
Computer Science Journal of Moldova, vol.29, no.1(85), 2021

A Sublinear Sudoku Solution in cP Systems

and its Formal Verification∗

Yezhou Liu�, Radu Nicolescu, Jing Sun, Alec Henderson

Abstract

Sudoku is known as a NP-complete combinatorial number-
placement puzzle. In this study, we propose the first cP system
solution to generalised Sudoku puzzles with m×m cells grouped
in m blocks. By using a fixed constant number of rules, our
cP system can solve all Sudoku puzzles in sublinear steps. We
evaluate the cP system and discuss its formal verification.

Keywords: cP systems, P systems, Sudoku problem, NP-
complete problem, Formal verification.

MSC 2020: 68Q07, 68N30.

1 Introduction

Sudoku is a famous number-placement puzzle designed for a single
player, which has m×m cells divided into m blocks. A solvable Sudoku
puzzle may have one or multiple solutions. In a valid Sudoku solution,
each row, column and block contains exactly one of each number from 1
to m. For all the classic 9× 9 Sudoku puzzles, there are approximately
6.67 × 1021 valid solutions [1].

Different algorithms can be used to solve Sudoku puzzles, which
include: backtracking [2], stochastic search [3], evolutionary algo-
rithms [4]–[7], propositional satisfiability inference techniques [8], con-
straint algorithms [9], [10] and rewriting rules [11]. Many existing
solvers are designed to solve specific Sudoku instances, and their per-
formance is related to the difficulties of these instances.

©2021 by CSJM; Yezhou Liu, Radu Nicolescu, Jing Sun, Alec Henderson
∗This paper is based on our presentation at the 6th annual Rogojin lectures,

November 15, 2019, Chisinau, Moldova.

3

Yezhou Liu, Radu Nicolescu, Jing Sun, Alec Henderson

Membrane computing systems (P systems) were inspired by the bi-
ological structure of living cells [12]. Major P system variants have the-
oretically unlimited computational power and memory, and can com-
pute multiple tasks in a maximally parallel manner, which include but
not limited to: P system with active membranes [13], tissue P sys-
tems [14], spiking neural P systems [15], kernel P systems [16], and
P systems with complex objects (cP systems) [17], [18]. According to
the membrane structure, these P system variants can be roughly clas-
sified into three categories: cell-like P systems, tissue-like P systems
and neural-like P systems.

The first P study of Sudoku used a family of P systems containing
enzymatic, dissolution and send-out rules [19]. The proposed P systems
can either solve a Sudoku instance, or detect the drawback and stop the
computation. Later, the work was extended by adding some solving
strategies and a brute-force algorithm [20]. Another Sudoku solution
used cell-like P systems with the rules of particle swarm optimization
to solve Sudoku instances [21]. The authors classified the instances
based on the difficulty, and evaluated their P systems on success rate
and running time.

As a recently proposed P system variant, cP systems support com-
plex symbols and generic rules, which can use a fixed constant number
of rules to solve computationally hard problems efficiently. In this
study, we provide a cP system solution to general Sudoku puzzles.
Compared to other P system solutions, our cP system solution consists
of only 16 rules (by using relations as special promoters), which can
solve all m×m Sudoku puzzles in 3m+ 7 steps regardless of their dif-
ficulty. Considering an input size of m2, our cP solution is sublinear.
We use the model checker PAT3 [22] to formally verify the cP solution.

We organize this paper as follows. Section 2 reviews cP systems’
syntax and the model checker PAT3. Section 3 introduces our Sudoku
solution. Section 4 shows a worked example of the solution. Section 5
discusses its formal verification. Section 6 discusses existing P system
Sudoku solutions. Section 7 concludes the work with future directions.

4

A Sublinear Sudoku Solution in cP Systems and its Formal Verification

2 Background

cP systems share advantages of both traditional cell-like P systems [12]
and tissue P systems [14]. One cP system may have one or multiple top-
cells, where each top-cell can contain a number of nested sub-cells. Top-
cells in cP systems have multiset rewriting rules, and sub-cells are only
used to represent local data [18]. In previous studies, cP systems were
used to solve multiple computationally hard problems, which include
the subset sum problem [23], Hamiltonian cycle problem [24], travelling
salesman problem [24], and quantified SAT problem [25].

To formally verify cP systems, we can apply model checking tech-
niques. A model checker can simulate a finite-state system, and exhaus-
tively search its state-space to check if the system can meet some given
specifications. We use the model checker PAT3 to verify our cP Sudoku
solution, where its rules are translated into CSP# descriptions, and its
properties are specified in temporal logic.

2.1 cP system notation

The syntax of cP systems is shown in Fig. 1. Our basic vocabulary
consists of atoms and variables, collectively known as simple terms. We
use lowercase letters to represent atoms and uppercase letters to denote
variables. For instance, a, b, c are atoms and X, Y , Z are variables. To
represent numbers, we use a unity symbol 1, which can be treated as a
special atom. Underscores () are used to denote anonymous variables.

Compound terms are recursively built by labelled multisets of other
compound or simple terms with functors, where functors are atoms.
For instance, a(b), a(b(1)c(X)), f(g(a)b) are compound terms. In
cP systems, cells and their contents are represented as compound terms.
For example, a cell with label a which contains two atoms b and c can
be presented as a(bc); a cell with label d which contains three unity
symbols can be represented as d(111) or d(13). We can either represent
numbers in unary as 1, 11, 111..., 1n; or in decimal as 1, 2, 3..., n.

Since all the terms in cP system are multiset-based, the order of
their sub-terms does not matter. For example, to represent a cell la-

5

Yezhou Liu, Radu Nicolescu, Jing Sun, Alec Henderson

< term > ::= < simple-term > | < compound-term >
< simple-term > ::= < atom > | < variable >
< compound-term > ::= < functor > (< argument >)
< functor > ::= < atom >
< state > ::= < l-state > | < r-state >
< l-state > ::= < atom >
< r-state > ::= < atom >
< argument > ::= < term > ...
< rule > ::= < lhs >→α< rhs >< promoters >
< lhs > ::= < l-state >< term > ...
< rhs > ::= < r-state >< term > ...
< promoters > ::= | < term > ...| < relation > ...

Figure 1. cP system syntax (lhs = left-hand-side, rhs = right-hand-
side, α = rule application model)

belled as f which contains two simple terms g and h, we can either
write f(gh) or f(hg), where the order of g and h does not matter.
Similarly, the terms a(bcd), a(bdc) and a(dcb) are identical.

