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Abstract: The flow behavior of weak symmetric plane fountains in linearly stratified fluids is studied
numerically with three-dimensional simulations over a range of the Froude (Fr), Reynolds (Re), and
stratification numbers (s). The two main parameters describing the fountain characterization are
the dimensionless maximum fountain penetration height (zm) and intrusion velocity (uint), which
differ significantly at different flow development stages. It was found that the stratification stabilizes
the symmetry of the weak fountains, which makes the fountain become asymmetric at a larger Fr
value, and zm at the fully developed stage continues to increase as a result of the intrusion, which
continually changes the ambient fluid stratification features, thus the buoyant force. The evolution of
intrusion experiences three distinct stages. Both Fr and s have effects on zm and uint, with the effect
of Fr usually larger than that of s. The overall impacts of Fr and s can be quantified in terms of Frasb,
with a and b varying for different parameters. With numerical results, empirical correlations are
produced in terms of Frasb for each relevant parameter, which generally predict the results very well.

Keywords: weak plane fountain; stratification; penetration height; intrusion; symmetry

1. Introduction

Fountains are widely encountered in many natural settings and practical applications.
Their behavior is also of fundamental significance as our understanding of free shear
flows under negatively buoyant force still needs improvement. These make them a topic
that has drawn a remarkable research interest. Hunt and Burridge [1] conducted a very
comprehensive review on the studies on the behavior of different types of fountains over
wide ranges of governing parameters and under different conditions.

A fountain is a flow caused by a fluid injected vertically upward into a large body of
fluid which has a smaller density. The buoyancy experienced by the upward fluid opposes
its upward velocity resulting in a gradual reduction in velocity up to zero. The height where
the upward velocity attains zero is denoted as the maximum fountain penetration height
(abbreviated as ‘MFPH’ hereafter). After the upward fluid attains the MFPH, it reverses
the moving direction and descends and falls on the bottom floor to form an intrusion that
moves outward along the bottom floor.

The ambient fluid in which a fountain penetrates can be homogeneous or stratified.
When the ambient fluid is stratified, the fluids at different heights have different densities.
A stable stratification with a constant stratification number is the physical situation in
which the fluid densities decrease from the bottom to the top at a constant density gradient.
Such a fluid is called a linearly stratified fluid. A fountain is generally characterized by the
Reynolds number, Re, Froude number, Fr, and density stratification parameter, Sp, if the
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ambient is a linearly stratified fluid (abbreviated as ‘LSF’ hereafter). These three governing
parameters are defined below [2],

Re =
W0X0

ν
, (1)

Fr =
W0

[gX0(ρ0 − ρa,0)/ρa,0]1/2 =
W0

[gβX0(Ta,0 − T0)]1/2 , (2)

Sp = − 1
ρa,0

dρa,Z

dZ
. (3)

Fr in the second expression of Equation (2) is implemented when the Oberbeck–
Boussinesq approximation is valid, which is what is assumed in the present study. The
temperature stratification parameter, S, can also be represented using this approximation,
as follows [2],

S =
dTa,Z

dZ
=

Sp

β
, (4)

The dimensionless form of S is widely used to generalize the results and
defined below [2],

s =
dθa,z

dz
=

X0

(Ta,0 − T0)
S =

X0

β(Ta,0 − T0)
Sp. (5)

Past studies on fountains have focused on round ones in homogeneous fluids (i.e.,
Sp = 0), with the dimensionless MFPH (zm) as the main variable to characterize and
quantify the fountain behavior. A round fountain can be ‘very weak’ when Fr . 1, ‘weak’
when 1 . Fr . 3, or ‘forced’ when Fr & 3 [3,4]. Forced round fountains are found to be
significantly different from weak fountains. The readers are referred to the review by Hunt
and Burridge [1] for the details.

The behavior of a plane fountain (abbreviated as ‘PF’ hereafter), which is formed by
injecting an upward dense fluid continuously into a lighter ambient fluid, either homoge-
neous or stratified, from a narrow slot, has also been explored, such as [2,5–9], although it
has been apparently far less studied [1,9,10].

Similar to round fountains, a PF in a large container of homogeneous fluid may be
either ‘very weak’ when Fr � 1, ‘weak’ when Fr = O(1), or ‘forced’ when Fr � 1, as
classified by Hunt and Coffey [11].

The studies on PFs have dominantly focused on fountains in homogeneous fluids,
although some studies also focused on those in stratified fluids, such as [5,8,12–15]. Re-
search on PFs in stratified fluids has been scarce and mainly focused on those in turbulent
regimes, with zm as the main parameter. In the past several years, we carried out numerical
studies on weak and transitional PFs in LSFs to examine their effects on the transition of
a PF from symmetric behavior to asymmetric behavior, with zm as the major parameter
characterizing the PF behavior [10,16–18]. Nevertheless, the characterization of weak PFs
in stratified fluids with small Fr and Re values, in which only the symmetric behavior is
present, is currently rarely understood. Furthermore, the intrusion is an integral part of a
weak symmetric PF (abbreviated as ‘SPF’ hereafter), and its behavior is important due to
its significant effects on zm. Nonetheless, intrusion in weak SPF, particularly in stratified
ambient fluids, is rarely investigated. The aforementioned points motivate us to investigate
the characterization of penetration and intrusion of SPFs in LSFs.

