack of LDHs. The NiCo LDH/NiCo Bi display a specific 23 
capacitance of 891 C/g (1 A/g). When assembled as supercapattery, the device shows a 1.8 24 
V potential window and can run an LED for 60 seconds [176]. 25 

Chen et al. [175] synthesized a microarray of composite Co9S8@Ni3S2/ZnS using a 26 
simple three-step wet mixing process from MOF. In Co9S8@Ni3S2 both Cobalt and Nickel 27 
cations contributed to the redox reaction that is helpful in improving both rate capability 28 
and specific capacity. Whereas the integration of inert Zinc ion promotes cycling stability 29 
with enhanced electrocapacitive activity, the incorporation of Ni and Zn ion in Cobalt 30 
synergistically enhances the overall performance of the composites. 31 
 32 
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 1 
Figure 18. Electrochemical performance of Co9S8 and the Co9S8@Ni3S2/ZnS electrode is 2 

compared: (a). CV curves at a scan rate of 5 mV/sec; (b). GCD curves at the current densities of 2 3 
mA/cm2; (c). specific capacity at different current density; (d). Nyquist plot; (a-d). Reproduced 4 

with permission, Royal Society of Chemistry [175] 5 
 6 
The sample when initially tested in three electrode configuration (Figure 18) showed a 7 
capacitance of 8192 C/cm2 (at 2 mA/cm2). The resultant Co9S8@ Ni3S2/ZnS has a high 8 
specific surface area and a mesoporous structure that is helpful in enhancing the 9 
electrochemical storage performance of the device by giving abundant reactive sites and 10 
improving charge transfer kinetics. For supercapattery applications, Co9S8@Ni3S2/ZnS and 11 
AC were employed as positive and negative electrodes, respectively, in gel KOH 12 
electrolyte (Figure 19). The assembled device Co9S8@Ni3S2/ZnS//2 M KOH//AC shows a 13 
Ps of 1.517 mW/cm2 and an Es of 0.377 mWh/cm2 [175]. 14 
 15 

 16 
Figure 19. Electrochemical studies of Co9S8@Ni3S2/ZnS//AC: (a). CV plots at different scan 17 
rates; (b). GCD plots at various current densities; (c). the areal capacity at different current 18 

density; (d). Nyquist plot (e). the energy density and power density at various current densities; 19 
(f). cycling performance; (a-f). Reproduced with permission, Royal Society of Chemistry [175] 20 

 21 
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Table 5. Applications of MOF derived structure as electrode materials in the design of supercapattery 1 

Cell configuration Specific 
capacity 
(C/g) 

Energy 
density 
(Wh/kg) 

Power 
density 
(W/kg) 

Cycle life Ref. 

Co9S8@Ni3S2/ZnS//2 M 
KOH//AC 

 

8192  
C/cm2 (2 
mA/cm2) 

0.377  
mWh/cm2 

1.517 
mW/cm2 

95.2% over 
5000 cycles 

[175] 

NiCo layered double 
hydroxide//NiCo borate//2 M 
KOH//AC 

 

891 (1 
A/g) 

62.8  800  81% over 
5000 cycles 

[176] 

Co@C/rGO//AC 810 C/g  29.5  720  93.7 % over 
10,000 
cycles 

[177] 

fcc-NiCo@Graphitic carbon 
polyhedron//3 M KOH//AC 

444 C/g (2 
A/g) 

39.5  665  99.95% over 
5000 cycles 

[179] 
 

NiCoMn (NCM)-based MOF//1M 
KOH//AC 

1311.4 
μAh/cm2 
(5 mA/cm2

) 

1.21 
mWh/cm2 

32.49 W/
cm2 

100% over 
5000 cycles 

[178] 

 2 

High temperatures are typically needed to pyrolyze MOFs into porous carbon, metal 3 
oxides, metal sulphides, and metal phosphides. But the treatment at high temperature and 4 
pressure might destroy MOFs frameworks, which results in the decrease of the electroactive 5 
sites and specific surface area. Integrating MOFs with various materials, such as metal 6 
nanoparticles, conducting polymers (PANI, polypyrrole, etc.), quantum dots, metal oxides, and 7 
carbon-based materials (e.g., carbon nanotubes, biowaste derived activated carbon), is another 8 
way to address this problem.  9 
  10 

4.3.  MOF composites based supercapatteries  11 
 12 

Integration of MOFs with composites is very helpful in increasing the low conductivity and 13 
poor stability of MOF material with enhancement in efficiency. The properties of composites 14 
are mainly governed by synergistic effect of the diverse compositions and structures.  15 