Only top-cells in cP systems contain rewriting rules, each top-cell
may have one or multiple rules. A rule consists of a lhs, a rhs and an
application model α; both its lhs and rhs contain a state and zero or
more terms. For example: s1 a →1 s2 bc is a cP rule, where s1 is
its l-state, s2 is its r-state, a is a term of its lhs, b and c are terms of
its rhs. The application model of this rule is 1, which means “exactly-
once”. The rule can consume a term a and produce two terms b and c
– in other words, it can rewrite a as bc.

Every cP top-cell has a state alternatively named system state.
States are atoms, to distinguish them with lhs and rhs terms in rules,
we often use atom s with subscripts to represent states, for example:
s1, s2 and s3.

A rule is applicable if and only if its l-state matches the system
state, and its lhs terms can be found in the system. After applying it,
the system state will be changed to the rule’s r-state. Suppose we have
a cP system at state s1, which has a term a and a rule s1 a →1 s2 bc.
Since the rule’s l-state matches the system state, and the system does

6

A Sublinear Sudoku Solution in cP Systems and its Formal Verification

contain a term a, the rule is applicable. After it is being applied, the
term a will be consumed, two terms b and c will be generated, and the
system state will be changed to s2.

For generic rules with variable terms such as a(X), b(Y), a one-
way unification (pattern matching) is supported in cP systems. Before
applying a rule, its variable terms must be unified against terms in
the system. Suppose a cP system at state s1 that has two terms a(1),
b(11) and a generic rule s1 a(X) b(Y) →1 s2 c(XY). Variable terms
a(X) and b(Y) will be unified against terms a(1) and b(11). In this
example, we can get X 7→ 1, Y 7→ 11. So the rule will be unified
as s1 a(1) b(11) →1 s2 c(111). By applying it, the two terms a(1)
and b(11) will be consumed, and a term c(111) will be generated. The
system state will be changed from s1 to s2.

Two major application models are supported in cP systems, which
are “exactly-once (1)” and “max-parallel (+)”. In the exactly-once
model, a rule will only apply once. In the max-parallel model, a rule
will apply to all possible terms simultaneously. Suppose a cP sys-
tem at state s1 that has three terms a(12), a(13), a(13) and a rule
s1 a(1X) →α s2 a(X). The rule can be unified to three ground
rules (ground here means “without variables”), which are s1 a(11) →α

s2 a(1), s1 a(112) →α s2 a(12) and s1 a(112) →α s2 a(12), where the
variable X is unified as 1, 12 and 1

2, respectively. When the applica-
tion model α of the rule is “1” (exactly-once model), the system will
non-deterministically choose one unified rule to apply. The computa-
tion result will be a(1), a(13), a(13) or a(12), a(12), a(13). If α in the
rule is “+” (max-parallel model), the system will apply all three unified
rules, the computation result will be a(1), a(12), a(12).

For a cP system with a max-parallel rule, the unified rules which
can be applied together are called compatible. Suppose a cP sys-
tem at state s1 has four terms a(c), a(d), b(e), b(f), and a rule
s1 a(X)b(Y) →+ s1 g(XY). To unify the rule against the system
terms, we can get the following unified rules: r1 : s1 a(c)b(e) →+

s1 g(ce), r2 : s1 a(c)b(f) →+ s1 g(cf), r3 : s1 a(d)b(e) →+ s1 g(de),
and r4 : s1 a(d)b(f) →+ s1 g(df). When applicable, these unified rules
will be non-deterministically chosen by the system. Suppose it chooses

7

Yezhou Liu, Radu Nicolescu, Jing Sun, Alec Henderson

r2 to apply, the system terms a(c) and b(f) will be “locked” by r2,
which will be used to consume and to produce the term g(cf) later.
So they cannot be used by other unified rules any more. The only free
terms in the system are a(d) and b(e), which can be used in r3. Thus,
r2 and r3 can be applied together – they are compatible. Similarly,
r1 and r4 are compatible. In the max-parallel model, the system will
non-deterministically choose r2, r3 OR r1, r4 to apply.

cP systems apply rules following a weak priority order – i.e., rules
are sequentially considered in the top-down order. The first applied rule
commits the target state, any subsequent rule that indicates a different
target state is then disabled. This way, the weak priority order can be
used to simulate if-then-else structures of traditional programming.

Suppose a cP system at state s1 that has two terms a(c), b(d) and
three rules: r1 : s1 a(X) →1 s2 o(XX), r2 : s1 b(X) →1 s3 p(X), and
r3 : s1 b(X) →1 s2 q(XXX). The system will first consider r1 and
find if it is applicable. Thus, the target state will be confirmed as s2.
Since r2 commits to a different target state s3, it is not applicable. r3
commits to s2, and it is compatible with r1, so it will be applied with
r1 together in the same step. The computational result of the system
will be o(cc), q(ddd).

In each step, new generated terms will be temporarily put into a
“product membrane”, which will not be available until the next step.
For example, a cP system has two terms a(c), b(d) and two rules
r1 : s1 a(X) →1 s2 b(X) and r2 : s1 b(X) →+ s2 c(X). r1 and r2
will be applied in the same step. The term b(c) generated by r1 will be
sent to the product membrane, which will not be consumed by r2 in
the same step. After applying them, the system state will be changed
to s2, then none of them are applicable. The computational result of
the system will be b(c), c(d).

To apply a rule with promoters, the promoters must exist in the
system, and will not be consumed. Suppose a cP system has a rule
s1 →1 s2 x(X) | y(XZ) z(Z), and two terms y(6) and z(4). The rule
can be unified as s1 →1 s2 x(2) | y(6) z(4). By applying it, a term x(2)
will be generated. y(6) and z(4) are promoters, they will be checked
by the rule, but will not be consumed.

8

A Sublinear Sudoku Solution in cP Systems and its Formal Verification

For readability, we can use two kinds of delimiters in cP terms as
needed, which are blank space “ ” and comma “,”. Adding delimiters
to a term will not affect its meaning. For example, a(bc), a(b c) and
a(b, c) represent the same term.

To simplify the cP encoding of Sudoku, we can use the following
abbreviation: a(X)(Y) ≡ a(a1(X)a2(Y)), when the sub-cell names a1
and a2 are unimportant. Similarly, we can use b(X)(Y)(Z) to represent
b(b1(X)b2(Y)b3(Z)) as needed.

In this study, to make our rules more readable, we use logic relations
– including multiset inclusion (⊆), multiset NOT inclusion (*), and
multiset inequality (6=) – as special promoters. This design can be
translated into classical cP systems by adding a few more rules.

