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Modelling COVID‑19 pandemic 
control strategies in metropolitan 
and rural health districts in New 
South Wales, Australia
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COVID‑19 remains a significant public health problem in New South Wales, Australia. Although the 
NSW government is employing various control policies, more specific and compelling interventions 
are needed to control the spread of COVID‑19. This paper presents a modified SEIR‑X model based 
on a nonlinear ordinary differential equations system that considers the transmission routes from 
asymptomatic (Exposed) and symptomatic (Mild and Critical) individuals. The model is fitted to the 
corresponding cumulative number of cases in metropolitan and rural health districts of NSW reported 
by the Health Department and parameterised using the least‑squares method. The basic reproduction 
number (R

0
) , which measures the possible spread of COVID‑19 in a population, is computed using 

the next generation operator method. Sensitivity analysis of the model parameters reveals that 
the transmission rate had an enormous influence on R

0
 , which may be an option for controlling this 

disease. Two time‑dependent control strategies, namely preventive (it refers to effort at inhibiting the 
virus transmission and prevention of case development from Exposed, Mild, Critical, Non‑hospitalised 
and Hospitalised population) and management (it refers to enhance the management of Non‑
hospitalised and Hospitalised individuals who are infected by COVID‑19) measures, are considered 
to mitigate this disease’s dynamics using Pontryagin’s maximum principle. The most sensible control 
strategy is determined through the cost‑effectiveness analysis for the metropolitan and rural health 
districts of NSW. Our findings suggest that of the single intervention strategies, enhanced preventive 
strategy is more cost‑effective than management control strategy, as it promptly reduces COVID‑19 
cases in NSW. In addition, combining preventive and management interventions simultaneously is 
found to be the most cost‑effective. Alternative policies can be implemented to control COVID‑19 
depending on the policymakers’ decisions. Numerical simulations of the overall system are performed 
to demonstrate the theoretical outcomes.

COVID-19, the disease caused by the novel SARS-COV-2 virus, is still posing a heavy burden on the health 
systems in many countries all over the world. In Australia, New South Wales (NSW) and other states have been 
highlighted as settings at particular risk of COVID-19  spread1. Not only are they an ‘enclosed society’ character-
ized by a high degree of contact among people, but persons deprived of their liberty have little means to imple-
ment the necessary measures of COVID-19 prevention such as social distancing, hand hygiene and isolation.

There are six states in Australia, NSW is one of them and it is situated on the east coast of Australia. NSW 
connects Queensland to the north, Victoria to the south, South Australia to the west and encloses the entire 
of the Australian Capital Territory (see Fig. 1). NSW is formally divided into two local health districts: metro-
politan and rural. The metropolitan area includes eight local health districts such as Central Coast, Illawarra 
Shoalhaven, Nepean Blue Mountains, Northern Sydney, South Eastern Sydney, South Western Sydney, Sydney 
and Western  Sydney2. Seven local health districts such as Far West, Hunter New England, Mid North Coast, 
Murrumbidgee, Northern NSW, Southern NSW and Western NSW cover the rural NSW  region2. Fig. 2 shows 
the trends of cumulative cases in metropolitan and rural districts in NSW from January 2020 to February 2022. 
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Figure 1.  The map displays the locations and distributions of metropolitan and rural health districts in NSW 
Australia. (Source: https:// www. health. nsw. gov. au/ lhd/ Docum ents/ lhd- wall- map. pdf).

Figure 2.  COVID-19 case counts and incidence rates (per one million population) in NSW metropolitan and 
rural areas (red bars indicate rural cases and blue bars indicate metropolitan cases) (Data source: https:// www. 
health. nsw. gov. au/ lhd/ Pages/ defau lt. aspx).

https://www.health.nsw.gov.au/lhd/Documents/lhd-wall-map.pdf
https://www.health.nsw.gov.au/lhd/Pages/default.aspx
https://www.health.nsw.gov.au/lhd/Pages/default.aspx
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It can be observed that the cumulative cases and incidences rates are higher in metropolitan health districts 
compared to rural districts.  

Concerns about COVID-19 occurring in places of positive test results have been made real from numerous 
outbreaks that have already taken place throughout the  pandemic3. Many countries have responded to the threat 
by diverting persons away from COVID-19 test centres. However, peer-reviewed literature regarding COVID-19 
and places of positive test results is restricted to opinion pieces or commentaries. These universally emphasize the 
vulnerabilities of COVID-19 test centres during this pandemic. However, they make no attempt to enumerate the 
potential cause and consequences of an outbreak, nor set targets for inmate reductions. COVID-19 outbreaks in 
COVID-19 test centres (e.g. in China, Canada, and the US) have largely gone unremarked in the peer-reviewed 
literature. In contrast, the ‘super spreader’ event onboard the Diamond Princess cruise ship has been the subject 
of numerous epidemiological  publications4 leading to many lessons learnt.