Similar to MOF-derived oxides/hydroxides and sulphides, composites with Ni and Co 16 
MOF are extensively employed. They are integrated with carbon materials as they are easy to 17 
synthesize, enhance the cross-sections, provide high chemical stability, high-temperature 18 
resistance, and good conductivity to the MOFs. Because of this, porous carbon, carbon 19 
nanotubes (CNTs), and other activated carbon compounds have been reported for various 20 
energy storage devices over the past few years [1], [182]–[185]. Graphene has drawn the most 21 
attention of all materials due to its good electrical conductivity, strong thermal stability, and 22 
high theoretical capacity with MOFs, another class of materials that are extensively employed 23 
with MOFs are conducting polymers. In addition to conductivity, polypyrrole and PANI are 24 
often utilised as additive polymers because of their facile synthesis, simple construction, 25 
superior mechanical qualities, high tuneable electrical properties, and high environmental 26 
resilience [26]. In addition, integration of MOFs with conducting polymers and graphene was 27 
found to be suitable for enhancement in the potential window ranging from (1-1.8 V) of 28 
supercapattery device. Not only pristine MOFs, but their composites with derivatives are also 29 
largely employed to combine the properties of derivatives and additives. Table 6 summarizes 30 
the performance of MOF composite-based supercapatteries. 31 
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Using a hydrothermal approach, Iqbal et al. [186] created Cobalt MOF@polyaniline (PANI) 1 
composites. Polyaniline was synthesized using  polymerization of aniline. Addition of PANI 2 
in Co MOF enhances electrical conductivity, electrochemical activity, flexibility, and redox 3 
properties. After investigations from the BET data of Co MOF@ polyaniline (PANI) 4 
composites, the specific area was found to be 156.59 cm2/g, whereas pore size and pore volume 5 
were found to be 25.06 nm and 0.9811 cm3, respectively (Figure 20). It demonstrates 6 
mesoporosity in the composites, making the composite viable for energy storage applications. 7 
The MOF@polyaniline matrix was combined with an AC electrode for the supercapattery. The 8 
device gave an output of 104 C/g, an Es of 23.11 Wh/kg, and a Ps of 6400 W/kg [186]. 9 
 10 

 11 
Figure 20. Co MOF@PANI-50/50% BET analysis; Reproduced with permission copyright 2020, 12 

Elsevier [186] 13 
 14 

Liu et al. [187] used an efficient ultrasonic procedure to create NiCo MOF nanosheets 15 
encased in polypyrrole nanotubes (PNTs) at ambient temperature. The incorporation of PNTs 16 
with NiCo MOFs improves the capacitive characteristics, boosts electronic conductivity by 17 
providing a conductive network, minimizes agglomeration, increases specific surface area, 18 
number of active sites, and adds additional pseudocapacitance. The electrodes are initially 19 
evaluated in three electrode configuration to assess their electrochemical performance. As 20 
observed from the CV and GCD plots, NiCo MOF@PNTs (Figure 21) delivered a specific 21 
capacitance of 1109 F/g at 0.5 A/g that is significantly greater than NiCo MOF and PNTs alone. 22 
The pore size distributions of NiCo MOF@PNTs are found to be centred at 2-5 nm from BET, 23 
which is higher than that of NiCo MOF but smaller than polypyrrole nanotubes. Hence, PNTs 24 
are beneficial in enhancing NiCo MOF nanosheets' specific surface area and electrical 25 
conductivity, which improves the overall performance. For practical applications, NiCo 26 
MOF@PNTs and AC electrode based supercapattery device provided an Es of 41.2 Wh/kg at 27 
a Ps of 375 W/kg. Also, it shows a capacitance retention of 79% over 10,000 charge-discharge 28 
cycles. By connecting two supercapattery devices in series, a yellow coloured LED could be 29 
lit for 30 mins [187]. 30 
 31 
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 1 
Figure 21. Electrochemical studies of NiCo MOF, NiCo MOF@PNTs, and PNTs are shown: (a). CV 2 
curves at a scan rate of 20 mV /sec; (b). GCD curves at 1 A/g; (c). CV curves of NiCo MOF@PNTs 3 

at various scan rates; (d). GCD curves of NiCo MOF@PNTs at various current densities; (e). the 4 
specific capacitances at various current densities; (f). Nyquist plot; (a-f). Reproduced with permission 5 

copyright 2021, Elsevier [187] 6 
 7 

 Faisal et al. [188] synthesized ZIF-8@terpolymer composite using three steps 8 
hydrothermal method. The ZIF particles are distributed well over the surface of the terpolymer 9 
crystal, as shown by the TEM and SEM images (Figure 22). Due to the fact that they are 10 
building a network of polymeric chains, these crystals were closely attached to one another and 11 
were not separated. As a result, the ZIF-8 builds up in the terpolymer framework, increasing 12 
its surface area and giving it a mechanical advantage. The supercapattery device delivered an 13 
Es of 38 Wh/kg with a Ps of 1600 W/kg and show 100% capacitance over 1000 GCD cycles 14 
[188]. 15 
 16 