For example, to test the inclusion relation (⊆) – e.g., aab ⊆ aabcd,
we can use a rule fragment (stateless) →1 1 | aab. If the system
contains the multiset aabcd, then the rule fragment is applicable, and
it will generate a symbol 1 to indicate that aab is a submultiset of
aabcd. If the multiset which needs to be checked is not a supermultiset
of aab, for instance cdef , the rule fragment will not be applicable, and
the symbol 1 will not be generated.

Another example is to test the NOT inclusion relation (*) – e.g.
aab * abcd, we can use two rules: r1 : s1 →1 s2 | aab and r2 : s1 →1 s3 1.
Suppose the cP system starts at state s1, and contains the multiset
abcd. It will consider r1 first, but it cannot find all r1 ’s promoters –
thus r1 is not applicable. Then the system will consider r2, which is
applicable. r2 will generate a symbol 1 to indicate that aab is not a
submultiset of abcd. By using the same rules, if the multiset that needs
to be checked is a supermultiset of aab, for instance aabbc, rule r1 –
which appears before r2, thus has a higher priority – is applicable, it
will change the system state to s2, then no more rules are applicable,
and the symbol 1 will not be generated.

2.2 The model checker PAT3

PAT3 provides an extensible framework for simulating and verifying dif-
ferent systems in multiple application domains [22]. Previous research

9

Yezhou Liu, Radu Nicolescu, Jing Sun, Alec Henderson

showed that PAT3 can effectively verify cP models, and transformation
guidelines from cP syntax to CSP# were proposed [23].

PAT3 supports several semantic models and modelling languages,
which include Communicating Sequential Processes (CSP), Real-Time
Systems (RTS), Labeled Transition Systems (LTS), and Timed Au-
tomata (TA). To improve PAT3’s performance, the authors imple-
mented a number of model checking algorithms, state reduction tech-
niques and abstraction techniques in it.

A specification language called CSP# (Communicating Sequential
Programs) is supported by PAT3. CSP#, an extension of CSP, com-
bines high-level modeling operators (e.g. choices, interrupt, parallel
composition, asynchronous message passing) and low-level constructs
(e.g. data structures and conditional statements) together. CSP# is
especially good at representing cP systems, which has great potential
for simulating the cell communication among multiple top-cells.

To describe features of cP systems, we can either use Linear Tem-
poral Logic (LTL) or Computation Tree Logic (CTL). In addition to
specifying features by users, some commonly checked features are pre-
implemented in PAT3.

Similar to other model checkers, PAT3 also has a simulator, which
can be used to visualize its checking processes. Selecting different sim-
ulation engines, PAT3 can traverse the system’s state-space using dif-
ferent heuristics.

3 Solving Sudoku in a cP system

Our strategy of solving Sudoku is to generate all possible solutions
(matrices), eliminate invalid ones, and filter them by comparing them
to the input puzzle. For an m × m Sudoku, the cP system will first
generate all valid m-size row candidates, where each candidate is a
permutation of [1..m]. Then the system will use these row candidates
to build templates of m × m matrices. After getting all the matrix
templates, the system will filter them by columns and blocks. After
that, it will contain all the valid m × m Sudoku solutions. Then it
can match these matrix templates to a particular instance, and find its

10

A Sublinear Sudoku Solution in cP Systems and its Formal Verification

solutions.
The cP system starts at state s1 with terms p(), t(), s(S), a(1),

a(2),..., a(m), n(n), m(m), and l(1). The term p() is used to build
and store the row candidates, t() is used to store matrix templates,
and s(S) is the cP encoding of a Sudoku puzzle instance. Terms a(1),
a(2) ..., a(m) store the numbers from 1 to m, which can be used to
fill the blank cells of the puzzle. n(n) stores the block size and m(m)
stores the problem size of the puzzle, where m = n2. The system uses
l() as a counter.

A simple Sudoku example (m = 4) is shown in Fig. 2. In its
cP representation, we use two terms m(4) and n(2) to represent its
problem size and block size. Four numbers a(1), a(2), a(3) and a(4)
can be used to fill the puzzle. The puzzle instance is encoded as
s(r(1)(c(3)(2), c(4)(4)), r(2)(c(1)(2), c(2)(4), c(4)(3)), r(3)(c(2)(1)),
r(4)(c(3)(3))). In the encoding, the term s stores all the existing num-
bers of the puzzle, where sub-cell names r and c refer to “row” and
“column” respectively. The sub-cell r(2)(c(1)(2), c(2)(4), c(4)(3)) can
be interpreted as “the value in row 2 column 1 is 2, in row 2 column 2
is 4, and in row 2 column 4 is 3”.

Figure 2. A Sudoku puzzle, m = 4

3.1 Generating row candidates

To build valid solutions, the cP system first generates all the row can-
didates. Each row candidate contains all the numbers from 1 to m, and
each number only appears once. A ruleset with four rules can be used
to generate row candidates in a column by column manner (Fig. 3).

11

Yezhou Liu, Radu Nicolescu, Jing Sun, Alec Henderson

s1 l(M1) →1 s2 l(1) | m(M) (1)
s1 →+ s1 p(X, c(L)(V)) | l(L), a(V), p(X), (c()(V) * X) (2)
s1 p() →+ s1 (3)
s1 l(L) →1 s1 l(L1) (4)

Figure 3. Ruleset (1): generating row candidates

Rule (1) uses a counter l() to track the progress of generating
row candidates. When the value of l(M1) is greater than the puzzle
size m(M), it means all the row candidates have been successfully
generated. Then the cP system resets the counter to l(1), changes its
state to s2 and moves to the next ruleset.

Rule (2) works in the max-parallel model, so all the compatible
unified rules will be applied (all solution will be generated). When rule
(2) is applied, it adds a number V at column L to each row candidate
p(X). The relation c()(V) * X guarantees the number V has not
been used in the same row candidate. At the beginning of the compu-
tation, p() was empty. By applying rule (2) once, the system creates
m different terms, which are p(c(1)(1)), p(c(1)(2))..., p(c(1)(m)). By
applying it again, the system will generate m× (m−1) terms including
p(c(1)(1), c(2)(2)), p(c(1)(1), c(2)(3))..., p(c(1)(m), c(2)(m − 1)). Af-
ter applying it m times, the cP system will generate all the m! row
candidates.

Rule (3) is another max-parallel rule, which cleans the out-of-date
p() terms in the system. As mentioned, rule (2), (3) and (4) commit
to the same target state, so if applicable, they will be applied in one
step. Thus p() terms generated by rule (2) will not be immediately
consumed by rule (3) in the same step.

Rule (4) increases the counter l() by 1 in every step, by consuming
the existing counter l(L), and producing a new counter l(L1).