Experience with respiratory outbreaks and other diseases have repeatedly demonstrated that no matter how 
isolated a community is, it is not necessarily insulated from infection. Even where there are no complicating 
factors, such as the age distribution or the presence of individuals with greater susceptibility in the enclosed 
population, their organization tends to increase transmission and secondary infection  risk5. In this way, con-
ditions of positive test results have been described as ‘amplifiers of infectious disease’6. Numerous outbreaks, 
particularly reports of  influenza7 and  tuberculosis8 demonstrate the propensity for outbreaks to spread rapidly.

Modelling has been utilised as a tool to address gaps in knowledge and inform detention health policies in the 
prevention and control of infectious disease in detention  settings9. Researchers have been using various models 
to provide insights and guide interventions to control the spread of COVID-19. These have been undertaken 
in various settings such as the epicentre of Wuhan,  China10, in high-income countries to predict health service 
 needs11,12, in middle-income countries to check the effects of total population and population  densities13,14 to 
refugee camps and other low-income  settings15,16.

On the  10th of February 2022, 988,357 out of the 2,433,278 COVID-19 cumulative cases (around 40%) in Aus-
tralia occurred in  NSW17. Strong contingency planning is needed so that health authorities can act  accordingly18. 
To this end, mathematical modelling offers an alternative source of information to enlighten preparedness and 
preventative interventions. Given the differences between metropolitan and rural areas in NSW, a model that 
allows different parameters under different control settings and locations is needed. Motivated by the continuing 
and distinctive spread of COVID-19 infections in metropolitan and rural areas of NSW (see Fig. 2), this study is 
aimed at developing a model that can be used to represent the outbreak of COVID-19 in NSW, hence providing 
practical recommendations for health and justice authorities to support preparedness measures to better protect 
the vulnerable population and surrounding communities.

We develop a novel nonlinear deterministic SEIR-X model, or the SEMCNHRD model, for COVID-19 
incorporating transmission routes from two infectious classes, including mild and critical individuals, which is 
parameterized and analyzed based on the cumulative number of reported cases. The model behaviour over a long 
period is examined qualitatively and quantitatively. Sensitivity analysis is used to assess the impact of fluctuations 
in model parameters for the epidemiological threshold on the formulation of strategies required to control the 
spread of the disease. Further, the model can be used to derive the optimal control strategy and the optimal levels 
of time-dependent preventive and management procedures to be implemented in metropolitan and rural districts 
to diminish the number of cases in the population effectively. The cost-effective intervention, which combines 
both preventive and management control strategies, capable of flattening the number of cases curve over a fixed 
time interval, is recommended and compared between metropolitan and rural health districts of NSW.

The remainder of this paper is structured as follows. In “Methods and materials” section, we present the 
SEIR-X model with differential infectivity, the model fitting procedures and the sensitivity analysis of the model 
outputs. “Optimal control strategy and analysis” section reports the optimal control strategy and analysis results. 
Finally, in “Discussion”, we provide a summary of significant findings, discuss their importance for public health 
policy making and propose guidelines for future efforts.

Methods and materials
Model development. The following model, which we call the SEIR-X model, is proposed for modelling 
the transmission of COVID-19. The model consists of the following mutually exclusive compartments: Suscep-
tible S(t) , uninfected individuals who are susceptible to the COVID-19 infection; Exposed E(t) , those who are 
infected but have not yet entered the active COVID-19 stage; M(t) , Mild individuals who are infected, infec-
tious and have mild respiratory illness symptoms such as nasal congestion, runny nose and a sore throat; C(t) , 
Critical individuals who are infected, infectious and have severe symptoms including shortness of breath, chest 
discomfort and bluish face. After seeking medical advice, critical individuals are classified as either NH—non-
hospitalised individuals but still infected, and H(t)—hospitalised individuals who are still infected. The last two 
compartments are the Recovered R(t) , who were previously infected and were successfully treated, and Death 
D(t) . At the same time t, an individual is classified into one and only one compartment. The total population size 
N(t) is assumed to be a constant at time t and well mixed:

To ensure the population size remains constant, we replace all deaths by newborns in the susceptible class. 
This includes deaths through natural causes, which occur in all states at a constant rate µ , and COVID-19 
related deaths which occur at a constant rate ω . Susceptible individuals may be infected with a circulating 
strain of COVID-19 at the rate � = β(M(t)+ C(t)) and move to the corresponding exposed class E(t) . Here, 
β is the probability of susceptible individual contracts infection after contact with Mild or Critical individuals 
with COVID-19. Those with latent infection progress to mild (the M(t) class) due to reactivation of the latent 

(1)N(t) = S(t)+ E(t)+M(t)+ C(t)+NH(t)+H(t)+ R(t)+ D(t).
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infection at an average period α . However, some Mild individuals move to the recovery class R(t) at an average 
period ρ due to natural recoveries and the rest of the Mild class individuals move to the critical compartment at an 
average period φ due to the progression and possibly comorbidities with other diseases, including hypertension, 
diabetes, cardiovascular disease, and respiratory system  disease19. A proportion (type of ratio) of the Critical 
individuals move to the Non-hospitalised and Hospital compartments at an average period γ1 and γ2 , respectively. 
Some Non-hospitalised individuals progress to the recovered compartment R(t) at an average period τ1 through 
treatment and the rest progress to the death compartment (D) at an average period δ1 . Similarly, some of the 
Hospitalised individuals progress to the recovered compartment R(t) at an average period τ2 through treatment 
and the rest progress to the death compartment (D) at an average period δ2 . A flow diagram of our proposed 
model is presented in Fig. 3.