 17 
Figure 22. (a). SEM; (b). TEM of ZIF-8@terpolymer; (a,b). Reproduced with permission copyright 18 

2021, Elsevier [188] 19 
Renan et al. [26] synthesized trypan blue–Ni-MOF (Try-Ni-MOF) and Azure (Az) 3D 20 

graphene aerogel (GA) (Figure 23) using hydrothermal method. The transport of ions 21 



25 
 

throughout the material is made possible by the Az-GA with Try-Ni-MOF structure, which 1 
improves ion transfer channels and provides increased surface accessibility through electrically 2 
active species. For supercapattery application Az–GA and Try–Ni-MOF is employed as 3 
positive and negative electrode, respectively. The assembly showed the specific capacitance of 4 
319 F/g at 1 A/g with an Es of 66.55 Wh/kg and a Ps of 349 W/kg. Moreover, it shows a 5 
capacitance retention of 92% after 5000 charge-discharge cycles [26]. 6 
 7 

 8 
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                                                                                  1 
Figure 23. (a). Fabrication of the Try-Ni-MOF; (b). Az-via and a 3D GA are synthesized via a 2 

hydrothermal process; (a,b). Reproduced with permission, Royal Society of Chemistry [26] 3 
 4 

Similar hierarchical NiCo-LDH nanostructures were created by Ghosh et al. [28] and supported 5 
by rGO nanosheets. During an electrochemical reaction, the layered structure of LDH allows a 6 
gradual ion diffusion through the pore channel [181]. The integration of rGO increases the 7 
conductance along with enhancing the surface area of the electrodes, which subsequently 8 
increases the charge transport mechanism by providing ample active sites. For supercapattery 9 
application, NiCo-LDH@rGO was employed as a negative as well as a positive electrode. The 10 
assembly provided an Es of 45.2 Wh/kg and a Ps of 750 W/kg and upholds more than 60% 11 
capacity retention even after 3500 cycles. NiCo-LDH@rGO composites exhibit narrow pore 12 
size distribution, with an average pore size of 3.8 nm as per the BET measurements and TEM 13 
images. Mesoporous structure is thus present in the composites. These porous materials have 14 
a large capacity for storing electrolyte on their interior surfaces and shortening the ion diffusion 15 
path, which increases the capacitance of electrode materials. By blazing a blue coloured LED 16 
for more than 7 minutes, the supercapattery cell further illustrates the practical application of 17 
this material [28]. 18 

TiO2 aerogel@Co-MOF composite was synthesized by Ramasubbu et al. [189] for the 19 
electrode of supercapattery. TiO2 aerogels have a 3-dimensional interlinked hierarchical 20 
mesoporous continuous architecture that decreases the diffusion path, allows electrolyte ions 21 
to diffuse into the pores, and creates upright paths for charge transport. However, the addition 22 
of MOF improves power conversion efficiency, extends electron longevity, and lowers charge 23 
recombination. As a result, mixing MOFs with TiO2 aerogel maximises the advantages of both 24 
materials. This hierarchical nanostructure provides enriched electroactive sites, a high specific 25 
surface area, and a short diffusion channel. According to the XRD results (Figure 24), the TiO2 26 
aerogel's crystallinity reduces when MOF is added because it inhibits TiO2 growth and leads 27 
to the creation of mixed phases with more structural flaws, which improves electrochemical 28 
performance. 29 
 30 
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 1 
Figure 24. (a). X-ray diffraction patterns; (b). magnified view of (101) of pristine TiO2 aerogel 2 
(Ti/Co-0), and (Ti/Co-1, Ti/Co-2, Ti/Co-3) composites, respectively; (a,b). Reproduced with 3 

permission copyright 2020, Elsevier [189] 4 
 5 
The materials were initially tested in a 2 M KOH solution in three electrode configurations. In 6 
comparison to TiO2 aerogel (66.4 C/g), TiO2 aerogel@Co-MOF composites have a higher 7 
specific capacitance of 111.2 C/g at 0.8 A/g. It was observed that the integration of MOF 8 
improved the mobility of electrolytic ions, resulting in varied electrolyte ionic routes of the 9 
electrode materials. For supercapattery applications, TiO2 aerogel@Co-MOF composite and 10 
AC were employed for which the operational potential window was extended to 1.5 V. After 11 
5000 GCD cycles, the device's capacitance retention was found to be 93% [189]. 12 
 13 

Table 6. Applications of MOF@composites in the design of supercapattery application 14 

Cell configuration 
 

Specific 
capacity 
(C/g) 

Energy 
density 
(Wh/kg) 

Power 
density  
(W/kg) 

Cycle life Ref. 