To generate all the row candidates for a m×m Sudoku, the cP sys-
tem needs to apply the ruleset m+1 times, and the state of the system
will be changed from s1 to s2.

12

A Sublinear Sudoku Solution in cP Systems and its Formal Verification

3.2 Generating matrix templates

The ruleset to build matrix templates is shown in Fig. 4. Using the
row candidates generated by ruleset (1), the cP system builds matrix
templates row by row.

s2 l(M1) →1 s3 l(1) | m(M) (5)
s2 →+ s2 t(X, r(L)(P)) | l(L), p(P), t(X), (r()(P) * X) (6)
s2 t() →+ s2 (7)
s2 l(L) →1 s2 l(L1) (8)

Figure 4. Ruleset (2): generating matrix templates

The cP system uses the counter l() to track the working row.
Once all the m rows of matrix templates are filled with row candidates
– when l(M1) is greater than m(M) – rule (5) is applicable. It changes
the system state to s3, and resets the counter to l(1).

Rule (6) generates matrix templates row by row. In every step,
the system adds exactly one row candidate p(P) at row L to each
matrix template t(X). After m steps, the system will finish generating
all m!!/(m! − m)! matrix templates. Rule (7) cleans out-of-date t()
terms, and rule (8) increments the counter l() by 1 in each step.

Ruleset (2) takes m + 1 steps in total. The matrix templates gen-
erated by ruleset (2) do not have any number conflicts in each row,
since every row candidate is a permutation of [1..m]; but they may
have number conflicts in columns and blocks (Fig. 5).

Figure 5. Number conflicts in a matrix template

13

Yezhou Liu, Radu Nicolescu, Jing Sun, Alec Henderson

3.3 Filtering matrix templates by columns

To delete the matrix templates with number conflicts in columns, the
cP system only needs one max-parallel rule (Fig. 6). The rule works
as a filter, which is applied to all the matrix templates simultaneously.
In a matrix template t(), if there are two cells in the same column
– row A column C and row B column C – share the same value V ,
the template will be consumed (deleted). Ruleset (3) only needs 1 step
to run. After applying it, all the matrix templates that remain in the
cP system do not have any number conflicts in rows and columns.

s3 t(r(A)(c(C)(V)), r(B)(c(C)(V)),) →+ s3 (9)

Figure 6. Ruleset (3): filtering matrix templates by columns

3.4 Filtering matrix templates by blocks

To check if matrix templates have number conflicts in blocks, we need
to create some supporting terms to indicate the relationship among
rows, columns and blocks. For example, when m = 9, we can build
terms b(1)(1), b(2)(1), b(3)(1), b(4)(2), b(5)(2), b(6)(2), b(7)(3), b(8)(3)
and b(9)(3) in the cP system. To check if two Sudoku cells are in the
same block, we only need to compare their rows and columns with
the supporting terms. Suppose we want to check if two cells – row 4
column 3 and row 6 column 1 – are in the same block (Fig. 7). First,
we check terms b(4)(A) and b(6)(B) in the supporting terms, we can
find A = 2 and B = 2. Then we check b(3)(X) and b(1)(Y), find X = 1
and Y = 1. If A = B and X = Y , the two cells are in the same block;
otherwise they are not. In this example, row 4 column 3 and row 6
column 1 are in the same block.

The ruleset we use to build the supporting terms is shown in Fig. 8.
Rule (10) creates two terms v(1) and k(N), and changes the state to s4.
Term v(V) holds a value to fill in current supporting term b()(), and
k(K) tracks the boundary of blocks. Rule (11) monitors the progress
of building supporting terms. When l(M1) is greater than m(M), the

14

A Sublinear Sudoku Solution in cP Systems and its Formal Verification

Figure 7. Checking if two cells are in the same block

system has finished creating supporting terms, it changes the state to
s5. Rule (12) creates a supporting term b(L)(V) based on the counter
l(L) and value v(V). Rule (13) updates terms v() and k() after the
counter l() moved to the next block. Rule (14) increases the counter
l(L) by 1 in each step.

s3 →1 s4 v(1), k(N) | n(N) (10)
s4 l(M1) →1 s5 | m(M) (11)
s4 →1 s4 b(L)(V) | l(L), v(V) (12)
s4 k(K), v(V) →1 s4 k(KN), v(V 1) | n(N), l(K) (13)
s4 l(L) →1 s4 l(L1) (14)

Figure 8. Ruleset (4a): creating block checking supporting terms

After having the supporting terms in the system, rule (15) can filter
the matrix templates by blocks (Fig. 9). If the system detects a matrix
template t() has two cells (row X column A and row Y column B)
in the same block that share the same value V , it will consume the
template. Rule (15) runs in the max-parallel model, which can filter
all the matrix templates in 1 step.

Rulesets (4a) and (4b) take m + 3 steps in total. After apply-
ing them, all the matrix templates that remain in the cP system are
valid Sudoku solutions; and all the valid solutions are contained in the

15

Yezhou Liu, Radu Nicolescu, Jing Sun, Alec Henderson

s5 t(r(X)(c(A)(V)), r(Y)(c(B)(V)),) →+

s5 | b(X)(W), b(Y)(W), b(A)(C), b(B)(C) (15)

Figure 9. Ruleset (4b): filtering matrix templates by blocks

cP system!

3.5 Matching matrix templates to a Sudoku instance

One max-parallel rule can be used to match the matrix templates to
a Sudoku instance (Fig. 10). Rule (16) compares all matrix templates
t() to the instance s(S). If the system finds any conflicts between a
matrix template t() and s(S), it deletes the template. Rule (16) takes
1 step. After applying it, the t(T) terms in the system are solutions
to the instance. A Sudoku instance may have multiple valid solutions,
the cP system is guaranteed to find all of them at the same step.

s5 t(r(R)(c(C)(V))) →+ s5 | s(r(R)(c(C)(U))), U 6= V (16)

Figure 10. Ruleset (5): matching matrix templates to a Sudoku in-
stance

The cP solution consists of 16 rules, which can solve any m × m
Sudoku instances in 3m + 7 steps. Considering the size of the input
of a Sudoku puzzle is m2, the complexity of the solution is sublinear
(square root time).

4 A worked example

In this section we use the Sudoku puzzle (m = 4, n = 2) shown in
Fig. 2 to illustrate how our cP system works. To represent the puzzle,
we create 10 terms in the cP system (Table 1). The initial state of the
system is s1.

16

A Sublinear Sudoku Solution in cP Systems and its Formal Verification

Table 1. Initial terms in the cP system

m(4), n(2), a(1), a(2), a(3), a(4), l(1), p(), t(),
s(r(1)(c(3)(2), c(4)(4)), r(2)(c(1)(2), c(2)(4), c(4)(3)), r(3)(c(2)(1)), r(4)(c(3)(3))).