In this case, the model can be expressed by the following deterministic system of nonlinear ordinary dif-
ferential equations:

(2)
dS

dt
= µN− β(M+ C)S− µS

(3)
dE

dt
= β(M+ C)S− (α + µ)E

(4)
dM

dt
= αE− (φ+ µ+ ρ)M

(5)
dC

dt
= φM− (ω+ µ+ γ1 + γ2)C

(6)
dNH

dt
= γ1C− (µ+ δ1 + τ1)NH

(7)
dH

dt
= γ2C− (µ+ δ2 + τ2)H

(8)
dR

dt
= ρM+ τ1NH + τ2H− µR

Figure 3.  The SEIR-X (SEMCNHRD) model structure: the population is divided into the following eight 
classes: susceptible, exposed (and not yet symptomatic), infectious (symptomatic) i.e. mild (mild or moderate 
symptom) and critical (severe symptom), death and recovered (i.e. isolation, recovered, or otherwise non-
infectious).
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Given the non-negative initial conditions for the system above, it is straightforward to show that each of the 
state variables remains non-negative for all t > 0. Moreover, summing Eqs. (2)–(9) we find that the size of the 
total population, N(t) satisfies i.e. N(t) = constant.

This shows that the total population size N(t) is a constant and it naturally follows that each of the compart-
ment states S, E,M, C,NH,H, RandD is bounded. Given the positivity and boundedness of the system solutions, 
the feasible region for Eqs. (2)–(9) is given by

where D1 is positively invariant.

Basic reproduction number. The basic reproduction number ( R0 ) is defined as the expected number of 
secondary cases created by a single infectious case introduced into a totally susceptible population. The disease 
can spread in a population only if the basic reproduction number is greater than one. An epidemic occurs when 
an infection spreads through and infects a significant proportion of a population. A disease-free population is 
possible when the basic reproduction number is less than one, which means that the disease naturally fades-
out20,21.

There are eight states in the modelling system in which five belong to the infected states, i.e. 
E,M, C,NH and H , and three are uninfected states, i.e. S, R and D . At the infection-free steady-state 
E = M = C = NH = H = R = D = 0, hence S0 = N, where S0 is the initial susceptible population. The Eqs. 
(3)–(7) are closed, in that they do not involve the derivation of S from steady state value. Also, R and D do not 
appear in Eqs. (3)–(7) ,  and for (E,M, C,NH,H) we have the following equations:

Here, these Ordinary Differential Equations (ODEs) in (10)–(14) are referred to as the infection subsystem, 
as they only describe the production of newly infected individuals and changes in the states of already infected 
individuals.

By setting x = (E,M, C,NH,H)
′

 , where the prime denotes transpose, the infection subsystem can be written 
in the following form:

The matrix T corresponds to the transmission, and the matrix � to transitions. All epidemiological events 
that lead to new infections are incorporated in the model via T and other events via � . If the infected states are 
indicated with i and j with i, j ∈ {1, 2, 3, 4, 5} , then the entry Tij is the rate at which individuals in infected state 
j give rise to individuals in infected state i . The matrices T and � admit the form

The next-generation matrix, K , is given  by22 (note the essential minus sign)

(9)
dD

dt
= δ1NH + δ2H

D1 =
{

(S, E,M, C,NH,H, R, D) ∈ R
8
+ : S+ E+M+ C+NH +H+ R + D = N

}

,

(10)
dE

dt
= β(M+ C)S− (α + µ)E

(11)
dM

dt
= αE− (φ+ µ+ ρ)M

(12)
dC

dt
= φM− (ω+ µ+ γ1 + γ2)C

(13)
dNH

dt
= γ1C− (µ+ δ1 + τ1)NH

(14)
dH

dt
= γ2C− (µ+ δ2 + τ2)H

(15)ẋ = (T+�)x.

T =











0 βS0 βS0 0 0
0 0 0 0 0
0
0
0

0
0
0

0 0 0
0 0 0
0 0 0











and

� =











−(α+ µ) 0 0 0 0
α −(φ+ ρ+ µ) 0 0 0
0 φ −(ω+ γ1 + γ2 + µ) 0 0
0 0 γ1 −(δ1 + τ1 + µ) 0
0 0 γ2 0 −(δ2 + τ2 + µ)










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where

The dominant eigenvalue of K is the basic reproduction number for COVID-19, which represents the average 
number of new infections produced by one infected individual. Here, the basic reproduction number can be 
expressed as:R0 =

S0αβ
(α+µ)(φ+ρ+µ)

+
S0αβφ

(α+µ)(φ+ρ+µ)(γ1+γ2+ω+µ)
.

