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ARTICLE INFO ABSTRACT

Editor: Filip M.G.Tack Sediments are found on all coral reefs around the globe. However, the amount of sediment in different reservoirs, and
the rates at which sediments move between reservoirs, can shape the biological functioning of coral reefs. Unfortu-
nately, relatively few studies have examined reef sediment dynamics, and associated bio-physical drivers, simulta-
neously over matching spatial and temporal scales. This has led to a partial understanding of how sediments and
. . living reef systems are connected, especially on clear-water offshore reefs. To address this problem, four sediment res-
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Sediment trap depths at Lizard Island, an exposed mid-shelf reef on the Great Barrier Reef. Even in this clear-water reef location a sub-
Turbidity stantial load of suspended sediment passed over the reef; a load theoretically capable of replacing the entire standing
stock of on-reef turf sediments in just 8 h. However, quantification of actual sediment deposition suggested that just
2 % of this passing sediment settled on the reef. The data also revealed marked spatial incongruence in sediment de-
position (sediment trap data) and accumulation (TurfPod data) across the reef profile, with the flat and back reef
emerging as key areas of both deposition and accumulation. By contrast, the shallow windward reef crest was an
area of deposition but had a limited capacity for sediment accumulation. These cross-reef patterns related to wave en-
ergy and reef geomorphology, with low sediment accumulation on the ecologically important reef crest aligning with
substantial wave energy. These findings reveal a disconnect between patterns of sediment deposition and accumula-
tion on the benthos, with the ‘post-settlement’ fate of sediments dependent on local hydrodynamic conditions. From
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an ecological perspective, the data suggests key contextual constraints (wave energy and reef geomorphology) may
predispose some reefs or reef areas to high-load turf sediment regimes.

1. Introduction

As coral reefs rapidly degrade in the Anthropocene, understanding the
range of stressors that act on these ecosystems is critical (Harborne et al.,
2017; Hughes et al., 2017). In this respect, declining water quality and in-
creased sediment inputs to reefs represent a major stressor with the potential
to vary considerably under different contexts (Bainbridge et al., 2018;
Suérez-Castro et al., 2021; Andrello et al., 2022). This is because sediments
are shaped by a complex suite of processes which operate and interact on,
in, and around reefs. Sediment distributions can be influenced by physical
factors such as currents and waves (Wolanski et al., 2003; Ogston et al.,
2004; Storlazzi et al., 2004; Browne et al., 2013a; Cartwright et al., 2021),
and reef geomorphology (Golbuu et al., 2003, 2011; Kench and Brander,
2006), as well as biological drivers such as the feeding activity of fishes
(Bellwood, 1996; Bowden et al., 2022; Perry et al., 2022) and the type of ben-
thic biota (Reeves et al., 2018; Pessarrodona et al., 2021). This complex array
of factors leads to marked variability in the amount and type of sediment in
different coral reef reservoirs (e.g. the water column, on-reef surfaces, and
off-reef sediment aprons) (Storlazzi and Jaffe, 2008; Harris et al., 2014;
Tebbett et al., 2017a). These factors also determine the extent to which sed-
iments move between coral reef reservoirs (e.g. sedimentation and resuspen-
sion) (Orpin et al., 1999; Storlazzi et al., 2009; Browne et al., 2013a;
Whinney et al., 2017). It is this complexity, perhaps, that has resulted in dif-
ferent sediment reservoirs, and their associated linking processes, being
largely studied in isolation (reviewed in Schlaefer et al., 2021).

Studies where multiple sediment reservoirs and linking processes have
been measured simultaneously are rare. However, those that do exist have
provided valuable insights into sediment dynamics on, in and around coral
reefs (e.g. Wolanski et al., 2005; Storlazzi et al., 2009; Whinney et al., 2017;
Schlaefer et al., 2022). For example, a recent study from Orpheus Island, an in-
shore coral reef on Australia's Great Barrier Reef (GBR), quantified multiple
sediment reservoirs and linking processes across a coral reef depth gradient
(Schlaefer et al., 2022). In doing so, this study revealed a marked potential
for the water column to deliver sediments to the reef, and supported the exis-
tence of two different sediment regimes (high dynamic vs. low dynamic)
across coral reef depth/habitat gradients (Schlaefer et al., 2022; also see
Wolanski et al., 2005). Nevertheless, this previous study was limited to a single
sheltered location on an inshore reef. As such, the generality of these insights
to other coral reef systems remains unclear.

Beyond cross-depth gradients, major axes of variation in coral reef func-
tioning exist across exposure regimes (Bejarano et al., 2017; Taylor et al.,
2018; Roff et al., 2019) and cross-shelf gradients (i.e. distance from land)
(Cleary et al., 2016; Ryan et al., 2018; McClure et al., 2019; Moustaka
et al., 2019). Sediment dynamics are one example of the processes that
are known to vary substantially across these gradients. For example, the
loads of sediments in the water column (i.e. turbidity) generally decrease
with distance from land (Weeks et al., 2012; Fabricius et al., 2014) and
heavy wave action on exposed windward reef crests may limit sediment ac-
cumulation on surfaces (Purcell, 2000). This variation in sediments has
been linked to a range of critical ecosystem processes such as herbivory
(Albert et al., 2008; Goatley and Bellwood, 2012; Duran et al., 2019) and
coral settlement (Evans et al., 2020; Ricardo et al., 2021; Doropoulos
et al., 2022) and can thus directly shape how a given reef functions. How-
ever, despite the important role of sediments in structuring ecosystem pro-
cesses, we have a surprisingly limited understanding of how sediments, and
the complex suites of drivers that structure their distributions, operate on
clear-water, exposed, windward reefs when compared to their turbid-
water counterparts.

Given the ubiquity of sediments on reefs and their interaction with
critical ecosystem processes, a better understanding of the links between

different sediment reservoirs and the relative importance of different bio-
physical drivers is needed. This is particularly true for exposed offshore
reefs, in which detailed quantification of reef processes can be particularly
challenging. To address this issue, the aim of this study was to comprehen-
sively, and simultaneously, quantify numerous components of sediment
dynamics on a windward, mid-shelf reef on the GBR. Specifically, we
quantified four sediment reservoirs/sedimentary processes (i.e. suspended
sediments, sediment trapping rates, sediment accumulation on TurfPods,
and sediment standing stock in algal turfs) and three bio-physical drivers
(i.e. wave energy, current speed, and parrotfish sediment reworking) over
six days across seven different habitats/depths on an exposed, windward
mid-shelf reef at Lizard Island. As a result, this study will permit compre-
hensive insights into the relative importance of different bio-physical
drivers in structuring sediments on a windward, offshore coral reef.