The cP system uses ruleset (1) to generate all valid row candidates.
A hand simulation can be found in Table 2. Since there are many terms
in the system, the table only shows terms directly related to the ruleset.
In each step, the system adds exactly one number into each p() term.
After m+ 1 = 5 steps, the cP system will successfully generate all the
m! = 24 row candidates, which are the permutations of [1..4]. Then
the system will reset the counter to l(1), and change its state to s2.

Ruleset (2) will be applied when the system is at state s2. It uses
row candidates to build matrix templates row by row. After m+1 = 5
steps, the system will generate all m!!/(m! − m)! = 255024 matrix
templates, and change its state to s3.

To filter the matrix templates by columns, the cP system applies
ruleset (3). If it finds one value that appears twice in a column of
a template, it consumes that template. Ruleset (3) takes one max-
parallel step to apply to all matrix templates in the system, and does
not change the system state. After applying it, all the matrix tem-
plates with number conflicts in their columns will be deleted from the
cP system.

The cP system uses rulesets (4a) and (4b) to check and delete ma-
trix templates with number conflicts in blocks. The hand simulation
of building supporting terms (ruleset (4a)) can be found in Table 4.
System terms which are related to ruleset (4a) are shown in the table.

By applying rule (10), the system will generate terms v(1) and k(2).
Rule (11) compares terms l(L) and m(4), it is only applied when L is
greater than 4. Rule (12) keeps building b() terms in every step. Rule
(13) updates k() and v() values when the counter l() moves to a
new block. Rule (14) increases l() by 1 in each step. Because rules
(12), (13) and (14) are committing to the same state s4, the cP system
will apply them in the same step if possible.

Terms b(1)(1), b(2)(1), b(3)(2), b(4)(2) show the relationship among

17

Yezhou Liu, Radu Nicolescu, Jing Sun, Alec Henderson

Table 2. Generating row candidates

S
t
e
p

S
t
a
t
e

A
v
a
il
a
b
le

t
e
r
m

s
G

e
n
e
r
a
t
e
d

t
e
r
m

s
R

u
le

t
o

a
p
p
ly

0
s
1

m
(4

),
l(
1
),

p
()
.

(2
)

1
s
1

m
(4

),
l(
1
).

p
(c

(1
)(
1
))
,
p
(c

(1
)(
2
))
,

p
(c

(1
)(
3
))
,
p
(c

(1
)(
4
))
.

(4
)

1
s
1

m
(4

).
p
(c

(1
)(
1
))
,
p
(c

(1
)(
2
))
,

p
(c

(1
)(
3
))
,
p
(c

(1
)(
4
))
,
l(
2
).

(2
)

2
s
1

m
(4

),
p
(c

(1
)(
1
))
,

p
(c

(1
)(
2
))
,
p
(c

(1
)(
3
))
,

p
(c

(1
)(
4
))
,
l(
2
).

p
(c

(1
)(
1
),

c
(2

)(
2
))
,

p
(c

(1
)(
1
),

c
(2

)(
3
))
,.
..
,

p
(c

(1
)(
4
),

c
(2

)(
3
))
.

(3
)

2
s
1

m
(4

),
l(
2
).

p
(c

(1
)(
1
),

c
(2

)(
2
))
,

p
(c

(1
)(
1
),

c
(2

)(
3
))
,.
..
,

p
(c

(1
)(
4
),

c
(2

)(
3
))
.

(4
)

2
s
1

m
(4

).
p
(c

(1
)(
1
),

c
(2

)(
2
))
,

p
(c

(1
)(
1
),

c
(2

)(
3
))
,.
..
,

p
(c

(1
)(
4
),

c
(2

)(
3
))
,
l(
3
).

(2
)

3
s
1

m
(4

),
p
(c

(1
)(
1
),

c
(2

)(
2
))
,

p
(c

(1
)(
1
),

c
(2

)(
3
))
,.
..
,

p
(c

(1
)(
4
),

c
(2

)(
3
))
,
l(
3
).

p
(c

(1
)(
1
),

c
(2

)(
2
),

c
(3

)(
3
))
,

p
(c

(1
)(
1
),

c
(2

)(
2
),

c
(3

)(
4
))
,.
..
,

p
(c

(1
)(
4
),

c
(2

)(
3
),

c
(3

)(
2
))
.

(3
)

3
s
1

m
(4

),
l(
3
).

p
(c

(1
)(
1
),

c
(2

)(
2
),

c
(3

)(
3
))
,

p
(c

(1
)(
1
),

c
(2

)(
2
),

c
(3

)(
4
))
,.
..
,

p
(c

(1
)(
4
),

c
(2

)(
3
),

c
(3

)(
2
))
.

(4
)

3
s
1

m
(4

).
p
(c

(1
)(
1
),

c
(2

)(
2
),

c
(3

)(
3
))
,

p
(c

(1
)(
1
),

c
(2

)(
2
),

c
(3

)(
4
))
,.
..
,

p
(c

(1
)(
4
),

c
(2

)(
3
),

c
(3

)(
2
))
,
l(
4
).

(2
)

4
s
1

m
(4

),
p
(c

(1
)(
1
),

c
(2

)(
2
),

c
(3

)(
3
))
,

p
(c

(1
)(
1
),

c
(2

)(
2
),

c
(3

)(
4
))
,.
..
,

p
(c

(1
)(
4
),

c
(2

)(
3
),

c
(3

)(
2
))
,
l(
4
).

p
(c

(1
)(
1
),

c
(2

)(
2
),

c
(3

)(
3
),

c
(4

)(
4
))
,

p
(c

(1
)(
1
),

c
(2

)(
2
),

c
(3

)(
4
))
,
c
(4

)(
3
))
,.
..
,

p
(c

(1
)(
4
),

c
(2

)(
3
),

c
(3

)(
2
),

c
(4

)(
1
))
.

(3
)

4
s
1

m
(4

),
l(
4
).

p
(c

(1
)(
1
),

c
(2

)(
2
),

c
(3

)(
3
),

c
(4

)(
4
))
,

p
(c

(1
)(
1
),

c
(2

)(
2
),

c
(3

)(
4
))
,
c
(4

)(
3
))
,.
..
,

p
(c

(1
)(
4
),

c
(2

)(
3
),

c
(3

)(
2
),

c
(4

)(
1
))
.