The first term represents the probability of becoming infectious once infected with mean infectious period 
1

(φ+ρ+µ)
 . The second term indicates the expected number of infected individuals due to the comorbidities with 

other diseases with mean infectious period 1
(φ+ρ+µ)(γ1+γ2+ω+µ)

.
We provide detailed analysis, including the existence and stability of the equilibrium points, for the proposed 

COVID-19 model (2)–(9) in the supplementary materials, see the sections existence of equilibria section and 
global stability of disease-free equilibrium.

Parameter estimation and model fitting. We estimated the COVID-19 model parameters from fitting 
different combinations of parameters in Eqs.  (2)–(9) to the actual reported cases in metropolitan and rural 
health districts in  NSW23. In order to parameterize the model, we obtained some of the initial parameter values 
from literature (see Table 1), and others were estimated from data fitting. The estimation of parameters was car-
ried out using the least squares method which minimises summation of the square errors given by 
∑

(

Y
(

t, q
)

− Xreal

)2 subject to the COVID-19 model (2)–(9), where Xreal is the real reported data, and Y(t, q) 
denotes the solution of the model corresponding to the number of cases over time t with the set of estimated 
parameters, denoted by q . We assume the initial condition for the state variables in the following way: in metro-
politan health district, N(0) = 226, 5170, E(0) = 7, 286,M(0) = 910, C(0) = 300, NH(0) = 100,H(0) = 40, R(0)

= 10, D(0) = 0, S(0) = N(0)−E(0)−M(0)−C(0)−NH(0)−H(0)−R(0)−D(0) = 2, 256, 524 ; and in rural  
health district, N(0) = 103, 4370, E(0) = 5310,M(0) = 620, C(0) = 200, NH(0) = 80,H(0) = 25, R(0) = 6, D(0) = 0, S(0) = N(0)

−E(0)−M(0)− C(0)−NH(0)−H(0)− R(0)− D(0) = 1, 028, 129 . Figure  4 shows the incidence data of 
COVID-19 (red dash) and the model fitted curve (blue solid curve).

K = −T�−1 = T
�

−�−1
�

=











A1 A2 A3 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











A1 =
S0αβ

(α + µ)(φ+ ρ+ µ)
+

S0αβφ

(α + µ)(φ+ ρ+ µ)(γ1 + γ2 + ω+ µ)

A2 =
S0β

(α + µ)(φ+ ρ+ µ)
+

S0βφ

(α + µ)(φ+ ρ+ µ)(γ1 + γ2 + ω+ µ)

A3 =
S0β

(γ1 + γ2 + ω+ µ)

Table 1.  Depiction and estimation of the model parameters.

Parameters Description Metropolitan health district Rural health district References

N Total population 2,265,170 1,034,370 24

β Transmission rate 1.00× 10−5 2.87× 10−5 Fitted

α Average period from E to M 1/5 day−1 1/5 day−1 Fitted

φ Average period from M to C 1/7 day−1 1/7 day−1 25

ω Disease related death rate 0.3 0.3 Assumed

ρ Average period from M to R 0.8451 day−1 0.845 1day−1 Assumed

τ1 Average period from NH to R 1/42 day−1 1/42 day−1 26

τ2 Average period from H to R 1/21 day−1 1/21 day−1 26

γ1 Average period from C to NH 0.13 day−1 0.13 day−1 25

γ2 Average period from C to H 0.555 day−1 0.555 day−1 Assumed

µ
Birth/death rate (inverse of life expectancy in 
Australia) 1/83 year−1 1/83 year−1 27

δ1 Average period from NH to D 4.18× 10−4 day−1 4.10× 10−4 day−1 Fitted

δ2 Average period from H to D 3.83× 10−3 day−1 3.63× 10−3day−1 Fitted



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10352  | https://doi.org/10.1038/s41598-023-37240-8

www.nature.com/scientificreports/

Sensitivity of the model to parameters. It is essential to discover how sensitive the COVID-19 model 
(2)–(9) is to variations in each of its parameters in order to advise intervention strategies that will support in 
bringing down the infection trajectory. Further, sensitivity analysis will help understand what should be pre-
pared or avoided to mitigate the outbreak of the COVID-1928,29. For this purpose, we calculate the partial rank 
correlation coefficient (PRCCs)30,31 between each of the model parameters and several output variables (Mild 
and Critical cases) using a Latin Hypercube Sampling. Specially, a uniform distribution is allocated from half to 
fourfold baseline value (see Table 1) for each model parameters and assigned 100,000 simulations for each. Fig-
ures 5 and 6 display the correlations between Mild and Critical cases of metropolitan and rural health areas and 
the corresponding parameters β,α,φ, ρ, γ1, γ2 and ω . From Figs. 5, 6 and 7, it is observed that Mild and Critical 
cases have a strong positive correlation with parameters β (transmission rate) and α (progression rate from E 
to M) in both metropolitan and rural health areas, implying that increasing β and α will rise Mild and Critical 
cases. On the other hand, parameters φ, ρ, γ1, γ2 and ω have a negative correlation with Mild and Critical cases, 
implying that increasing those parameter values will reduce Mild and Critical cases.