2. Methods
2.1. Study site

Data were collected at Lizard Island in the northern Great Barrier Reef
(GBR) (Fig. 1). Lizard Island is located approximately 30 km from the main-
land, outside of the inner-shelf sediment wedge on the GBR (Larcombe and
Woolfe, 1999), with minimal exposure to terrestrial sediment inputs
(Fabricius et al., 2016). At this location, we established a study site on a wind-
ward section of reef between Bird and South Island, that is exposed to the reg-
ular SE trade winds and has a typical cross-reef profile (Fig. 1). Sampling at
Lizard Island was undertaken over six days from the 27th of January until
the 2nd of February 2021 during the monsoon season. The tidal and wind con-
ditions during the study period were relatively typical. That is, the tidal range
during sampling (0.6-2.4 m) captured the interquartile range and the upper
extreme (Fig. S1), while the winds were predominantly from the south-
southeast/southeast/east-southeast and had speeds of 4.5-12 m s~ *
(Fig. S2). Such winds occur on approximately 91 % of the days in the trade
wind season and 54 % of the days in the monsoon season (Fig. S2).

At the study site, three transects were established to ensure a broad sec-
tion of the reef was sampled (Figs. 1, S3). The three transects were ~ 25 m
apart and established parallel to each other across the reef profile from the
back reef, across the flat to the outer-reef flat/crest at 3 m and then down to
12 m on the reef slope (with all depths cited hereafter referring to the max-
imum depth during the study period unless otherwise stated). Along each
transect, seven discrete habitat/depths were sampled (back reef, mid-flat,
3,4.5, 6,9, and 12 m). It is important to note that all complementary com-
ponents of the study were collected within this delineated area, however,
intensive sampling of sediments and all bio-physical drivers focused on
the five depths (i.e. from 3 to 12 m), which is termed the ‘reef section’ here-
after. Additional sampling on the mid-flat and back reef were conducted to
provide further insights into sediment dynamics across the entire reef pro-
file. The ‘sediments’ considered here included both inorganic and organic
particulate material <2 mm in diameter (sands, silts and clays: ISO
14688-1:2017). Below we first focus on the measurement of values
pertaining to the entire ‘reef section’ scale, and then at the ‘across depth/
habitat’ scale. Sampling methods follow those of Schlaefer et al. (2022)
and are outlined below.

2.2. Total reef section sediment dynamics

2.2.1. Overview

At the total reef section scale, we simultaneously examined the potential
supply of sediment from the water column sediment reservoir, the potential
supply from sediment reworking by parrotfishes, and benthic sediment
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Fig. 1. Study location and sampling design. a) The location of the study area (black and red boxes) at Lizard Island. Note that the red box denotes the main sampling ‘reef
section’ while the black box shows the rest of the cross-reef profile sampled. The inset shows the location of Lizard Island relative to Queensland, Australia. b) Photograph
of the Lizard Island reef complex showing the main study area (denoted by the black/red boxes). ¢) Diagrammatic representation of the sediment sampling array showing
sampling at each depth (3, 4.5, 6, 9, and 12 m). The diagram shows bottom-deployed and on-line current meters, as well as sediment traps and TurfPods. Note that the equip-
ment deployed on the bottom is only visualised for one of the three transects. d) Shows an enlarged version of the benthic sampling array for clarity.

deposition and accumulation rates. The magnitudes of sediment supply and
delivery were then placed into perspective based on the standing stock of sed-
iments contained on the benthos in natural turfs. Each of the four key compo-
nents pertaining to sediment supply are outlined below, while details of how
algal turf sediment standing stock was measured are outlined in Text S1.

2.2.2. The water column sediment reservoir

The mass of sediment suspended in the water column that travelled
through the reef section during the six-day study period was calculated to ex-
amine the potential for the water column to supply sediments to the reef. To
do this, we combined estimates of the average suspended sediment concentra-
tion and the volume of water travelling through the reef section during the

study period. The suspended sediment concentration was estimated from ex-
tensive turbidity profiling. The profiling was conducted over 6 days at Lizard
Island, from 28th January to 3rd February 2021, and one flood and one ebb
tide were profiled per day. On each tide, three turbidity profiles were mea-
sured from the water column directly in front of the reef section, at the 18,
21 and 24 m depth contours (Seapoint Tu sensor with sampling frequency =
3; Fig. S3); therefore, 36 profiles were measured in total. The profiles were
taken in front of the reef section instead of adjacent to it as the wave activity
made it too dangerous to measure the turbidity over the reef. The average tur-
bidity over the top 12 m of the water column (maximum reef section depth)
was calculated from turbidity profiles, and then a standard conversion factor
(1.33; following previous studies on the GBR [Devlin and Schaffelke, 2009;
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Davidson et al., 2019]) was applied to convert the turbidity (Nephelometric
Turbidity Units, NTU) to an estimated suspended sediment concentration
(g m ™3, Fig. S4). It is important to note that this conversion factor can be con-
text dependent, although the value we used was based on sampling of multiple
reefs on the GBR (Schaffelke et al., 2009) and is comparable to conversion fac-
tors derived for other locations (Larcombe et al., 1995; Jones et al., 2015;
Cartwright et al., 2022).

The volume of water travelling through the reef section was quantified
based on depth-stratified current data. Currents were measured using an
array of 33 Marrotte HS drag-tilt current meters. For this analysis, we used
the current meters on the boundary transects of the reef section (i.e. not the
middle transect) as well as at the shallowest and deepest sites of the middle
transect (i.e. 30 current meters out of the 33 deployed), to quantify the fluxes
of water volume across the reef section boundary. Current meters were de-
ployed on the benthos using two dive weights each, at each of the five depths
(3,4.5, 6,9, and 12 m) in each of the three reef profile transects (Fig. 1). In
addition, at sites with depths of 6 m or more, currents in the water column
were measured using meters deployed on taut rope lines. To hold the lines
taut, we utilised heavy concrete blocks (3 x 10 kg blocks with an effective
mass of ~17 kg in seawater) and two spherical polystyrene sub-surface
buoys (20 cm and 15 cm in diameter providing approximately 6 kg of buoy-
ancy/tension). This provided a firm point of attachment for the current meters
(see Schlaefer et al., 2022 for a comprehensive overview of the accuracy of this
method). To attach meters to the taut rope lines, we used horizontal 30 cm sec-
tions of PVC pipe to hold the current meters off the line and ensure the rope
could not interfere with the meters. Current meters were attached to ropes
at 3 m intervals (starting and ending 3 m above/below the benthos/water sur-
face, respectively) with 1, 2 and 3 current meters attached to ropes moored at
depths of 6, 9 and 12 m respectively. Thereby, the boundary sites had a subset
of 27 of the 33 current meters in the array. The placement of the meters en-
sured that they were always submerged by at least 0.6 m of water given the
maximum tidal range during the study period (2.4 m), minimising the interfer-
ence of high-frequency orbital wave velocities (which are strongest in surface
waters [Soulsby et al., 1993]). The influence of orbital waves was further
factored-out by averaging the high-frequency (1 measurement per second)
raw current measurements to a lower frequency (10 min) during post-
processing of the data. Based on a rigorous data quality control procedure
(see Text S2) it was necessary to exclude data from 3 of the 27 current meters.