(4
)

4
s
1

m
(4

).
p
(c

(1
)(
1
),

c
(2

)(
2
),

c
(3

)(
3
),

c
(4

)(
4
))
,

p
(c

(1
)(
1
),

c
(2

)(
2
),

c
(3

)(
4
))
,
c
(4

)(
3
))
,.
..
,

p
(c

(1
)(
4
),

c
(2

)(
3
),

c
(3

)(
2
),

c
(4

)(
1
))
,
l(
5
).

(1
)

5
s
2

m
(4

),
p
(c

(1
)(
1
),

c
(2

)(
2
),

c
(3

)(
3
),

c
(4

)(
4
))
,

p
(c

(1
)(
1
),

c
(2

)(
2
),

c
(3

)(
4
))
,
c
(4

)(
3
))
,.
..
,

p
(c

(1
)(
4
),

c
(2

)(
3
),

c
(3

)(
2
),

c
(4

)(
1
))
.

l(
1
).

rows, columns and blocks. To check if two cells row 1 column 2 and
row 2 column 3 are in the same block, we need to compare their rows

18

A Sublinear Sudoku Solution in cP Systems and its Formal Verification

Table 3. A matrix template with number conflicts (cP representation)

t(r(1)(c(1)(1), c(2)(3), c(3)(2), c(4)(4)),
r(2)(c(1)(2), c(2)(4), c(3)(1), c(4)(3)),
r(3)(c(1)(2), c(2)(1), c(3)(4), c(4)(3)),
r(4)(c(1)(4), c(2)(1), c(3)(3), c(4)(2))).

Table 4. Building supporting terms (for block check)

Step State Available terms Generated terms Rule to apply

0 s3 n(2), m(4), l(1). (10)
1 s4 n(2), m(4), l(1). v(1), k(2). (12)

2 s4
n(2), m(4), l(1),
v(1), k(2).

b(1)(1). (14)

2 s4
n(2), m(4), v(1),
k(2).

b(1)(1), l(2). (12)

3 s4
n(2), m(4), v(1),
k(2), b(1)(1), l(2).

b(2)(1). (13)

3 s4
n(2), m(4), b(1)(1),
l(2).

b(2)(1), v(2), k(4). (14)

3 s4 n(2), m(4), b(1)(1). b(2)(1), v(2), k(4), l(3). (12)

4 s4
n(2), m(4), b(1)(1),
b(2)(1), v(2), k(4), l(3).

b(3)(2). (14)

4 s4
n(2), m(4), b(1)(1),
b(2)(1), v(2), k(4).

b(3)(2), l(4) (12)

5 s4

n(2), m(4), b(1)(1),
b(2)(1), v(2), k(4),
b(3)(2), l(4).

b(4)(2). (13)

5 s4
n(2), m(4), b(1)(1),
b(2)(1), b(3)(2), l(4).

b(4)(2), v(3), k(6). (14)

5 s4
n(2), m(4), b(1)(1),
b(2)(1), b(3)(2).

b(4)(2), v(3), k(6), l(5). (11)

6 s5

n(2), m(4), b(1)(1),
b(2)(1), b(3)(2), b(4)(2),
v(3), k(6).

and columns separately. To check their rows, we need to find terms
b(1)(A) and b(2)(B) in the cP system – which are b(1)(1) and b(2)(1),
thus A = B = 1. To check their columns, we search for b(2)(X) and
b(3)(Y) in the system, and we will get b(2)(1), b(3)(2), thus we have
X = 1, Y = 2, where X 6= Y . Then we know that row 1 column 2 and
row 2 column 3 are not in the same block.

Ruleset (4a) takes m + 2 = 6 steps. After building the support-

19

Yezhou Liu, Radu Nicolescu, Jing Sun, Alec Henderson

ing terms, the system will take one max-parallel step to delete matrix
templates with number conflicts in blocks (ruleset (4b)), then all the
matrix templates left in the cP system are valid solutions to different
Sudoku puzzles.

By applying ruleset (5) – which also takes one max-parallel step –
the system can find the solutions to the given Sudoku instance (Table
5), by deleting other matrix templates in it. The entire solution takes
3m+ 7 = 19 steps.

Table 5. The solution of the example puzzle in Fig. 2

t(r(1)(c(1)(1), c(2)(3), c(3)(2), c(4)(4)),
r(2)(c(1)(2), c(2)(4), c(3)(1), c(4)(3)),
r(3)(c(1)(3), c(2)(1), c(3)(4), c(4)(2)),
r(4)(c(1)(4), c(2)(2), c(3)(3), c(4)(1))).

5 Verifying the cP Sudoku solution

We verified the two core rulesets (1 and 2) of our solution in PAT3. To
model our cP system in CSP#, we mainly followed the transformation
guidelines proposed in our previous work [23]. A translation example
from cP syntax of ruleset (1) to CSP# is shown in Figure 11.

Our cP system’s properties including deadlock-freeness (safety,
weak-liveness), terminating (safety, liveness), divergence-freeness (safety)
and non-deterministic (fairness) were formally verified. The CSP#
code of this study can be found in https://github.com/YezhouLiu/cP-
Sudoku.

Table 6 shows the model checking result. The cP system is dead-
lockfree, divergencefree, terminating and non-deterministic. In model
checking, a deadlock state is a state with no further move (except ex-
pected final states). The “state” here refers to the state in the Kripke
structure in the model checker, which is different from states in cP sys-
tems. Deadlockfree can be written as A�(E © (true)) in CTL, which
means “a non-deadlock state must have at least one successor”. The
symbol � refers to globally and © is the next operator. In cP systems,

20

A Sublinear Sudoku Solution in cP Systems and its Formal Verification

#define M 9; // problem size

var a = [1,2,3,4,5,6,7,8,9]; // term a

var c[M]; //index : L-1, value: V

var l = 1; // term l

var state = 1;

var promoter_valid = true;

R1() = rule1{

if(state = = 1 && l = = M + 1){

l = 1;

state = 2;

}

} -> if (state = = 2){Skip} else {R2()};

R2() = []i:{0..(M -1)}@ rule2 {

if (state = = 1){

promoter_valid = true;

var j = 0;

while (j < M){

if (c[j] = = a[i]){

promoter_valid = false;

}

j++;

}

if(promoter_valid){c[l -1] = a[i];}

state = 1;

}

} -> if (promoter_valid){R3()} else{Skip };

R3() = rule3{

if (state = = 1){state = 1;}

} -> R4();

R4() = rule4{

if(state = = 1){

l = l + 1;

state = 1;

}

} -> R1();

Figure 11. The CSP# representation of ruleset (1)

a deadlock indicates that the system terminates somewhere unexpect-
edly. For example, if a rule’s r − state is miswritten as another state,
which is unused anywhere else, after applying the rule, the system may

21

Yezhou Liu, Radu Nicolescu, Jing Sun, Alec Henderson

encounter a deadlock. The deadlock check can tell us if the cP system
will get stuck.