As discussed in earlier sections, the scale and severity of COVID-19 transmission are directly related to the 
basic reproduction number R0. Here, we assessed the sensitivity indices of the reproduction number R0 . The 
indices identify how significant each parameter is to R0 and thus the COVID-19 transmission dynamics, and 
recognize which area should be focused in terms of intervention strategies.

Thus, from the explicit formula for R0 , the analytical expression for the sensitivity indices can be derived as 
a comparative variation in R0 when each parameter changes using the following equation 32:

ϒR0
q =

∂R0

∂q
×

q

R0
,

(a) Metropolitan health district (b) Rural health district

Figure 4.  Cumulative confirmed COVID-19 cases data from January 01, 2022 to February 10, 2022 (red dash) 
and the corresponding model best fit (blue solid curve) in NSW.

(a) Metropolitan health district (b) Rural health district

Figure 5.  Correlation between Mild cases and the corresponding parameters of the model.
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where ϒR0
q  is the sensitivity index of a differentiable R0 for any parameter, q.

The sensitivity indices for the model (2)–(9) are graphically presented in Fig. 7. It can be perceived that of all 
the positives indices, the effective contact rate,β , is the highest in both metropolitan and rural areas, and therefore 
the most sensitive parameter. The value of the sensitive index suggests that an increase (or a decrease) in the value 
of β will increases (or decrease) R0 by 100%. However, of all the negative indices displayed in Fig. 7, the recovery 
rate for the Mild class, denoted by ρ , is the most sensitive parameter in both metropolitan and rural areas. An 
increase (or a decrease) of the value of ρ will decrease (or increase) R0 by 85%. Moreover, we observed that the 
progression rate α is comparatively more sensitive in the metropolitan area than in the rural area.

Additionally, contour plots of R0 as a function of other parameters are displayed in Fig. 8 to determine how 
variations in these parameters affect the basic reproduction number, R0 . Figure 8A shows a decrease in R0 with 
increasing recovery rates for both progression rates from Critical (C) class to Non-hospitalised and Hospital 
classes. Further, Fig. 8B shows a decreasing trend of the basic reproduction number with both transmission 
rate, β , and recovery rate from M to R, ρ . It is conjectured that R0 can be brought lower than the threshold of 
one if efforts are geared towards dropping the contact rate while concurrently improving control and treatment 
of COVID-19 cases.

Ethical approval. This study is based on aggregated COVID-19 surveillance data from the New South 
Wales (NSW) in Australia provided by the NSW government. No confidential information was included because 
mathematical analyses were performed at the aggregate level. We compiled data from the publicly available web-
site https:// data. nsw. gov. au/ search/ datas et/ ds- nsw- ckan- aefcd e60- 3b0c- 4bc0- 9af1- 6fe65 2944e c2/ detai ls?q = .

(a) Metropolitan health district (b) Rural health district

Figure 6.  Correlation between Critical cases and the corresponding parameters of the model.

(a) Metropolitan health district (b) Rural health district

Figure 7.  COVID-19 model sensitivities to its associated parameters of the model.

https://data.nsw.gov.au/search/dataset/ds-nsw-ckan-aefcde60-3b0c-4bc0-9af1-6fe652944ec2/details?q
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Optimal control strategy and analysis
With consideration of the sensitivity result, control measures that were implemented to other diseases  models31–36 
were considered to see their effectiveness in controlling the spread of COVID-19 in the population of the met-
ropolitan and rural area. This is executed by introducing two time-dependent control variables u1(t) and u2(t) , 
defined as follows:

 i. u1(t) denotes the preventive strategy that is the effort at inhibiting the virus transmission and prevention 
of case development from Exposed, Mild, Critical, Non-hospitalised and Hospitalised population. This 
can be reached through public health advocacy for social distancing, good personal hygiene, diagnosis 
campaigns, wearing face masks in public places, education programs for public health, effective treatment 
with completion, and protective gear for healthcare workers. Noting that u1(t) = 1 indicates the policy 
effectively protects against infection, while u1(t) = 0 denotes the absence of the strategy.

 ii. u2(t) indicates control variable to enhance the management of Non-hospitalised and Hospitalised indi-
viduals with a view to ensure the rapid provision of additional treatment or oxygen or mechanical venti-
lation for Non-hospitalised and Hospitalised individuals with mild and severe COVID-19 symptoms. If 
u2(t) = 1 , then the control strategy is effectively managing the disease, while u2(t) = 0 means the absence 
of the control strategy.