Ultimately, the potential sediment supply from the water column to the
reef was calculated by multiplying the average suspended sediment concen-
tration by the water volume that travelled through the reef section. For this
calculation, the sites on the boundary of the reef section formed 11 vertical
faces of an irregular prism (Fig. S3). The depth stratified water current ve-
locity (m s~ 1) that was orientated perpendicular to each of the prism faces
was calculated from the current measurements at the edge sites, and then
linearly interpolated onto a fixed grid with 0.25 m resolution. The grid
length was equal to the distance between edges, while the grid depth
equalled the average depth of the deeper of the two edge sites. Multiplying
the perpendicular speed component by the cell area (m?) yielded the instan-
taneous volumetric flow (m® s~ '). Multiplying this value by the average
suspended sediment concentration (g m~>), and the time bin interval
(10 min) resulted in the cell-level sediment mass flow over each time bin
(g). The cell-level masses were then summed across all cells and prism
faces, as well as balanced through time, to yield an estimate of the total
mass of sediment travelling over the reef section in the 6-day study period.

2.2.3. Parrotfish sediment reworking

Given the substantial role of parrotfishes in reworking sediments
(Bellwood, 1996; Perry et al., 2022), we estimated the potential magnitude
of their contribution to this geo-ecological function. To do this, we used a
two-step, depth stratified underwater visual census and combined this
with sediment reworking rate data from the literature. Specifically, at
each of the five depths (i.e. 3, 4.5, 6, 9, and 12 m), parrotfishes (as well
as rabbitfishes and surgeonfishes) were counted along a 50 m-long transect.
Transects were parallel to one another, perpendicular to the reef profile,
and consecutive transects were typically located >10 m apart to minimise
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the probability of counting the same fish twice. First, all fishes >10 cm
total length (TL), within a 5 m belt, were surveyed as the transect tape
was laid. On the return pass all individuals <10 cm TL were surveyed within
a1 m belt. Relevant fishes were identified to species, counted and their size
was estimated (to the nearest 2 cm for individuals <30 c¢cm and to the
nearest 5 cm for individuals >30 cm). Combined, the census covered a
total area of 1250 m? or approximately 100 % of the whole reef section.
Based on the visual census data, we estimated parrotfish sediment
reworking following Hoey and Bellwood (2008) using the formula:

n
Rwq = 2 (FiaLiaBiaSq) x Tooo

where the depth-specific (d) reworking rate Rwy (g m ™2 day 1) of the num-
ber of individual (n) parrotfishes was the result of summing the products of
their individual (i) feeding rates F;4 (bites min ™~ b, feeding day lengths L;4
(min) and bite areas B (mm? bite ™), multiplied by the depth-specific stand-
ing stock sediment load S; (g mm™ 2. Average values for each of the
parrotfish parameters were sourced from previous studies on the GBR.
Feeding rate data were obtained from Bellwood and Choat (1990) and
Bonaldo and Bellwood (2008) and were entered as species-level averages
for the 11 species recorded (Cetoscarus ocellatus, Chlorurus bleekeri,
C. microrhinos, C. spilurus, Scarus chameleon, S. flavipectoralis, S. frenatus,
S. niger, S. psittacus, S. rivulatus, S. schlegeli). Day length was considered the pe-
riod between sunrise and sunset during the study period and was obtained
from the package geosphere in R (Hijmans, 2022). Variation in the diel rate
of parrotfish feeding was also accounted for using data sourced from
Bonaldo and Bellwood (2008) to determine the daily cumulative proportion
of mean bite rate at different periods throughout the day. Parrotfish bite area
was modelled separately for C. ocellatus, Chlorurus spp. and Scarus spp. as a
function of body length in a gamma distributed (log-link) generalised linear
model. Specifically, we used size and species-specific data (sourced from
Bonaldo and Bellwood, 2008; Hoey, 2018) as inputs and linearly interpo-
lated predictions for each individual. Finally, the standing stock of sediments
in the algal turfs available for re-working was based on samples collected in
the study location (see Text S1 for quantification details).

2.2.4. Sediment deposition/accumulation

The potential capacity for the water column to supply sediments to the
reef (see above) was compared to the realised delivery of sediments to the
reef based on two proxies for benthic sediment deposition/accumulation, at
each depth along each reef profile transect. At each sampling area, four
TurfPods deployed on the bottom delineated a 4 m? square, while the
current meters denoted the centre (Fig. 1d). These TurfPods were
concrete-filled PVC bases (7 cm high, 9 cm diameter), with 7 mm long arti-
ficial plastic grass attached (see Latrille et al., 2019 for details). These
TurfPods were secured to the substratum (Table S1) and acted as a proxy
for sediment accumulation in algal turfs. We focused on algal turfs because
they are the predominant benthic covering at Lizard Island (Tebbett et al.,
2022a) as well as on most coral reefs globally (Smith et al., 2016;
Jouffray et al., 2019; Tebbett et al., 2023a), and are poised to dominate
on future reef systems (Agostini et al., 2021; Harvey et al., 2021). Impor-
tantly, TurfPods quantify net sediment accumulation rather than a gross
‘trapping rate’ as they allow for both sedimentation, accumulation, and
resuspension (Latrille et al., 2019). ‘Trapping rate’ (i.e. gross sediment
deposition from the water column) was estimated separately, using sedi-
ment traps constructed from 60 cm long, 9 cm diameter PVC pipes set
into concrete bases. One trap was deployed immediately adjacent to each
of the 4 m? square sampling areas (Fig. 1d). Such traps do not allow resus-
pension of collected sediments, and due to their elevation 60 cm above the
substratum, they quantify potential water column supply of sediments more
so than near-bed (i.e. <30 cm) sediment resuspension and deposition
(Bothner et al., 2006; Storlazzi et al., 2011; Ng et al., 2022). TurfPods and
sediment traps were all deployed on the same day at the start of sampling
and collected on the same day at the end of sampling (see Table S2 for
the final number of replicates for each method at each depth) with



S.B. Tebbett et al.

collection methods following Latrille et al. (2019). A decanting, sieving,
drying, and weighing procedure was used to determine the mass of sedi-
ments accumulated on TurfPods and in sediment traps (see Text S1 for
full details).

2.3. Across-depth/habitat sediment dynamics

In addition to exploring sediment dynamics at the scale of the total reef
section, we also examined how sediment dynamics varied across the depth/
habitat gradient. At each sampling depth of 3, 4.5, 6, 9, and 12 m, we simul-
taneously collected data on: a) benthic sediment deposition/accumulation,
b) sediment reworking by parrotfishes, c) near-bottom currents, and d) the
propensity for wave-driven sediment resuspension. In addition, at the mid-
flat and back reef sampling areas we collected data on benthic sediment de-
position/accumulation. Methods for sediment deposition/accumulation
and parrotfish sediment reworking are outlined above, while details
pertaining to the depth-specific quantification of currents and wave energy
are detailed below.