In this work, numerical simulations were executed for weak SPFs in a large body of
LSF over a range of Fr and s as a fixed small Re to ensure the fountains were laminar and
to study their effects on the MFPH and the intrusion behavior of weak SPFs in LSFs.
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2. Methodology

The physical and numerical model is assumed to be a rectangular domain with the
dimensions H × B × L, in which an initially quiescent fluid at a constant stratification
parameter value is fully filled. At the bottom center of the domain, as the source for the PF,
a slot with a half-width of X0 exists. The remainder of the bottom and top surfaces (in the
X-Y plane, at Y = H) are rigid, non-slip and adiabatic. The periodic boundary condition is
applied to the two vertical sidewalls (in the X-Z plane, at Y = ±B/2), and the two vertical
surfaces in the Y-Z plane, at X = ±L/2 (front and back boundaries), are considered to
be outflows. The origin of the Cartesian coordinate systems is at the bottom center, with
gravity in the negative Z-direction. At time t = 0, to initiate the PF flow, a fluid at the
temperature T0, which is smaller than Ta,0, with a uniform velocity W0 is injected upward
from the slot into the domain, which is subsequently continued during the whole time
period of a particular numerical simulation run.

The details of the flow governing equations and the assigned initial and boundary
conditions are given in the Supplementary Materials, which also contain further details
of the methodology, including the discretization of the governing equations using a fi-
nite volume method, the solution solvers, the construction of the non-uniform meshes,
the mesh and time-step independence testing, and the values of relevant parameters
used for the numerical simulations. All numerical simulations were performed using
ANSYS Fluent 13.0.

A total of 32 numerical simulation runs have been carried out, all at the fixed Re = 100:
6 runs for s = 0.1 (with Fr = 1, 1.5, 2, 2.75, 2.875, 3); 6 runs for s = 0.2 (with Fr = 1, 2, 2.5,
3, 3.25, 3.5); 6 runs for s = 0.3 (with Fr = 1, 2, 3, 3.5, 3.75, 4); 7 runs for s = 0.4 (with Fr = 1,
2, 3, 4, 4.35, 4.5, 5); and 7 runs for s = 0.5 (with Fr = 1, 2, 3, 4, 4.75, 4.85, 5).

3. Qualitative Observation
3.1. Development of Temperature Field

The development of the temperature field in the domain is shown by the evolution
of the transient temperature contours of the PF at Fr = 3.25 and s = 0.1 on three specific
planes, as illustrated in Figure 1. It can be observed that for all the instants illustrated,
the X = 0 surface in the Y-Z plane is the symmetry surface (as shown in the first column
of Figure 1). From the second and third columns, it can be seen that along the Y direction,
the temperature gradient is zero. This observation is unlike the asymmetric behavior
reported for PFs in stratified fluids at larger Fr and Re [10]. This finding implies that
for the specific fountain presented, the flow and temperature pattern remains symmetric
irrespective of the instant selected in contrast to an asymmetric fountain [10,16,17].

3.2. Effect of Fr

Figure 2 demonstrates the influence of Fr on the SPFs at the fully developed stage
(abbreviated as ‘FDS’ hereafter). The symmetry observed for different instances in Figure 1
can be seen for different Fr cases. By increasing Fr, the momentum flux of the injected
fluid becomes larger, which leads to increased zm. A typical feature of a weak fountain is
having indistinguishable upflow and the downflow that makes little entrainment of the
ambient fluid into the core region of the fountain fluid [2,6]. The first and second columns
of Figure 2 also depict the variation of intrusion thickness. The intrusion thickness increases
considerably compared to the fountain height, especially for a small Fr. This behavior has
a major impact on zm that will be discussed subsequently.
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Figure 1. Evolution of the transient temperature contours of the PF at Fr = 3.25 and s = 0.1 at Y = 0
in the X-Z plane (first column), X = 0 in the Y-Z plane (second column), and z = 0.5zm,i in the X-Y
plane (third column). Temperatures are non-dimensionalized with [T(Z)− T0]/(Ta,z=60 − T0).

Figure 2. Snapshots of the temperature contours at the FDS of SPFs for several Fr values with s = 0.2,
at Y = 0 in the X-Z plane (first column), X = 0 in the Y-Z plane (second column), and z = 0.5zm,i in
the X-Y plane (third column), respectively.

3.3. Effect of s

To investigate the influence of s, which is the dimensionless stratification number
defined by Equation (5), Figure 3 illustrates the temperature contours of five SPFs at the FDS.
Similar behavior to that in Figures 1 and 2 can be identified, as fountains stay symmetric
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and the mixing between the fountain and fluid is minimal. The intrusion again increases
significantly compared to the fountain height, especially for a large s. zm reduces with
increasing s because of the stabilizing ability of the stratification as discussed in [10,16,17],
indicating that s has a notable influence on the MFPH along with the intrusion height.

Figure 3. Snapshots of the temperature contours at the FDS of SPFs for several s values with Fr = 2,
at Y = 0 in the X-Z plane (first column), X = 0 in the Y-Z plane (second column), and z = 0.5zm,i in
the X-Y plane (third column).

