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Abstract 16 

Groundwater (GW) level prediction is important for effective GW resources management. It is 17 

hypothesized that using precipitation data in GW level modelling will increase the overall accuracy 18 

of the results and that the distance of the observation well to the weather station (where 19 

precipitation data are obtained) will affect the model outcome. Here, Genetic Programming (GP) 20 

was used to predict GW level fluctuation in multiple observation wells under three scenarios to 21 

test these hypotheses. In Scenario 1, GW level and precipitation data were used as input data. 22 

Scenarios 2 only had GW level data as inputs to the model and in Scenarios 3, only precipitation 23 

data were used as inputs. Long term GW level time series data covering a period of eight years 24 

were used to train and test the GP model. Further, to examine the effect of data from previous time 25 

periods on the accuracy of GW level prediction, 12 models with input data up to 12 months prior 26 

to the current period, were investigated. Model performance was evaluated using two criteria, 27 

Coefficient of Determination (R2) and Root Mean Square Error (RMSE). Results show that when 28 

predicting GW levels through GP, using GW level and precipitation data together (Scenario 1) 29 

produces results with higher accuracy compared to only using GW level (Scenario 2) or 30 

precipitation data (Scenario 3). Additionally, it was found that model accuracy was highest for the 31 

well located closest to the weather station (where precipitation data were collected), demonstrating 32 

the importance of weather station location in GW level prediction. It was also found that using 33 

data from up to six previous time periods (months) can be the most efficient combination of data 34 

for accurate predictions. The findings from this study are useful for increasing prediction accuracy 35 

of GW level variations in unconfined aquifers for sustainable GW resources management.  36 

 37 

Keywords: Unconfined aquifer, coefficient of determination, root mean square error, Tabriz 38 

plain.  39 
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1. Introduction 40 

Groundwater (GW) is known as the largest liquid freshwater resource on earth and stores 41 

almost 90% of the total non-frozen freshwater worldwide [1]. It is reported that 50% of global 42 

megacities are dependent on GW for supplying potable water [1]. Additionally, excessive 43 

exploitation of GW is leading to swift depletion of aquifers, posing threats to the sustainability of 44 

food/water production worldwide. [2]. In addition, GW acts as a natural storage of water protected 45 

from surface evaporation, is distributed spatially and can be utilized with limited capital 46 

expenditure [3]. GW is also a more promising and reliable source of fresh water, in comparison to 47 

surface water, during droughts that regularly affect the quantity of surface water resources globally 48 

[4].  49 

Increasing environmental pressures, such as agriculture development, urbanisation and climate 50 

change, can intensify GW resources stresses [5]. In such conditions, the rate of GW recharge may 51 

become lower than the withdrawal rate, resulting in environmental repercussions, GW storage 52 

decline, degradation of water quality, and increasing extraction costs [6]. Despite the considerable 53 

importance of GW resource worldwide, studies and management strategies on GW resources are 54 

often less available than surface waters resources, as GW data can be challenging to collect and 55 

time consuming [5,7].  56 

To manage GW resources effectively and sustainably, accurate GW level determination is 57 

required as poor management may lead to water quality deterioration, declining GW levels, and 58 

decreasing aquifer storage [5, 8]. For example, GW level prediction has significant importance in 59 

the management of seawater intrusion on fresh GW resources in coastal regions [9], and in 60 

developing effective irrigation schemes to prevent GW contamination in locations with 61 

agricultural activities [10, 11]. Additionally, determining sustainable GW extraction policies, 62 
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facilitating environmental protection, and developing water price policies are all dependent on 63 

accurate, efficient and reliable forecasting of GW level variations [8].  64 

In the past decade, Artificial Intelligence (AI) and machine learning techniques have received 65 

increasing interest in the water resources literature due to their high accuracy and low 66 

computational efforts compared to conventional modelling techniques such as regression, 67 

statistical, probabilistic parametric, semiparametric and nonparametric models [12]. Models such 68 

as Adaptive Neural Fuzzy Inference System (ANFIS) and Genetic Programming (GP) have been 69 

described as effective tools to predict GW level elevation [13-16].  70 

It is hypothesized that using precipitation data in GW level modelling will increase the overall 71 

accuracy of the results and that the distance of the observation well to the weather station (where 72 

precipitation data are obtained) will affect the model outcome. This paper provides a review of the 73 

current knowledge of using GP to predict GW levels and develops a GP model to predict GW level 74 

fluctuation in multiple observation wells under three scenarios to test these hypotheses. 75 