TiO2 aerogel@Co-MOF 
composite/electrolyte//AC 

111.2 (0.5 
A/g) 

7.5  1875 93% over 
5,000 
cycles. 

[189] 

NiCo MOF@ 
Polypyrrole//KOH//AC 

1109 F/g (1 
A/g) 

41.2  375  79.1% 
over 
10,000 
cycles 

[187] 

Az–GA//1M KOH//Try–Ni-MOF 319 F/g  
(1 A/g) 

66.55  445  92.12 % 
after 5000 
cycles 

[26] 

Co-MOF@ PANI/1 M KOH/AC 104 (1 A/g) 23.11 
 

6400  100% over 
1000 
cycles 

[186] 

Zn-MOF@ terpolymer//1 M 
KOH//AC 

171.15 (0.3 
A/g) 

38.05  1600  100% over 
1000 
cycles 

[188] 

NiCo-LDH using ZIF-67@rGO-
30 

1658 F/g 
 (1 A/g) 

45.2  750.2 60% over 
3500 
cycles 

[28] 

 15 
5. Conclusion and future perspective  16 
 17 

The main aim of this review paper is to provide the latest perspective on supercapattery 18 
devices that integrates the advantageous properties of both supercapacitors and batteries in a 19 
single supercapattery device. Supercapattery devices offer enhanced electrochemical 20 
performance empowering the modern-day necessities of high power, energy densities, and long 21 
cyclic stability with a wide potential window. Progress in electrodes with innovative 22 
technological advancements and enhanced functional capacities is a vital way to develop new 23 
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supercapattery devices with higher energy and power density and this will pave the way to 1 
great societal impact. Further, the review covers the current developments in transition metals-2 
based electrode materials for supercapattery applications, but the specific capacitance, 3 
energy/power densities, and cyclic stability of these materials fall short of the acceptable level. 4 
Structures generated from metal-organic frameworks (MOFs) and their composites are 5 
potential materials for building functional electrodes for supercapattery devices. One of the 6 
most compelling factors for researchers to discover varied compositions of MOFs, MOF-7 
derived structures, and MOF-composites is the ability of their parameters to be tailored with 8 
ease to meet the desired characteristics. This review study establishes that MOFs are extremely 9 
beneficial in developing supercapattery electrodes that outperform the currently used batteries 10 
and supercapacitors. Higher specific surface area and enriched active sites are offered by MOF-11 
derived structures and their composites. Different MOF composites, including conductive 12 
polymers, graphene, and MXene help to overcome the low conductivity and unstable nature of 13 
MOFs. High power and energy densities combined with superior specific capacitance are 14 
provided by MOFs incorporating cobalt, nickel, and other metals. In conclusion, the potential 15 
of MOFs for supercapattery applications has not yet been fully explored. Fundamentally, this 16 
field needs additional investigations. MOF-derived sulphides/phosphides and composites of 17 
MOF with state-of-the-art efficient materials like MXene, metal dichalcogenides, and 18 
perovskites can be utilized for the supercapattery applications. 19 