4. Quantitative Analysis
4.1. MFPH (zm)

A sample of the development of the numerically obtained zm and the corresponding
velocity vm, which is made dimensionless by W0, are shown in Figure 4 for the SPF at Fr = 2
and s = 0.1. From Figure 4a, it can be seen that there is a continuous rise of fountain height
until about τ = 10, when the fountain reaches its initial MFPH, zm,i. At this time (τm,i), as
expected, vm decreases to zero for the first time since the commencement of the fountain as
presented in Figure 4b. Then, after a slight fall, zm rises and this growth continues at very
small rates, which vary with time, and the flow is at the FDS, as can be seen in Figure 4b.
This is distinctly different from the behavior of an asymmetric PF that when the fountain
height reaches zm,i, after a transition period, zm oscillates around an almost fixed value
(zm,a) at its FDS as shown in [10,16]. The observed continuous increase of the MFPH in
an SPF is largely caused by the intrusion which continuously diminishes with time at the
FDS, leading to reduced buoyant force experienced by the fountain fluid. It is important
to quantify the MFPH at the FDS. Therefore, it was decided to find the time-averaged
value of zm over a specific time period (the ‘averaging period’), denoted as zm,a, along
with the MFPH at the commencement of the time averaging period, zm,s, as depicted in
Figure 4a. The time-averaged velocity vm,a during the averaging period is apparently the
appropriate parameter to quantify the extent of the variation of zm at the FDS. In this study,
for consistency, the time instant for zm,s is at τ = 100, while the averaging period for both
zm,a and vm,a is over 100 ≤ τ ≤ 900 for all fountains considered.
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Figure 4. Time series of zm (a) and vm (b) for the SPF of Fr = 2 and s = 0.1, where zm,i is the initial
MFPH and τm,i is the time instant when zm = zm,i, zm,s is the MFPH at the commencement time of the
period for the time averaging of zm at the FDS which gives the time-averaged MFPH zm,a. All heights,
times and velocity are made dimensionless by X0, X0/W0 and W0, respectively. The averaging period
for both zm,a and vm,a is 100 ≤ τ ≤ 900.

The numerical obtained zm and vm for five SPFs with five Fr values at s = 0.1 and five
SPFs with five s values at Fr = 2 are shown in Figure 5. It is clearly seen that both Fr and s
have significant effects on zm and vm. As expected, zm increases when Fr becomes larger,
but it decreases when s increases, as the corresponding negative buoyancy increases too,
which leads consequently to smaller τm,i, zm,s, zm,a and vm,a, as will be shown subsequently.

The effects of Fr and s on zm,i are illustrated by the numerical results shown in Figure 6
for all SPFs considered in the present study. As shown in Figure 6a, for each s value, zm,i
increases when Fr becomes larger, which can be quantified by an approximately quadratic
correlation, owing to the increased momentum flux of the fountain. It is also observed that
for each Fr, the increase of s results in reduced zm,i, as also shown in Figure 6b, resulting
from a stronger negative buoyancy.

For a weak SPF in an LSF, Lin and Armfield [2] asserted that momentum and buoyancy
fluxes, kinematic viscosity of fluid, and ambient stratification together form a complete
parametrization of the MFPH, and they derived the scaling relation for zm through a
dimensional analysis, as shown below,

zm,i ∼ Fr
2
3 (2+2b−c)sbRe−c, (6)

where the constants b and c can be obtained empirically with experimental or numerical
results. They confirmed this scaling relation for weak SPFs with a series of numerical
simulations with varied Fr, Re and s values. For the weak SPFs considered in the present
study, with Re fixed at Re = 100, it is impossible to obtain the value of c, but apparently, the
overall effects of Fr and s on zm,i can be represented by Frasb, where a is another constant
which can be determined empirically.
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With the numerical results obtained for all fountains considered here, a multi-variable
regression analysis gives a = 0.79 and b = −0.178 for zm,i, and the following correlation is
obtained to quantify the overall effects of Fr and s on zm,i,

zm,i = 0.22(Fr0.79s−0.178)2 + 0.46Fr0.79s−0.178 + 1.106

= 0.22Fr1.58s−0.356 + 0.46Fr0.79s−0.178 + 1.106, (7)

with the regression constant of R2 = 0.9947. This indicates that Fr0.79s−0.178 quantifies the
overall effects of Fr and s on zm,i very well, as also shown in Figure 6c.

Nevertheless, it was noted from the numerical simulations that among all fountain
cases considered, there are four cases at high Fr and s values that become asymmetric after
zm attains zm,i, although only slightly. These cases are those at Fr = 4.5 and Fr = 5 with
s = 0.4 and at Fr = 4.85 and Fr = 5 with s = 0.5. Hence, the results of these four cases
should be excluded in the multi-variable regression analysis to obtain the correlation to
quantify the combined effects of Fr and s. With the exclusion of the results of these four
cases, it is found that a and b have very small changes from those without the exclusions,
i.e., a changes from 0.79 to 0.768, and b changes from −0.178 to −0.188. The following
corresponding correlation is then obtained with Fr0.768s−0.188,

zm,i = 0.214(Fr0.768s−0.188)2 + 0.535Fr0.768s−0.188 + 0.99

= 0.214Fr1.536s−0.376 + 0.535Fr0.768s−0.188 + 0.99, (8)

with R2 = 0.9963, indicating that Fr0.768s−0.188 provides a slightly better representation of
the overall effects of both Fr and s on zm,i, as shown in Figure 6d.
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Figure 5. Time series of zm (a) and vm (c) for the five SPFs with five Fr values at s = 0.1, and that of
zm (b) and vm (d) for the five SPFs with five s values at Fr = 2, respectively.
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Figure 6. (a) zm,i plotted against Fr at s = 0.1, 0.2, 0.3, 0.4 and 0.5, (b) zm,i plotted against s at Fr = 1,
2, 3 and 4, (c) zm,i plotted against Fr0.79s−0.178 over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, without exclusions,
(d) zm,i plotted against Fr0.768s−0.188 over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, with exclusions, (e) zm,i

plotted against Fr(zm,i) over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, without exclusions, (f) zm,i plotted against
Fr(zm,i) over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, with exclusions, respectively.