A GP based model was used to forecast GW level variations near the Amaravathi River, India 76 

[17]. It was found that the model could precisely capture the non-linearity nature of GW level 77 

fluctuations without requiring explicit knowledge of the physical characteristics of the system. 78 

Shiri and Kisi [14] examined the ability of Gene Expression Programming (GEP - a multi-branch 79 

GP with the ability of creating expression trees) and ANFIS data driven models to predict GW 80 

level time series (one-, two- and three-day forecasts) and found that GEP performed slightly better 81 

than ANFIS based on error criteria.  82 

In another investigation, the same authors analyzed the ability of Artificial Neural Network 83 

(ANN), GEP, and ANFIS techniques to forecast daily GW levels for 1 to 7-days ahead, using 84 

several input combinations, such as GW levels, rainfall and evapotranspiration data in South Korea 85 
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[18]. The study was based on GW levels from a single well located 500 meters away from the 86 

weather station.  Shiri and Kisi [18] reported that the GEP method can be satisfactorily applied to 87 

predict GW level fluctuations up to 7 days beyond data records using the mentioned data as inputs.  88 

In two separate studies by Fallah-Mehdipour et al. [19, 20], ANFIS and GP methods were used 89 

to obtain governing GW flow equations in Ghaen and Karaj aquifers in Iran, using various 90 

recharges and discharges situations as input data sets. They found that GW level predictions are 91 

more accurate when using GP compared to ANFIS. Additionally, GP was used for GW budget 92 

forecasting by Gorgij et al. [6] to predict a 0.12 m reduction in GW levels for the Azarshahr plain 93 

aquifers, Iran, by validating the accuracy of the GP model and using current period GW levels as 94 

input data. In another study, Sivapragasam et al. [21] used monthly GW level data as input and GP 95 

was applied to predict spatial variations of GW levels in Arjuna Nadhi region, India. They reported 96 

that in forecasting GW level for a specific well, information from neighboring wells should 97 

incorporate GW level predictions as it significantly improves the prediction accuracy. Amaranto 98 

et al. [22] provided GW level prediction for an unconfined aquifer in the northern high plains of 99 

Nebraska, USA, by employing different inputs such as crop water demand, ice melting, GW level, 100 

precipitation and evapotranspiration. Their study demonstrated that ANN and GP can produce 101 

similar prediction results depending on input data.  102 

Overall, when using AI models to predict GW levels, obtaining the highest accuracy in 103 

predictions is the main goal. Based on our literature review (Table 1), it was found that although 104 

precipitation data is the most widely used parameter (after GW level data) in GW level prediction, 105 

the effects of the weather station distance to the observation well on model accuracy has yet to be 106 

assessed. Therefore, the main objective of this study is to build on the literature by (1) assessing 107 

whether precipitation data is a significant input for GW level prediction under GP application and 108 
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(2) to determine how the location of the weather station (where precipitation data are collected) 109 

may affect the accuracy of the GW level predictions.  110 

 111 

2. Material and Methods 112 

2. 1. Study site 113 

Tabriz plain is located in North-west Iran and accommodates Iran’s fifth most densely 114 

populated city. The plain has an area of approximately 700 km2 and is located between latitudes 115 

45°30′ and 46°15′ N, and altitudes 37°56′ and 38°17′ E [23,24]. It is bordered to the north by the 116 

Mishow, Moro and west Garadug mountains; to the east by Tabriz city; to the south by the northern 117 

slopes of Sahand Mountain; and to the west by Urmia lake [23]. The area experiences a cold 118 

climate in winter, mild in spring, semi-hot in summer, and a mild rainy weather in autumn. Its 119 

elevation ranges between 1,350 to 1,600 m above sea level. Tabriz plain is classified as arid with 120 

a cold and dry climate and has a mean annual precipitation of 280-290 mm (63% lower than 121 

world’s average rainfall, 800 mm) and a mean annual temperature of 12.6 °C [25].  122 

