Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology
Pos, Edwin, de Souza Coelho, Luiz, de Andrade Lima Filho, Diogenes, Salomão, Rafael P., Amaral, Iêda Leão, De Almeida Matos, Francisca Dionízia, Castilho, Carolina V., Phillips, Oliver L., Guevara, Juan Ernesto, de Jesus Veiga Carim, Marcelo, López, Dairon Cárdenas, Magnusson, William E., Wittmann, Florian, Irume, Mariana Victória, Martins, Maria Pires, Sabatier, Daniel, da Silva Guimarães, José Renan, Molino, Jean-François, Bánki, Olaf S., Piedade, Maria Teresa Fernandez, Pitman, Nigel C.A., Mendoza, Abel Monteagudo, Ramos, José, Hawes, Joseph E., Almeida, Everton José, Barbosa, Luciane Ferreira, Cavalheiro, Larissa, dos Santos, Márcia Cléia Vilela, Luize, Bruno Garcia, de Leão Novo, Evlyn Márcia Moraes, Vargas, Percy Núñez, Silva, Thiago Sanna Freire, Venticinque, Eduardo Martins, Manzatto, Angelo Gilberto, Reis, Neidiane Farias Costa, Terborgh, John, Casula, Katia Regina, Coronado, Euridice N. Honorio, Montero, Juan Carlos, Marimon, Beatriz S., Marimon-Junior, Ben Hur, Feldpausch, Ted R., Duque, Alvaro, Baraloto, Chris, Arboleda, Nicolás Castaño, Engel, Julien, Petronelli, Pascal, Zartman, Charles Eugene, Killeen, Timothy J., Vasquez, Rodolfo, Mostacedo, Bonifacio, Assis, Rafael L., Schöngart, Jochen, Castellanos, Hernán, de Medeiros, Marcelo Brilhante, Simon, Marcelo Fragomeni, Andrade, Ana, Camargo, José Luís, Demarchi, Layon O., Laurance, William F., Laurance, Susan G.W., de Sousa Farias, Emanuelle, Lopes, Maria Aparecida, Magalhães, José Leonardo Lima, Nascimento, Henrique Eduardo Mendonça, de Queiroz, Helder Lima, Aymard, Gerardo A. C., Brienen, Roel, Revilla, Juan David Cardenas, Costa, Flávia R. C., Quaresma, Adriano, Vieira, Ima Célia Guimarães, Cintra, Bruno Barçante Ladvocat, Stevenson, Pablo R., Feitosa, Yuri Oliveira, Duivenvoorden, Joost F., Mogollón, Hugo F., Ferreira, Leandro Valle, Comiskey, James A., Draper, Freddie, de Toledo, José Julio, Damasco, Gabriel, Dávila, Nállarett, Garcia-villacorta, Roosevelt, Lopes, Aline, Vicentini, Alberto, Noronha, Janaína Costa, Barbosa, Flávia Rodrigues, de Sá Carpanedo, Rainiellen, Emilio, Thaise, Levis, Carolina, de Jesus Rodrigues, Domingos, Schietti, Juliana, Souza, Priscila, Alonso, Alfonso, Dallmeier, Francisco, Gomes, Vitor H. F., Lloyd, Jon, Neill, David, de Aguiar, Daniel Praia Portela, Araujo-murakami, Alejandro, Arroyo, Luzmila, Carvalho, Fernanda Antunes, de Souza, Fernanda Coelho, do Amaral, Dário Dantas, Feeley, Kenneth J., Gribel, Rogerio, Pansonato, Marcelo Petratti, Barlow, Jos, Berenguer, Erika, Ferreira, Joice, Fine, Paul V. A., Guedes, Marcelino Carneiro, Jimenez, Eliana M., Licona, Juan Carlos, Mora, Maria Cristina Peñuela, Peres, Carlos A., Zegarra, Boris Eduardo Villa, Cerón, Carlos, Henkel, Terry W., Maas, Paul, Silveira, Marcos, Stropp, Juliana, Thomas-Caesar, Raquel, Baker, Tim R., Daly, Doug, Dexter, Kyle G., Householder, John