A local Froude number at height z can be introduced, which is defined as

Fr(z) =
W0√

gβX0(T0 − Ta,Z)
. (9)

It can be found that
Fr(z) =

Fr√
1 + sz

. (10)

It is appropriate to assume that the effect of s is incorporated in Fr(z). Hence, it is
expected that zm,i depends on Fr(zm,i) only and the scaling relation zm,i ∼ Fr developed
for weak SPFs in homogeneous ambient fluids by Lin and Armfield [6] and others should
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be applicable here as well if Fr is replaced by Fr(zm,i), as validated by the numerical results
shown in Figure 6e,f. From the results for all fountains considered, the following linear
correlation is obtained with a linear regression analysis,

zm,i = 2.509Fr(zm,i)− 0.233, (11)

with R2 = 0.9521, indicating that the scaling relation zm,i ∼ Fr(zm,i) is applicable well for
the majority of the fountains considered, as shown in Figure 6e. Similarly, the results for
the four cases mentioned above should be excluded, which changes the correlation to be

zm,i = 2.324Fr(zm,i) + 0.007, (12)

with R2 = 0.9793. It is clearly seen that the scaling relation zm,i ∼ Fr(zm,i) is applicable
very well for all fountains with the exclusion of the four fountains, as indicated in Figure 6f.

As zm,s and zm,a are essentially the parameter as zm,i to represent the MFPH and
differ from zm,i only in that they quantify the MFPH at different times, it is expected that
the characteristics of zm,s and zm,a should be the same as that of zm,i and all conclusions
obtained above for zm,i are applicable to zm,i too. However, there are quantitative differences
in the correlations for zm,s and zm,a, as shown in Figures 7 and 8. With the numerical
results obtained for all fountains considered, the correlations are obtained for zm,s and zm,a,
both without the exclusion of any fountains and with the exclusion of the four fountains
mentioned above, and these are listed in Table 1. As shown in Figures 7 and 8, all these
correlations indicate that, similar to that for zm,i, the respective Frasb obtained quantifies
the overall effects of Fr and s on zm,s and zm,a very well, with those with the exclusion of
the four fountains providing a slightly better representation of the overall effects of both Fr
and s.

Table 1. Numerical obtained empirical correlations for zm,s and zm,a with and without the exclusions.

Correlation Exclusion? R2

zm,s = 0.316Fr1.49s−0.342 + 0.392Fr0.745s−0.171 + 1.434 No 0.9938
zm,s = 0.411Fr1.46s−0.356 + 0.022Fr0.73s−0.178 + 1.754 Yes 0.9956

zm,s = 2.855Fr(zm,s) − 0.0873 No 0.9578
zm,s = 2.696Fr(zm,s) + 0.113 Yes 0.9684

zm,a = 0.428Fr1.318s−0.328 + 0.514Fr0.659s−0.164 + 1.682 No 0.9958
zm,a = 0.523Fr1.296s−0.338 + 0.179Fr0.648s−0.169 + 1.949 Yes 0.9967

zm,a = 2.940Fr(zm,a) + 0.585 No 0.9762
zm,a = 2.814Fr(zm,a) + 0.738 Yes 0.9830

A similar analysis can be made on τm,i, which is another key parameter. The effects
of Fr and s on τm,i are indicated by the numerical results shown in Figure 9 for all foun-
tains considered. Similar to that for zm,i, as shown in Figure 9a, for each s value, τm,i
increases with increasing Fr, which can also be quantified by an approximately quadratic
correlation because of the larger momentum flux, and for each Fr value, the increase of s
results in reduced τm,i, which can be seen from Figure 9b as well because of the increased
negative buoyancy.

Similar to that for zm,i, the overall effects of Fr and s on τm,i can be quantified by Frasb.
However, apparently, it is expected that the values of a and b obtained from the numerical
results should be significantly different from those for zm,i. These are confirmed by the
results presented in Figure 9c–f. A multi-variable regression analysis of the results for τm,i
from all fountains considered shows that Fr1.273s−0.229 quantifies the overall effects of Fr
and s on τm,i well, with the following correlation obtained when all fountains are included,

τm,i = 0.209(Fr1.273s−0.229)2 + 1.879Fr1.273s−0.229 + 2.588

= 0.209Fr2.546s−0.458 + 1.879Fr1.273s−0.229 + 2.588, (13)
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with R2 = 0.9752, as shown in Figure 9c. Similarly, the results of the four fountains
mentioned above should be excluded in the regression analysis, and it is found that the
obtained Fr1.225s−0.252 provides a slightly better representation of the overall effects of Fr
and s on τm,i, with the following correlation obtained when the four fountains are excluded,