The forward–backward sweep  method37 is used to solve the subsequent optimal control  problems38. The 
incremental cost-effectiveness ratio (ICER) is used to determine the intervention strategy for the cost-effective 
analysis that is the best value for money. We provide detailed analysis of the optimal control of our proposed 
model in the supplementary materials (see the optimal control analysis section).

Simulation of optimal control and cost‑effective analysis. We implemented the Runge–Kutta 
fourth order forward and backward method using MATLAB programming language to solve the subsequent 
optimality system which consists of (Supplementary Eq. 12) and (Supplementary Eq. 16) with the characteriza-
tion (Supplementary Eq. 18) within the period of [0, 100] days. The weight constants adopted for balancing the 
objective function (Supplementary Eq. 13) are selected to ensure that no term dominates the other. Therefore, 
we used equal weight constant for minimising the infectious classes, so that a1 = a2 = a3 = a4 = a5 = 1. Under 
other conditions, the weight constants for determining efforts or cost essential to implement the controls are 
comparatively different, and outcomes in values for a6 = 50 and a7 = 100 , which are consistent with previous 
 research39. Details of the numerical procedure for simulating the obtained optimality system are  contained37.

Figure 9 establishes how single preventive measure, u1(t) , affects the spread of the COVID-19 in the met-
ropolitan and rural areas in NSW. As shown in Fig. 9a,b, to minimise the objective function (S13), the optimal 
control u1(t) is continued at the maximum level (i.e. 100%) for about 40 days for metropolitan and 25 days for 
rural health districts before relaxing to the minimum in the final time. Also, as expected, the number of COVID-
19 infectious individuals are reduced when control is in place.

Figure 10 displays the effects of a single management intervention strategy u2(t) on the dynamics of COVID-
19 virus infection in the metropolitan and rural health districts. We observed that the u2(t) intervention has small 
impact on the Exposed, Mild and Critical class population while it has significant impact on Non-hospitalised 
and Hospitalised class population in both areas. Our finding is consistent with the reality because if we only 
take care of the Non-hospitalised and Hospitalised population, then the Critical class population moves to the 
Non-hospitalised and Hospitalised class population, and that is why implementing u2(t) control strategy has 
significant impact on Non-hospitalised and Hospitalised class population.

(a) Rela�onship between  R0 and both γ1and γ2 (b) Rela�onship between R0 and both β and ρ

Figure 8.  Contour plots of the basic reproduction number R0 with various values of other parameters.
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(a) Trend of preven�ve measure, u1(t) (b) Trend of preven�ve measure, u1(t)

(c) Effect of u1 on Exposed (E) popula�on (d) Effect of u1 on Exposed (E) popula�on

(e) Effect of u1 on Mild (M) popula�on (f) Effect of u1 on Mild (M) popula�on

Figure 9.  Control profile for preventive strategy ( u1(t)) and its effects on the COVID-19 dynamics in 
metropolitan health districts (left hand side) and rural health districts (right hand side).
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Figure 11 shows the implication of combining the two optimal controls in bringing down the total number 
of infectious people to zero in both metropolitan and rural health areas. It is observed that optimal solution is 
achieved when preventive control strategy (u1) is strictly adhered to at the maximum level of 100% for 45 days 
and 30 days, while the management control strategy (u2) of the Non-hospitalised and Hospitalised individuals 
is at a maximum level of around 25% in metropolitan and rural health areas in NSW. It can be seen that the 
combination of the two control strategies is significantly more effective in decreasing the spread of the COVID-
19 virus compared to the implementation of each control strategy individually. This is consistent with previous 
modelling  studies30,36,40.

(g) Effect of u1 on Cri�cal (C) popula�on (h) Effect of u1 on Cri�cal (C) popula�on

(i) Effect of u1 on Non-hospital (N_H)

popula�on

(j) Effect of u1 on Non-hospital (N_H)

popula�on

(k) Effect of u1 on Hospital (H) popula�on (l) Effect of u1 on Hospital (H) popula�on

Figure 9.  (continued)
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It is essential to determine the most cost-effective strategy among the single and combined control strategies 
to optimally mitigate the spread of COVID-19 at the possible minimum cost. This is performed by associating the 
differences among each intervention’s costs and outcomes; obtained by estimating the incremental cost-effective 

(a) Trend of management measure, u2(t) (b) Trend of management measure, u2(t)

(c) Effect of u2 on Exposed (E) popula�on (d) Effect of u2 on Exposed (E) popula�on