To examine near-bottom current-driven water movement, we used data
collected from the current meters deployed on the bottom in the centre of
each of the 4 m? sampling areas (n = 13 current meters, as 2 of the 15 on-
bottom current meters were excluded following the data quality control proce-
dure [see Text S2]). As currents can resuspend sediments by exerting shear
stress on the benthos (Grant and Madsen, 1979; Soulsby et al., 1993), we

a Suspended _
sediment Magnified
concentration 1000%
0.553 g m?
SN

c

Parrotfish

reworking
14 g m? day’

N
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examined variability in current speed across the different depths. Current
data were processed as described above. To examine the potential for wave en-
ergy to resuspend sediments across the depth gradient, we utilised data de-
rived from 3 pressure sensors (RBRsolo3) deployed along the middle
transect at 3, 6, and 12 m. The pressure sensors were securely mounted on
hard substrata and programmed to record 16 measurements per second to
capture the high-frequency change in pressure exerted on the bottom by
waves. To isolate high-frequency wave-driven changes from low-frequency
tide-driven changes we used a rolling analysis with a 5-min time step. Wave-
driven pressure change was subsequently calculated based on the average ab-
solute high-frequency pressure residual around the linear regression line
denoting the tide-associated low-frequency pressure change (using python 3
package: statsmodel 0.12.2; Seabold and Perktold, 2010). Importantly, we di-
rectly analysed bottom pressure measurements (i.e. from the location of resus-
pension) and, therefore, we did not derive secondary products from the
pressure data (e.g. bed shear stress or wave orbital velocities) as this would
have introduced unnecessary complexities, assumptions and associated uncer-
tainty. As resuspension of sediments occurs when the stress exerted on the bot-
tom by waves and/or currents exceeds a threshold (Jing and Ridd, 1996), we
plotted the distribution, rather than averages, for the cross-depth hydrody-
namic data. To gain an insight into maximum wave energy across the entire
reef profile, we also re-deployed three RBRsolo3 pressure sensors between
the 18th and 23rd of February 2021 on the back reef, crest, and slope
(at 12 m).

d
Sediment trap
? 16 g m2 day™’
f
On-reef in
$urfPod algal turf
19 g m? day™ 273 gm*

Fig. 2. Total reef section sediment dynamics at Lizard Island. The point clouds enclosed by white circles represent daily rates, while the point clouds enclosed by blue/green
circles represent a standing stock reservoir (i.e. sediment standing stock in the water column [blue] and in turfs [green]). Note the area of the point clouds is scaled to the
magnitude of the rate/standing stock. The black arrows show the direction of sediment movement. The stocks/rates measured were a) the standing stock of sediment in
the water column, b) the amount of sediment in the water column that moved through the array site, c) sediment reworked by parrotfishes, d) sediment accumulation in
traps, e) sediment accumulation on TurfPods and f) the standing stock of sediment on the reef in algal turfs.
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2.4. Statistical analyses

Initially, we examined sediment dynamics across the entire cross-reef pro-
file (i.e. from 12 m on the reef slope across to the back reef) at Lizard Island.
Specifically, we examined how algal turf sediment loads (n = 10 samples in
each habitat: back, mid-flat, crest, and slope) differed among habitats using
a generalised linear model (GLM) with a Gamma distribution and log-link
function. In this case, habitat/depth was treated as a categorical fixed effect.
In addition, we examined how sediment accumulation on TurfPods (n =
24 at each sampling square as some replicates were lost due to dislodgement
[Table S2]) varied among the seven habitats/depths sampled using a general-
ised linear mixed-effects model (GLMM). Again, this model was based on a
Gamma distribution and log-link function and incorporated habitat/depth as
a fixed effect. However, this model also incorporated transect site as a random
effect to account for any spatial lack of independence. In both cases, post-hoc
pairwise means comparisons were performed with a Tukey's adjustment to ex-
amine within factor differences. Model fit and assumptions were examined via
residuals using simulation-based model-checking, which suggested model fit
was satisfactory in all cases. Due to the loss of some sediment trap replicates
(n = 1-3 at each depth [Table S2]), and the need to treat habitat/depth as cat-
egorical factor in these analyses, we explored cross-reef patterns of sediment
trap data graphically.

Following examination at the entire cross-reef profile scale, we focused in
on the ‘reef section’ (i.e. 3-12 m) where detailed quantification of bio-physical
drivers occurred. Accumulated sediment mass was treated as the response var-
iable in respective generalised linear mixed effects models (GLMMs) for the
TurfPod and sediment trap data. Both models were based on Gamma distribu-
tions with a log-link function. As there were no ‘habitat’ levels in this reef sec-
tion data, depth (3-12 m) in this case was treated as a continuous fixed effect
to examine general trends. Transect site was again treated as a random effect
to account for any lack of spatial independence. Data exploration suggested
some degree of non-linearity across depth, and this was accounted for by
modelling depth using a third order polynomial in both cases. All model fit
and assumptions were examined via residuals using simulation-based
model-checking (Hartig, 2020), which suggested model fit was satisfactory
in all cases. All statistical analyses and plotting was performed in the software
R (R Core Team, 2022) using the glmmTMB (Brooks et al., 2017), DHARMa
(Hartig, 2020), and emmeans (Lenth, 2020) packages.

3. Results
3.1. Total reef section sediment standing stocks and fluxes

During the study period, the average suspended sediment concentration
(i.e. water column standing stock) was 0.553 g m~3 (Fig. 2), with little var-
iation in turbidity across depths (Fig. S4). By contrast, the average standing
stock of sediment bound in the turfs at the study site was 273 g m ™2
(Fig. 2). Therefore, based on a single frame in time, there was ~494-fold
more sediment bound in the turf than in the water column on a m? versus
m? basis. However, by combining the suspended sediment concentration
with the estimate of total water volume that moved over the reef section
during the study period (10,894,603 m?), we estimated that a total of
6.0 + 0.1 t of sediment moved over the site during the 6-day period. This
equates to 819 g m ™~ 2 day ' when partitioned by area (1226 m?) and
day (Fig. 2). Interestingly, this quantity of sediment moving over the
study site in a day was 3-fold greater than that bound in the turfs, suggest-
ing that if all this sediment settled out of suspension it had the capacity to
replace all of the sediment trapped in turfs in just 8 h (Fig. 2).

Simultaneously examining two metrics of sediment deposition/accu-
mulation (i.e. sediment trapping rate and sediment accumulation on
TurfPods) provided insights into the relative strength of connections be-
tween the water column and benthic turf sediments. Specifically, despite
819 g m~ 2 day ' of sediment transiting over the site, sediment trapping
rates were only 16 gm ™2 day ™~ %, or just 2 % of the total amount of sediment
that passed over the reef (Fig. 2). Overall, accumulation of sediments on
TurfPods was ~1.2-fold higher than in sediment traps (Fig. 2). However,
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this still suggests that just 2.3 % of the sediment passing over the reef accu-
mulated on TurfPods each day. When sediment accumulation rates on
TurfPods were compared to the standing stock of sediments in natural
turfs, 7 % of the standing stock was found to accumulate each day on
TurfPods. Based on this rate of accumulation it would take ~14 days for
the entire standing stock of turf sediments to be replaced. Finally, the
parrotfish community reworked the standing stock of sediments in the

turfs at a rate of 5.1 % day .