τm,i = 0.106(Fr1.225s−0.252)2 + 2.897Fr1.225s−0.252 + 0.855

= 0.106Fr2.45s−0.504 + 2.897Fr1.225s−0.252 + 0.855, (14)

with R2 = 0.9827, as shown in Figure 9d.
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Figure 7. (a) zm,s plotted against Fr at s = 0.1, 0.2, 0.3, 0.4 and 0.5, (b) zm,s plotted against s at Fr = 1,
2, 3 and 4, (c) zm,s plotted against Fr0.745s−0.171 over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, without exclusions,
(d) zm,s plotted against Fr0.73s−0.178 over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, with exclusions, (e) zm,s

plotted against Fr(zm,s) over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, without exclusions, (f) zm,s plotted
against Fr(zm,s) over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, with exclusions, respectively.
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For weak symmetric fountains in homogeneous ambient fluids, Lin and Armfield [6,19]
show that τm,i ∼ Fr2. With the effect of s incorporated in Fr(z), similar to that for zm,i, it is
expected that τm,i depends on Fr(zm,i) only and the scaling relation τm,i ∼ Fr2 developed
by Lin and Armfield [6,19] should be applicable here as well if Fr is replaced by Fr(zm,i).
This is validated by the results shown in Figure 9e,f. From the results for all fountains
considered, the following correlation is obtained with a regression analysis,
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Figure 8. (a) zm,a plotted against Fr at s = 0.1, 0.2, 0.3, 0.4 and 0.5, (b) zm,a plotted against s at Fr = 1,
2, 3 and 4, (c) zm,a plotted against Fr0.659s−0.164 over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, without exclusions,
(d) zm,a plotted against Fr0.648s−0.169 over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, with exclusions, (e) zm,a

plotted against Fr(zm,a) over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, without exclusions, (f) zm,a plotted
against Fr(zm,a) over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, with exclusions, respectively.

τm,i = 10.246Fr(zm,i)
2 − 17.263Fr(zm,i) + 13.198, (15)

with R2 = 0.9353, indicating that the scaling relation τm,i ∼ Fr(zm,i)
2 is applicable well

for the majority of the fountains considered, as shown in Figure 9e. Similarly, the results



Fluids 2023, 8, 127 12 of 22

for the four cases mentioned above should be excluded in the regression analysis, which
produces the following correlation,

τm,i = 5.944Fr(zm,i)
2 − 4.958Fr(zm,i) + 5.611, (16)

with R2 = 0.9879. This shows that the scaling relation τm,i ∼ Fr(zm,i)
2 is applicable very

well for all fountains with the exclusion of the four fountains, as shown in Figure 9f.
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Figure 9. (a) τm,i plotted against Fr at s = 0.1, 0.2, 0.3, 0.4 and 0.5, (b) τm,i plotted against s at Fr = 1,
2, 3 and 4, (c) τm,i plotted against Fr1.273s−0.229 over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, without exclusions,
(d) τm,i plotted against Fr1.225s−0.252 over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, with exclusions, (e) τm,i

plotted against Fr(zm,i) over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, without exclusions, (f) τm,i plotted against
Fr(zm,i) over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, with exclusions, respectively.

Figure 10 presents the numerical results for vm,a, which quantifies the increase rate of
zm with time during the averaging period at the FDS. Figure 10a shows that for each s, Fr
only significantly affects vm,a when Fr is no more than 3, with vm,a increasing significantly
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when Fr becomes larger. However, beyond Fr ≈ 3, the effect of Fr on vm,a is very small. It
is also observed that the variation of s results in noticeable changes of vm,a when Fr is no
more than 3, with a larger s value producing a reduced value of vm,a, but beyond Fr ≈ 3,
the effect of s on vm,a becomes negligible, as shown in Figure 10b.

A multi-variable regression analysis of the results for vm,s from all fountains considered
shows that Fr0.22s−0.155 provides a reasonable representation of the overall effects of Fr and
s on vm,a, and the following correlation is obtained when all fountains are included,

vm,a = −0.0011(Fr0.22s−0.155)2 + 0.0043Fr0.22s−0.155 − 0.0023

= −0.0011Fr0.44s−0.31 + 0.0043Fr0.22s−0.155 − 0.0023, (17)

with R2 = 0.8036, as shown in Figure 10c. Similarly, the results of the four fountains
mentioned above should be excluded in the regression analysis, and it is found that the
obtained Fr0.238s−0.147 provides a slightly better representation of the overall effects of Fr
and s on vm,a, with the following correlation obtained when the four fountains are excluded,

vm,a = −0.0012(Fr0.238s−0.147)2 + 0.0046Fr0.238s−0.147 − 0.0025

= −0.0012Fr0.476s−0.294 + 0.0046Fr0.238s−0.147 − 0.0025, (18)

with R2 = 0.8485, as shown in Figure 10d.
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Figure 10. (a) vm,a plotted against Fr at s = 0.1, 0.2, 0.3, 0.4 and 0.5, (b) vm,a plotted against s at Fr = 1,
2, 3 and 4, (c) vm,a plotted against Fr0.22s−0.155 over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, without exclusions,
(d) vm,a plotted against Fr0.238s−0.147 over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, with exclusions, respectively.