The geology of the plain is comprised of a 120 m deep alluvial layer that sits atop an 123 

impermeable bedrock with the alluvial layer containing sand, gravel, silt and clay material. The 124 

significant formations of this area include an upper red formation (in the north-eastern part), 125 

volcanic tuffs (in the southern part), and quaternary deposits (in the western part) [26]. Three rivers 126 

including the Aji-Chay, Gomanab-Chay and Sinekh-Chay cross this area and transport suspended 127 

sediments and saline water during the high discharge and low discharge periods, respectively [24].  128 

The area has a shallow unconfined and a deeper confined aquifer system separated by a low 129 

permeable clay-silt layer. The central part of the plain comprises unconfined and confined aquifers, 130 

while the highlands solely contain unconfined aquifers [24]. The unconfined aquifer contains 131 
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saline water up to 60 m below the surface in some parts, mainly due to the saline water of Aji Chay 132 

River in the region, which discharges into Urmia Lake (saline lake), with an average annual 133 

discharge rate of 10 m3/s. Fresh GW can be sourced from 60-120 m depths in the unconfined 134 

aquifer. The direction of the GW flow generally follows the topography of the region and is mainly 135 

from northeast to southwest [27]. The source of recharge for the confined and semi-confined 136 

aquifer is precipitation (in winter and autumn) localized to small areas, while the unconfined 137 

aquifer recharges from the river and irrigation return water.  138 

Tabriz city has a large drinking water demand (roughly 4500 litres per second in 2017), with 139 

GW extraction supplying 33% of demand and the Zarineh-rood river supplying the remaining 140 

drinking water demand. However, GW levels are potentially at risk having decreased by 5 m (on 141 

average) over the last 30 years in parts of the plain [28]. Figure 1 shows the location of the study 142 

site, observation wells and location of the weather station.  143 

 144 

2. 2. Genetic Programming 145 

GP is an artificial intelligence model that detects data patterns and approximate functions to 146 

best define relationships between inputs and outputs [17]. The primary advantage of GP is the 147 

flexibility to simulate a complex phenomenon using mathematical and logical relations with 148 

significantly lower computational costs in comparison to conventional methods [19]. This is the 149 

main reason GP is increasingly being used in water resources engineering problems [29]. 150 

In a traditional tree-based structure of GP, various parameters, operators and functions are 151 

placed in the nodes that are connected by several branches. Each tree node consists of two different 152 

sets: 1) a function set, and 2) a terminal set. Functions are nodes with children arguments and 153 

contain mathematical functions (e.g., square, sin, tan), arithmetic operators (+, -, /), boolean 154 

operators (e.g., and, or), and other user-defined expressions. Terminals include numerical 155 
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constants and variables [20]. Two tree structures of a GP are shown in Figure 2(a) which can be 156 

interpreted as (7-X1)*(X2+5) (left) and sqrt(Y1)+(X1/8) (right) where X and Y represent random 157 

variables.   158 

The algorithm initializes by randomly selecting a combination of functions and terminals to 159 

form a population of equations that are represented by a tree. Each tree (potential solution) is 160 

evaluated through an evolutionary process called fitness. The fitness function is considered an 161 

error criterion between the actual and predicted output [16]. Based on the values of fitness function 162 

of each tree, selection techniques ranking method are applied to determine trees that can survive 163 

in the next generation, while trees that have the least fit with the data are discarded [19]. The 164 

elements of these selected trees are then combined to create the next generation of algorithm with 165 

some of the characteristics of each parent. In order to serve this purpose, two genetic operators are 166 

employed that mimic the natural world reproduction system: crossover and mutation. In the 167 

crossover process, two trees are randomly selected, and two or more branches of those trees are 168 

randomly swapped (Figure 2(b)). In the mutation process the functions, operators and variables in 169 

the nodes are randomly chosen and exchanged (Figure 2(c)) [20]. This evolution process is 170 

repeated over successive generations until a termination condition (e.g. a user-defined threshold 171 

error) is satisfied. 172 

 173 

2. 3. Groundwater level modeling - Input data 174 

In this study, three observation wells (A, B and C) were chosen based on their relative distance 175 