3.2. Across-depth/habitat sediment dynamics

Sediment dynamics varied considerably across the windward reef hab-
itat gradient examined at Lizard Island (Fig. 3a-d). Sediment standing
stock, accumulation on TurfPods, and accumulation in traps were all
highest in the shallow reef flat or back reef habitats when compared to
the reef crest and reef slope habitats (Fig. 3b-d). In terms of sediment stand-
ing stock in algal turfs, average sediment loads were >17.4-fold higher on
the flat compared to the crest (3907 vs. 224 g m~?) (Fig. 3b; Table S3). In-
deed, the GLM revealed that sediment loads in reef flat algal turfs were sig-
nificantly higher than in all other habitats (p < 0.05 in all cases; Tables S3,
S4). Accumulation rates in sediment traps also followed a similar trend,
with the highest average (+SE) rates on the flat (322.2 =+
160 g m~ % day ') and the lowest at 12 m on the reef slope (9.5 *
0.3 gm™~2day 1) (Fig. 3d). By contrast, sediment accumulation rates on
TurfPods were significantly higher in the back reef compared to all other
habitats/depths sampled (p < 0.05 in all cases; Table S4), while accumula-
tion rates on TurfPods on reef flat habitats were significantly higher than
TurfPods at 3, 4.5, and 9 m (Table S4). The hydrodynamic forces also ap-
peared to vary considerably across the same gradient (Fig. 3a). Specifically,
wave energy on the benthos was highest on the shallow windward reef face
(maximum recorded = 0.08 dbar), while dissipating across the profile in
the sheltered lagoonal back reef (maximum recorded = 0.04 dbar)
(Fig. 3a). These patterns suggest that hydrodynamic drivers and associated
sedimentary processes, differ markedly across this windward reef profile.

When the cross-depth patterns were considered in more detail across
the crest-slope reef section, marked divergences in sediment accumulation
in traps versus on TurfPods were revealed (Fig. 3e). Specifically, a GLMM
revealed that there was a significant third-order polynomial relationship
between sediment accumulation rate on TurfPods and depth, with accumu-
lation rates increasing from 3 m to 6 m before leveling out (p < 0.05; Fig. 3e;
Table S5). By contrast, a GLMM revealed that there was a significant
second-order polynomial relationship between sediment trapping rate
and depth, with trapping rate declining markedly from 3 m to 6 m before
leveling out (p < 0.05; Fig. 3e; Table S5). Consideration of how near-bed
currents and wave pressure on the benthos varied across the same depth
gradient was informative for these sediment dynamics. The speed and
range of water currents near the benthos were remarkably similar across
the depth gradient (Fig. 3f). By contrast, the total pressure, and range of
pressures, that waves exerted on the benthos declined markedly across
the depth gradient (Fig. 3g). Maximum wave pressure declined by
4.3-fold across the 3 to 12 m depth gradient (Fig. 3g). Finally, parrotfish
sediment reworking rates also appeared to vary markedly across the
depth gradient (Fig. 3h). Parrotfishes were estimated to rework sediments
from a rate of 1.6 gm ™% day " at 3 m, up to 33 gm~?day ! at 9 m,
while reworking rates at 4.5, 6 and 9 m ranged between 10.8 and
13.4 gm~ 2 day ™! (Fig. 3h).

4. Discussion

In this study, we quantified a suite of sedimentary processes and associ-
ated bio-physical drivers in a high-resolution snapshot of sediment dynam-
ics across an entire reef profile in a windward, clear-water location. The
data suggests that even in clear-water reef locations, a substantial load of
sediment passes over the reef in the water column, with this load capable
of replacing the standing stock of turf sediments in just 8 h if all sediment
was deposited. However, data from both sediment traps and TurfPods
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Fig. 3. Sediment dynamics across a windward coral reef profile at Lizard Island. a) Maximum wave pressure on the benthos recorded in back, crest and slope habitats between
18 and 23 February 2021. b) The standing stock of sediment loads in algal turfs across the four habitats. Accumulation rate of sediments c) on TurfPods and d) in sediment
traps. The black point and ranges in b) and c) denote the mean predicted fit and 95 % confidence intervals from generalised linear/generalised linear mixed effects models.
The black point and ranges in d) denote the mean (= SE) of the raw data. Pale orange points in b-d) denote the raw data points. The grey shaded box (a-d) denotes the area of
the reef profile quantified in more detail (e-h). ) Variation in cross-depth sediment accumulation on TurfPods and in sediment traps (lines denote the mean predicted fit from
generalised linear mixed effects models while coloured ribbons denote the 95 % confidence intervals). Cross-depth variation in potential hydrodynamic drivers during the
study period: f) near-bottom current speeds, and g) wave-driven changes in pressure on the benthos. Boxplots show the median and quantile ranges, while coloured dots

denote outlying values. h) Sediment reworking by parrotfishes across depth.

suggested that just 2 % of this passing sediment was deposited on the reef
where it could be accumulated in turfs. The data also highlighted the
marked spatial variation in sediment deposition and accumulation across
the entire reef profile, with the reef flat and back reef emerging as key
areas of sediment deposition and accumulation. By contrast, shallow wind-
ward reef areas at 3 and 4.5 m were found to be areas of deposition (as ev-
idenced by sediment trap data) but with a limited capacity for sediment
accumulation (as evidenced by TurfPod data). These cross-reef patterns

appear to relate to wave energy and reef geomorphology, with low sedi-
ment accumulation on the windward reef crest clearly aligning with
waves exerting higher energy on the benthos. Ultimately, these results are
important for understanding cross-reef sediment dynamics, approaches to
quantifying sediments, and the ecological implications of turf-bound sedi-
ments. These results have widespread implications for the general under-
standing of how coral reefs operate given that a) cross-reef profiles such
as those quantified herein are a common feature of many reefs globally
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(Lutzenkirchen et al., 2023), b) sediments are found on all coral reefs glob-
ally, c¢) changing sediment fluxes represent a key stressor (Fabricius, 2005;
Wolanski et al., 2009; Andrello et al., 2022), and d) turf-bound sediments
pertain to the single most abundant benthic cover on reefs today (Tebbett
et al., 2023b) and likely into the future (Agostini et al., 2021; Harvey
et al., 2021). Indeed, the fate of future reefs is likely to be shaped, at least
in part, by turf-bound sediments (Bellwood and Fulton, 2008; Evans
et al., 2020; Tebbett et al., 2021).

4.1. Cross-reef sediment dynamics

Despite only sampling over a limited temporal period, the data collected
herein appears to be broadly representative of the cross-reef patterns oper-
ating in this location. For example, the cross-habitat patterns of algal turf
sediment standing stock reflect those of past studies conducted up to
28 years ago at the same site (Purcell, 2000; Goatley and Bellwood,
2012), suggesting marked temporal stability in patterns of turf sediment ac-
cumulation at this location. The hydrodynamic properties quantified at Liz-
ard Island, such as current speed and the extent of wave dissipation across
the reef profile, are also reflective of data collected in past studies at the
same site (Hamylton et al., 2013; Tebbett et al., 2022d). This is unsurprising
given that waves and currents are heavily wind-driven at this location
(Johansen, 2014) and the wind-conditions during the study were represen-
tative of the prevailing conditions at this location (Figs. S1, S2). As
these lines of evidence suggest that the sediment dynamics quantified in
this snapshot examination are generally characteristic of the location,
they can offer important insights into how this cross-reef profile may be
operating.