4.2. Intrusion

As explained earlier, intrusion is another key feature of the fountain behavior of an
SPF in LSF. Due to the dense fluid injected, the intrusion formation can be observed to be on
the bottom surface only after the downflow reaches the bottom surface and subsequently
moves outward along the bottom floor. Therefore, intrusion development and its movement
alter ambient fluid stratification, leading to a reduced negative buoyant force applied to
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the fountain. This effect is especially notable for large s and small Fr values that observed
MFPH is considerably smaller.

Figure 11 presents an example of the intrusion for the SPF at Fr = 2 and s = 0.1 with
its temperature contours and outer boundary region. The major parameters characterizing
the intrusion behavior include xint and uint, which are the instantaneous dimensionless
intrusion front distance away from X = 0 and the corresponding dimensionless velocity, as
depicted in Figure 11b.

Figure 11. (a) The temperature contour and (b) the outer boundary of the intrusion region at Y = 0
in the X-Z plane, which is the iso-temperature curve at T(Z) = T0 − 1%(Ta,0 − T0), for the SPF at
Fr = 2 and s = 0.1, where xint and uint are the instantaneous intrusion front distance away from
X = 0 and the corresponding velocity, which are made dimensionless by X0 and W0, respectively.

The numerically obtained time series of xint and uint of the SPF at Fr = 2 and s = 0.2
are presented in Figure 12. It is seen that the evolution of xint experiences three distinct
stages: the initial stage (Stage 1) from the formation of the intrusion until uint attains the
maximum, in which uint increases continually; subsequently, uint reduces monotonically for
a period of time (Stage 2); and eventually, the intrusion is at the FDS (Stage 3) in which uint
continually decreases but at the rates that are much smaller than those in Stage 2. As the
instantaneous values of xint at different times are determined automatically in the code, the
locations of xint, which is the furthermost point of the intrusion front, may be at different
heights. These results in the fluctuations in the time series of uint due to the very small
time step used and the very long whole time duration considered, as shown in Figure 12b.
To smooth these fluctuations, the moving average of uint, denoted as ūint, is considered
to be a better representation of uint. The time series of ūint is presented in Figure 12c. In
Figure 12d, the time series of the corresponding rate of ūint changing with time, i.e., the
acceleration āint, is shown. For all fountains considered, the moving average interval of 5
in dimensionless time is used.

It is noted that these three stages (Stages 1, 2 and 3) for the evolution of xint are
very similar to the three regimes for the development of a pure gravity current, i.e., the
wall jet regime, the buoyancy–inertial regime, and the buoyancy–viscosity regime, which
are distinguished by the respective dominating forces [20]. In the wall jet regime, the
flow behaves as a plane wall jet with the dominant momentum, which is followed by the
second regime where buoyancy becomes the driving force which is balanced by the inertial
force; and gradually, the inertial force decreases and the total viscous force caused by the
interfacial shear stress between the gravity current and the ambient fluid and the bottom
shear stress increases, eventually evolving into the buoyancy–viscosity regime, where the
buoyancy force is balanced by the viscous drag force [20].

The effects of Fr and s on xint and ūint are demonstrated by the numerical results
presented in Figure 13 for five SPFs with varying Fr at s = 0.1 and five SPFs with varying
s at Fr = 2. The results show that the times series of xint and ūint are very similar for all
fountains, although they differ quantitatively. Fr is found to significantly affect both xint
and ūint, whereas the effect of s is much smaller, particularly at the FDS (Stage 3).
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Figure 12. Time series of (a) xint, (b) uint, (c) ūint, and (d) āint for the SPF at Fr = 2 and s = 0.1,
where uint,m is the instantaneous maximum horizontal velocity of the intrusion front and τint,m is
the time instant when uint = uint,m, ūint is the moving average of uint with the averaging period of 5
(dimensionless time), and āint is the rate of ūint changing with time (i.e., the acceleration of xint). xint,
uint, ūint, and āint are made dimensionless by X0, V0, V0, and X0/V2

0 and V0, respectively.

The effects of Fr and s on ūint,m, which is the moving average of the maximum
horizontal velocity of the intrusion front, are shown in Figure 14 for all SPFs considered.
As shown in Figure 14a, for each s, ūint,m reduces significantly when Fr becomes larger,
which can be quantified by a power-law correlation. However, the effect of s on ūint,m is
negligible, as all data with different s values are essentially on the same power-law curve.
This is also clearly demonstrated in Figure 14b which shows that for each Fr value, ūint,m
almost does not vary, particularly when Fr is beyond 1.

Similar to that for zm, the overall effects of Fr and s on ūint,m can also be quantified
by Frasb. A multi-variable regression analysis of the numerical results for ūint,m from all
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fountains considered shows that Fr−0.603s−0.013 quantifies the overall effects of Fr and s on
ūint,m very well, with the following correlation obtained when all fountains are included,

ūint,m = 0.9932Fr−0.603s−0.013 + 0.0153, (19)

with R2 = 0.9925. From this correlation, it is seen that c = −0.013, showing that the effect
of s is negligible, which is in agreement with the results presented in Figure 14a,b. Hence,
it is expected that the omission of the effect of s on ūint,m should not lead to a noticeable
change of d. This is verified by the result presented in Figure 14c, which shows that the
following power-law correlation can be obtained,

ūint,m = 1.0404Fr−0.607, (20)

with R2 = 0.9893, where a = −0.607, which is almost the same as a = −0.603 as obtained
in the correlation (19) when the effect of s is included.
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Figure 13. Time series of xint (a) and ūint (c) for the five SPFs with five Fr values at s = 0.1, and the
time series of xint (b) and ūint (d) for the five SPFs for the five s values at Fr = 2, respectively.

