Classifying vaccine sentiment tweets by modelling domain-specific representation and commonsense knowledge into context-aware attentive GRU

Naseem, Usman, Khushi, Matloob, Kim, Jinman, and Dunn, Adam (2021) Classifying vaccine sentiment tweets by modelling domain-specific representation and commonsense knowledge into context-aware attentive GRU. In: Proceedings of the 2021 International Joint Conference on Neural Networks. From: IJCNN: 2021 International Joint Conference on Neural Networks, 18-22 July 2021, Shenzhen, China.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: https://doi.org/10.1109/IJCNN52387.2021....


Abstract

Vaccines are an important public health measure, but vaccine hesitancy and refusal can create clusters of low vaccine coverage and reduce the effectiveness of vaccination programs. Social media provides an opportunity to estimate emerging risks to vaccine acceptance by including geographical location and detailing vaccine-related concerns. Methods for classifying social media posts, such as vaccine-related tweets, use language models (LMs) trained on general domain text. However, challenges to measuring vaccine sentiment at scale arise from the absence of tonal stress and gestural cues and may not always have additional information about the user, e.g., past tweets or social connections. Another challenge in LMs is the lack of ‘commonsense’ knowledge that are apparent in users' metadata, i.e., emoticons, positive and negative words etc. In this study, to classify vaccine sentiment tweets with limited information, we present a novel end-to-end framework consisting of interconnected components that use domain-specific LM trained on vaccine-related tweets and models commonsense knowledge into a bidirectional gated recurrent network (CK-BiGRU) with context-aware attention. We further leverage syntactical, user metadata and sentiment information to capture the sentiment of a tweet. We experimented using two popular vaccine-related Twitter datasets and demonstrate that our proposed approach outperforms state-of-the-art models in identifying pro-vaccine, anti-vaccine and neutral tweets.

Item ID: 79237
Item Type: Conference Item (Research - E1)
ISBN: 978-1-6654-3900-8
Copyright Information: © 2021 IEEE
Date Deposited: 06 Jul 2023 02:31
FoR Codes: 46 INFORMATION AND COMPUTING SCIENCES > 4602 Artificial intelligence > 460208 Natural language processing @ 100%
SEO Codes: 22 INFORMATION AND COMMUNICATION SERVICES > 2204 Information systems, technologies and services > 220403 Artificial intelligence @ 100%
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page