The cross-reef sediment dynamics quantified herein showed limited
sediment deposition and accumulation on the windward slope, higher de-
position (relative to the slope) but very low accumulation on the shallow
crest/outer-flat (3-4.5 m), and high sediment accumulation and/or deposi-
tion on the mid-flat and back reef. Given the prevailing winds and hydrody-
namics, such cross-reef patterns are largely indicative of sediment
movement away from the high-energy windward reef crest environment,
towards the lower-energy flat and sheltered back reef habitat. Importantly,
this inference about the direction of sediment movement also aligns with
previous studies that have documented similar patterns across coral reefs
and have suggested that the interaction between waves and reef geomor-
phology is key in defining the sedimentary context for reef habitats (e.g.
Kench and Brander, 2006; Browne et al., 2013b; Pomeroy et al., 2018,
2021). Our results support these inferences and extend the findings to sed-
iment deposition and accumulation in turfs on reefs, with the interaction
between waves and geomorphology being key in the maintenance of a
reef crest habitat with low turf sediment loads. As this habitat has the
highest benthic productivity, per unit area (Klumpp and McKinnon, 1989;
Russ, 2003), and supports the highest herbivore densities and herbivory
rates (Lewis and Wainwright, 1985; Bellwood et al., 2018), the mainte-
nance of low sediments in this zone has a variety of important ecological
implications (discussed below). Further insights into the interactions be-
tween sediments, geomorphology, and hydrodynamics may also be gleaned
by considering how the data align with that of a previous study which used
similar methods but applied them under a fundamentally different context.

4.2. Offshore versus inshore cross-study comparison

A recent study used similar methods to those used herein to quantify
sediment dynamics at Orpheus Island, an inshore reef on the GBR
(Schlaefer et al., 2022). However, it is critical to note that our study location
at Lizard Island differs markedly from the location studied at Orpheus Is-
land in Schlaefer et al. (2022) in terms of: i) wave exposure (windward ver-
sus leeward); ii) shelf-position and proximity to the mainland (mid-shelf
Lizard ~30 km from the mainland versus inner-shelf Orpheus ~15 km
from the mainland); and iii) reef geomorphology, whereby Lizard Island
is composed of a reef slope (rising from ~30 m depth including a full
cross-reef profile into a lagoon), while Orpheus Island is an island attached
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fringing reef (with a slope rising from ~15 m depth) (Fig. 4). Given the sim-
ilarity of the methods used, but the markedly different contexts under
which they were applied, consideration of our results relative to those of
Schlaefer et al. (2022) is warranted. A detailed comparison can be found
in the supplemental material (Text S3), however, below we consider how
our results align with the two principal findings of Schlaefer et al. (2022):
a) the relative quantities and strength of fluxes between different sediment
reservoirs, and b) the existence of a highly-dynamic, high sediment deposi-
tion and accumulation regime at 3 m driven by wave energy.

At the clear-water, windward Lizard Island location studied here, the
standing stock of sediment in the water column and in turfs, was far
lower than at the more turbid, leeward Orpheus Island location (stocks
were 80 % and 310 % higher at Orpheus Island, respectively [Fig. 4]). Im-
portantly, these differences in standing stocks align with past studies of tur-
bidity gradients across the GBR (Fabricius et al., 2014), as well as standing
stock sediment loads in turfs, and on the benthos, across the GBR (Fabricius
and De'ath, 2001; Tebbett et al., 2017a). In terms of fluxes, sediment accu-
mulation in traps was also 290 % higher at Orpheus Island (Fig. 4), poten-
tially suggesting stronger links between the water column sediment
reservoir and the on-reef sediment reservoir at Orpheus compared to Liz-
ard. However, despite the marked differences in standing stocks and trap-
ping rates, the total sediment load travelling over the reef in the water
column was remarkably similar at both Lizard and Orpheus, with it being
just 10 % higher at Orpheus Island (Fig. 4).

Given the different environmental contexts in which Lizard Island and
Orpheus Island exist, especially in terms of suspended sediment concentra-
tions being 80 % higher at Orpheus Island, it is interesting how similar the
estimates of total sediment load/delivery in the water column are (Fig. 4).
Consideration of these two properties (i.e. total load versus concentration)
of water column sediments is important because most past coral reef studies
focus on measures of sediment concentration, rather than estimates of total
delivery (reviewed in Schlaefer et al., 2021). As such, it can be unclear
which mechanism (i.e. suspended sediment concentration versus total sed-
iment delivery) aligns more closely with on-reef sediment dynamics. This
comparison between studies using similar methods suggests that the former
(i.e. suspended sediment concentration) may correlate more directly to on-
reef sediment processes, since both suspended sediment concentration and
deposition in traps were higher at Orpheus Island. While this inference is
based on just two locations, the notion that increased suspended sediment
concentrations translate directly to increased benthic sediment loads is sup-
ported by previous evidence. For example, past studies have found that in-
creased suspended sediment concentrations via flood plumes (Storlazzi
et al., 2009; Golbuu et al., 2011), dredging activity (Miller et al., 2016;
Jones et al., 2019), and local hydrodynamic activity (Castro et al., 2012;
Whinney et al., 2017) all translate to increased sediment deposition on
coral reefs. However, it is important to note that this deposition is invari-
ably embedded in a spatial context and we must also consider the cross-
depth patterns.

At the leeward study site on Orpheus Island, Schlaefer et al. (2022) doc-
umented a highly dynamic high sediment movement regime at 3 m and a
less dynamic, lower sediment movement regime at 4.5-12 m, with the de-
lineation of these two regimes supporting the occurrence of a shallow ‘re-
suspension zone’ and a deeper ‘sedimentation zone’ described in
Wolanski et al. (2005). Importantly, in Schlaefer et al. (2022) both sedi-
ment trapping rates, and TurfPod accumulation rates peaked at 3 m,
which was suggestive of both high sediment deposition and accumulation
in turfs. This pattern was not supported by cross-depth data from the wind-
ward Lizard Island location quantified herein, as only sediment trapping
rates peaked at 3 m and declined with depth, while TurfPod accumulation
was lowest at 3 m and increased until 6 m before leveling out. Unlike Or-
pheus, the data from Lizard, therefore, suggests that there is limited capac-
ity for sediment accumulation in turfs at 3-4.5 m, which may be the result
of the interaction between waves and reef geomorphology.