The effects of Fr and s on τint,m, which is the time instant when ūint,m attains the
maximum, are demonstrated by the numerical results presented in Figure 15. As shown in
Figure 15a, for each s value, τint,m increases significantly when Fr increases, which can be
quantified by a power-law correlation. s also has an effect on τint,m, although not as strong
as Fr has, particularly when Fr is larger. This is also clearly shown in Figure 15b which
shows that for each Fr value, τint,m decreases when s increases.

Likewise, the overall effects of Fr and s on τint,m can also be quantified by Frasb. A
multi-variable regression analysis of the results for τint,m from all fountains shows that
Fr0.695s−0.14 quantifies the overall effects of Fr and s on τint,m very well, and the following
correlation is obtained when all fountains are included,

τint,m = 14.039Fr0.695s−0.14 − 0.2744, (21)
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with R2 = 0.9935.
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Figure 14. (a) uint,m plotted against Fr at s = 0.1, 0.2, 0.3, 0.4 and 0.5, (b) uint,m plotted against s at
Fr = 1, 2, 3 and 4, (c) uint,m plotted against Fr−0.603s−0.013 over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, and (d)
uint,m plotted against Fr over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, respectively.

A similar analysis can also be conducted for āu,s1, āu,s2 and āu,s3, which are the time
averages of the moving averages of the acceleration of the intrusion front at Stages 1, 2
and 3, respectively. It is expected that the effects of Fr and s on āu,s1, āu,s2 and āu,s3 should
also be quantified by Frasb, although their respective values of a and b are different, as
discussed below. It should be noted that the values of āu,s1 are positive, but the values of
āu,s2 and āu,s3 are negative. In the subsequent analysis of the results for āu,s2 and āu,s3, only
their magnitudes are used as their values.

The effects of Fr and s on āu,s1 are demonstrated by the numerical results presented
in Figure 16. As shown in Figure 16a, for each s value, āu,s1 reduces significantly when Fr
increases, which can be quantified by a power-law correlation. However, the effect of s
on āu,s1, similar to that on ūint,m, is negligible, except at Fr = 1, as all data with different s
values fall approximately on the same power-law curve. This is also clearly demonstrated
in Figure 16b which shows that for each Fr value, with the exception of Fr = 1, āu,s1 varies
only slightly.

Similarly, the overall effects of Fr and s on āu,s1 can also be quantified by Frasb, as
mentioned above. A multi-variable regression analysis of the results for āu,s1 from all
fountains considered shows that Fr−1.291s−0.024 quantifies the combined effects of Fr and
s on āu,s1 reasonably well, and the following correlation is obtained when all fountains
are included,

āu,s1 = 0.03154Fr−1.291s−0.024 + 0.00197, (22)

with R2 = 0.9176. From this correlation, it is seen that b = −0.024, indicating that the effect
of s is negligible, which is in agreement with the results presented in Figure 16a,b. Hence,
it is expected that the omission of the effect of s on āu,s1 should not lead to a noticeable
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change of a. This is verified by the result presented in Figure 16c, which shows that the
following power-law correlation can be obtained,

āu,s1 = 0.0385Fr−1.299, (23)

with R2 = 0.9362, where a = −1.299, which is almost the same as a = −1.291 as obtained
in the correlation (22) when the effect of s is included.
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Figure 15. (a) τint,m plotted against Fr at s = 0.1, 0.2, 0.3, 0.4 and 0.5, (b) τint,m plotted against s at
Fr = 1, 2, 3 and 4, and (c) τint,m plotted against Fr0.695s−0.14 over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5,
respectively.

It should be noted that the relatively large deviations of some data, particularly those
at Fr = 1, away from the correlations (22) and (23), are due to two reasons. The first one
is because for all fountains considered, the moving average interval of 5 (dimensionless
time) is used. This leads to the absence of the data within the initial 5 in the determination
of the moving average of uint, i.e., ūint, in Stage 1, which in turn excludes these data for
āu,s1. As in general, the durations of Stage 1 are relatively small, from about 16 at Fr = 1
to the maximum of about 50 at Fr = 5 for all fountains considered, the absence of the
data within the initial 5 in the determination of the moving average of uint in Stage 1 has a
significant effect, particularly at Fr = 1 and other small Fr values. The second reason is
that it is observed that the changes of ūint are substantial at different times within Stage 1,
particularly at small Fr values, which results in a relatively large inaccuracy of the values
obtained for āu,s1. However, as the changes of ūint within Stage 2 and Stage 3 are much
smaller and additionally, there is no issue with the absence of the data within the initial 5
in the determination of the moving average of uint within these two stages, it is expected
that the values of d and c in Frasb for āu,s2 and āu,s3, as well as the relevant correlations are
more accurate, as shown below.
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Figure 16. (a) āu,s1 plotted against Fr at s = 0.1, 0.2, 0.3, 0.4 and 0.5, (b) āu,s1 plotted against s at
Fr = 1, 2, 3 and 4, (c) āu,s1 plotted against Fr−1.291s−0.024 over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, and (d)
āu,s1 plotted against Fr over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, respectively.