Divergence in PAT3 means a process may perform internal transi-
tions forever, which is often undesirable. The divergence check can be
used to detect badly designed rules in cP systems (e.g. unnecessary
self-looping rules). Terminating means the system will eventually halt,
which can often be written as a reachability property. For example, a
termination of ruleset (1) can be defined as: A♦(ats2), where ♦ means
“eventually”. When a cP system applies ruleset (1), after generating
all the row candidates, the system state will be changed to s2. Then
ruleset (1) terminates, because none of its rules are applicable at s2.
Performing the terminating check, we can find out if a cP system will
run forever, or eventually halt at an expected state.

As a fairness property, deterministic means for a state there
is no more than one out-going transition. cP systems are often
non-deterministic because of unification. When designing a non-
deterministic cP system, we often need to make it confluent – i.e. all
its evolutions need to yield the same result. For example, when build-
ing a row candidate, the cP system will randomly choose a number to
fill its working column. All the possible numbers have equal chance to
be selected, none of the numbers will be neglected by the system. The
system will finally generate m! row candidates which represent all the
permutations of [1..m].

Table 6. Model checking result of the cP Sudoku rulesets

Ruleset
Problem

Size

Deadlock-

free

Divergence-

free
Terminating

Determinis-

tic

(1) 4 True True True False
(1) 9 True True True False
(2) 4 True True True False

A major limitation of applying model checking to our cP system is
state explosion. We verified the system’s properties with m = 4 and
m = 9. When the problem size m = 9, PAT3 encounters a memory
explosion issue when verifying ruleset (2). To model check ruleset (1),
PAT3 generated 9! = 362880 row candidates and successfully checked

22

A Sublinear Sudoku Solution in cP Systems and its Formal Verification

its state-space. To verify ruleset (2), PAT3 needs to simulate the gen-
eration of the 9!!/(9! − 9)! matrix templates, which is impossible in
practice. Even though PAT3 implements abstraction algorithms and
can generate its state-space on the fly (without keeping the entire state-
space in memory), it still cannot check that many states.

Because of the combinatorial explosion and limited languages fea-
tures supported by existing general purpose model checkers, max-
parallel filtering cP rulesets including ruleset (3), (4a), (4b), and (5)
are not suitable to be verified via model checking. There is no straight
forward way to manually release terms’ memory in model checkers such
as PAT3, so it is hard to emulate the term consumption in cP systems.

6 Related work

The first P system study on solving the Sudoku problem was published
in 2010 [19]. To solve Sudoku puzzles, the authors used a family of
P systems with enzymatic rules, dissolution rules, and send-out rules.
In the P solution, 13 rulesets of O(n6) rules were used, where n is the
block size of the puzzle. In most P system variants, to solve compu-
tationally hard problems, a number of P rules related to the problem
size are needed. Instead of solving Sudoku in a brute-force manner, it
used a human-style strategy. It is not guaranteed that the P system
can solve all the Sudoku instances, but the system will indicate failure
if it cannot solve an instance.

Later, the P system in [19] was extended by other researchers [20].
Additional algorithms including pruning were added to the solution.
The authors also introduced a brute-force algorithm to the system. In
this extended version of the P system, if no valid Sudoku solution can be
found by the human-style strategy, the system will try the brute-force
algorithm. O(n6) rules were used in the extended version of P system
with the brute-force approach. The authors tested their solution in the
P-Lingua simulator [26], but only for small-scale problems (n = 2).

Another P study used particle swarm optimization incorporated
with P systems to solve Sudoku puzzles [21]. No P system rule was
predefined in the system. The system generated the evolution rules

23

Yezhou Liu, Radu Nicolescu, Jing Sun, Alec Henderson

and communication rules by using particle swarm optimization. The
authors also proposed another P system solution to solve Sudoku [27],
where some evolution and communication rules were used. The ruleset
of the P solution was not specified in the paper, too. These solutions
cannot guarantee to solve all the Sudoku puzzles. The two algorithms
designed by the authors only borrowed some shallow ideas from the cell-
like structure of P systems, which did not make use of the theoretical
unlimited computational power and memory of membrane computing
models.

7 Conclusion

Although membrane computing models are suitable for solving com-
putationally hard problems, to model practical problems in P system
models is often non-trivial. In this study, we solved one of the most
famous NP-complete puzzles – Sudoku – in cP systems. Our cP system
only contains 16 rules, which can solve all m × m Sudoku puzzles in
3m + 7 steps by using relations as special promoters. Considering the
input size of a Sudoku puzzle is m2, the cP solution is sublinear. To
the best of our knowledge, our solution is the most efficient P system
solution to the Sudoku problem in time complexity. We formally ver-
ified the core rulesets of our solution using the PAT3 model checker,
and checked their safety, liveness and fairness properties.

Similar to other P system solutions, practical implementations of
our cP solution will encounter a memory explosion issue. The search
for finding efficient software or hardware implementations of P systems
is one of the most important challenges in membrane computing.

In addition to the brute force algorithm, future work may include
the design of practically useful cP solutions, based on practical Sudoku
solving strategies. Although it is not guaranteed that the practical
strategies can solve all Sudoku instances, they usually can find solutions
for real-life Sudoku puzzles quickly.

To solve the existing issues on simulating and verifying cP systems,
we also plan to design and implement a cP model checker, which can
effectively simulate cP systems (including our cP Sudoku solution) and

24

A Sublinear Sudoku Solution in cP Systems and its Formal Verification

automatically check their properties.

References

[1] D. Berend, “On the number of Sudoku squares,” Discrete Mathe-
matics, vol. 341, no. 11, pp. 3241–3248, 2018.

[2] D. E. Knuth, “Dancing links,” arXiv preprint cs/0011047, 2000.

[3] R. Lewis, “Metaheuristics can solve Sudoku puzzles,” Journal of
Heuristics, vol. 13, no. 4, pp. 387–401, 2007.

[4] A. Moraglio, J. Togelius, and S. Lucas, “Product geometric
crossover for the Sudoku puzzle,” in 2006 IEEE International Con-
ference on Evolutionary Computation. IEEE, 2006, pp. 470–476.

[5] A. Moraglio and J. Togelius, “Geometric particle swarm optimiza-
tion for the Sudoku puzzle,” in GECCO, vol. 7, 2007, pp. 118–125.

[6] T. Mantere and J. Koljonen, “Solving, rating and generating Su-
doku puzzles with GA,” in 2007 IEEE Congress on Evolutionary
Computation. IEEE, 2007, pp. 1382–1389.