to the weather station where precipitation data were obtained. Well A was the furthest (43 km) 176 

from the weather station while Well C was the closest (3 km) from the weather station (Figure 1) 177 

and Well B was located in-between, at 18 km from the weather station. Monthly GW level data 178 
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for an eight-year (96-months) period was used to predict monthly GW level variations within each 179 

well. Average monthly precipitation data for the same eight-year time period were obtained from 180 

the Iranian Meteorological Organization and used as input data. From the total data set, seven years 181 

were used for model training and a one-year period was used for testing. A detailed statistical 182 

description of the data is provided in Table 2, indicating that there is more skewness in the rainfall 183 

data compared to GW level data. Based on the statistics presented in Table 2, the data are assumed 184 

to be stationary, meaning its probability distribution does not change when shifted in time or space 185 

[18]. Here, we opted not to normalise the input data as distance between the data was considered 186 

important. However, data normalisation should not affect the performance of the neural networks 187 

tested [30].  188 

In the prediction process for each time period (t), which was one month, inputs to the model 189 

were GW level (h) and precipitation (P) for current (t) and previous (t-1, t-2…) time periods. GW 190 

level prediction was carried out under three different scenarios to investigate the importance of 191 

both GW level and precipitation data as inputs for modelling. The three applied scenarios are 192 

described below: 193 

I) Predicting GW level (h) using the 96-month GW level time series data from two previous 194 

time periods (ht-1 and ht-2), plus precipitation data for current (Pt) and two previous time 195 

periods (Pt-1 and Pt-2) (a total of five inputs). In other words, GW level in the current time 196 

period (ht) was assumed to be a function of GW levels from two previous time periods and 197 

precipitation during the current and two previous time periods (with time periods being on 198 

a monthly scale). 199 

II) Predicting GW level using only GW level data from two previous time periods (ht-1 and ht-200 

2) without including precipitation data. 201 



10 
 

III) Predicting GW level using only precipitation data from the current (Pt) and two previous 202 

time periods (Pt-1 and Pt-2). This scenario has a total of three inputs with no GW level data 203 

as input. 204 

The following equations show each scenario in mathematical terms:  205 

Scenario 1: ht = f[h(t-1) + h(t-2) + Pt + P(t-1) + P(t-2)]                         (1) 206 

Scenario 2: ht = f[h(t-1) + h(t-2)]                (2) 207 

Scenario 3: ht = f[P(t-1) + P(t-2)]                (3) 208 

where ht is the predicated GW level for each well in the period t; f is the prediction function for 209 

each well using the corresponding data set; h(t-1) and h(t-2) are the GW level in the t-1 and t-2 time 210 

periods; Pt is the precipitation in the current time period (t); and  P(t-1) and P(t-2) are precipitation 211 

in the t-1 and t-2 time periods, respectively, with time periods being months. The number of lags 212 

for the data was chosen based on the Partial Auto-Correlation Function (PACF) of monthly GW 213 

levels. As shown in Figure 3, the GW levels from the first two lags have a significant effect on ht.  214 

Table 3 shows the parameters used in setting up the GP model. The cross over and mutation 215 

parameter values were obtained through extensive trails of different combination sets [16]. 216 

Generally, after the model parameters are defined complex equations are formed. The results from 217 

these equations are evaluated using a fitness function (mean square error) and subsequently the 218 

model performance is evaluated based on the fitness criteria. Models with acceptable performance 219 

are maintained through cross over and mutation processes. This process continued until the defined 220 

number of generations (1000) was reached or there was no improvement after 300 generations 221 

(Table 3) [17]. In future studies, an uncertainty analysis of the input data (inherent errors associated 222 

with the data) may help improve the confidence of the developed model [31]. 223 

 224 
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2. 4. Performance measures 225 

Two statistical evaluation criteria were used to assess the model performance: Coefficient of 226 

determination (R2); which is defined as the proportion of the alteration in the dependent variable 227 

that is predictable from the independent variable, and Root Mean Square Error (RMSE). The 228 