Ethan, Huamantupa-Chuquimaco, Isau, Pennington, Toby, Paredes, Marcos Ríos, Fuentes, Alfredo, Pena, José Luis Marcelo, Silman, Miles R., Tello, J. Sebastián, Chave, Jerome, Valverde, Fernando Cornejo, Di Fiore, Anthony, Hilário, Renato Richard, Phillips, Juan Fernando, Rivas-Torres, Gonzalo, van Andel, Tinde R., von Hildebrand, Patricio, Barbosa, Edelcilio Marques, de Matos Bonates, Luiz Carlos, Doza, Hilda Paulette Dávila, Fonty, Émile, Gómez, Ricardo Zárate, Gonzales, Therany, Gonzales, George Pepe Gallardo, Guillaumet, Jean-Louis, Hoffman, Bruce, Junqueira, André Braga, Malhi, Yadvinder, de Andrade Miranda, Ires Paula, Pinto, Linder Felipe Mozombite, Prieto, Adriana, Rudas, Agustín, Ruschel, Ademir R., Silva, Natalino, Vela, César I. A., Vos, Vincent Antoine, Zent, Egleé L., Zent, Stanford, Albuquerque, Bianca Weiss, Cano, Angela, Correa, Diego F., Costa, Janaina Barbosa Pedrosa, Flores, Bernardo Monteiro, Holmgren, Milena, Nascimento, Marcelo Trindade, Oliveira, Alexandre A., Ramirez-Angulo, Hirma, Rocha, Maira, Scudeller, Veridiana Vizoni, Sierra, Rodrigo, Tirado, Milton, Umaña, Maria Natalia, van der Heijden, Geertje, Torre, Emilio Vilanova, Vriesendorp, Corine, Wang, Ophelia, Young, Kenneth R., Reategui, Manuel Augusto Ahuite, Baider, Cláudia, Balslev, Henrik, Cárdenas, Sasha, Casas, Luisa Fernanda, Farfan-Rios, William, Ferreira, Cid, Linares-Palomino, Reynaldo, Mendoza, Casimiro, Mesones, Italo, Torres-Lezama, Armando, Giraldo, Ligia Estela Urrego, Villarroel, Daniel, Zagt, Roderick, Alexiades, Miguel N., Garcia-Cabrera, Karina, Hernandez, Lionel, Milliken, William, Cuenca, Walter Palacios, Pansini, Susamar, Pauletto, Daniela, Arevalo, Freddy Ramirez, Sampaio, Adeilza Felipe, Sandoval, Elvis H. Valderrama, Gamarra, Luis Valenzuela, Boenisch, Gerhard, Kattge, Jens, Kraft, Nathan, Levesley, Aurora, Melgaço, Karina, Pickavance, Georgia, Poorter, Lourens, and ter Steege, Hans (2023) Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology. Scientific Reports, 13. 2859.
|
PDF (Published Version)
- Published Version
Available under License Creative Commons Attribution. Download (2MB) | Preview |
Abstract
In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics.
Item ID: | 78888 |
---|---|
Item Type: | Article (Research - C1) |
ISSN: | 2045-2322 |
Keywords: | Computational biology and bioinformatics, Ecology, Statistical physics, thermodynamics and nonlinear dynamics |
Copyright Information: | © The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Date Deposited: | 12 Jun 2023 04:33 |
FoR Codes: | 41 ENVIRONMENTAL SCIENCES > 4199 Other environmental sciences > 419999 Other environmental sciences not elsewhere classified @ 100% |
SEO Codes: | 18 ENVIRONMENTAL MANAGEMENT > 1899 Other environmental management > 189999 Other environmental management not elsewhere classified @ 100% |
Downloads: |
Total: 75 Last 12 Months: 24 |
More Statistics |