Currently some MOFs are already available in the market but impose huge costs. It may be 20 
difficult, but not impossible, to create facile and economical processes that produce MOF 21 
materials at low cost to fully realise their potential for supercapattery applications. 22 
Additionally, it is crucial for MOFs to undergo rigorous charge-discharge tests (at least 23 
>100000 cycles) to ensure that they meet the practical standards for commercial carbon 24 
electrodes. Therefore, major research should be done in future to modify the synthesis methods 25 
of MOF-based structures and improve their processability for commercial applications. Finally, 26 
to maximise the electrochemical performance of MOF-based nanostructures for 27 
supercapattery, a better comprehension of the charge-discharge mechanisms needs to be 28 
explored through material informatics. Further, use of artificial intelligence and simulation 29 
studies may pave the way for a faster optimization of parameters through predictive analysis 30 
which may led to better utilization of resources. This review must inspire researchers to develop 31 
metal-organic framework inspired structures and explore their potential for high performance 32 
supercapattery electrodes.  33 
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List of Abbreviations 39 
 40 
SCs                    Supercapacitors 41 
EES                   Electrochemical Energy Storage  42 
EDLC                Electric Double Layer Capacitors 43 
MOF                 Metal Organic Framework 44 
AC                    Activated Carbon 45 
CNT                   Carbon Nanotubes 46 
Csp                        Specific Capacitance 47 
Q                          Charge Store  48 
ΔU                        Potential Range 49 
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m                           Effective Mass 1 
Es                            Energy Density 2 
Ps                          Power Density 3 
NP                        Nanoparticles 4 
rGO                      Reduced Graphene Oxide  5 
TMD                   Transition Metal Dichalcogenides 6 
NPC                      Nanoporous Carbon  7 
ECPs                   Electrically Conducting Polymers 8 
TMOs                Transition Metal Oxides  9 
PEDOT               Poly (3,4-ethylene dioxythiophene) 10 
PNT                     Polypyrrole Nanotubes  11 
CV                    Cyclic Voltammetry 12 
GCD                  Galvanostatic Charge Discharge 13 
EIS                     Electrochemical Impedance Spectroscopy 14 
SEM                   Scanning Electron Microscopy 15 
XRD                    X-ray Diffraction Spectroscopy 16 
XPS                     X-Ray Photoelectron Spectroscopy 17 
EDX                    Energy-Dispersive X-Ray Spectroscopy 18 
TEM                    Transmission Electron Spectroscopy 19 
BET                     Brunauer–Emmett–Teller 20 
Az                         Azure 21 
GA                        Graphene Aerogel  22 
PANI                    Polyaniline 23 
Ppy                       Polypyrrole  24 
GC                       Graphitic Carbon 25 
LDH                     Layered Double Hydroxide 26 
CC                      Carbon Cloth 27 
1-D                     One Dimension,  28 
2-D                     Two Dimensions 29 
 3-D                     Three Dimensions  30 
RuO2                   Ruthenium Dioxide 31 
MnO2                Manganese Dioxide       32 
Co3O4               Cobalt Tetraoxide  33 
V2O5                 Vanadium Pentoxide 34 
Fe3O4                Ferric Oxide 35 
SnO2                 Tin Oxide 36 
NaBH4             Sodium Borohydride  37 
LiAlH4             Lithium Aluminum Hydride  38 
MoO                  Molybdenum Oxide 39 
Ni(OH)2                      Nickel(II) Hydroxide 40 
KOH                    Potassium Hydroxide 41 
Co3O4                 Cobalt Tetraoxide 42 
CeO2                        Cerium Oxide 43 
Bi2O3              Bismuth Trioxide  44 
Fe3O4              Ferric Oxide 45 
N-PCNR               N-Porous Carbon Nano Rice 46 
SrO                         Strontium oxide 47 
NF                          Nanoflowers  48 
NSs                        Nanosheets 49 
NiMoO4                           Nickel Molybdate 50 
Mn0.4Ni0.1Co-OA      Manganese Nickel Cobalt Oxalate 51 
NG                             Nitrogen-doped Graphene  52 
CuCo2O4                      Copper Cobaltite  53 
PVA                             Polyvinyl Alcohol  54 
CoMoO4                                   Cobalt Molybdate 55 
Ag                                  Silver 56 
NiFe2O4                      Nickel Ferrite  57 
Bi2MoO6                           Bismuth Molybdate   58 
Co(OH)2                  Cobalt hydroxide 59 
NiFe2O4                   Nickel Ferrite 60 
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NR                            Nanorods 1 
CuFe2O4                Copper Ferrite 2 
Li2MnSiO4                          Lithium Manganese Silicates 3 
Al2O3                            Aluminium Oxide 4 
LiClO4                  Lithium Perchlorate  5 
NiO                          Nickel Oxide  6 
In2O3                                      Indium oxide 7 
Li2TiO3              Lithium Titanium Oxide  8 
NiMn(PO4)2                   Nickel Manganese(II) phosphate 9 
g-C3N4                          Graphitic Carbon Nitride 10 
Ni2P                      Di Nickel Phosphide   11 
CNF                       Carbon Nano Fibre  12 
ZnCoMn(PO4)2              Zinc Cobalt Manganese phosphate 13 
CoS                    Cobalt sulfide 14 
NiS                      Nickel Sulfide 15 
CuCo2S4                           Copper Cobalt Sulfide  16 
NCM                            NiCoMn  17 
ZIFs                   Zeolitic imidazolate frameworks  18 
TiO2                         Titanium dioxide 19 
GA                        Graphene Aerogel  20 
MIL                Matériaux de l′Institut Lavoisier 21 
 22 
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