(e) Effect of u2 on Mild (M) popula�on (f) Effect of u2 on mild (M) popula�on

Figure 10.  Control profile for management strategy ( u2(t)) and its effects on the COVID-19 dynamics in 
metropolitan health districts (left hand side) and rural health districts (right hand side).
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ratio (ICER), which is defined as the extra cost per additional intervention outcome. Incrementally, when analys-
ing two or more competing intervention policies, one intervention is associated with the next less effective option. 
The ICER numerator is given by the total difference in intervention costs, active COVID-19 cases averted costs 
and averted productivity losses if applicable, between each scenario and baseline. The ICER denominator is the 
total number of active COVID-19 cases averted. Hence, the following formula obtains the ICER:

(g) Effect of u2 on Cri�cal (C) popula�on (h) Effect of u2 on Cri�cal (C) popula�on

(i) Effect of u2 on Non-hospital (NH) popula�on (j) Effect of u2 on Non-hospital (NH) popula�on

(k) Effect of u2 on Hospital (H) popula�on (l) Effect of u2 on Hospital (H) popula�on

Figure 10.  (continued)
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(16)ICER =
Total cost

Total active cases averted
,

(a) Trend of preven�ve, u1(t) and 

management, u2(t)

(b) Trend of preven�ve, u1 and management, 

u2(t)

(c) Effect of u1 and u2 on Exposed (E)

popula�on

(d) Effect of u1 and u2 on Exposed (E)

popula�on

(e) Effect of u1 and u2 on Mild (M) popula�on (f) Effect of u1 and u2 on Mild (M) popula�on

Figure 11.  Control profile for preventive ( u1(t)) and management ( u2(t)) strategies and its effects on the 
COVID-19 dynamics in metropolitan health districts (left hand side) and rural health districts (right hand side).
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The total cost for each of the single implementation and mutual effort of the optimal control strategy is 
obtainable from the objective function (S13). The cases averted is invaded by computing the difference between 
infectious individuals with and without control strategy. Let, S1, S2 and S12 respectively represent single preven-
tive intervention strategy u1(t) , single management control strategy u2(t) and the combined effort of the two 
strategies. Table 2 summarises the ICER for each and the combination of the control variables u1(t) and u2(t) in 
increasing order of the total infection averted.

The ICER results for S1, S2 and S12 are calculated using (16) and shown in Table 2 follows.

(g) Effect of u1 and u2 on Cri�cal (C) popula�on (h) Effect of u1 and u2 on Cri�cal (C) popula�on

(i) Effect of u1 and u2 on Non-hospital (N_H)
popula�on

(j) Effect of u1 and u2 on Non-hospital (N_H)

popula�on

(k) Effect of u1 and u2 on Hospital (H)

popula�on

(l) Effect of u1 and u2 on hospital (H) popula�on

Figure 11.  (continued)
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Comparing S1, S2 and S12 , it is seen that combined intervention S12 is the most cost-effective which reduces 
a significant number of COVID-19 cases in both metropolitan and rural health areas compared to S1 and S2 
individually, while S2 is the least effective intervention strategy among them.

Discussion
COVID-19 is one of the most pressing public health problems in NSW. Overall, the transmission dynamics 
and epidemiology of COVID-19 in NSW is not entirely understood. The NSW government initiated various 
intervention programs to eliminate COVID-19 last year. Although COVID-19 control in NSW has remarkably 
progressed—accurate contact tracing, availability of free diagnostic and treatment services, the participation of 
many partners such as community health care agencies and general practitioners, newer diagnostic services, 
sufficient human resources, sufficient capacity e.g. hospital admission capacity, and guidelines—more effort is 
required. To reduce COVID-19 incidence and prevent deaths from COVID-19 in metropolitan and rural health 
districts of NSW, we need to identify the critical factors for developing COVID-19 disease, improve preventive 
and management strategies, treatment effectiveness, and reduce failure of treatment in infectious individuals.

In this study, we presented a mathematical analysis of transmission dynamics of the COVID-19 outbreak to 
deliver further understandings into the disease transmission and explore potential prevention and control strate-
gies capable of reducing the disease spread at the metropolitan and rural districts for better health management in 
NSW. A compartmental mathematical model was formulated by subdividing the host population into Susceptible, 
Exposed, Mild, Critical, Non-hospitalised, Hospital, Recovered, and Death. The nonlinear mathematical model 
has been established by considering transmission routes from Exposed, Mild and Critical population individuals.

The formulated model was fitted to the reported data at the metropolitan and rural health districts in NSW, 
Australia. The least-square method was applied to estimates parameters such as transmission rate (β) and progres-
sion rate (α) from Mild to Critical. The other parameters values were determined from the country demographic 
profile and literature review. We obtained the basic reproduction number (R0) , using the next generation matrix. 
Sensitivity analysis of the model was performed to find the parameters that drive the spread of the virus infec-
tion mostly in the population. It was revealed that transmission rate (β) is the most sensitive parameter, which 
has a positive correlation with R0 . It meant that decreasing the transmission will reduce the COVID-19 cases 
for both metropolitan and rural health geographies. Further, the recovery rate (ρ) is the second most sensitive 
parameter, negatively correlated with R0 . It refers to increasing this parameter value will decrease the secondary 
cases of COVID-19.