Coefficent of determination varies between 0 to 1, with higher values (close to unity) indicating 229 

that the predictions fit the data [32,33], following Equation (4). RMSE always has a non-negative 230 

value and values closer to zero are representative of a perfect relationship between observed and 231 

estimated values. This was calculated using Equation (5). 232 

𝑅𝑅2 = �∑ (ℎ𝑜𝑜−ℎ�𝑜𝑜)𝑡𝑡
𝑖𝑖=1 (ℎ𝑒𝑒−ℎ�𝑒𝑒)�

2

�∑ (ℎ𝑜𝑜−ℎ�𝑜𝑜)2𝑡𝑡
𝑖𝑖=1  × ∑ (ℎ𝑒𝑒−ℎ�𝑒𝑒)2𝑛𝑛

𝑖𝑖=1

               (4) 233 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑡𝑡
∑ (ℎ𝑒𝑒 − ℎ𝑜𝑜)2𝑡𝑡
𝑖𝑖=1                 (5) 234 

where 𝑡𝑡 is the number of time periods, ho and he are observed and estimated values at the ith time 235 

period, and ℎ�𝑜𝑜  and ℎ�𝑒𝑒 are the mean of the observed and estimated values, respectively [34]. 236 

  237 

3. Results and Discussion 238 

3. 1. Is precipitation a significant input for GW level prediction using GP? 239 

 Table 4 shows the model outcome for Well A (furthest from the weather station) based on the 240 

statistical error criteria. Results show that the highest level of fitting between observed and 241 

predicted data was through Scenario 1, which had the lowest root mean square error and the highest 242 

correlation coefficient (R2) value for training and test data (Table 4). Figure 4 shows the observed 243 

and predicted values of GW level for both training and test data under Scenario 1. Scenario 2 244 

produced an R2 of 0.87 for training data and 0.78 for test data and ranked second, whereas Scenario 245 
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3 ranked last with the lowest R2 for the training and test data (Table 4). The results indicated that 246 

including both GW level and precipitation data (Scenario 1) produces better results compared to 247 

only using GW level or precipitation data (Scenarios 2 and 3), however, not including precipitation 248 

data (Scenario 2) does not significantly affect the prediction accuracy (Table 4).  249 

To further assess the effect of GW level data as an input to the model, in comparison with 250 

precipitation data, and to investigate the effect of the distance of the weather station on the 251 

accuracy of GW level prediction, the two additional Wells (B and C) located closer to the weather 252 

station were analysed. The GW level prediction results for wells B and C are shown in Table 5. It 253 

was found that the best results for R2 and RMSE were under Scenario 1, when using GW level and 254 

precipitation data as inputs to the model. A comparison between the three wells showed that Well 255 

C, which was located closest to the weather station (3 km), produced the best fit of data among the 256 

three wells with the highest R2 values for both training and test data under all scenarios. Well A, 257 

located furthest from the weather station produced the least accurate results, demonstrating the 258 

importance of the weather station location on the model outcome.  259 

 Overall, it was found that in predicting GW levels using GP in unconfined aquifers with 260 

sufficient infiltration to recharge the aquifer; (1) the effect of not including precipitation data on 261 

the results, is much lower than not including GW level data; and (2) if precipitation data are used, 262 

the most accurate predictions will be obtained for wells nearest to the weather station, where 263 

precipitation data are collected. However, if precipitation data are not available or not included, 264 

using only GW level data will produce reasonable results. However, not including GW level data 265 

in the modeling process will produce the least accurate results. Here, the observation wells from 266 

the unconfined aquifer were used and only GW level and precipitation data were considered in the 267 

modelling [17].  However, other parameters such as temperature, water abstraction, river flow can 268 
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also affect the GW level in Tabriz plain, as it is a complex aquifer system. A comprehensive data 269 

set on the recharge and discharge components of the aquifer may increase modelling accuracy 270 

further. 271 

 272 

3. 2. The effect of preceding data on GW level prediction  273 

Based on the literature, the maximum previous time periods used for GW level prediction under 274 