The interaction between wave energy and reef geomorphology is a well-
known driver of sediment dynamics (Larcombe et al., 2001; Storlazzi et al.,
2009; Golbuu et al., 2011) and it is this interaction that probably shaped the
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Fig. 4. Conceptual schematic showing the relative amount of sediment in different reservoirs and the relative strength of sedimentary fluxes quantified at the scale of the ‘total
reef section’ in the present study, as well as in a past study by Schlaefer et al. (2022) that used similar methods. Note the lower sediment trapping and accumulation rates at
Lizard Island. The area of the black boxes denotes the relative differences in magnitudes between the two locations.

differential patterns of sediment accumulation on TurfPods documented
here versus at Orpheus Island in Schlaefer et al. (2022). This is because,
at Orpheus Island, wave energy is far lower than at Lizard Island
(Fig. S5d). Furthermore, the Orpheus Island study site was a fringing reef
with a relatively narrow flat (~50 m) and a slope that only reached a
depth of approximately 15 m. This means that, at Orpheus Island, there is
less potential for wave-driven sediment resuspension and advection (also
see Wolanski et al., 2005 for a comparison on resuspension at leeward ver-
sus windward reefs). If sediments are resuspended at Orpheus Island, it is
harder for them to move out of the system, since the reef fringes an island
and thus lacks an expansive reef flat and back reef, potentially leading to
higher recycling in the shallow narrow reef flat (cf. Ogston et al., 2004;
Lambrechts et al., 2010). By contrast, at Lizard Island, wave energy was
~3-fold higher than at Orpheus Island, the reef flat was approximately
400 m wide and backed onto a lagoonal back reef, and the reef slope
reached a depth of >30 m. This means that there is more potential for sed-
iment to be resuspended and entrained across the flat (as discussed above)
or transported into depths where it is exported from the system once it is

below the depth of the resuspension zone (cf. Wolanski et al., 2005,
2008; Morgan and Kench, 2014). Ultimately, these differences between lo-
cations suggests that the ‘post-settlement’ fate of sediments, especially in
terms of their accumulation in turfs, is dependent on local conditions, espe-
cially wave energy and geomorphology. Local hydrodynamic and geomor-
phological constraints may, therefore, predispose some reefs or reef areas to
high-load stagnant sediment regimes, while others remain relatively sedi-
ment free, even at equivalent depths.

The marked context-dependent nature of sediment accumulation on
reefs, even over a few meters at the spatial scale of a single reef profile,
and the clear interaction between multiple drivers such as hydrodynamics
and geomorphology, means that modelling these dynamics is a difficult
task. This problem is further compounded when the potential for temporal
variability in sediment dynamics, and the underlying drivers, is considered
(e.g. Brander et al., 2004; Victor et al., 2006; Storlazzi et al., 2009; Browne
et al., 2013a). Nevertheless, progress has been made in modelling
suspended sediment dynamics over large spatial scales (reviewed in
Horner-Devine et al., 2015), with large-scale remote sensing data being
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useful for informing these models (e.g. Margvelashvili et al., 2013). More-
over, advances in sediment transport modelling have facilitated insights
into sediment plume dispersal and how these plumes interact with coral
reefs (e.g. Suarez-Castro et al., 2021; Andrello et al., 2022). However, we
are only just starting to unravel the links between suspended sediment con-
centrations, sedimentation, and accumulation on reefs, especially in turfs.
The present study, as well as past research (e.g. Latrille et al., 2019;
Schlaefer et al., 2022), suggests these links are complex. This complexity
is further magnified by the fact that unlike suspended sediment concentra-
tions, for which largescale data is readily available, the quantification of on-
reef sediment accumulation is far more challenging and labour intensive
(Tebbett et al., 2022b). The methods commonly used to quantify sediment
deposition/accumulation, such as sediment traps, may also provide biased
insights into this process on reefs (discussed below). Despite these
challenges, developing a predictive model for sediment accumulation on
reefs will be important given its ecological consequences (discussed
below). This endeavour will invariably require the development of less
labour intensive methods to collect data across large spatial scales to help
ground-truth models.

4.3. Methodological implications

Sediment traps are the most widely used tool for quantifying sedimen-
tary processes on reefs (Schlaefer et al., 2021). However, this widespread
use has been criticised because it has been suggested that data from sedi-
ment traps only provides a partial insight into sedimentary processes, and
that such data are not necessarily informative for on-reef benthic processes
(Storlazzi et al., 2011). This is because the relative elevation of the sediment
traps above the substratum, means that they have relatively weak links with
benthic sediments and instead generally capture sediment from the water
column (see Bothner et al., 2006; Storlazzi et al., 2011; Latrille et al.,
2019; Ng et al., 2022). Moreover, the design of sediment traps means that
they prohibit the resuspension of sediments trapped inside them
(Storlazzi et al., 2011). Therefore, it has been suggested that sediment
traps specifically factor out the capacity for waves and other hydrodynamic
drivers to resuspend and redistribute sediments and, cannot be used for un-
derstanding on-reef sediment processes (Storlazzi et al., 2011; Latrille et al.,
2019). The data in the present study support these suggestions.

The divergent trajectories documented for sediment trapping rates and
sediment accumulation on TurfPods across the depth gradient examined
suggest that sediment traps can yield biased insights into on-reef sediment
accumulation. If inferences herein were only based on sediment trap data,
then it would have been concluded that the 3 and 4.5 m depths at Lizard Is-
land were areas of high sediment deposition and accumulation. Clearly this
was not the case. When the data from TurfPods were considered, it was ev-
ident that little sediment accumulation occurs at 3 and 4.5 m at Lizard Is-
land. Importantly, TurfPods allow both the deposition and resuspension
of sediments, as in SedPods (Field et al., 2013). However, the artificial
turf attached to the TurfPods is designed to mimic the capacity of naturally
occurring turfs to retain sediments during resuspension events (Latrille
et al., 2019) (see Text S4 for further discussion). Importantly, the six-day
deployment period used here means that the TurfPods were highly unlikely
to have reached a saturation point (see Latrille et al., 2019), which means
that these data represent a time-averaged continuous accumulation rate
for the study period. In addition, the lower profile of TurfPods at just
7 cm high, means that they have far stronger links to the benthos than
the 60 cm high sediment traps (Latrille et al., 2019; Ng et al., 2022). As a
result, these data highlight the value in using multiple methods to examine
sediment dynamics on reefs, and caution against the use of sediment traps
exclusively when the purpose of a study is to understand sediment accumu-
lation and benthic processes.

It is also important to note that the type of sedimentary metrics quanti-
fied can yield differing insights into sediment dynamics on reefs. In the
present study, we focused on total sediment loads because, in terms of
turf-based sediments and their ecological implications, it generally has
the largest effect, while sediment type and grain size are of secondary
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importance (Bellwood and Fulton, 2008; Gordon et al., 2016; Tebbett
et al., 2017b, 2020). Moreover, due to the relatively short deployment
period used in the present study (which was essential to ensure a tight
temporal coupling between the quantification of sediment trapping/
accumulation rates and the bio-physical drivers examined) the absolute
amounts of sediment collected were relatively small, prohibiting detailed
granulometric analyses such as via a laser particle analyser. Nevertheless,
previous research has suggested that the size of sediments accumulated in
traps differs from that on the benthos (Bothner et al., 2006; Storlazzi
et al., 2011; Latrille et al., 2019; Ng et al., 2022). By contrast, the grain
size distribution of sediments that accumulate on TurfPods have been
found to align more closely with the sediments in natural turfs (Latrille
etal., 2019). Nevertheless, to provide further insights into sediment dynam-
ics on reefs, combining the quantification of sediments over a longer tempo-
ral period (to allow greater sediment trapping rates) with more in-depth
examination of sediment properties such as grain size would be useful.
Although, such quantification would invariably mean the coupling between
the bio-physical drivers quantified, and the sedimentary processes exam-
ined, may be weaker.