The effects of Fr and s on āu,s2 are demonstrated by the numerical results presented
in Figure 17. As shown in Figure 17a, for each s value, āu,s2 reduces significantly when Fr
increases, which can be quantified by a power-law correlation. It is also seen that s affects
āu,s2, with its increase leading to a larger āu,s2 value for each Fr value, as demonstrated
in Figure 17b, but the effect of s on āu,s2 is significant when Fr = 1, and it is much
smaller for higher Fr values. A multi-variable regression analysis of the results for āu,s2
from all fountains considered shows that Fr−2.074s0.615 quantifies the overall effects of Fr
and s on āu,s2 well, and the following correlation is obtained from the numerical results
of all fountains,

āu,s2 = 0.04416Fr−2.074s0.615 + 0.000021, (24)

with R2 = 0.9742.
The effects of Fr and s on āu,s3 are demonstrated by the numerical results presented

in Figure 18. As shown in Figure 18a, for each s value, āu,s3 reduces significantly when Fr
increases, which can be quantified by a power-law correlation. It is also seen that s affects
āu,s2, with its increase leading to a larger āu,s3 value for each Fr value, as demonstrated in
Figure 18b, and similar to that for āu,s2, the effect of s on āu,s3 is larger when Fr is smaller.
A multi-variable regression analysis of the results for āu,s3 from all fountains considered
shows that Fr−0.683s0.35 quantifies the overall effects of Fr and s on āu,s3 relatively well, and
the following correlation is obtained when all fountains are included,

āu,s3 = 0.000783Fr−0.683s0.35 − 0.000001, (25)

with R2 = 0.9482.
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Figure 17. (a) āu,s2 plotted against Fr at s = 0.1, 0.2, 0.3, 0.4 and 0.5, (b) āu,s2 plotted against s at
Fr = 1, 2, 3 and 4, and (c) āu,s2 plotted against Fr−2.074s0.615 over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5,
respectively.
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Figure 18. (a) āu,s3 plotted against Fr at s = 0.1, 0.2, 0.3, 0.4 and 0.5, (b) āu,s3 plotted against s at
Fr = 1, 2, 3 and 4, and (c) āu,s3 plotted against Fr−0.683s0.35 over 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5,
respectively.



Fluids 2023, 8, 127 21 of 22

5. Conclusions

The characterization of weak plane fountains in stratified fluids with small Fr and Re
values, in which only the symmetric behavior is present, is currently rarely understood.
Furthermore, the intrusion is an integral part of a weak symmetric plane fountain, and its
behavior is important due to its significant effects on the maximum fountain penetration
height. Nonetheless, intrusion in such weak symmetric plane fountains, particularly in
stratified ambient fluids, is rarely investigated. A numerical study was thus conducted
on the weak symmetric plane fountains in linearly stratified fluids with simulations over
0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 5, all at constant Re = 100. The parameters selected to
investigate the fountain behavior are zm, both initial and time-averaged, the time to attain
the initial zm, along with as the velocities of intrusion at different stages.

There are two major differences in behavior between a weak SPF in a homogeneous
fluid and that in an LSF. One difference is that the stratification of the ambient fluid stabilizes
the symmetry of the weak fountain, which makes the fountain become asymmetric at
a larger Fr value. The other difference is that zm of the SPF in the LSF continues to
increase at the FDS, whereas that in the homogeneous fluid is essentially constant. The
observed continuous increase of the MFPH in the SPF is largely caused by the intrusion
which continuously diminishes with time at the FDS, leading to reduced buoyant force
experienced by the fountain fluid. This is especially notable for large s and small Fr values
with the MFPH considerably smaller.

The results show that zm and the associated time are under the effects of Fr and s,
with the effect of Fr usually stronger than that of s. The overall effects of Fr and s can be
quantified by Frasb, with the values of a and b varying for different parameters related
to zm. With the numerical results obtained for all weak SPFs, empirical correlations are
produced in terms of Frasb for each relevant parameter, which generally predict the results
very well. It is further found that if the local Froude number Fr(zm,i), which incorporates
the effect of s, is used instead of Fr, the scaling relations using Fr(zm,i) only developed by
Lin and Armfield [6] for weak SPFs in LSFs basically also work well for the SPFs considered
in the present study.

The evolution of the intrusion experiences three distinct stages; Stage 1 is the initial
stage, from the formation of the intrusion until uint attains the maximum, in which uint
increases continually; this is followed by Stage 2 in which uint reduces monotonically for
a period of time; and eventually the intrusion is in Stage 3, which is at the FDS in which
uint continually decreases but at rates that are much smaller than those in Stage 2. The
results show that both Fr and s have effects on uint and the associated rates of changes
with time (accelerations) at different stages and similarly the overall effects of Fr and s on
these parameters can also be quantified in terms of Frasb, with different values of of a and
b. Empirical correlations are obtained in terms of Frasb for each relevant parameter, which
generally predict the results well.
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Abbreviations
The following abbreviations are used in this manuscript:

FDS Fully developed stage
LSF Linearly stratified fluid
MFPH Maximum fountain penetration height
PF Plane fountain
SPF Symmetric plane fountain
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