GP application was two months (using GW level data from two months prior to the current time 275 

period, t) (Table 1). Therefore, to investigate the effect of preceding data on the accuracy of GW 276 

level prediction, 12 prediction models using GW level data from up to 12 previous time periods 277 

were constructed. Analysis were performed on Well C (nearest well to the weather station) as the 278 

most accurate predictions were obtained for this well. The modeling procedure was such that the 279 

level of the GW in the current time period (t) was a function of the GW level from previous time 280 

periods (t-1, t-2, . . ., t-12). Equations 6 to 17 show the various functions used: 281 

 h(t) = f(ht-1)   (6) 

 h(t) = f(ht-i)  i = 1, 2 (7) 

 h(t) = f(ht-i)  i = 1, 2, 3 (8) 

 h(t) = f(ht-i) i = 1, 2, 3, 4 (9) 

 h(t) = f(ht-i)  i = 1, 2, 3, 4, 5 (10) 

 h(t) = f(ht-i)  i = 1, 2, 3, 4, 5 ,6 (11) 

 h(t) = f(ht-i)  i = 1, 2, 3, 4, 5 ,6, 7 (12) 

 h(t) = f(ht-i)  i = 1, 2, 3, 4, 5 ,6, 7, 8 (13) 

 h(t) = f(ht-i)  i = 1, 2, 3, 4, 5 ,6, 7, 8, 9 (14) 

 h(t) = f(ht-i)  i = 1, 2, 3, 4, 5 ,6, 7, 8, 9, 10 (15) 
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 h(t) = f(ht-i) i = 1, 2, 3, 4, 5 ,6, 7, 8, 9, 10, 11 (16) 

 h(t) = f(ht-i) i = 1, 2, 3, 4, 5 ,6, 7, 8, 9, 10, 11, 12 (17) 

 282 

where h is GW level, and t is the current time period for which predictions are made, while t-1 to 283 

t-12 indicate GW levels at previous time periods (in reference to the current time period). Based 284 

on the two model performance criteria (R2 and RMSE), the results indicated that for the training 285 

data, the best R2 was obtained when using data from up to 3 previous time periods (months). In 286 

contrast, using data from one previous time period (month) had the lowest RMSE (Table 6). For 287 

test data, the highest R2 was observed when using data from up to 6 months, which also 288 

corresponded to the lowest RMSE. It was observed that by including more data beyond 6 months 289 

prior to the currents period (up to 12 months) in the modelling process, R2 values decreased, 290 

indicating the model accuracy can decline as older data are used. Overall, results suggested that 291 

when predicting monthly GW levels, using data from up to 6 months prior to the current time 292 

period, may produce the most accurate results based on the highest R2 and lowest RMSE value.   293 

 294 

4. Conclusion 295 

Accurate groundwater level prediction is a crucial factor for sustainable GW resources 296 

management worldwide. Using data-driven models such as artificial intelligence techniques to 297 

accurately predict GW level in aquifers can provide a robust tool for decision makers to monitor, 298 

manage and protect GW resources. In this study, genetic programming modelling techniques were 299 

used to predict GW levels under various scenarios and prediction accuracy was assessed based on 300 

statistical error criteria. Modelling results indicated that GW level predictions are most accurate 301 

for wells closest to the meteorological weather station when precipitation data are included as 302 
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inputs. This illustrates the important role of weather station location on the modelling outcome 303 

accuracy in GP. In addition, when only using GW level data the prediction accuracy was 304 

maximized by including data from up to six prior time periods.   305 
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Table 1. A comparison of previous studies in the literature using GP to predict groundwater level using various data as model inputs. 407 
408 

Location Method 
Input data 

Time 
scale 

R2 
(maximum 
value based 
on test data) 

RMSE 
(minimum value 
based on test 
data) 

Time period  Authors 
Groundwater 
level Precipitation Evaporation Additional 

Bondville & Perry 
wells, Illinois 
State, US 

GEP     Daily 0.99 0.10 Up to 1 week Shiri & Kişi [14] 

Karaj plain, Iran GP     Monthly 0.81 0.33 1 month Fallah-Mehdipour et 
al. [20] 

Hongcehon well, 
Korea GEP     Daily  0.06 Up to 1 week Shiri et al. [18] 

Ghaen & Karaj 
aquifers, Iran GP    

Aquifer 
recharge & 
discharge 
rates 

Monthly 0.90 0.15 1 month Fallah-Mehdipour et 
al. [19] 

Arjuna Nadhi, 
India GP     Monthly 0.72  1 month Sivapragasam et al. 