We implemented an optimal control approach via Pontryagin’s Maximal  principle41 and formulated the opti-
mal strategies for controlling the COVID-19 epidemic at metropolitan and rural areas in NSW. Two different 
control strategies were considered including preventive strategy (u1) and management of non-hospitalised and 
hospitalised strategy (u2) . Different settings were examined to measure the cost-effectiveness of both preventive 
and management control strategies. Between the two-single control strategies, the preventive strategy (u1) is 
better in cost-effectiveness than the management strategy (u2) which reduce a significant number of COVID-19 
cases in both metropolitan and rural health districts of NSW in Australia and similar to the previous  study26. 
Therefore, our results suggest that the NSW government should improve preventive control interventions when 
only one control strategy is used. Naturally, this strategy actively decreases and/or stops the contact between 
susceptible and infectious individuals of COVID-19. However, combined implementation of preventive and 
management strategies is the most cost-effective measure for reducing the burden of COVID-19 in both met-
ropolitan and rural districts in NSW.

Optimal control strategies have been applied in other endemic settings to minimise COVID-19 cases and 
intervention implementation costs. Previous studies show that preventive strategy is the best strategy for the 
single control strategy implementation to decrease COVID-19 cases and intervention  costs39,42,46, which is simi-
lar to our results. However, our finding also suggests that combining control strategy with health management 
strategy, including enhanced services facilities and health management is the most effective way to decrease the 
COVID-19 burden in metropolitan and rural districts in NSW, consistent with previous  works39,41–45.

Finally, in NSW, infectious disease surveillance is fully recognised, but the risk of bias cannot be precluded. 
More accurate data should be put in place to address concerns related to COVID-19. Accurate data leads to 
better estimation of crucial parameters, and this means our proposed intervention to decision support is data-
dependent. Hence, local, state and federal level policy-makers need to adjust the possibility of under-reporting 
bias when investigating our outcomes. Therefore, more accurate data could be included in the model to explore 
the impact of preventive and management interventions on COVID-19 dynamics in NSW. Of the single inter-
vention strategies, enhanced preventive strategy is cost-effective compared to management control strategy and 

Table 2.  ICER in the order of COVID-19 cases averted by control measures.

Areas Control measures Total infection averted Total cost ICER

Metropolitan

S1 2.182× 106 3.872× 105 0.177

S2 1.104× 103 8.899× 105 815.127

S12 2.186× 106 3.860× 105 0.176

Rural

S1 7.003× 105 2.029× 105 0.289

S2 1.036× 103 7.848× 105 757.528

S12 7.091× 105 2.020× 105 0.284
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prompt reducing COVID-19 cases in NSW. Yet, combining both preventive and management interventions is 
found to be even more cost-effective.

In summary, the paper provides mathematical modelling and optimal control strategy of COVID-19 in met-
ropolitan and rural health districts of NSW for better pandemic management in Australia. We derived the basic 
reproduction number and found that it’s play an important role in the outbreak of COVID-19 in both districts. 
Sensitivity analysis also performed to identify the most important risk factors and found that transmission rate 
had largest influence on COVID-19 prevalence. We adopted optimal control analysis via Pontryagin’s Maximal 
Principle and formulated the optimal control strategies for controlling the COVID-19 outbreak in NSW, Aus-
tralia. However, in our model we considered the total population size is constant and mixes homogeneously. That 
means that each individual in a compartment has identical disease susceptibility, infectiousness and transmission 
frequency with others, which neglects social behaviours of children, younger and older people that are known 
to be important risk factors in the spread of COVID-19. In addition, in our model individual-level COVID-19 
natural history is not incorporated and not justified based on any empirical evidence. Therefore, future research 
could focus on individual-level data and quantifying any data-oriented reporting bias and modelling appropriate 
priority-based vaccination coverage.

Two different control strategies including preventive strategy and management control strategy were imple-
mented to measure their cost-effectiveness for improved and consistent health service facilities to the communi-
ties. Among the two single-controls, the preventive control strategy is the most cost-effective. Therefore, when 
single control strategy is used, our results suggest that NSW government should improve preventive control 
strategy, reducing contact between infectious and susceptible individual. Our principal finding is that the combi-
nation of preventive and management control strategies such as the rapid provision of additional services means 
is the most impactful and cost-effectiveness strategy for reducing the spread of COVID-19 in NSW, Australia. 
The same modelling framework can be utilised for data obtained in other places around the globe.

 Data availability
The datasets produced during the study are available from the corresponding author on reasonable request. All 
data were compiled from the publicly available website https:// data. nsw. gov. au/ search/ datas et/ ds- nsw- ckan- aefcd 
e60- 3b0c- 4bc0- 9af1- 6fe65 2944e c2/ detai ls?q = .
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