4.4. Ecological implications

Given that a link may exist between suspended sediment concentrations
and sediment accumulation on the benthos, further investigation of this
link is particularly important for advancing the understanding of reef ecol-
ogy. This is because ecological studies often examine correlations between
turbidity and variables such as fish abundance/composition (Mallela et al.,
2007; Bejarano and Appeldoorn, 2013; Cheal et al., 2013; Moustaka et al.,
2018), benthic organisms (Fabricius et al., 2005; Moustaka et al., 2019;
Santana et al., 2023), or coral settlement (Evans et al., 2020; Thomson
etal., 2021). However, when correlations between turbidity and ecological
variables are found, at least some are likely to be partially driven by the
amount of sediment accumulated on the benthos, rather than in the water
column, per se. Arguably, herbivorous fishes provide the best example of
this phenomenon since their abundance and/or community composition
is often negatively correlated with turbidity (Mallela et al., 2007;
Bejarano and Appeldoorn, 2013; Cheal et al., 2013; Moustaka et al.,
2018). However, these fishes spend most of the day grazing on the reef sub-
stratum, where they directly interact with sediments (Bellwood and Fulton,
2008; Adam et al., 2018; Duran et al., 2019; Pessarrodona et al., 2022). In-
terestingly, there is now a broad consensus that sediments accumulated in
turfs can constrain feeding by (Goatley and Bellwood, 2012; Tebbett
et al., 2020; Ng et al., 2021; Akita et al., 2022) and nutritional resource
yields to (Gordon et al., 2016; Tebbett et al., 2018) herbivorous fishes,
with potential bottom-up effects on their assemblages (Tebbett et al.,
2021). The fish data from the present study supports this notion as species
known to be particularly sensitive to the effects of algal turf sediments, such
as the surgeonfish Ctenochaetus striatus (Tebbett et al., 2020), typified the
low-sediment Lizard Island location (Fig. S6).

Interestingly, wave energy and reef geomorphology have also been
highlighted as key factors related to herbivorous fish distributions previ-
ously (Bejarano et al., 2017; Bennett et al., 2018; Roff et al., 2019;
Samoilys et al., 2019). Given that these factors also appear to be key in
shaping sediment distributions on reefs, it may be important to tease
apart how these factors are intertwined, especially in a more comprehen-
sive spatial context. This would be particularly useful in further elucidating
the hydrodynamic and geomorphic context for reefs, helping to identify
their susceptibility to sediment disturbances. This facet could also be ex-
plored from an evolutionary perspective, as it has been suggested that a
major breakthrough in the evolutionary history of herbivorous fishes was
their capacity to move into shallow, high-energy, coral reef habitats
(Bellwood et al., 2014, 2017). This would have been evolutionarily advan-
tageous from a nutritional perspective given the limited capacity for such
areas to accumulate sediments, and could help explain why large-bodied
herbivorous reef fishes have outpaced all other trophic groups in recent di-
versification rates (Siqueira et al., 2020).
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The ecological interactions between sediments and herbivorous fishes
on coral reefs also brings to the fore the potential importance of fish-
derived geo-ecological functions, especially sediment reworking
(Stoddart, 1969; Bellwood et al., 2003; Perry et al., 2022). The role of
parrotfishes is now widely appreciated in these functions, with the same
methods as those used herein being applied to explore their ecology in a va-
riety of different contexts (Hoey and Bellwood, 2008; Morgan and Kench,
2016; Yarlett et al., 2018; Morais et al., 2022). However, despite the impor-
tance of other reef fish groups in sediment transport being recognised over
60 years ago (Bardach, 1961), developing methods to readily estimate their
roles has lagged behind parrotfishes (Perry et al., 2022). Further quantifica-
tion of the role of surgeonfishes in geo-ecological functions may thus be a
particularly fertile avenue for future research. Currently, the role of just a
single species, Ctenochaetus striatus, has been rigorously quantified
(Goatley and Bellwood, 2010; Krone et al., 2011), although at least 30 sur-
geonfish species are likely to play a major role in the transport of sediment
around reefs (reviewed in Tebbett et al., 2022c). As these sediment
transporting species can be particularly abundant in some contexts
(Fig. S6), further insights into the magnitude of their effects would be im-
portant in developing a comprehensive understanding of the biological
drivers of sediment dynamics on coral reefs.

Ultimately, the ecological implications of our findings are widespread
and multifaceted. This is because on-reef sediments in turfs represent the in-
direct medium through which hydrodynamics and reef geomorphology
shape the ecological functioning of reefs. Indeed, from tropical coral reefs
to temperate reef systems, sediments in turfs have been found to modu-
late/relate to: herbivory/detritivory rates (Goatley and Bellwood, 2012;
Ng et al., 2021; Akita et al., 2022), growth and production of primary pro-
ducers (Irving and Connell, 2002; Clausing et al., 2014; Tebbett and
Bellwood, 2020), settlement of critical habitat-forming organisms (Birrell
et al., 2005; Watanabe et al., 2016; Layton et al., 2019; Speare et al.,
2019), competitive benthic interactions (Steneck, 1997; O'Brien and
Scheibling, 2018; Liao et al., 2019), cryptofauna abundance (Prathep
et al., 2003; Logan et al., 2008; Kramer et al., 2012), and detrital quality
(Purcell and Bellwood, 2001; Tebbett et al., 2021). All of these factors
are, or are linked to, critical ecosystem processes that lie at the foundations
of how reefs operate (Bellwood et al., 2019; Brandl et al., 2019) or recover
from disturbances (Holbrook et al., 2018; Evans et al., 2020). Yet, because
turf sediments are largely unquantified in ecological studies and unmoni-
tored, we are only just beginning to appreciate the relative strength and
context dependency of interactions between turf sediments and the
functioning of reef systems. This is despite turfs being the single most abun-
dant benthic covering on most shallow reef systems globally (Filbee-Dexter
and Wernberg, 2018; Tebbett et al., 2023b), with their abundance likely to
increase under future reef conditions (Agostini et al., 2021; Harvey et al.,
2021).

5. Conclusions

By simultaneously quantifying a range of sediment reservoirs and mod-
ifying processes across a windward reef profile, our study revealed several
key insights. Firstly, despite enough sediment passing over the reef to re-
place all turf-bound sediment in just 8 h, only an estimated 2 % of this pass-
ing sediment was deposited onto the reef. Moreover, patterns of sediment
deposition and subsequent accumulation were embedded in a distinct spa-
tial arrangement. This inference, however, was only revealed based on data
from TurfPods, given that sediment traps factored out resuspension of
sediments and did not reflect on-reef sediment accumulation. When consid-
ered in light of past research conducted on a leeward turbid reef, the data
suggests that increased sediment concentrations, rather than total
suspended sediment load, translate more directly into higher sediment de-
position rates. From an ecological perspective, these results suggest that the
context of the reef in question will ultimately determine the extent to which
sediment deposition will translate into on-reef sediment accumulation in
algal turfs. Indeed, wave energy and reef geomorphology appear to be
key in the maintenance of the low turf sediment, ecologically critical, reef

11

Science of the Total Environment 895 (2023) 165188

crest habitat. Given that algal turfs act as a key ecological interface on
most reefs globally (Connell et al., 2014), and their coverage is poised to in-
crease (Agostini et al., 2021; Tebbett et al., 2023a), these results have far
reaching implications for our understanding of how reefs will function in
the near future.
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