[21] 

Amarawathi 
basin, India GP     Monthly  1.23 

2 months for 
groundwater 
level & 
14 months for 
Precipitation 

Kasiviswanathan et al. 
[17] 

North Central 
Florida, US MGGP    Surface 

water level Monthly 0.90  1 month Cobaner et al. [16] 

Azarshahr plain, 
Iran GP     Monthly 0.97 0.07 1 month Gorgij et al. [6] 

Nebraska, US GP    

Crop water 
demand, 
snowmelt, 
evapotransp
iration 

Monthly  0.10 1 month Amaranto et al. [22] 

Tabriz plain, Iran GP    
Distance to 
weather 
station 

Monthly 0.98 0.09 Up to 12 
months Current study 
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Table 2. Statistical parameters of the input dataset. 409 
Data period Data set Statistical parameters 
    Observation Avg. Min. Max. Std Dev. Skewness Coefficient of variation 
Training period Groundwater level (ht) - (m) 84 1286.0 1285.0 1286.9 0.48 0.31 0.0004 
 Precipitation (Pt) - (mm) 84 19.7 0.0 114.80 21.55 2.05 1.09 
         
Testing period Groundwater level (ht) - (m) 12 1286.1 1285.8 1286.5 0.22 0.22 0.0002 
 Precipitation (Pt) - (mm) 12 20.9 0.3 68.0 22.96 1.23 1.10 
         
Whole period Groundwater level (ht) - (m) 96 1286.0 1285.0 1286.9 0.45 0.40 0.0004 
  Precipitation (Pt) - (mm) 96 19.9 0.0 114.8 21.60 1.91 1.09 

410 
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Table 3. Parameters used in setting up the GP model. 411 

Parameter Value 
Population size 128 
Generation 1000 
Crossover rate 0.93 
Mutation rate 0.65 
Fitness function Mean square error 
Termination  300 Generations without improvement 

  412 
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Table 4. Model outcomes for training and test data for Well (A) under Scenarios 1, 2, and 3. 413 

 Scenario Train  Test 

  R2 RMSE  R2 RMSE 

Well (A) 

Scenario 1 0.91 0.112  0.85 0.171 

Scenario 2 0.87 0.158  0.78 0.244 

Scenario. 3 0.45 0.994  0.36 0.362 

  414 
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Table 5. Model outcomes for training and test data for Wells B and C under Scenarios 1, 2, and 3. 415 

 Scenario  Train  Test 

   R2 RMSE  R2 RMSE 

Well (B) 

Scenario 1  0.92 0.262  0.89 0.228 

Scenario 2  0.89 0.238  0.82 0.258 

Scenario 3  0.54 0.501  0.37 0.591 

Well (C) 

Scenario 1  0.94 0.202  0.92 0.232 

Scenario 2  0.92 0.230  0.89 0.347 

Scenario 3  0.63 0.459  0.47 0.572 

416 
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Table 6. Statistical performance metrics for train and test data for the 12-time periods. 417 

Time period (month) 
Train  Test 

R2 RMSE  R2 RMSE 

1 0.900 0.083  0.826 0.264 

2 0.906 0.223  0.940 0.173 

3 0.950 0.173  0.910 0.223 

4 0.939 0.201  0.881 0.223 

5 0.945 0.141  0.934 0.141 

6 0.919 0.201  0.980 0.101 

7 0.865 0.223  0.885 0.387 

8 0.834 0.141  0.827 0.141 

9 0.825 0.173  0.788 0.173 

10 0.848 0.141  0.808 0.201 

11 0.865 0.101  0.817 0.189 

12 0.847 0.223  0.836 0.101 

418 
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 419 

Figure 1. The location of the study site, Well A, B and C and the meteorgogical weather sation 420 
location.  421 
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 422 

Figure 2. GP structures: (a) tree structure, (b) cross over process, (c) mutation process. 423 

  424 
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 425 

 426 

Figure 3. Partial auto-correlation function (PACF) of groundwater level data. 427 
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   428 

Figure 4. Observed and predicted values of groundwater level for scenario 1 in Well A, B and C. 429 

 430 