[7] Z. W. Geem, “Harmony search algorithm for solving Sudoku,”
in International Conference on Knowledge-Based and Intelligent
Information and Engineering Systems. Springer, 2007, pp. 371–
378.

[8] I. Lynce and J. Ouaknine, “Sudoku as a SAT problem.” in ISAIM,
2006.

[9] H. Simonis, “Sudoku as a Constraint Problem,” Modelling and
Reformulating Constraint Satisfaction Problems, p. 13, 2005.

[10] T. K. Moon, J. H. Gunther, and J. J. Kupin, “Sinkhorn solves Su-
doku,” IEEE Transactions on Information Theory, vol. 55, no. 4,
pp. 1741–1746, 2009.

25

Yezhou Liu, Radu Nicolescu, Jing Sun, Alec Henderson

[11] G. Santos-Garćıa and M. Palomino, “Solving Sudoku puzzles with
rewriting rules,” Electronic Notes in Theoretical Computer Sci-
ence, vol. 176, no. 4, pp. 79–93, 2007.

[12] G. Păun, “Computing with membranes,” Journal of Computer
and System Sciences, vol. 61, no. 1, pp. 108–143, 2000.

[13] A. Păun, “On P systems with active membranes,” in Unconven-
tional Models of Computation, UMC’2K. Springer, 2001, pp.
187–201.

[14] C. Mart́ın-Vide, G. Păun, J. Pazos, and A. Rodŕıguez-Patón, “Tis-
sue P systems,” Theoretical Computer Science, vol. 296, no. 2, pp.
295–326, 2003.

[15] M. Ionescu, G. Păun, and T. Yokomori, “Spiking neural P sys-
tems,” Fundamenta informaticae, vol. 71, no. 2, 3, pp. 279–308,
2006.

[16] M. Gheorgue, F. Ipate, C. Dragomir, L. Mierla, L. Valencia Cabr-
era, M. Garćıa Quismondo, and M. d. J. Pérez Jiménez, “Kernel
P systems-version 1,” Proceedings of the Eleventh Brainstorming
Week on Membrane Computing, 97-124. Sevilla, ETS de Inge-
nieŕıa Informática, 4-8 de Febrero, 2013,, 2013.

[17] R. Nicolescu, F. Ipate, and H. Wu, “Programming P systems with
complex objects,” in International Conference on Membrane Com-
puting. Springer, 2013, pp. 280–300.

[18] R. Nicolescu and A. Henderson, “An introduction to cP systems,”
in Enjoying natural computing. Springer, 2018, pp. 204–227.

[19] D. Dı́az-Pernil, C. M. Fernández-Mı́rquez, M. Garćıa-Quismondo,
M. A. Gutiérrez-Naranjo, and M. A. Mart́ınez-del Amor, “Solv-
ing Sudoku with membrane computing,” in 2010 IEEE Fifth In-
ternational Conference on Bio-inspired Computing: Theories and
Applications (BIC-TA). IEEE, 2010, pp. 610–615.

26

A Sublinear Sudoku Solution in cP Systems and its Formal Verification

[20] D. Deodhare, S. Sonone, and A. Gupta, “A generic membrane
computing-based Sudoku solver,” in 2014 International Confer-
ence on Issues and Challenges in Intelligent Computing Tech-
niques (ICICT). IEEE, 2014, pp. 89–99.

[21] G. Singh and K. Deep, “A new membrane algorithm using the rules
of Particle Swarm Optimization incorporated within the frame-
work of cell-like P-systems to solve Sudoku,” Applied Soft Com-
puting, vol. 45, pp. 27–39, 2016.

[22] Y. Liu, J. Sun, and J. S. Dong, “Pat 3: An extensible architec-
ture for building multi-domain model checkers,” in 2011 IEEE
22nd International Symposium on Software Reliability Engineer-
ing. IEEE, 2011, pp. 190–199.

[23] Y. Liu, R. Nicolescu, and J. Sun, “Formal verification of cP sys-
tems using PAT3 and ProB,” Journal of Membrane Computing,
pp. 1–15, 2020.

[24] J. Cooper and R. Nicolescu, “The Hamiltonian cycle and travelling
salesman problems in cP systems,” Fundamenta Informaticae, vol.
164, no. 2-3, pp. 157–180, 2019.

[25] A. Henderson, R. Nicolescu, and M. J. Dinneen, “Solving a
PSPACE-complete problem with cP systems,” Journal of Mem-
brane Computing, pp. 1–12, 2020.

[26] I. Pérez-Hurtado, D. Orellana-Mart́ın, G. Zhang, and M. J. Pérez-
Jiménez, “P-lingua in two steps: flexibility and efficiency,” Journal
of Membrane Computing, vol. 1, no. 2, pp. 93–102, 2019.

[27] G. Singh and K. Deep, “Cell-like P-systems using deterministic
update rules to solve Sudoku,” International Journal of System
Assurance Engineering and Management, vol. 8, no. 2, pp. 857–
866, 2017.

27

Yezhou Liu, Radu Nicolescu, Jing Sun, Alec Henderson

Yezhou Liu, Radu Nicolescu, Received October 22, 2020

Jing Sun, Alec Henderson Revised December 22, 2020

Yezhou Liu

Institution: The University of Auckland

Address: SCIENCE CENTRE 303S - Bldg 303S, Level 5, Room 596, 38 PRINCES

ST, AUCKLAND, New Zealand 1010

E–mail: yliu442@aucklanduni.ac.nz

Radu Nicolescu

Institution: The University of Auckland

Address: SCIENCE CENTRE 303S - Bldg 303S, Level 5, Room 587, 38 PRINCES

ST, AUCKLAND, New Zealand 1010

E–mail: r.nicolescu@auckland.ac.nz

Jing Sun

Institution: The University of Auckland

Address: SCIENCE CENTRE 303 - Bldg 303, Level 5, Room 522, 38 PRINCES

ST, AUCKLAND, New Zealand 1010

E–mail: jing.sun@auckland.ac.nz

Alec Henderson

Institution: The University of Auckland

Address: SCIENCE CENTRE 303S - Bldg 303S, Level 5, Room 596, 38 PRINCES

ST, AUCKLAND, New Zealand 1010

E–mail: ahen386@aucklanduni.ac.nz

28

	v29-n1-(pp3-28)
	v29-n1-(pp29-40)
	v29-n1-(pp41-58)
	v29-n1-(pp59-75)
	v29-n1-(pp76-95)
	v29-n1-(pp96-104)
	v29-n1-(pp105-134)
	v29-n1-(pp135-152)

