COVIDSenti: A Large-Scale Benchmark Twitter Data Set for COVID-19 Sentiment Analysis

Naseem, Usman, Razzak, Imran, Khushi, Matloob, Eklund, Peter W., and Kim, Jinman (2021) COVIDSenti: A Large-Scale Benchmark Twitter Data Set for COVID-19 Sentiment Analysis. IEEE Transactions on Computational Social Systems, 8 (4). pp. 1003-1015.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: https://doi.org/10.1109/TCSS.2021.305118...


Abstract

Social media (and the world at large) have been awash with news of the COVID-19 pandemic. With the passage of time, news and awareness about COVID-19 spread like the pandemic itself, with an explosion of messages, updates, videos, and posts. Mass hysteria manifest as another concern in addition to the health risk that COVID-19 presented. Predictably, public panic soon followed, mostly due to misconceptions, a lack of information, or sometimes outright misinformation about COVID-19 and its impacts. It is thus timely and important to conduct an ex post facto assessment of the early information flows during the pandemic on social media, as well as a case study of evolving public opinion on social media which is of general interest. This study aims to inform policy that can be applied to social media platforms; for example, determining what degree of moderation is necessary to curtail misinformation on social media. This study also analyzes views concerning COVID-19 by focusing on people who interact and share social media on Twitter. As a platform for our experiments, we present a new large-scale sentiment data set COVIDSENTI, which consists of 90 000 COVID-19-related tweets collected in the early stages of the pandemic, from February to March 2020. The tweets have been labeled into positive, negative, and neutral sentiment classes. We analyzed the collected tweets for sentiment classification using different sets of features and classifiers. Negative opinion played an important role in conditioning public sentiment, for instance, we observed that people favored lockdown earlier in the pandemic; however, as expected, sentiment shifted by mid-March. Our study supports the view that there is a need to develop a proactive and agile public health presence to combat the spread of negative sentiment on social media following a pandemic.

Item ID: 79239
Item Type: Article (Research - C1)
ISSN: 2329-924X
Copyright Information: © IEEE 2021. This article is free to access and download, along with rights for full text and data mining, re-use and analysis.
Date Deposited: 05 Jul 2023 23:46
FoR Codes: 46 INFORMATION AND COMPUTING SCIENCES > 4602 Artificial intelligence > 460208 Natural language processing @ 100%
SEO Codes: 22 INFORMATION AND COMMUNICATION SERVICES > 2204 Information systems, technologies and services > 220403 Artificial intelligence @ 100%
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page